1
|
Xia J, Wang J, Zhao N, Zhang Q, Xu B. Effects of treadmill exercise on endoplasmic reticulum protein folding and endoplasmic reticulum-associated protein degradation pathways in APP/PS1 mice. Heliyon 2024; 10:e38458. [PMID: 39397952 PMCID: PMC11467616 DOI: 10.1016/j.heliyon.2024.e38458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
A hallmark of Alzheimer's disease (AD) is the disruption of protein homeostasis (proteostasis), manifested by the misfolding and aggregation of proteins. Molecular chaperones and the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway in the ER are essential for correct protein folding and degradation of misfolded proteins respectively, thus contributing to the maintenance of proteostasis. The present study aimed to investigate whether the beneficial effects of exercise in an AD mice model is associated with changes in ER protein folding and ERAD. APP/PS1 transgenic and wild-type mice were subjected to treadmill exercise for three months. The levels of molecular chaperones, specifically protein disulfide isomerases (PDIs) and heat shock proteins (HSPs), as well as ERAD-associated molecules were analyzed in the hippocampus. The result revealed a decrease in mRNA levels of PDIA2, PDIA3, PDIA4, PDIA5, PDIA6, HSPA1B, HSPA8, HSP90B1, DNAJB2, CRYAB, and CNX, an increase in mRNA levels of HSPA5 and HSPH1, an increase in protein levels of HERPUD1, and a decrease in protein levels of VCP in APP/PS1 mice. However, following a 3-month treadmill exercise regimen, an increase in mRNA levels of PDIA2, PDIA4, PDIA6, HSPA1A, HSPA8, HSP90AB1, and DNAJB2, as well as an increase in protein levels of VCP and DERL2, and a decrease in protein levels of HERPUD1 were noted. Overall, our findings indicate that disruptions in hippocampal ER protein folding and ERAD pathways may be implicated in AD, with exercise serving as a regulator of these pathways.
Collapse
Affiliation(s)
- Jie Xia
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Wang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Na Zhao
- College of Sports and Health, Shandong Sport University, Jinan, 250102, China
| | - Qiang Zhang
- Genetics and Genomic Medicine Research and Teaching Department, University College London, London, WC1E 6BT, United Kingdom
| | - Bo Xu
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
2
|
Louati K, Maalej A, Kolsi F, Kallel R, Gdoura Y, Borni M, Hakim LS, Zribi R, Choura S, Sayadi S, Chamkha M, Mnif B, Khemakhem Z, Boudawara TS, Boudawara MZ, Safta F. Differential Proteome Profiling Analysis under Pesticide Stress by the Use of a Nano-UHPLC-MS/MS Untargeted Proteomic-Based Approach on a 3D-Developed Neurospheroid Model: Identification of Protein Interactions, Prognostic Biomarkers, and Potential Therapeutic Targets in Human IDH Mutant High-Grade Gliomas. J Proteome Res 2023; 22:3534-3558. [PMID: 37651309 PMCID: PMC10629271 DOI: 10.1021/acs.jproteome.3c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/02/2023]
Abstract
High-grade gliomas represent the most common group of infiltrative primary brain tumors in adults associated with high invasiveness, agressivity, and resistance to therapy, which highlights the need to develop potent drugs with novel mechanisms of action. The aim of this study is to reveal changes in proteome profiles under stressful conditions to identify prognostic biomarkers and altered apoptogenic pathways involved in the anticancer action of human isocitrate dehydrogenase (IDH) mutant high-grade gliomas. Our protocol consists first of a 3D in vitro developing neurospheroid model and then treatment by a pesticide mixture at relevant concentrations. Furthermore, we adopted an untargeted proteomic-based approach with high-resolution mass spectrometry for a comparative analysis of the differentially expressed proteins between treated and nontreated spheroids. Our analysis revealed that the majority of altered proteins were key members in glioma pathogenesis, implicated in the cellular metabolism, biological regulation, binding, and catalytic and structural activity and linked to many cascading regulatory pathways. Our finding revealed that grade-IV astrocytomas promote the downstream of the mitogen-activated-protein-kinases/extracellular-signal-regulated kinase (MAPK1/ERK2) pathway involving massive calcium influx. The gonadotrophin-releasing-hormone signaling enhances MAKP activity and may serve as a negative feedback compensating regulator. Thus, our study can pave the way for effective new therapeutic and diagnostic strategies to improve the overall survival.
Collapse
Affiliation(s)
- Kaouthar Louati
- Laboratory
of Pharmacology, Analytics and Galenic Drug Development- LR12ES09,
Faculty of Pharmacy, University of Monastir, Road Avicenne, 5000 Monastir, Tunisia
| | - Amina Maalej
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Fatma Kolsi
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Rim Kallel
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Yassine Gdoura
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Mahdi Borni
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Leila Sellami Hakim
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
| | - Rania Zribi
- Higher Institute
of Applied Studies to Humanities of Tunis (ISEAHT), University of Tunis, 11 Road of Jebel Lakdhar, 1005 Tunis, Tunisia
| | - Sirine Choura
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology
Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Mohamed Chamkha
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Basma Mnif
- Department
of Bacteriology, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Zouheir Khemakhem
- Legal Medicine
Department, Habib Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Tahya Sellami Boudawara
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Mohamed Zaher Boudawara
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Fathi Safta
- Laboratory
of Pharmacology, Analytics and Galenic Drug Development- LR12ES09,
Faculty of Pharmacy, University of Monastir, Road Avicenne, 5000 Monastir, Tunisia
| |
Collapse
|
3
|
Wolzak K, Vermunt L, Campo MD, Jorge-Oliva M, van Ziel AM, Li KW, Smit AB, Chen-Ploktkin A, Irwin DJ, Lemstra AW, Pijnenburg Y, van der Flier W, Zetterberg H, Gobom J, Blennow K, Visser PJ, Teunissen CE, Tijms BM, Scheper W. Protein disulfide isomerases as CSF biomarkers for the neuronal response to tau pathology. Alzheimers Dement 2023; 19:3563-3574. [PMID: 36825551 DOI: 10.1002/alz.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2021] [Accepted: 01/13/2023] [Indexed: 02/25/2023]
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) biomarkers for specific cellular disease processes are lacking for tauopathies. In this translational study we aimed to identify CSF biomarkers reflecting early tau pathology-associated unfolded protein response (UPR) activation. METHODS We employed mass spectrometry proteomics and targeted immunoanalysis in a combination of biomarker discovery in primary mouse neurons in vitro and validation in patient CSF from two independent large multicentre cohorts (EMIF-AD MBD, n = 310; PRIDE, n = 771). RESULTS First, we identify members of the protein disulfide isomerase (PDI) family in the neuronal UPR-activated secretome and validate secretion upon tau aggregation in vitro. Next, we demonstrate that PDIA1 and PDIA3 levels correlate with total- and phosphorylated-tau levels in CSF. PDIA1 levels are increased in CSF from AD patients compared to controls and patients with tau-unrelated frontotemporal and Lewy body dementia (LBD). HIGHLIGHTS Neuronal unfolded protein response (UPR) activation induces the secretion of protein disulfide isomerases (PDIs) in vitro. PDIA1 is secreted upon tau aggregation in neurons in vitro. PDIA1 and PDIA3 levels correlate with total and phosphorylated tau levels in CSF. PDIA1 levels are increased in CSF from Alzheimer's disease (AD) patients compared to controls. PDIA1 levels are not increased in CSF from tau-unrelated frontotemporal dementia (FTD) and Lewy body dementia (LBD) patients.
Collapse
Affiliation(s)
- Kimberly Wolzak
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Lisa Vermunt
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
| | - Marta Del Campo
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo- CEU, CEU Universities, Madrid, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Marta Jorge-Oliva
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Anna Maria van Ziel
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Ka Wan Li
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - August B Smit
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alice Chen-Ploktkin
- Department of Neurology, Perelman school of medicine, University of Pennsylvania, Philadelphia, USA
| | - David J Irwin
- Department of Neurology, Perelman school of medicine, University of Pennsylvania, Philadelphia, USA
- Penn Frontotemporal Degeneration Center, Perelman school of medicine, University of Pennsylvania, Philadelphia, USA
| | - Afina W Lemstra
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
| | - Yolande Pijnenburg
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
| | - Wiesje van der Flier
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Pieter Jelle Visser
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
| | - Betty M Tijms
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Matafora V, Gorb A, Yang F, Noble W, Bachi A, Perez‐Nievas BG, Jimenez‐Sanchez M. Proteomics of the astrocyte secretome reveals changes in their response to soluble oligomeric Aβ. J Neurochem 2023; 166:346-366. [PMID: 37303123 PMCID: PMC10952722 DOI: 10.1111/jnc.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Astrocytes associate with amyloid plaques in Alzheimer's disease (AD). Astrocytes react to changes in the brain environment, including increasing concentrations of amyloid-β (Aβ). However, the precise response of astrocytes to soluble small Aβ oligomers at concentrations similar to those present in the human brain has not been addressed. In this study, we exposed astrocytes to media from neurons that express the human amyloid precursor protein (APP) transgene with the double Swedish mutation (APPSwe), and which contains APP-derived fragments, including soluble human Aβ oligomers. We then used proteomics to investigate changes in the astrocyte secretome. Our data show dysregulated secretion of astrocytic proteins involved in the extracellular matrix and cytoskeletal organization and increase secretion of proteins involved in oxidative stress responses and those with chaperone activity. Several of these proteins have been identified in previous transcriptomic and proteomic studies using brain tissue from human AD and cerebrospinal fluid (CSF). Our work highlights the relevance of studying astrocyte secretion to understand the brain response to AD pathology and the potential use of these proteins as biomarkers for the disease.
Collapse
Affiliation(s)
| | - Alena Gorb
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Fangjia Yang
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Wendy Noble
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Angela Bachi
- IFOM ETS‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Beatriz Gomez Perez‐Nievas
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Maria Jimenez‐Sanchez
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| |
Collapse
|
5
|
Ayata P, Amit I, Cuda CM. Editorial: Microglia in neuroinflammation. Front Immunol 2023; 14:1227095. [PMID: 37398652 PMCID: PMC10311352 DOI: 10.3389/fimmu.2023.1227095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Affiliation(s)
- Pinar Ayata
- Neuroscience Initiative, Advanced Science Research Center, Graduate Program in Biology, The Graduate Center of The City University of New York, New York, NY, United States
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Carla M. Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
Intracellular DAMPs in Neurodegeneration and Their Role in Clinical Therapeutics. Mol Neurobiol 2023; 60:3600-3616. [PMID: 36859688 DOI: 10.1007/s12035-023-03289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Neuroinflammation is the major implication of neurodegeneration. This is a complex process which initiates from the cellular injury triggering the innate immune system which gives rise to damage-associated molecular patterns (DAMPs) which are also recognized as endogenous danger indicators. These originate from various compartments of the cell under pathological stimulus. These are very popular candidates having their origin in the intracellular compartments and organelles of the cell and may have their site of action itself in the intracellular or at the extracellular spaces. Under the influence of the pathological stimuli, they interact with the pattern-recognition receptor to initiate their pro-inflammatory cascade followed by the cytokine release. This provides a good opportunity for diagnostic and therapeutic interventions creating better conditions for repair and reversal. Since the major contributors arise from the intracellular compartment, in this review, we have attempted to focus on the DAMP molecules arising from the intracellular compartments and their specific roles in the neurodegenerative events explaining their downstream mediators and signaling. Moreover, we have tried to cover the latest interventions in terms of DAMPs as clinical biomarkers which can assist in detecting the disease and also target it to reduce the innate-immune activation response which can help in reducing the sterile neuroinflammation having an integral role in the neurodegenerative processes.
Collapse
|
7
|
Cassano T, Giamogante F, Calcagnini S, Romano A, Lavecchia AM, Inglese F, Paglia G, Bukke VN, Romano AD, Friuli M, Altieri F, Gaetani S. PDIA3 Expression Is Altered in the Limbic Brain Regions of Triple-Transgenic Mouse Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24033005. [PMID: 36769334 PMCID: PMC9918299 DOI: 10.3390/ijms24033005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In the present study, we used a mouse model of Alzheimer's disease (AD) (3×Tg-AD mice) to longitudinally analyse the expression level of PDIA3, a protein disulfide isomerase and endoplasmic reticulum (ER) chaperone, in selected brain limbic areas strongly affected by AD-pathology (amygdala, entorhinal cortex, dorsal and ventral hippocampus). Our results suggest that, while in Non-Tg mice PDIA3 levels gradually reduce with aging in all brain regions analyzed, 3×Tg-AD mice showed an age-dependent increase in PDIA3 levels in the amygdala, entorhinal cortex, and ventral hippocampus. A significant reduction of PDIA3 was observed in 3×Tg-AD mice already at 6 months of age, as compared to age-matched Non-Tg mice. A comparative immunohistochemistry analysis performed on 3×Tg-AD mice at 6 (mild AD-like pathology) and 18 (severe AD-like pathology) months of age showed a direct correlation between the cellular level of Aβ and PDIA3 proteins in all the brain regions analysed, even if with different magnitudes. Additionally, an immunohistochemistry analysis showed the presence of PDIA3 in all post-mitotic neurons and astrocytes. Overall, altered PDIA3 levels appear to be age- and/or pathology-dependent, corroborating the ER chaperone's involvement in AD pathology, and supporting the PDIA3 protein as a potential novel therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Flavia Giamogante
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Angelo Michele Lavecchia
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Inglese
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giuliano Paglia
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Vidyasagar Naik Bukke
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Fabio Altieri
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| | - Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Gezen-Ak D, Dursun E. Vitamin D, a Secosteroid Hormone and Its Multifunctional Receptor, Vitamin D Receptor, in Alzheimer's Type Neurodegeneration. J Alzheimers Dis 2023; 95:1273-1299. [PMID: 37661883 DOI: 10.3233/jad-230214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Vitamin D is a secosteroid hormone exerting neurosteroid-like properties. Its well-known nuclear hormone receptor, and recently proposed as a mitochondrial transcription factor, vitamin D receptor, acts for its primary functions. The second receptor is an endoplasmic reticulum protein, protein disulfide isomerase A3 (PDIA3), suggested to act as a rapid response. Vitamin D has effects on various systems, particularly through calcium metabolism. Among them, the nervous system has an important place in the context of our subject. Recent studies have shown that vitamin D and its receptors have numerous effects on the nervous system. Neurodegeneration is a long-term process. Throughout a human life span, so is vitamin D deficiency. Our previous studies and others have suggested that the out-come of long-term vitamin D deficiency (hypovitaminosis D or inefficient utilization of vitamin D), may lead neurons to be vulnerable to aging and neurodegeneration. We suggest that keeping vitamin D levels at adequate levels at all stages of life, considering new approaches such as agonists that can activate vitamin D receptors, and utilizing other derivatives produced in the synthesis process with UVB are crucial when considering vitamin D-based intervention studies. Given most aspects of vitamin D, this review outlines how vitamin D and its receptors work and are involved in neurodegeneration, emphasizing Alzheimer's disease.
Collapse
Affiliation(s)
- Duygu Gezen-Ak
- Department of Neuroscience, Brain and Neurodegenerative Disorders Research Laboratories, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Erdinc Dursun
- Department of Neuroscience, Brain and Neurodegenerative Disorders Research Laboratories, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
9
|
Bilches Medinas D, Malik S, Yıldız‐Bölükbaşı E, Borgonovo J, Saaranen MJ, Urra H, Pulgar E, Afzal M, Contreras D, Wright MT, Bodaleo F, Quiroz G, Rozas P, Mumtaz S, Díaz R, Rozas C, Cabral‐Miranda F, Piña R, Valenzuela V, Uyan O, Reardon C, Woehlbier U, Brown RH, Sena‐Esteves M, Gonzalez‐Billault C, Morales B, Plate L, Ruddock LW, Concha ML, Hetz C, Tolun A. Mutation in protein disulfide isomerase A3 causes neurodevelopmental defects by disturbing endoplasmic reticulum proteostasis. EMBO J 2022; 41:e105531. [PMID: 34904718 PMCID: PMC8762563 DOI: 10.15252/embj.2020105531] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023] Open
Abstract
Recessive gene mutations underlie many developmental disorders and often lead to disabling neurological problems. Here, we report identification of a homozygous c.170G>A (p.Cys57Tyr or C57Y) mutation in the gene coding for protein disulfide isomerase A3 (PDIA3, also known as ERp57), an enzyme that catalyzes formation of disulfide bonds in the endoplasmic reticulum, to be associated with syndromic intellectual disability. Experiments in zebrafish embryos show that PDIA3C57Y expression is pathogenic and causes developmental defects such as axonal disorganization as well as skeletal abnormalities. Expression of PDIA3C57Y in the mouse hippocampus results in impaired synaptic plasticity and memory consolidation. Proteomic and functional analyses reveal that PDIA3C57Y expression leads to dysregulation of cell adhesion and actin cytoskeleton dynamics, associated with altered integrin biogenesis and reduced neuritogenesis. Biochemical studies show that PDIA3C57Y has decreased catalytic activity and forms disulfide-crosslinked aggregates that abnormally interact with chaperones in the endoplasmic reticulum. Thus, rare disease gene variant can provide insight into how perturbations of neuronal proteostasis can affect the function of the nervous system.
Collapse
|
10
|
Di Risola D, Ricci D, Marrocco I, Giamogante F, Grieco M, Francioso A, Vasco‐Vidal A, Mancini P, Colotti G, Mosca L, Altieri F. ERp57 chaperon protein protects neuronal cells from Aβ-induced toxicity. J Neurochem 2022; 162:322-336. [PMID: 35699375 PMCID: PMC9543391 DOI: 10.1111/jnc.15655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder whose main pathological hallmark is the accumulation of Amyloid-β peptide (Aβ) in the form of senile plaques. Aβ can cause neurodegeneration and disrupt cognitive functions by several mechanisms, including oxidative stress. ERp57 is a protein disulfide isomerase involved in the cellular stress response and known to be present in the cerebrospinal fluid of normal individuals as a complex with Aβ peptides, suggesting that it may be a carrier protein which prevents aggregation of Aβ. Although several studies show ERp57 involvement in neurodegenerative diseases, no clear mechanism of action has been identified thus far. In this work, we gain insights into the interaction of Aβ with ERp57, with a special focus on the contribution of ERp57 to the defense system of the cell. Here, we show that recombinant ERp57 directly interacts with the Aβ25-35 fragment in vitro with high affinity via two in silico-predicted main sites of interaction. Furthermore, we used human neuroblastoma cells to show that short-term Aβ25-35 treatment induces ERp57 decrease in intracellular protein levels, different intracellular localization, and ERp57 secretion in the cultured medium. Finally, we demonstrate that recombinant ERp57 counteracts the toxic effects of Aβ25-35 and restores cellular viability, by preventing Aβ25-35 aggregation. Overall, the present study shows that extracellular ERp57 can exert a protective effect from Aβ toxicity and highlights it as a possible therapeutic tool in the treatment of AD.
Collapse
Affiliation(s)
- Daniel Di Risola
- Department of Biochemical SciencesSapienza University of RomaRomeItaly
| | - Daniela Ricci
- Department of Biochemical SciencesSapienza University of RomaRomeItaly
- Immunobiology of Infection Unit, Institut PasteurParisFrance
| | - Ilaria Marrocco
- Department of Biochemical SciencesSapienza University of RomaRomeItaly
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| | - Flavia Giamogante
- Department of Biochemical SciencesSapienza University of RomaRomeItaly
- Institute of Oncology Research (IOR), BellinzonaSwitzerland
| | - Maddalena Grieco
- Department of Biochemical SciencesSapienza University of RomaRomeItaly
| | - Antonio Francioso
- Department of Biochemical SciencesSapienza University of RomaRomeItaly
| | | | - Patrizia Mancini
- Department of Experimental MedicineSapienza University of RomaRomeItaly
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology—Italian National Research CouncilRomeItaly
| | - Luciana Mosca
- Department of Biochemical SciencesSapienza University of RomaRomeItaly
| | - Fabio Altieri
- Department of Biochemical SciencesSapienza University of RomaRomeItaly
| |
Collapse
|
11
|
Critical roles of protein disulfide isomerases in balancing proteostasis in the nervous system. J Biol Chem 2022; 298:102087. [PMID: 35654139 PMCID: PMC9253707 DOI: 10.1016/j.jbc.2022.102087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/08/2023] Open
Abstract
Protein disulfide isomerases (PDIs) constitute a family of oxidoreductases promoting redox protein folding and quality control in the endoplasmic reticulum. PDIs catalyze disulfide bond formation, isomerization, and reduction, operating in concert with molecular chaperones to fold secretory cargoes in addition to directing misfolded proteins to be refolded or degraded. Importantly, PDIs are emerging as key components of the proteostasis network, integrating protein folding status with central surveillance mechanisms to balance proteome stability according to cellular needs. Recent advances in the field driven by the generation of new mouse models, human genetic studies, and omics methodologies, in addition to interventions using small molecules and gene therapy, have revealed the significance of PDIs to the physiology of the nervous system. PDIs are also implicated in diverse pathologies, ranging from neurodevelopmental conditions to neurodegenerative diseases and traumatic injuries. Here, we review the principles of redox protein folding in the ER with a focus on current evidence linking genetic mutations and biochemical alterations to PDIs in the etiology of neurological conditions.
Collapse
|
12
|
Reid KM, Kitchener EJA, Butler CA, Cockram TOJ, Brown GC. Brain Cells Release Calreticulin That Attracts and Activates Microglia, and Inhibits Amyloid Beta Aggregation and Neurotoxicity. Front Immunol 2022; 13:859686. [PMID: 35514983 PMCID: PMC9065406 DOI: 10.3389/fimmu.2022.859686] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
Calreticulin is a chaperone, normally found in the endoplasmic reticulum, but can be released by macrophages into the extracellular medium. It is also found in cerebrospinal fluid bound to amyloid beta (Aβ). We investigated whether brain cells release calreticulin, and whether extracellular calreticulin had any effects on microglia and neurons relevant to neuroinflammation and neurodegeneration. We found that microglia release nanomolar levels of calreticulin when inflammatory-activated with lipopolysaccharide, when endoplasmic reticulum stress was induced by tunicamycin, or when cell death was induced by staurosporine, and that neurons release calreticulin when crushed. Addition of nanomolar levels of extracellular calreticulin was found to chemoattract microglia, and activate microglia to release cytokines TNF-α, IL-6 and IL-1β, as well as chemokine (C-C motif) ligand 2. Calreticulin blocked Aβ fibrillization and modified Aβ oligomerization, as measured by thioflavin T fluorescence and transmission electron microscopy. Extracellular calreticulin also altered microglial morphology and proliferation, and prevented Aβ-induced neuronal loss in primary neuron-glial cultures. Thus, calreticulin is released by microglia and neurons, and acts: as an alarmin to recruit and activate microglia, as an extracellular chaperone to prevent Aβ aggregation, and as a neuroprotectant against Aβ neurotoxicity.
Collapse
Affiliation(s)
| | | | | | | | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Chronic stepwise cerebral hypoperfusion differentially induces synaptic proteome changes in the frontal cortex, occipital cortex, and hippocampus in rats. Sci Rep 2020; 10:15999. [PMID: 32994510 PMCID: PMC7524772 DOI: 10.1038/s41598-020-72868-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022] Open
Abstract
During chronic cerebral hypoperfusion (CCH), the cerebral blood flow gradually decreases, leading to cognitive impairments and neurodegenerative disorders, such as vascular dementia. The reduced oxygenation, energy supply induced metabolic changes, and insufficient neuroplasticity could be reflected in the synaptic proteome. We performed stepwise bilateral common carotid occlusions on rats and studied the synaptic proteome changes of the hippocampus, occipital and frontal cortices. Samples were prepared and separated by 2-D DIGE and significantly altered protein spots were identified by HPLC–MS/MS. We revealed an outstanding amount of protein changes in the occipital cortex compared to the frontal cortex and the hippocampus with 94, 33, and 17 proteins, respectively. The high alterations in the occipital cortex are probably due to the hypoxia-induced retrograde degeneration of the primary visual cortex, which was demonstrated by electrophysiological experiments. Altered proteins have functions related to cytoskeletal organization and energy metabolism. As CCH could also be an important risk factor for Alzheimer’s disease (AD), we investigated whether our altered proteins overlap with AD protein databases. We revealed a significant amount of altered proteins associated with AD in the two neocortical areas, suggesting a prominent overlap with the AD pathomechanism.
Collapse
|
14
|
Wang ZX, Wan Q, Xing A. HLA in Alzheimer's Disease: Genetic Association and Possible Pathogenic Roles. Neuromolecular Med 2020; 22:464-473. [PMID: 32894413 DOI: 10.1007/s12017-020-08612-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/29/2020] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is commonly considered as the most prominent dementing disorder globally and is characterized by the deposition of misfolded amyloid-β (Aβ) peptide and the aggregation of neurofibrillary tangles. Immunological disturbances and neuroinflammation, which result from abnormal immunological reactivations, are believed to be the primary stimulating factors triggering AD-like neuropathy. It has been suggested by multiple previous studies that a bunch of AD key influencing factors might be attributed to genes encoding human leukocyte antigen (HLA), whose variety is an essential part of human adaptive immunity. A wide range of activities involved in immune responses may be determined by HLA genes, including inflammation mediated by the immune response, T-cell transendothelial migration, infection, brain development and plasticity in AD pathogenesis, and so on. The goal of this article is to review the recent epidemiological findings of HLA (mainly HLA class I and II) associated with AD and investigate to what extent the genetic variations of HLA were clinically significant as pathogenic factors for AD. Depending on the degree of contribution of HLA in AD pathogenesis, targeted research towards HLA may propel AD therapeutic strategies into a new era of development.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266071, Shandong Province, China.
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
- Department of Neurosurgery, Qingdao University, Qingdao, 266071, China.
- Department of Pathophysiology, Qingdao University, Qingdao, 266071, China.
| | - Ang Xing
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266071, Shandong Province, China
| |
Collapse
|
15
|
Cockram TOJ, Puigdellívol M, Brown GC. Calreticulin and Galectin-3 Opsonise Bacteria for Phagocytosis by Microglia. Front Immunol 2019; 10:2647. [PMID: 31781126 PMCID: PMC6861381 DOI: 10.3389/fimmu.2019.02647] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Opsonins are soluble, extracellular proteins, released by activated immune cells, and when bound to a target cell, can induce phagocytes to phagocytose the target cell. There are three known classes of opsonin: antibodies, complement factors and secreted pattern recognition receptors, but these have limited access to the brain. We identify here two novel opsonins of bacteria, calreticulin, and galectin-3 (both lectins that can bind lipopolysaccharide), which were released by microglia (brain-resident macrophages) when activated by bacterial lipopolysaccharide. Calreticulin and galectin-3 both bound to Escherichia coli, and when bound increased phagocytosis of these bacteria by microglia. Furthermore, lipopolysaccharide-induced microglial phagocytosis of E. coli bacteria was partially inhibited by: sugars, an anti-calreticulin antibody, a blocker of the calreticulin phagocytic receptor LRP1, a blocker of the galectin-3 phagocytic receptor MerTK, or simply removing factors released from the microglia, indicating this phagocytosis is dependent on extracellular calreticulin and galectin-3. Thus, calreticulin and galectin-3 are opsonins, released by activated microglia to promote clearance of bacteria. This innate immune response of microglia may help clear bacterial infections of the brain.
Collapse
Affiliation(s)
- Tom O J Cockram
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mar Puigdellívol
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Kotian V, Sarmah D, Kaur H, Kesharwani R, Verma G, Mounica L, Veeresh P, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Evolving Evidence of Calreticulin as a Pharmacological Target in Neurological Disorders. ACS Chem Neurosci 2019; 10:2629-2646. [PMID: 31017385 DOI: 10.1021/acschemneuro.9b00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Calreticulin (CALR), a lectin-like ER chaperone, was initially known only for its housekeeping function, but today it is recognized for many versatile roles in different compartments of a cell. Apart from canonical roles in protein folding and calcium homeostasis, it performs a variety of noncanonical roles, mostly in CNS development. In the past, studies have linked Calreticulin with various other biological components which are detrimental in deciding the fate of neurons. Many neurological disorders that differ in their etiology are commonly associated with aberrant levels of Calreticulin, that lead to modulation of apoptosis and phagocytosis, and impact on transcriptional pathways, impairment in proteostatis, and calcium imbalances. Such multifaceted properties of Calreticulin are the reason why it has been implicated in vital roles of the nervous system in recent years. Hence, understanding its role in the physiology of neurons would help to unearth its involvement in the spectrum of neurological disorders. This Review aims toward exploring the interplay of Calreticulin in neurological disorders which would aid in targeting Calreticulin for developing novel neurotherapeutics.
Collapse
Affiliation(s)
- Vignesh Kotian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Radhika Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Geetesh Verma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Leela Mounica
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Pabbala Veeresh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
17
|
Matsusaki M, Kanemura S, Kinoshita M, Lee YH, Inaba K, Okumura M. The Protein Disulfide Isomerase Family: from proteostasis to pathogenesis. Biochim Biophys Acta Gen Subj 2019; 1864:129338. [PMID: 30986509 DOI: 10.1016/j.bbagen.2019.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
In mammalian cells, nearly one-third of proteins are inserted into the endoplasmic reticulum (ER), where they undergo oxidative folding and chaperoning assisted by approximately 20 members of the protein disulfide isomerase family (PDIs). PDIs consist of multiple thioredoxin-like domains and recognize a wide variety of proteins via highly conserved interdomain flexibility. Although PDIs have been studied intensely for almost 50 years, exactly how they maintain protein homeostasis in the ER remains unknown, and is important not only for fundamental biological understanding but also for protein misfolding- and aggregation-related pathophysiology. Herein, we review recent advances in structural biology and biophysical approaches that explore the underlying mechanism by which PDIs fulfil their distinct functions to promote productive protein folding and scavenge misfolded proteins in the ER, the primary factory for efficient production of the secretome.
Collapse
Affiliation(s)
- Motonori Matsusaki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan; School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan
| | - Misaki Kinoshita
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Young-Ho Lee
- Protein Structure Group, Korea Basic Science Institute, Ochang, Chungbuk 28199, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
18
|
Altieri F, Cairone F, Giamogante F, Carradori S, Locatelli M, Chichiarelli S, Cesa S. Influence of Ellagitannins Extracted by Pomegranate Fruit on Disulfide Isomerase PDIA3 Activity. Nutrients 2019; 11:E186. [PMID: 30658391 PMCID: PMC6356990 DOI: 10.3390/nu11010186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/15/2022] Open
Abstract
Pomegranate fruit is a functional food of high interest for human health due to its wide range of phytochemicals with antioxidant properties are implicated in the prevention of inflammation and cancer. Ellagitannins, such as punicalagin and ellagic acid, play a role as anti-atherogenic and neuroprotective molecules in the complex fighting against the degenerative diseases. The aim of this work was to evaluate the composition in punicalagins and ellagic acid of differently obtained extracts from whole fruit, peels and juices, prepared by squeezing or by centrifugation, of pomegranate belonging to different cultivars. Moreover, a wider phenolic fingerprint was also determined. The bioactivity of the extracts was tested on the redox activity of PDIA3 disulfide isomerase, an enzyme involved in the regulation of several cellular functions and associated with different diseases such as cancer, prion disorders, Alzheimer's and Parkinson's diseases. The results demonstrate that the different ratios between punicalagin and ellagic acid modulate the enzyme activity and other ellagitannins could interfere with this activity.
Collapse
Affiliation(s)
- Fabio Altieri
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Università degli Studi di Roma "La Sapienza", Piazzale A. Moro, 5-00185 Rome, Italy.
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Roma, Italy.
| | - Francesco Cairone
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro, 5-00185 Roma, Italy.
| | - Flavia Giamogante
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Università degli Studi di Roma "La Sapienza", Piazzale A. Moro, 5-00185 Rome, Italy.
| | - Simone Carradori
- Dipartimento di Farmacia, Università "G. d'Annunzio" di Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy.
| | - Marcello Locatelli
- Dipartimento di Farmacia, Università "G. d'Annunzio" di Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy.
| | - Silvia Chichiarelli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Università degli Studi di Roma "La Sapienza", Piazzale A. Moro, 5-00185 Rome, Italy.
| | - Stefania Cesa
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro, 5-00185 Roma, Italy.
| |
Collapse
|
19
|
Wilkin AM, Harnett A, Underschultz M, Cragg C, Meckling KA. Role of the ERp57 protein (1,25D3-MARRS receptor) in murine mammary gland growth and development. Steroids 2018; 135:63-68. [PMID: 29477346 DOI: 10.1016/j.steroids.2018.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/09/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022]
Abstract
The protein disulfide isomerase ERp57 (GRp58/PDIA3/1,25D3-MARRS) has been implicated in a multitude of signaling pathways throughout the entire body. Most thoroughly studied for its protein-folding role, ERp57 has also been found to have multiple binding partners, and have significant effects on cellular growth. ERp57 has been studied n the context of several neurodegenerative disorders, metabolic conditions, and can be used as a prognosis marker in certain cancers. One role, as an alternate vitamin D binding receptor, has prompted research in tissues with known vitamin D activity, such as the intestine and bone. Vitamin D has been studied in relation to mammary gland growth and development, but it is not yet known if ERp57 plays an independent role in this tissue. In this study, ERp57 was knocked out in murine mammary gland epithelial cells of 30 4-week old mice. Several markers of mammary gland growth were measured, including number of terminal end buds (TEB), ductal coverage of the fat pad, and ductal extension. It was found the knockout animals had decreased numbers of TEBs (p = 0.019), and decreased ductal extension (p = 0.018) compared to wildtype animals, with no differences in gross body weight. Immunohistochemistry analysis of mammary glands showed ERp57 localized to the apical side of alveolar branches, and on leading edges of TEBs. These results provide further evidence for ERp57 functioning separately to the VDR, and further insights into the roles of ERp57.
Collapse
Affiliation(s)
- Allison M Wilkin
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada.
| | - Amber Harnett
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada.
| | - Michael Underschultz
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Cheryl Cragg
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada.
| | - Kelly A Meckling
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
20
|
Punicalagin, an active pomegranate component, is a new inhibitor of PDIA3 reductase activity. Biochimie 2018; 147:122-129. [PMID: 29425676 DOI: 10.1016/j.biochi.2018.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Polyphenolic compounds isolated from pomegranate fruit possess several pharmacological activities including anti-inflammatory, hepatoprotective, antigenotoxic and anticoagulant activities. The present work focuses the attention on PDIA3 interaction with punicalagin and ellagic acid, the most predominant components of pomegranate extracts. PDIA3, a member of the protein disulfide isomerase family involved in several cellular functions, is associated with different human diseases and it has the potential to be a pharmacological target. METHODS The interaction of polyphenols with PDIA3 purified protein was explored by fluorescence quenching and calorimetric techniques and their effect on PDIA3 activity was investigated. RESULTS A higher affinity was observed for punicalagin which also strongly affects PDIA3 reductase activity in vitro as a non-competitive inhibitor. Isothermal titration calorimetry confirmed the high affinity of punicalagin for PDIA3. Considering the PDIA3 involvement in oxidative cellular stress response observed in neuroblastoma cells after treatment with hydrogen peroxide, a comparative study was conducted to evaluate the effect of punicalagin on wild type and PDIA3-silenced cells. Punicalagin increases the cell sensitivity to hydrogen peroxide in neuroblastoma cells, but this effect is drastically reduced in PDIA3-silenced cells treated in the same experimental conditions. CONCLUSIONS Punicalagin binds PDIA3 and inhibits its redox activity. Comparative experiments conducted on unsilenced and PDIA3-silenced neuroblastoma cells suggest the potential of punicalagin to modulate PDIA3 reductase activity also in a biological model. GENERAL SIGNIFICANCE Punicalagin can be used as a new PDIA3 inhibitor and this can provide information on the molecular mechanisms underlying the biological activities of PDIA3 and punicalagin.
Collapse
|
21
|
Parakh S, Jagaraj CJ, Vidal M, Ragagnin AMG, Perri ER, Konopka A, Toth RP, Galper J, Blair IP, Thomas CJ, Walker AK, Yang S, Spencer DM, Atkin JD. ERp57 is protective against mutant SOD1-induced cellular pathology in amyotrophic lateral sclerosis. Hum Mol Genet 2018; 27:1311-1331. [DOI: 10.1093/hmg/ddy041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sonam Parakh
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Cyril J Jagaraj
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Marta Vidal
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Audrey M G Ragagnin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Emma R Perri
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Anna Konopka
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Reka P Toth
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jasmin Galper
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ian P Blair
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Colleen J Thomas
- Department of Physiology, Anatomy and Microbiology, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Adam K Walker
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Shu Yang
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Damian M Spencer
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Julie D Atkin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
22
|
Abstract
The protein disulfide isomerase (PDI) gene family is a protein family classically characterized by endoplasmic reticulum (ER) localization and isomerase and redox activity. ERp57, a prominent multifunctional member of the PDI family, is detected at various levels in multiple cellular localizations outside of the ER. ERp57 has been functionally linked to a host of physiological processes and numerous studies have demonstrated altered expression and aberrant functionality of ERp57 in association with diverse pathological states. Here, we summarize available knowledge of ERp57's functions in subcellular compartments and the roles of dysregulated ERp57 in various diseases toward an emphasis on the potential utility of therapeutic development of ERp57.
Collapse
Affiliation(s)
- Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Ronghan Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
23
|
Plaingam W, Sangsuthum S, Angkhasirisap W, Tencomnao T. Kaempferia parviflora rhizome extract and Myristica fragrans volatile oil increase the levels of monoamine neurotransmitters and impact the proteomic profiles in the rat hippocampus: Mechanistic insights into their neuroprotective effects. J Tradit Complement Med 2017; 7:538-552. [PMID: 29034205 PMCID: PMC5634759 DOI: 10.1016/j.jtcme.2017.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/19/2022] Open
Abstract
Potentially useful in the treatment of neurodegenerative disorders, Kaempferia parviflora and Myristica fragrans have been shown to possess a wide spectrum of neuropharmacological activities and neuroprotective effects in vivo and in vitro. In this study, we determined whether and how K. parviflora ethanolic extract and M. fragrans volatile oil could influence the levels of neurotransmitters and the whole proteomic profile in the hippocampus of Sprague Dawley (SD) rats. The effects of K. parviflora and M. fragrans on protein changes were analyzed by two-dimensional gel electrophoresis (2D-gel), and proteins were identified by liquid chromatography tandem mass spectrometry (LC-MS/MS). The target proteins were then confirmed by Western blot. The levels of neurotransmitters were evaluated by reversed-phase high-performance liquid chromatography (RP-HPLC). The results showed that K. parviflora, M. fragrans and fluoxetine (the control drug for this study) increased serotonin, norepinephrine and dopamine in the rat hippocampus compared to that of the vehicle-treated group. Our proteomic data showed that 37 proteins in the K. parviflora group were up-regulated, while 14 were down-regulated, and 27 proteins in the M. fragrans group were up-regulated, while 16 were down-regulated. In the fluoxetine treatment group, we found 29 proteins up-regulated, whereas 14 proteins were down-regulated. In line with the proteomic data, the levels of GFAP, PDIA3, DPYSL2 and p-DPYSL2 were modified in the SD rat groups treated with K. parviflora, M. fragrans and fluoxetine as confirmed by Western blot. K. parviflora and M. fragrans mediated not only the levels of monoamine neurotransmitters but also the proteomic profiles in the rat hippocampus, thus shedding light on the mechanisms targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Waluga Plaingam
- Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Siriporn Sangsuthum
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
24
|
Di Domenico F, Barone E, Perluigi M, Butterfield DA. The Triangle of Death in Alzheimer's Disease Brain: The Aberrant Cross-Talk Among Energy Metabolism, Mammalian Target of Rapamycin Signaling, and Protein Homeostasis Revealed by Redox Proteomics. Antioxid Redox Signal 2017; 26:364-387. [PMID: 27626216 DOI: 10.1089/ars.2016.6759] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder and represents one of the most disabling conditions. AD shares many features in common with systemic insulin resistance diseases, suggesting that it can be considered as a metabolic disease, characterized by reduced insulin-stimulated growth and survival signaling, increased oxidative stress (OS), proinflammatory cytokine activation, mitochondrial dysfunction, impaired energy metabolism, and altered protein homeostasis. Recent Advances: Reduced glucose utilization and energy metabolism in AD have been associated with the buildup of amyloid-β peptide and hyperphosphorylated tau, increased OS, and the accumulation of unfolded/misfolded proteins. Mammalian target of rapamycin (mTOR), which is aberrantly activated in AD since early stages, plays a key role during AD neurodegeneration by, on one side, inhibiting insulin signaling as a negative feedback mechanism and, on the other side, regulating protein homeostasis (synthesis/clearance). CRITICAL ISSUES It is likely that the concomitant and mutual alterations of energy metabolism-mTOR signaling-protein homeostasis might represent a self-sustaining triangle of harmful events that trigger the degeneration and death of neurons and the development and progression of AD. Intriguingly, the altered cross-talk between the components of such a triangle of death, beyond altering the redox homeostasis of the neuron, is further exacerbated by increased levels of OS that target and impair key components of the pathways involved. Redox proteomic studies in human samples and animal models of AD-like dementia led to identification of oxidatively modified components of the pathways composing the triangle of death, therefore revealing the crucial role of OS in fueling this aberrant vicious cycle. FUTURE DIRECTIONS The identification of compounds able to restore the function of the pathways targeted by oxidative damage might represent a valuable therapeutic approach to slow or delay AD. Antioxid. Redox Signal. 26, 364-387.
Collapse
Affiliation(s)
- Fabio Di Domenico
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Rome, Italy
| | - Eugenio Barone
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Rome, Italy .,2 Facultad de Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile , Santiago, Chile
| | - Marzia Perluigi
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Rome, Italy
| | - D Allan Butterfield
- 3 Department of Chemistry, Sanders-Brown Center of Aging, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
25
|
Comparative Analysis of the Interaction between Different Flavonoids and PDIA3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4518281. [PMID: 28044092 PMCID: PMC5164911 DOI: 10.1155/2016/4518281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/06/2016] [Indexed: 12/13/2022]
Abstract
Flavonoids, plant secondary metabolites present in fruits, vegetables, and products such as tea and red wine, show antioxidant, anti-inflammatory, antithrombotic, antiviral, and antitumor activity. PDIA3 is a member of the protein disulfide isomerase family mainly involved in the correct folding of newly synthetized glycoproteins. PDIA3 is associated with different human pathologies such as cancer, prion disorders, Alzheimer's disease, and Parkinson's diseases and it has the potential to be a pharmacological target. The interaction of different flavonoids with PDIA3 was investigated by quenching fluorescence analysis and the effects on protein activity were evaluated. A higher affinity was observed for eupatorin-5-methyl ether and eupatorin which also inhibit reductase activity of PDIA3 but do not significantly affect its DNA binding activity. The use of several flavonoids differing in chemical structure and functional groups allows us to make some consideration about the relationship between ligand structure and the affinity for PDIA3. The specific flavone backbone conformation and the degree of polarity seem to play an important role for the interaction with PDIA3. The binding site is probably similar but not equivalent to that of green tea catechins, which, as previously demonstrated, can bind to PDIA3 and prevent its interaction with DNA.
Collapse
|
26
|
Perri E, Parakh S, Atkin J. Protein Disulphide Isomerases: emerging roles of PDI and ERp57 in the nervous system and as therapeutic targets for ALS. Expert Opin Ther Targets 2016; 21:37-49. [PMID: 27786579 DOI: 10.1080/14728222.2016.1254197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION There is increasing evidence that endoplasmic reticulum (ER) chaperones Protein Disulphide Isomerase (PDI) and ERp57 (endoplasmic reticulum protein 57) are protective against neurodegenerative diseases related to protein misfolding, including Amyotrophic Lateral Sclerosis (ALS). PDI and ERp57 also possess disulphide interchange activity, in which protein disulphide bonds are oxidized, reduced and isomerized, to form their native conformation. Recently, missense and intronic variants of PDI and ERp57 were associated with ALS, implying that PDI proteins are relevant to ALS pathology. Areas covered: Here, we discuss possible implications of the PDI and ERp57 variants, as well as recent studies describing previously unrecognized roles for PDI and ERp57 in the nervous system. Therapeutics based on PDI may therefore be attractive candidates for ALS. However, in addition to its protective functions, aberrant, toxic roles for PDI have recently been described. These functions need to be fully characterized before effective therapeutic strategies can be designed. Expert opinion: These disease-associated variants of PDI and ERp57 provide additional evidence for an important role for PDI proteins in ALS. However, there are many questions remaining unanswered that need to be addressed before the potential of the PDI family in relation to ALS can be fully realized.
Collapse
Affiliation(s)
- Emma Perri
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Sonam Parakh
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Julie Atkin
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| |
Collapse
|
27
|
Garcia-Huerta P, Bargsted L, Rivas A, Matus S, Vidal RL. ER chaperones in neurodegenerative disease: Folding and beyond. Brain Res 2016; 1648:580-587. [PMID: 27134034 DOI: 10.1016/j.brainres.2016.04.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022]
Abstract
Proteins along the secretory pathway are co-translationally translocated into the lumen of the endoplasmic reticulum (ER) as unfolded polypeptide chains. Afterwards, they are usually modified with N-linked glycans, correctly folded and stabilized by disulfide bonds. ER chaperones and folding enzymes control these processes. The accumulation of unfolded proteins in the ER activates a signaling response, termed the unfolded protein response (UPR). The hallmark of this response is the coordinated transcriptional up-regulation of ER chaperones and folding enzymes. In order to discuss the importance of the proper folding of certain substrates we will address the role of ER chaperones in normal physiological conditions and examine different aspects of its contribution in neurodegenerative disease. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Paula Garcia-Huerta
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Leslie Bargsted
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Alexis Rivas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Soledad Matus
- Neurounion Biomedical Foundation, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; CENPAR, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| | - Rene L Vidal
- Neurounion Biomedical Foundation, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; CENPAR, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| |
Collapse
|
28
|
Muñoz-Gutiérrez JF, Aguilar Pierlé S, Schneider DA, Baszler TV, Stanton JB. Transcriptomic Determinants of Scrapie Prion Propagation in Cultured Ovine Microglia. PLoS One 2016; 11:e0147727. [PMID: 26807844 PMCID: PMC4726464 DOI: 10.1371/journal.pone.0147727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/07/2016] [Indexed: 12/22/2022] Open
Abstract
Susceptibility to infection by prions is highly dependent on the amino acid sequence and host expression of the cellular prion protein (PrPC); however, cellular expression of a genetically susceptible PrPC is insufficient. As an example, it has been shown in cultured cells that permissive and resistant sublines derived from the same parental population often have similar expression levels of PrPC. Thus, additional cellular factors must influence susceptibility to prion infection. The aim of this study was to elucidate the factors associated with relative permissiveness and resistance to scrapie prions in cultured cells derived from a naturally affected species. Two closely related ovine microglia clones with different prion susceptibility, but no detectable differences in PrPC expression levels, were inoculated with either scrapie-positive or scrapie-negative sheep brainstem homogenates. Five passages post-inoculation, the transcriptional profiles of mock and infected clones were sequenced using Illumina technology. Comparative transcriptional analyses identified twenty-two differentially transcribed genes, most of which were upregulated in poorly permissive microglia. This included genes encoding for selenoprotein P, endolysosomal proteases, and proteins involved in extracellular matrix remodeling. Furthermore, in highly permissive microglia, transforming growth factor β–induced, retinoic acid receptor response 1, and phosphoserine aminotranspherase 1 gene transcripts were upregulated. Gene Set Enrichment Analysis identified proteolysis, translation, and mitosis as the most affected pathways and supported the upregulation trend of several genes encoding for intracellular proteases and ribosomal proteins in poorly permissive microglia. This study identifies new genes potentially involved in scrapie prion propagation, corroborates results from other studies, and extends those results into another cell culture model.
Collapse
Affiliation(s)
- Juan F. Muñoz-Gutiérrez
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- * E-mail: (JFMG); (JBS)
| | - Sebastián Aguilar Pierlé
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - David A. Schneider
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- United States Department of Agriculture, Agricultural Research Service, Pullman, Washington, United States of America
| | - Timothy V. Baszler
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - James B. Stanton
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (JFMG); (JBS)
| |
Collapse
|
29
|
Perri ER, Thomas CJ, Parakh S, Spencer DM, Atkin JD. The Unfolded Protein Response and the Role of Protein Disulfide Isomerase in Neurodegeneration. Front Cell Dev Biol 2016; 3:80. [PMID: 26779479 PMCID: PMC4705227 DOI: 10.3389/fcell.2015.00080] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
The maintenance and regulation of proteostasis is a critical function for post-mitotic neurons and its dysregulation is increasingly implicated in neurodegenerative diseases. Despite having different clinical manifestations, these disorders share similar pathology; an accumulation of misfolded proteins in neurons and subsequent disruption to cellular proteostasis. The endoplasmic reticulum (ER) is an important component of proteostasis, and when the accumulation of misfolded proteins occurs within the ER, this disturbs ER homeostasis, giving rise to ER stress. This triggers the unfolded protein response (UPR), distinct signaling pathways that whilst initially protective, are pro-apoptotic if ER stress is prolonged. ER stress is increasingly implicated in neurodegenerative diseases, and emerging evidence highlights the complexity of the UPR in these disorders, with both protective and detrimental components being described. Protein Disulfide Isomerase (PDI) is an ER chaperone induced during ER stress that is responsible for the formation of disulfide bonds in proteins. Whilst initially considered to be protective, recent studies have revealed unconventional roles for PDI in neurodegenerative diseases, distinct from its normal function in the UPR and the ER, although these mechanisms remain poorly defined. However, specific aspects of PDI function may offer the potential to be exploited therapeutically in the future. This review will focus on the evidence linking ER stress and the UPR to neurodegenerative diseases, with particular emphasis on the emerging functions ascribed to PDI in these conditions.
Collapse
Affiliation(s)
- Emma R Perri
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Melbourne, VIC, Australia
| | - Colleen J Thomas
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University Melbourne, VIC, Australia
| | - Sonam Parakh
- Department of Biomedical Sciences, Faculty of Medicine and Human Science, Macquarie University Sydney, NSW, Australia
| | - Damian M Spencer
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Melbourne, VIC, Australia
| | - Julie D Atkin
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia; Department of Biomedical Sciences, Faculty of Medicine and Human Science, Macquarie UniversitySydney, NSW, Australia
| |
Collapse
|
30
|
D Potdar P, U Shetti A. Molecular Biomarkers for Diagnosis & Therapies of Alzheimer’s Disease. AIMS Neurosci 2016. [DOI: 10.3934/neuroscience.2016.4.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Parakh S, Atkin JD. Novel roles for protein disulphide isomerase in disease states: a double edged sword? Front Cell Dev Biol 2015; 3:30. [PMID: 26052512 PMCID: PMC4439577 DOI: 10.3389/fcell.2015.00030] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
Protein disulphide isomerase (PDI) is a multifunctional redox chaperone of the endoplasmic reticulum (ER). Since it was first discovered 40 years ago the functions ascribed to PDI have evolved significantly and recent studies have recognized its distinct functions, with adverse as well as protective effects in disease. Furthermore, post translational modifications of PDI abrogate its normal functional roles in specific disease states. This review focusses on recent studies that have identified novel functions for PDI relevant to specific diseases.
Collapse
Affiliation(s)
- Sonam Parakh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia ; Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University Bundoora, VIC, Australia
| |
Collapse
|
32
|
Kodavanti PRS, Royland JE, Osorio C, Winnik WM, Ortiz P, Lei L, Ramabhadran R, Alzate O. Developmental exposure to a commercial PBDE mixture: effects on protein networks in the cerebellum and hippocampus of rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:428-36. [PMID: 25616259 PMCID: PMC4421769 DOI: 10.1289/ehp.1408504] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/17/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are structurally similar to polychlorinated biphenyls (PCBs) and have both central (learning and memory deficits) and peripheral (motor dysfunction) neurotoxic effects at concentrations/doses similar to those of PCBs. The cellular and molecular mechanisms for these neurotoxic effects are not fully understood; however, several studies have shown that PBDEs affect thyroid hormones, cause oxidative stress, and disrupt Ca2+-mediated signal transduction. Changes in these signal transduction pathways can lead to differential gene regulation with subsequent changes in protein expression, which can affect the development and function of the nervous system. OBJECTIVE In this study, we examined the protein expression profiles in the rat cerebellum and hippocampus following developmental exposure to a commercial PBDE mixture, DE-71. METHODS Pregnant Long-Evans rats were dosed perinatally with 0 or 30.6 mg/kg/day of DE-71 from gestation day 6 through sampling on postnatal day 14. Proteins from the cerebellum and hippocampus were extracted, expression differences were detected by two-dimensional difference gel electrophoresis, and proteins were identified by tandem mass spectrometry. Protein network interaction analysis was performed using Ingenuity® Pathway Analysis, and the proteins of interest were validated by Western blotting. RESULTS Four proteins were significantly differentially expressed in the cerebellum following DE-71 exposure, whereas 70 proteins were significantly differentially expressed in the hippocampus. Of these proteins, 4 from the cerebellum and 47 from the hippocampus, identifiable by mass spectrometry, were found to have roles in mitochondrial energy metabolism, oxidative stress, apoptosis, calcium signaling, and growth of the nervous system. CONCLUSIONS Results suggest that changes in energy metabolism and processes related to neuroplasticity and growth may be involved in the developmental neurotoxicity of PBDEs.
Collapse
Affiliation(s)
- Prasada Rao S Kodavanti
- Neurotoxicology Branch, and 2Genetic and Cellular Toxicology Branch, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Conway ME, Harris M. S-nitrosylation of the thioredoxin-like domains of protein disulfide isomerase and its role in neurodegenerative conditions. Front Chem 2015; 3:27. [PMID: 25932462 PMCID: PMC4399332 DOI: 10.3389/fchem.2015.00027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022] Open
Abstract
Correct protein folding and inhibition of protein aggregation is facilitated by a cellular “quality control system” that engages a network of protein interactions including molecular chaperones and the ubiquitin proteasome system. Key chaperones involved in these regulatory mechanisms are the protein disulfide isomerases (PDI) and their homologs, predominantly expressed in the endoplasmic reticulum of most tissues. Redox changes that disrupt ER homeostasis can lead to modification of these enzymes or chaperones with the loss of their proposed neuroprotective role resulting in an increase in protein misfolding. Misfolded protein aggregates have been observed in several disease states and are considered to play a pivotal role in the pathogenesis of neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral sclerosis. This review will focus on the importance of the thioredoxin-like CGHC active site of PDI and how our understanding of this structural motif will play a key role in unraveling the pathogenic mechanisms that underpin these neurodegenerative conditions.
Collapse
Affiliation(s)
- Myra E Conway
- Department of Applied Sciences, University of the West of England Bristol, UK
| | - Matthew Harris
- Department of Applied Sciences, University of the West of England Bristol, UK
| |
Collapse
|
34
|
Shen L, Chen C, Yang A, Chen Y, Liu Q, Ni J. Redox proteomics identification of specifically carbonylated proteins in the hippocampi of triple transgenic Alzheimer's disease mice at its earliest pathological stage. J Proteomics 2015; 123:101-13. [PMID: 25890254 DOI: 10.1016/j.jprot.2015.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 01/15/2023]
Abstract
UNLABELLED Alzheimer's disease (AD) is the most common cause of dementia in the elderly population. Attempts to develop therapies for the treatment of the late stage AD have been unsuccessful. Increasing evidences indicate that oxidative stress is an early event of neurodegeneration, however the pathogenic mechanism of AD remains unclarified. In the present study, slot-blot analysis was used to determine the levels of protein carbonyls in the hippocampi of 3-month-old triple transgenic AD mice (3 × Tg-AD). The increased levels of protein carbonyls were observed in the hippocampi of 3 × Tg-AD mice as compared to the non-transgenic controls (non-Tg). Using a redox-proteomic approach, twelve proteins were found to be significantly altered in the levels of protein carbonyls in the hippocampus. These proteins are crucial in energy metabolism, protein folding, cell structure, signal transduction and excitotoxicity. Immunoprecipitation and Western blot were used to validate two proteins identified by the redox proteomics. In addition, increased expression level of carbonyl reductase 1 (CBR1) was observed in the hippocampi of 3 × Tg-AD mice. These results demonstrate that significant protein carbonylation occurs early in the 3-month-old 3 × Tg-AD mice, which support the viewpoint that oxidative stress is an early event in AD progression. BIOLOGICAL SIGNIFICANCE In this study, we have observed increased levels of protein carbonyls in the hippocampi of 3 × Tg-AD mice before the appearance of Aβ plaques and neurofibrillary tangles (NFTs). By redox proteomics, twelve specifically carbonylated proteins were identified. Among them, alpha-enolase (ENO1) and glutamine synthetase (GS) were identified as the common targets of oxidation in the brains of 3 × Tg-AD mice, mild cognitive impairment (MCI) sufferers and AD patients. For the first time, the oxidation of t-complex protein 1 subunit epsilon (CCT5) and protein disulfide-isomerase A3 (PDIA3) were reported to be associated with AD. These results indicated that the combination of monoclonal anti-DNP antibody with digital imaging system could enhance the specificity and accuracy of redox proteomics analysis. Those data support the viewpoint that oxidative stress occurs at the early pathological stage of AD. In addition, this paper provides new information for understanding the pathological process of AD and for developing more appropriate therapies to intervene AD progression.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Cheng Chen
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Aochu Yang
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Youjiao Chen
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen 518060, PR China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
35
|
Yoo Y, Byun K, Kang T, Bayarsaikhan D, Kim JY, Oh S, Kim YH, Kim SY, Chung WI, Kim SU, Lee B, Park YM. Amyloid-Beta-Activated Human Microglial Cells Through ER-Resident Proteins. J Proteome Res 2014; 14:214-23. [DOI: 10.1021/pr500926r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- YongCheol Yoo
- Department
of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Daejeon 305-701, Republic of Korea
- Center
for Cognition and Sociality, Institute for Basic Science (IBS), 5, Hwarang-ro 14-gil, Daejeon 305-811, Republic of Korea
- Mass
Spectrometer Research Center, Korea Basic Science Institute, 52
Eoeun-dong, Ochang, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kyunghee Byun
- Center
for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45, Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
- Department
of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Taewook Kang
- Mass
Spectrometer Research Center, Korea Basic Science Institute, 52
Eoeun-dong, Ochang, Chungcheongbuk-do 363-883, Republic of Korea
| | - Delger Bayarsaikhan
- Center
for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45, Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Jin Young Kim
- Mass
Spectrometer Research Center, Korea Basic Science Institute, 52
Eoeun-dong, Ochang, Chungcheongbuk-do 363-883, Republic of Korea
| | - Seyeoun Oh
- Center
for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45, Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Young Hye Kim
- Mass
Spectrometer Research Center, Korea Basic Science Institute, 52
Eoeun-dong, Ochang, Chungcheongbuk-do 363-883, Republic of Korea
| | - Se-Young Kim
- Mass
Spectrometer Research Center, Korea Basic Science Institute, 52
Eoeun-dong, Ochang, Chungcheongbuk-do 363-883, Republic of Korea
| | - Won-Il Chung
- Department
of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Daejeon 305-701, Republic of Korea
| | - Seung U. Kim
- Department
of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Bonghee Lee
- Center
for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45, Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
- Department
of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Young Mok Park
- Center
for Cognition and Sociality, Institute for Basic Science (IBS), 5, Hwarang-ro 14-gil, Daejeon 305-811, Republic of Korea
- Mass
Spectrometer Research Center, Korea Basic Science Institute, 52
Eoeun-dong, Ochang, Chungcheongbuk-do 363-883, Republic of Korea
| |
Collapse
|
36
|
Yamamoto E, Uchida T, Abe H, Taka H, Fujimura T, Komiya K, Hara A, Ogihara T, Fujitani Y, Ueno T, Takeda S, Watada H. Increased expression of ERp57/GRP58 is protective against pancreatic beta cell death caused by autophagic failure. Biochem Biophys Res Commun 2014; 453:19-24. [DOI: 10.1016/j.bbrc.2014.09.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/13/2022]
|
37
|
Zhang S, Wu D, Wang J, Wang Y, Wang G, Yang M, Yang X. Stress protein expression in early phase spinal cord ischemia/reperfusion injury. Neural Regen Res 2014; 8:2225-35. [PMID: 25206532 PMCID: PMC4146036 DOI: 10.3969/j.issn.1673-5374.2013.24.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/17/2013] [Indexed: 12/05/2022] Open
Abstract
Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differentially expressed proteins (n > 2) in rabbits with spinal cord ischemia/reperfusion injury. Of these proteins, stress-related proteins included protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70. In this study, we established New Zealand rabbit models of spinal cord ischemia/reperfusion injury by abdominal aorta occlusion. Results demonstrated that hind limb function initially improved after spinal cord ischemia/reperfusion injury, but then deteriorated. The pathological morphology of the spinal cord became aggravated, but lessened 24 hours after reperfusion. However, the numbers of motor neurons and interneurons in the spinal cord gradually decreased. The expression of protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70 was induced by ischemia/reperfusion injury. The expression of these proteins increased within 12 hours after reperfusion, and then decreased, reached a minimum at 24 hours, but subsequently increased again to similar levels seen at 6–12 hours, showing a characterization of induction-inhibition-induction. These three proteins were expressed only in cytoplasm but not in the nuclei. Moreover, the expression was higher in interneurons than in motor neurons, and the survival rate of interneurons was greater than that of motor neurons. It is assumed that the expression of stress-related proteins exhibited a protective effect on neurons.
Collapse
Affiliation(s)
- Shanyong Zhang
- Team of Spine and Spinal Cord, Department of Orthopedics, China-Japan Friendship Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Dankai Wu
- Team of Skeletal Trauma, Department of Orthopedics, the Second Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Jincheng Wang
- Team of Skeletal Trauma, Department of Orthopedics, the Second Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Yongming Wang
- Team of Spine and Spinal Cord, Department of Orthopedics, China-Japan Friendship Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Guoxiang Wang
- Team of Spine and Spinal Cord, Department of Orthopedics, China-Japan Friendship Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Maoguang Yang
- Team of Spine and Spinal Cord, Department of Orthopedics, China-Japan Friendship Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xiaoyu Yang
- Team of Spine and Spinal Cord, Department of Orthopedics, China-Japan Friendship Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
38
|
He J, Shi W, Guo Y, Chai Z. ERp57 modulates mitochondrial calcium uptake through the MCU. FEBS Lett 2014; 588:2087-94. [PMID: 24815697 DOI: 10.1016/j.febslet.2014.04.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
ERp57 participates in the regulation of calcium homeostasis. Although ERp57 modulates calcium flux across the plasma membrane and the endoplasmic reticulum membrane, its functions on mitochondria are largely unknown. Here, we found that ERp57 can regulate the expression of the mitochondrial calcium uniporter (MCU) and modulate mitochondrial calcium uptake. In ERp57-silenced HeLa cells, MCU was downregulated, and the mitochondrial calcium uptake was inhibited, consistent with the effect of MCU knockdown. When MCU was re-expressed in the ERp57 knockdown cells, mitochondrial calcium uptake was restored. Thus, ERp57 is a potent regulator of mitochondrial calcium homeostasis.
Collapse
Affiliation(s)
- Jingquan He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Weikang Shi
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Guo
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhen Chai
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
39
|
Aureli C, Cassano T, Masci A, Francioso A, Martire S, Cocciolo A, Chichiarelli S, Romano A, Gaetani S, Mancini P, Fontana M, d'Erme M, Mosca L. 5-S-cysteinyldopamine neurotoxicity: Influence on the expression of α-synuclein and ERp57 in cellular and animal models of Parkinson's disease. J Neurosci Res 2013; 92:347-58. [DOI: 10.1002/jnr.23318] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/16/2013] [Accepted: 09/25/2013] [Indexed: 02/04/2023]
Affiliation(s)
- Cristina Aureli
- Department of Biochemical Sciences; “Sapienza” University; Roma Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine; University of Foggia; Italy
| | - Alessandra Masci
- Department of Biochemical Sciences; “Sapienza” University; Roma Italy
| | - Antonio Francioso
- Department of Biochemical Sciences; “Sapienza” University; Roma Italy
| | - Sara Martire
- Department of Biochemical Sciences; “Sapienza” University; Roma Italy
| | - Annalisa Cocciolo
- Department of Biochemical Sciences; “Sapienza” University; Roma Italy
| | | | - Adele Romano
- Department of Physiology and Pharmacology V. Erspamer; “Sapienza” University; Roma Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology V. Erspamer; “Sapienza” University; Roma Italy
| | - Patrizia Mancini
- Department of Experimental Medicine; “Sapienza” University; Roma Italy
| | - Mario Fontana
- Department of Biochemical Sciences; “Sapienza” University; Roma Italy
| | - Maria d'Erme
- Department of Biochemical Sciences; “Sapienza” University; Roma Italy
- Pasteur Institute; Fondazione Cenci-Bolognetti; Roma Italy
| | - Luciana Mosca
- Department of Biochemical Sciences; “Sapienza” University; Roma Italy
| |
Collapse
|
40
|
Halloran M, Parakh S, Atkin JD. The role of s-nitrosylation and s-glutathionylation of protein disulphide isomerase in protein misfolding and neurodegeneration. Int J Cell Biol 2013; 2013:797914. [PMID: 24348565 PMCID: PMC3852308 DOI: 10.1155/2013/797914] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/19/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases involve the progressive loss of neurons, and a pathological hallmark is the presence of abnormal inclusions containing misfolded proteins. Although the precise molecular mechanisms triggering neurodegeneration remain unclear, endoplasmic reticulum (ER) stress, elevated oxidative and nitrosative stress, and protein misfolding are important features in pathogenesis. Protein disulphide isomerase (PDI) is the prototype of a family of molecular chaperones and foldases upregulated during ER stress that are increasingly implicated in neurodegenerative diseases. PDI catalyzes the rearrangement and formation of disulphide bonds, thus facilitating protein folding, and in neurodegeneration may act to ameliorate the burden of protein misfolding. However, an aberrant posttranslational modification of PDI, S-nitrosylation, inhibits its protective function in these conditions. S-nitrosylation is a redox-mediated modification that regulates protein function by covalent addition of nitric oxide- (NO-) containing groups to cysteine residues. Here, we discuss the evidence for abnormal S-nitrosylation of PDI (SNO-PDI) in neurodegeneration and how this may be linked to another aberrant modification of PDI, S-glutathionylation. Understanding the role of aberrant S-nitrosylation/S-glutathionylation of PDI in the pathogenesis of neurodegenerative diseases may provide insights into novel therapeutic interventions in the future.
Collapse
Affiliation(s)
- M. Halloran
- Department of Neuroscience in the School of Psychological Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - S. Parakh
- Department of Biochemistry, La Trobe University, Bundoora, VIC 3086, Australia
| | - J. D. Atkin
- Department of Biochemistry, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
41
|
Xu LR, Liu XL, Chen J, Liang Y. Protein disulfide isomerase interacts with tau protein and inhibits its fibrillization. PLoS One 2013; 8:e76657. [PMID: 24098548 PMCID: PMC3788760 DOI: 10.1371/journal.pone.0076657] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/30/2013] [Indexed: 01/20/2023] Open
Abstract
Background Tau protein is implicated in the pathogenesis of neurodegenerative disorders such as tauopathies including Alzheimer disease, and Tau fibrillization is thought to be related to neuronal toxicity. Physiological inhibitors of Tau fibrillization hold promise for developing new strategies for treatment of Alzheimer disease. Because protein disulfide isomerase (PDI) is both an enzyme and a chaperone, and implicated in neuroprotection against Alzheimer disease, we want to know whether PDI can prevent Tau fibrillization. In this study, we have investigated the interaction between PDI and Tau protein and the effect of PDI on Tau fibrillization. Methodology/Principal Findings As evidenced by co-immunoprecipitation and confocal laser scanning microscopy, human PDI interacts and co-locates with some endogenous human Tau on the endoplasmic reticulum of undifferentiated SH-SY5Y neuroblastoma cells. The results from isothermal titration calorimetry show that one full-length human PDI binds to one full-length human Tau (or human Tau fragment Tau244–372) monomer with moderate, micromolar affinity at physiological pH and near physiological ionic strength. As revealed by thioflavin T binding assays, Sarkosyl-insoluble SDS-PAGE, and transmission electron microscopy, full-length human PDI remarkably inhibits both steps of nucleation and elongation of Tau244–372 fibrillization in a concentration-dependent manner. Furthermore, we find that two molecules of the a-domain of human PDI interact with one Tau244–372 molecule with sub-micromolar affinity, and inhibit both steps of nucleation and elongation of Tau244–372 fibrillization more strongly than full-length human PDI. Conclusions/Significance We demonstrate for the first time that human PDI binds to Tau protein mainly through its thioredoxin-like catalytic domain a, forming a 1∶1 complex and preventing Tau misfolding. Our findings suggest that PDI could act as a physiological inhibitor of Tau fibrillization, and have applications for developing novel strategies for treatment and early diagnosis of Alzheimer disease.
Collapse
Affiliation(s)
- Li-Rong Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Ling Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
42
|
Hiong KC, Ip YK, Wong WP, Chew SF. Differential gene expression in the brain of the African lungfish, Protopterus annectens, after six days or six months of aestivation in air. PLoS One 2013; 8:e71205. [PMID: 23976998 PMCID: PMC3745453 DOI: 10.1371/journal.pone.0071205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/03/2013] [Indexed: 11/18/2022] Open
Abstract
The African lungfish, Protopterus annectens, can undergo aestivation during drought. Aestivation has three phases: induction, maintenance and arousal. The objective of this study was to examine the differential gene expression in the brain of P. annectens during the induction (6 days) and maintenance (6 months) phases of aestivation as compared with the freshwater control using suppression subtractive hybridization. During the induction phase of aestivation, the mRNA expression of prolactin (prl) and growth hormone were up-regulated in the brain of P. annectens, which indicate for the first time the possible induction role of these two hormones in aestivation. Also, the up-regulation of mRNA expression of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein γ polypeptide and the down-regulation of phosphatidylethanolamine binding protein, suggest that there could be a reduction in biological and neuronal activities in the brain. The mRNA expression of cold inducible RNA-binding protein and glucose regulated protein 58 were also up-regulated in the brain, probably to enhance their cytoprotective effects. Furthermore, the down-regulation of prothymosin α expression suggests that there could be a suppression of transcription and cell proliferation in preparation for the maintenance phase. In general, the induction phase appeared to be characterized by reduction in glycolytic capacity and metabolic activity, suppression of protein synthesis and degradation, and an increase in defense against ammonia toxicity. In contrast, there was a down-regulation in the mRNA expression of prl in the brain of P. annectens during the maintenance phase of aestivation. In addition, there could be an increase in oxidative defense capacity, and up-regulation of transcription, translation, and glycolytic capacities in preparation for arousal. Overall, our results signify the importance of reconstruction of protein structures and regulation of energy expenditure during the induction phase, and the needs to suppress protein degradation and conserve metabolic fuel stores during the maintenance phase of aestivation.
Collapse
Affiliation(s)
- Kum C. Hiong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
| |
Collapse
|
43
|
Disulfide bonding in neurodegenerative misfolding diseases. Int J Cell Biol 2013; 2013:318319. [PMID: 23983694 PMCID: PMC3747422 DOI: 10.1155/2013/318319] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/16/2013] [Indexed: 01/27/2023] Open
Abstract
In recent years an increasing number of neurodegenerative diseases has been linked to the misfolding of a specific protein and its subsequent accumulation into aggregated species, often toxic to the cell. Of all the factors that affect the behavior of these proteins, disulfide bonds are likely to be important, being very conserved in protein sequences and being the enzymes devoted to their formation among the most conserved machineries in mammals. Their crucial role in the folding and in the function of a big fraction of the human proteome is well established. The role of disulfide bonding in preventing and managing protein misfolding and aggregation is currently under investigation. New insights into their involvement in neurodegenerative diseases, their effect on the process of protein misfolding and aggregation, and into the role of the cellular machineries devoted to disulfide bond formation in neurodegenerative diseases are emerging. These studies mark a step forward in the comprehension of the biological base of neurodegenerative disorders and highlight the numerous questions that still remain open.
Collapse
|
44
|
Marques PI, Ferreira Z, Martins M, Figueiredo J, Silva DI, Castro P, Morales-Hojas R, Simões-Correia J, Seixas S. SERPINA2 is a novel gene with a divergent function from SERPINA1. PLoS One 2013; 8:e66889. [PMID: 23826168 PMCID: PMC3691238 DOI: 10.1371/journal.pone.0066889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 05/11/2013] [Indexed: 11/23/2022] Open
Abstract
Serine protease inhibitors (SERPINs) are a superfamily of highly conserved proteins that play a key role in controlling the activity of proteases in diverse biological processes. The SERPIN cluster located at the 14q32.1 region includes the gene coding for SERPINA1, and a highly homologous sequence, SERPINA2, which was originally thought to be a pseudogene. We have previously shown that SERPINA2 is expressed in different tissues, namely leukocytes and testes, suggesting that it is a functional SERPIN. To investigate the function of SERPINA2, we used HeLa cells stably transduced with the different variants of SERPINA2 and SERPINA1 (M1, S and Z) and leukocytes as the in vivo model. We identified SERPINA2 as a 52 kDa intracellular glycoprotein, which is localized at the endoplasmic reticulum (ER), independently of the variant analyzed. SERPINA2 is not significantly regulated by proteasome, proposing that ER localization is not due to misfolding. Specific features of SERPINA2 include the absence of insoluble aggregates and the insignificant response to cell stress, suggesting that it is a non-polymerogenic protein with divergent activity of SERPINA1. Using phylogenetic analysis, we propose an origin of SERPINA2 in the crown of primates, and we unveiled the overall conservation of SERPINA2 and A1. Nonetheless, few SERPINA2 residues seem to have evolved faster, contributing to the emergence of a new advantageous function, possibly as a chymotrypsin-like SERPIN. Herein, we present evidences that SERPINA2 is an active gene, coding for an ER-resident protein, which may act as substrate or adjuvant of ER-chaperones.
Collapse
Affiliation(s)
- Patrícia Isabel Marques
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Zélia Ferreira
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Manuella Martins
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Joana Figueiredo
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
| | - Diana Isabel Silva
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Patrícia Castro
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ramiro Morales-Hojas
- Molecular Evolution, Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
| | - Joana Simões-Correia
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Institute of Biomedical Research on Light and Image, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Susana Seixas
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- * E-mail: (SS)
| |
Collapse
|
45
|
Holtzman JL. Cellular and animal models for high-throughput screening of therapeutic agents for the treatment of the diseases of the elderly in general and Alzheimer's disease in particular(†). Front Pharmacol 2013; 4:59. [PMID: 23717280 PMCID: PMC3651961 DOI: 10.3389/fphar.2013.00059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/18/2013] [Indexed: 01/04/2023] Open
Abstract
It is currently thought that the dementia of Alzheimer's disease is due to the neurotoxicity of the deposits or aggregates of amyloid-β (Aβ) in the extracellular space of the cerebral cortex. This model has been widely criticized because there is a poor correlation between deposits and dementia. Others have questioned whether Aβ is truly neurotoxic. Yet, in spite of these concerns, the search for therapeutic agents has been based on the development of mouse models transfected with mutant genes associated in humans with early onset Alzheimer's disease. A major limitation of these models is that although they exhibit many of the pathological and clinical manifestation of the human disease, the bulk of individuals who develop the dementia of Alzheimer's disease have none of these mutant genes. Furthermore, nine clinical trials of drugs that were effective in transgenic mice failed to show any benefit in patients. Finally, a major unresolved issue with the Aβ model is that since Aβ is produced in everyone, why are deposits only seen in the elderly? This issue must be resolved if we are to understand the etiology of the disease and develop test systems for both diagnosis and drug discovery. Published studies from my laboratory demonstrate that in human cerebrospinal fluid immunoreactive Aβ is only present as a complex with two chaperones, ERp57 and calreticulin and is N-glycosylated. This complex formation is catalyzed by the posttranslational protein processing system of the endoplasmic reticulum (ER). Others have reported that in plaque Aβ is present only as the naked peptide. Together these results suggest that both plaque and dementia are secondary to an age related decline in the capacity of the ER to catalyze protein, posttranslational processing. Since the synaptic membrane proteins necessary for a functioning memory are also processed in the ER, these findings would suggest that the loss of cognition is due to a decline in the capacity of the neuron to produce and maintain functioning synapses. Work from my laboratory and from others further indicate that the components of the ER, posttranslational, protein processing pathway do dramatically decline with age. These data suggest that this decline may be found in all cells and could account not only for the dementia of Alzheimer's disease, but also for many of the other manifestations of the aging process. These observations also suggest that declining ER function has a role in two well-recognized phenomena associated with aging: a loss of mitochondrial function and a decrease in myelin. Finally, based on this paradigm I propose new cellular and animals models for high-throughput screening for drug discovery.
Collapse
Affiliation(s)
- Jordan L. Holtzman
- Department of Pharmacology, University of MinnesotaMinneapolis, MN, USA
- Department of Medicine, University of MinnesotaMinneapolis, MN, USA
- Department of Environmental Health Sciences, University of MinnesotaMinneapolis, MN, USA
| |
Collapse
|
46
|
Cornejo VH, Hetz C. The unfolded protein response in Alzheimer’s disease. Semin Immunopathol 2013; 35:277-92. [DOI: 10.1007/s00281-013-0373-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/13/2013] [Indexed: 01/05/2023]
|
47
|
Stemmer N, Strekalova E, Djogo N, Plöger F, Loers G, Lutz D, Buck F, Michalak M, Schachner M, Kleene R. Generation of amyloid-β is reduced by the interaction of calreticulin with amyloid precursor protein, presenilin and nicastrin. PLoS One 2013; 8:e61299. [PMID: 23585889 PMCID: PMC3621835 DOI: 10.1371/journal.pone.0061299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 03/11/2013] [Indexed: 12/28/2022] Open
Abstract
Dysregulation of the proteolytic processing of amyloid precursor protein by γ-secretase and the ensuing generation of amyloid-β is associated with the pathogenesis of Alzheimer's disease. Thus, the identification of amyloid precursor protein binding proteins involved in regulating processing of amyloid precursor protein by the γ-secretase complex is essential for understanding the mechanisms underlying the molecular pathology of the disease. We identified calreticulin as novel amyloid precursor protein interaction partner that binds to the γ-secretase cleavage site within amyloid precursor protein and showed that this Ca2+- and N-glycan-independent interaction is mediated by amino acids 330–344 in the C-terminal C-domain of calreticulin. Co-immunoprecipitation confirmed that calreticulin is not only associated with amyloid precursor protein but also with the γ-secretase complex members presenilin and nicastrin. Calreticulin was detected at the cell surface by surface biotinylation of cells overexpressing amyloid precursor protein and was co-localized by immunostaining with amyloid precursor protein and presenilin at the cell surface of hippocampal neurons. The P-domain of calreticulin located between the N-terminal N-domain and the C-domain interacts with presenilin, the catalytic subunit of the γ-secretase complex. The P- and C-domains also interact with nicastrin, another functionally important subunit of this complex. Transfection of amyloid precursor protein overexpressing cells with full-length calreticulin leads to a decrease in amyloid-β42 levels in culture supernatants, while transfection with the P-domain increases amyloid-β40 levels. Similarly, application of the recombinant P- or C-domains and of a synthetic calreticulin peptide comprising amino acid 330–344 to amyloid precursor protein overexpressing cells result in elevated amyloid-β40 and amyloid-β42 levels, respectively. These findings indicate that the interaction of calreticulin with amyloid precursor protein and the γ-secretase complex regulates the proteolytic processing of amyloid precursor protein by the γ-secretase complex, pointing to calreticulin as a potential target for therapy in Alzheimer's disease.
Collapse
Affiliation(s)
- Nina Stemmer
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Strekalova
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Nevena Djogo
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Plöger
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - David Lutz
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Buck
- Institut für Klinische Chemie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- * E-mail:
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
48
|
Čiplys E, Žitkus E, Slibinskas R. Native signal peptide of human ERp57 disulfide isomerase mediates secretion of active native recombinant ERp57 protein in yeast Saccharomyces cerevisiae. Protein Expr Purif 2013; 89:131-5. [PMID: 23528814 DOI: 10.1016/j.pep.2013.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/06/2013] [Accepted: 03/12/2013] [Indexed: 11/30/2022]
Abstract
Human ERp57 protein is disulfide isomerase, facilitating proper folding of glycoprotein precursors in the concert with ER lectin chaperones calreticulin and calnexin. Growing amount of data also associates ERp57 with many different functions in subcellular locations outside the ER. Analysis of protein functions requires substantial amounts of correctly folded, biologically active protein, and in this study we introduce yeast Saccharomyces cerevisiae as a perfect host for production of human ERp57. Our data suggest that native signal peptide of human ERp57 protein is recognized and correctly processed in the yeast cells, which leads to protein secretion. Secreted recombinant ERp57 protein possesses native amino acid sequence and is biologically active. Moreover, secretion allows simple one-step purification of recombinant ERp57 protein with the yields reaching up to 10mg/L.
Collapse
Affiliation(s)
- Evaldas Čiplys
- Vilnius University Institute of Biotechnology, V.A. Graiciuno 8, LT-02241 Vilnius, Lithuania.
| | | | | |
Collapse
|
49
|
|
50
|
Tohda C, Urano T, Umezaki M, Nemere I, Kuboyama T. Diosgenin is an exogenous activator of 1,25D₃-MARRS/Pdia3/ERp57 and improves Alzheimer's disease pathologies in 5XFAD mice. Sci Rep 2012; 2:535. [PMID: 22837815 PMCID: PMC3405293 DOI: 10.1038/srep00535] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/09/2012] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to investigate the effects and the mechanism of diosgenin, a famous plant-derived steroidal sapogenin, on memory deficits in Alzheimer's disease (AD) model mice. Diosgenin-treated 5XFAD mice exhibited significantly improved performance of object recognition memory. Diosgenin treatment significantly reduced amyloid plaques and neurofibrillary tangles in the cerebral cortex and hippocampus. Degenerated axons and presynaptic terminals that were only observed in regions closely associated with amyloid plaques were significantly reduced by diosgenin treatment. The 1,25D3-membrane-associated, rapid response steroid-binding protein (1,25D3-MARRS) was shown to be a target of diosgenin. 1,25D3-MARRS knockdown completely inhibited diosgenin-induced axonal growth in cortical neurons. Treatment with a neutralizing antibody against 1,25D3-MARRS diminished the axonal regeneration effect of diosgenin in Aβ(1–42)-induced axonal atrophy. This is the first study to demonstrate that the exogenous stimulator diosgenin activates the 1,25D3-MARRS pathway, which may be a very critical signaling target for anti-AD therapy.
Collapse
Affiliation(s)
- Chihiro Tohda
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | |
Collapse
|