1
|
Liu J, Zhang D. Cytochrome P450-mediated carbon-carbon bond formation in drug metabolism. Drug Metab Rev 2025:1-16. [PMID: 39906921 DOI: 10.1080/03602532.2025.2451847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025]
Abstract
Cytochrome P450 (CYPs) enzymes are essential for the metabolism of numerous drug compounds and are capable of catalyzing many types of biotransformation reactions. One of the more unusual reactions catalyzed by CYPs is carbon-carbon (C-C) bond formation, which is critical in organic synthesis but found less commonly in nature. This review focuses on examples of C-C bond formation that occur during drug metabolism and highlights the mechanism for the formation of novel drug metabolites that result from these reactions. The different roles that mammalian CYPs can play in C-C bond formations are also discussed in detail. Ultimately, an understanding of the range of xenobiotics that undergo C-C bond formation and the mechanisms by which they do so can further facilitate metabolite identification and drug design efforts.
Collapse
Affiliation(s)
- Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
2
|
Barber V, Mielke T, Cartwright J, Díaz-Rodríguez A, Unsworth WP, Grogan G. Unspecific Peroxygenase (UPO) can be Tuned for Oxygenation or Halogenation Activity by Controlling the Reaction pH. Chemistry 2024; 30:e202401706. [PMID: 38700372 DOI: 10.1002/chem.202401706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Unspecific Peroxygenases (UPOs) are increasingly significant enzymes for selective oxygenations as they are stable, highly active and catalyze their reactions at the expense of only hydrogen peroxide as the oxidant. Their structural similarity to chloroperoxidase (CPO) means that UPOs can also catalyze halogenation reactions based upon the generation of hypohalous acids from halide and H2O2. Here we show that the halogenation and oxygenation modes of a UPO can be stimulated at different pH values. Using simple aromatic compounds such as thymol, we show that, at a pH of 3.0 and 6.0, either brominated or oxygenated products respectively are produced. Preparative 100 mg scale transformations of substrates were performed with 60-72 % isolated yields of brominated products obtained. A one-pot bromination-oxygenation cascade reaction on 4-ethylanisole, in which the pH was adjusted from 3.0 to 6.0 at the halfway stage, yielded sequentially brominated and oxygenated products 1-(3-bromo-4-methoxyphenyl)ethyl alcohol and 3-bromo-4-methoxy acetophenone with 82 % combined conversion. These results identify UPOs as an unusual example of a biocatalyst that is tunable for entirely different chemical reactions, dependent upon the reaction conditions.
Collapse
Affiliation(s)
- Verity Barber
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Tamara Mielke
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Jared Cartwright
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Alba Díaz-Rodríguez
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
3
|
Canale V, Skiba-Kurek I, Klesiewicz K, Papież M, Ropek M, Pomierny B, Piska K, Koczurkiewicz-Adamczyk P, Empel J, Karczewska E, Zajdel P. Improving Activity of New Arylurea Agents against Multidrug-Resistant and Biofilm-Producing Staphylococcus epidermidis. ACS Med Chem Lett 2024; 15:369-375. [PMID: 38505856 PMCID: PMC10945555 DOI: 10.1021/acsmedchemlett.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/21/2024] Open
Abstract
Multidrug-resistant (MDR) strains of Staphylococcus epidermidis (S. epidermidis), prevalent in hospital environments, contribute to increased morbidity and mortality, especially among newborns, posing a critical concern for neonatal sepsis. In response to the pressing demand for novel antibacterial therapies, we present findings from synthetic chemistry and structure-activity relationship studies focused on arylsulfonamide/arylurea derivatives of aryloxy[1-(thien-2-yl)propyl]piperidines. Through bioisosteric replacement of the sulfonamide fragment with a urea moiety, compound 25 was identified, demonstrating potent bacteriostatic activity against clinical multidrug-resistant S. epidermidis strains (MIC50 and MIC90 = 1.6 and 3.125 μg/mL). Importantly, it showed activity against linezolid-resistant strains and exhibited selectivity over mammalian cells. Compound 25 displayed antibiofilm-forming properties against clinical S. epidermidis strains and demonstrated the capacity to eliminate existing biofilm layers. Additionally, it induced complete depolarization of the bacterial membrane in clinical S. epidermidis strains. In light of these findings, targeting bacterial cell membranes with compound 25 emerges as a promising strategy in the fight against multidrug-resistant S. epidermidis strains.
Collapse
Affiliation(s)
- Vittorio Canale
- Faculty
of Pharmacy Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Iwona Skiba-Kurek
- Faculty
of Pharmacy Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Karolina Klesiewicz
- Faculty
of Pharmacy Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Monika Papież
- Faculty
of Pharmacy Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Marlena Ropek
- Faculty
of Pharmacy Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Bartosz Pomierny
- Faculty
of Pharmacy Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Kamil Piska
- Faculty
of Pharmacy Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | | | - Joanna Empel
- Department
of Epidemiology and Clinical Microbiology, National Medicines Institute, 30/34 Chełmska Street, 00-725 Warsaw, Poland
| | - Elżbieta Karczewska
- Faculty
of Pharmacy Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Paweł Zajdel
- Faculty
of Pharmacy Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| |
Collapse
|
4
|
Podgorski MN, Keto AB, Coleman T, Bruning JB, De Voss JJ, Krenske EH, Bell SG. The Oxidation of Oxygen and Sulfur-Containing Heterocycles by Cytochrome P450 Enzymes. Chemistry 2023; 29:e202301371. [PMID: 37338048 DOI: 10.1002/chem.202301371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The cytochrome P450 (CYP) superfamily of monooxygenase enzymes play important roles in the metabolism of molecules which contain heterocyclic, aromatic functional groups. Here we study how oxygen- and sulfur-containing heterocyclic groups interact with and are oxidized using the bacterial enzyme CYP199A4. This enzyme oxidized both 4-(thiophen-2-yl)benzoic acid and 4-(thiophen-3-yl)benzoic acid almost exclusively via sulfoxidation. The thiophene oxides produced were activated towards Diels-Alder dimerization after sulfoxidation, forming dimeric metabolites. Despite X-ray crystal structures demonstrating that the aromatic carbon atoms of the thiophene ring were located closer to the heme than the sulfur, sulfoxidation was still favoured with 4-(thiophen-3-yl)benzoic acid. These results highlight a preference of this cytochrome P450 enzyme for sulfoxidation over aromatic hydroxylation. Calculations predict a strong preference for homodimerization of the enantiomers of the thiophene oxides and the formation of a single major product, in broad agreement with the experimental data. 4-(Furan-2-yl)benzoic acid was oxidized to 4-(4'-hydroxybutanoyl)benzoic acid using a whole-cell system. This reaction proceeded via a γ-keto-α,β-unsaturated aldehyde species which could be trapped in vitro using semicarbazide to generate a pyridazine species. The combination of the enzyme structures, the biochemical data and theoretical calculations provides detailed insight into the formation of the metabolites formed from these heterocyclic compounds.
Collapse
Affiliation(s)
- Matthew N Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Angus B Keto
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Tom Coleman
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
5
|
Monooxygenase- and Dioxygenase-Catalyzed Oxidative Dearomatization of Thiophenes by Sulfoxidation, cis-Dihydroxylation and Epoxidation. Int J Mol Sci 2022; 23:ijms23020909. [PMID: 35055091 PMCID: PMC8777831 DOI: 10.3390/ijms23020909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Enzymatic oxidations of thiophenes, including thiophene-containing drugs, are important for biodesulfurization of crude oil and drug metabolism of mono- and poly-cyclic thiophenes. Thiophene oxidative dearomatization pathways involve reactive metabolites, whose detection is important in the pharmaceutical industry, and are catalyzed by monooxygenase (sulfoxidation, epoxidation) and dioxygenase (sulfoxidation, dihydroxylation) enzymes. Sulfoxide and epoxide metabolites of thiophene substrates are often unstable, and, while cis-dihydrodiol metabolites are more stable, significant challenges are presented by both types of metabolite. Prediction of the structure, relative and absolute configuration, and enantiopurity of chiral metabolites obtained from thiophene enzymatic oxidation depends on the substrate, type of oxygenase selected, and molecular docking results. The racemization and dimerization of sulfoxides, cis/trans epimerization of dihydrodiol metabolites, and aromatization of epoxides are all factors associated with the mono- and di-oxygenase-catalyzed metabolism of thiophenes and thiophene-containing drugs and their applications in chemoenzymatic synthesis and medicine.
Collapse
|
6
|
Camilleri P, Soldo B, Buch A, Janusz J. Oxidative metabolism of razuprotafib (AKB-9778), a sulfamic acid phosphatase inhibitor, in human microsomes and recombinant human CYP2C8 enzyme. Xenobiotica 2021; 51:1110-1121. [PMID: 34477046 DOI: 10.1080/00498254.2021.1969482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Razuprotafib, a sulphamic acid-containing phosphatase inhibitor, is shown in vivo to undergo enzymatic oxidation and methylation to form a major metabolite in monkey and human excreta with an m/z- value of 633.LC-MS/MS analysis of samples derived from incubations of razuprotafib with human liver microsomes and recombinant CYP2C8 enzyme has elucidated the metabolic pathway for formation of the thiol precursor to the S-methyl metabolite MS633 (m/z- 633).Under in vitro conditions, the major pathway of razuprotafib metabolism involves extensive oxidation of the thiophene and phenyl rings.A single oxidation takes place at one of the phenyl groups. Multiple oxidations occur at the thiophene moiety: initial oxidation results in the formation of a thiolactone followed by a second oxidation giving rise to an S-oxide of the thiolactone, which is further metabolised to the ring-opened form and ultimate formation of a thiol (m/z- 619).An additional mono-oxidation pathway involves epoxidation of the thiophene followed by hydrolysis to a diol.The thiol and diol metabolites are trapped by the addition of a nucleophilic trapping agent, 3-methoxyphenacyl bromide (MPB), giving adducts with m/z- 767.The thiol is a likely precursor to the major in vivo razuprotafib metabolite, MS633.
Collapse
|
7
|
Jaladanki CK, Khatun S, Gohlke H, Bharatam PV. Reactive Metabolites from Thiazole-Containing Drugs: Quantum Chemical Insights into Biotransformation and Toxicity. Chem Res Toxicol 2021; 34:1503-1517. [PMID: 33900062 DOI: 10.1021/acs.chemrestox.0c00450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Drugs containing thiazole and aminothiazole groups are known to generate reactive metabolites (RMs) catalyzed by cytochrome P450s (CYPs). These RMs can covalently modify essential cellular macromolecules and lead to toxicity and induce idiosyncratic adverse drug reactions. Molecular docking and quantum chemical hybrid DFT study were carried out to explore the molecular mechanisms involved in the biotransformation of thiazole (TZ) and aminothiazole (ATZ) groups leading to RM epoxide, S-oxide, N-oxide, and oxaziridine. The energy barrier required for the epoxidation is 13.63 kcal/mol, that is lower than that of S-oxidation, N-oxidation, and oxaziridine formation (14.56, 17.90, and 20.20, kcal/mol respectively). The presence of the amino group in ATZ further facilitates all the metabolic pathways, for example, the barrier for the epoxidation reaction is reduced by ∼2.5 kcal/mol. Some of the RMs/their isomers are highly electrophilic and tend to form covalent bonds with nucleophilic amino acids, finally leading to the formation of metabolic intermediate complexes (MICs). The energy profiles of these competitive pathways have also been explored.
Collapse
Affiliation(s)
- Chaitanya K Jaladanki
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector -67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Samima Khatun
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector -67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.,Forschungszentrum Jülich GmbH, John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector -67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| |
Collapse
|
8
|
Mirzaei MS, Ivanov MV, Taherpour AA, Mirzaei S. Mechanism-Based Inactivation of Cytochrome P450 Enzymes: Computational Insights. Chem Res Toxicol 2021; 34:959-987. [PMID: 33769041 DOI: 10.1021/acs.chemrestox.0c00483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanism-based inactivation (MBI) refers to the metabolic bioactivation of a xenobiotic by cytochrome P450s to a highly reactive intermediate which subsequently binds to the enzyme and leads to the quasi-irreversible or irreversible inhibition. Xenobiotics, mainly drugs with specific functional units, are the major sources of MBI. Two possible consequences of MBI by medicinal compounds are drug-drug interaction and severe toxicity that are observed and highlighted by clinical experiments. Today almost all of these latent functional groups (e.g., thiophene, furan, alkylamines, etc.) are known, and their features and mechanisms of action, owing to the vast experimental and theoretical studies, are determined. In the past decade, molecular modeling techniques, mostly density functional theory, have revealed the most feasible mechanism that a drug undergoes by P450 enzymes to generate a highly reactive intermediate. In this review, we provide a comprehensive and detailed picture of computational advances toward the elucidation of the activation mechanisms of various known groups with MBI activity. To this aim, we briefly describe the computational concepts to carry out and analyze the mechanistic investigations, and then, we summarize the studies on compounds with known inhibition activity including thiophene, furan, alkylamines, terminal acetylene, etc. This study can be reference literature for both theoretical and experimental (bio)chemists in several different fields including rational drug design, the process of toxicity prevention, and the discovery of novel inhibitors and catalysts.
Collapse
Affiliation(s)
- M Saeed Mirzaei
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346
| | - Maxim V Ivanov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Avat Arman Taherpour
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346.,Medical Biology Research Centre, University of Medical Sciences, Kermanshah, Iran 67149-67346
| | - Saber Mirzaei
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
9
|
Naclerio GA, Abutaleb NS, Alhashimi M, Seleem MN, Sintim HO. N-(1,3,4-Oxadiazol-2-yl)Benzamides as Antibacterial Agents against Neisseria gonorrhoeae. Int J Mol Sci 2021; 22:2427. [PMID: 33671065 PMCID: PMC7957578 DOI: 10.3390/ijms22052427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
The Centers for Disease Control and Prevention (CDC) recognizes Neisseria gonorrhoeae as an urgent-threat Gram-negative bacterial pathogen. Additionally, resistance to frontline treatment (dual therapy with azithromycin and ceftriaxone) has led to the emergence of multidrug-resistant N. gonorrhoeae, which has caused a global health crisis. The drug pipeline for N. gonorrhoeae has been severely lacking as new antibacterial agents have not been approved by the FDA in the last twenty years. Thus, there is a need for new chemical entities active against drug-resistant N. gonorrhoeae. Trifluoromethylsulfonyl (SO2CF3), trifluoromethylthio (SCF3), and pentafluorosulfanyl (SF5) containing N-(1,3,4-oxadiazol-2-yl)benzamides are novel compounds with potent activities against Gram-positive bacterial pathogens. Here, we report the discovery of new N-(1,3,4-oxadiazol-2-yl)benzamides (HSGN-237 and -238) with highly potent activity against N. gonorrhoeae. Additionally, these new compounds were shown to have activity against clinically important Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and Listeria monocytogenes (minimum inhibitory concentrations (MICs) as low as 0.25 µg/mL). Both compounds were highly tolerable to human cell lines. Moreover, HSGN-238 showed an outstanding ability to permeate across the gastrointestinal tract, indicating it would have a high systemic absorption if used as an anti-gonococcal therapeutic.
Collapse
Affiliation(s)
- George A Naclerio
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN 47907, USA
| | - Herman O Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Targeting SHIP1 and SHIP2 in Cancer. Cancers (Basel) 2021; 13:cancers13040890. [PMID: 33672717 PMCID: PMC7924360 DOI: 10.3390/cancers13040890] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Phosphoinositol signaling pathways and their dysregulation have been shown to have a fundamental role in health and disease, respectively. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, are regulators of the PI3K/AKT pathway that have crucial roles in cancer progression. This review aims to summarize the role of SHIP1 and SHIP2 in cancer signaling and the immune response to cancer, the discovery and use of SHIP inhibitors and agonists as possible cancer therapeutics. Abstract Membrane-anchored and soluble inositol phospholipid species are critical mediators of intracellular cell signaling cascades. Alterations in their normal production or degradation are implicated in the pathology of a number of disorders including cancer and pro-inflammatory conditions. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, play a fundamental role in these processes by depleting PI(3,4,5)P3, but also by producing PI(3,4)P2 at the inner leaflet of the plasma membrane. With the intent of targeting SHIP1 or SHIP2 selectively, or both paralogs simultaneously, small molecule inhibitors and agonists have been developed and tested in vitro and in vivo over the last decade in various disease models. These studies have shown promising results in various pre-clinical models of disease including cancer and tumor immunotherapy. In this review the potential use of SHIP inhibitors in cancer is discussed with particular attention to the molecular structure, binding site and efficacy of these SHIP inhibitors.
Collapse
|
11
|
Guengerich FP. A history of the roles of cytochrome P450 enzymes in the toxicity of drugs. Toxicol Res 2021; 37:1-23. [PMID: 32837681 PMCID: PMC7431904 DOI: 10.1007/s43188-020-00056-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
The history of drug metabolism began in the 19th Century and developed slowly. In the mid-20th Century the relationship between drug metabolism and toxicity became appreciated, and the roles of cytochrome P450 (P450) enzymes began to be defined in the 1960s. Today we understand much about the metabolism of drugs and many aspects of safety assessment in the context of a relatively small number of human P450s. P450s affect drug toxicity mainly by either reducing exposure to the parent molecule or, in some cases, by converting the drug into a toxic entity. Some of the factors involved are enzyme induction, enzyme inhibition (both reversible and irreversible), and pharmacogenetics. Issues related to drug toxicity include drug-drug interactions, drug-food interactions, and the roles of chemical moieties of drug candidates in drug discovery and development. The maturation of the field of P450 and drug toxicity has been facilitated by advances in analytical chemistry, computational capability, biochemistry and enzymology, and molecular and cell biology. Problems still arise with P450s and drug toxicity in drug discovery and development, and in the pharmaceutical industry the interaction of scientists in medicinal chemistry, drug metabolism, and safety assessment is critical for success.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, 638B Robinson Research Building, 2200 Pierce Avenue, Nashville, TN 37232-0146 USA
| |
Collapse
|
12
|
Naclerio GA, Abutaleb NS, Li D, Seleem MN, Sintim HO. Ultrapotent Inhibitor of Clostridioides difficile Growth, Which Suppresses Recurrence In Vivo. J Med Chem 2020; 63:11934-11944. [PMID: 32960605 DOI: 10.1021/acs.jmedchem.0c01198] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clostridioides difficile is the leading cause of healthcare-associated infection in the U.S. and considered an urgent threat by the Centers for Disease Control and Prevention (CDC). Only two antibiotics, vancomycin and fidaxomicin, are FDA-approved for the treatment of C. difficile infection (CDI), but these therapies still suffer from high treatment failure and recurrence. Therefore, new chemical entities to treat CDI are needed. Trifluoromethylthio-containing N-(1,3,4-oxadiazol-2-yl)benzamides displayed very potent activities [sub-μg/mL minimum inhibitory concentration (MIC) values] against Gram-positive bacteria. Here, we report remarkable antibacterial activity enhancement via halogen substitutions, which afforded new anti-C. difficile agents with ultrapotent activities [MICs as low as 0.003 μg/mL (0.007 μM)] that surpassed the activity of vancomycin against C. difficile clinical isolates. The most promising compound in the series, HSGN-218, is nontoxic to mammalian colon cells and is gut-restrictive. In addition, HSGN-218 protected mice from CDI recurrence. Not only does this work provide a potential clinical lead for the development of C. difficile therapeutics but also highlights dramatic drug potency enhancement via halogen substitution.
Collapse
Affiliation(s)
- George A Naclerio
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana 47907, United States
| | - Daoyi Li
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana 47907, United States
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana 47907, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States.,Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| | - Herman O Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Takahashi RH, Grandner JM, Bobba S, Liu Y, Beroza P, Zhang D, Ma S. Novel Homodimer Metabolites of GDC-0994 via Cytochrome P450-Catalyzed Radical Coupling. Drug Metab Dispos 2020; 48:521-527. [PMID: 32234735 DOI: 10.1124/dmd.119.090019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/04/2020] [Indexed: 01/11/2023] Open
Abstract
Two novel homodimer metabolites were identified in rat samples collected during the in vivo study of GDC-0994. In this study, we investigated the mechanism of the formation of these metabolites. We generated and isolated the dimer metabolites using a biomimetic oxidation system for NMR structure elucidation to identify a symmetric dimer formed via carbon-carbon bond between two pyrazoles and an asymmetric dimer formed via an aminopyrazole-nitrogen to pyrazole-carbon bond. In vitro experiments demonstrated formation of these dimers was catalyzed by cytochrome P450 enzymes (P450s) with CYP3A4/5 being the most efficient. Using density functional theory, we determined these metabolites share a mechanism of formation, initiated by an N-H hydrogen atom abstraction by the catalytically active iron-oxo of P450s. Molecular modeling studies also show these dimer metabolites fit in the CYP3A4 binding site in low energy conformations with minimal protein rearrangement. Collectively, the results of these experiments suggest that formation of these two homodimer metabolites is mediated by CYP3A, likely involving activation of two GDC-0994 molecules by a single P450 enzyme and proceeding through a radical coupling mechanism. SIGNIFICANCE STATEMENT: These studies identified structures and enzymology for two distinct homodimer metabolites and indicate a novel biotransformation reaction mediated by CYP3A. In it, two molecules may bind within the active site and combine through radical coupling. The mechanism of dimerization was elucidated using density functional theory computations and supported by molecular modeling.
Collapse
Affiliation(s)
- Ryan H Takahashi
- Drug Metabolism and Pharmacokinetics (R.H.T., S.B., D.Z., S.M.) and Discovery Chemistry (J.M.G., Y.L., P.B.), Genentech, Inc., South San Francisco, California
| | - Jessica M Grandner
- Drug Metabolism and Pharmacokinetics (R.H.T., S.B., D.Z., S.M.) and Discovery Chemistry (J.M.G., Y.L., P.B.), Genentech, Inc., South San Francisco, California
| | - Sudheer Bobba
- Drug Metabolism and Pharmacokinetics (R.H.T., S.B., D.Z., S.M.) and Discovery Chemistry (J.M.G., Y.L., P.B.), Genentech, Inc., South San Francisco, California
| | - Yanzhou Liu
- Drug Metabolism and Pharmacokinetics (R.H.T., S.B., D.Z., S.M.) and Discovery Chemistry (J.M.G., Y.L., P.B.), Genentech, Inc., South San Francisco, California
| | - Paul Beroza
- Drug Metabolism and Pharmacokinetics (R.H.T., S.B., D.Z., S.M.) and Discovery Chemistry (J.M.G., Y.L., P.B.), Genentech, Inc., South San Francisco, California
| | - Donglu Zhang
- Drug Metabolism and Pharmacokinetics (R.H.T., S.B., D.Z., S.M.) and Discovery Chemistry (J.M.G., Y.L., P.B.), Genentech, Inc., South San Francisco, California
| | - Shuguang Ma
- Drug Metabolism and Pharmacokinetics (R.H.T., S.B., D.Z., S.M.) and Discovery Chemistry (J.M.G., Y.L., P.B.), Genentech, Inc., South San Francisco, California
| |
Collapse
|
14
|
Thakkar D, Kate AS. 1-(Benzo[b]thiophen-4-yl)piperazine Ring Induced Bioactivation of Brexpiprazole in Liver Microsomes: Identification and Characterization of Reactive Conjugates Using Ultra-High-Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry. Eur J Drug Metab Pharmacokinet 2020; 45:393-403. [PMID: 32002811 DOI: 10.1007/s13318-020-00606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Brexpiprazole is an atypical antipsychotic approved for the treatment of schizophrenia and major depressive disorders in adults. The structure of brexpiprazole contains well-known structural alerts like a thiophene ring, piperazine ring and quinolinone motifs. Additionally, the literature reveals that its structural analog, aripiprazole, could generate reactive intermediates. However, the bioactivation potential of brexpiprazole is yet unknown. Therefore, this study was planned to identify and characterize reactive adducts of brexpiprazole and its metabolites. METHODS Based on the reactivity, the potential atomic sites for a reactive intermediate generation were predicted by a xenosite web predictor tool for glutathione, cyanide, protein and DNA. To study the metabolic activation of brexpiprazole, the drug was individually incubated for 2 h at 37 °C with pooled male rat liver microsomes and human liver microsomes in microcentrifuge tubes fortified with glutathione/N-acetyl cysteine. Nicotinamide adenine dinucleotide phosphate reduced tetrasodium salt was used as a co-factor. RESULTS A total of six glutathione and N-acetyl cysteine conjugates of brexpiprazole metabolites were identified and characterized using ultra-high-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry. Reactive metabolite 1 (RM1), RM3, RM4 and RM6 reactive conjugates were formed due to reactive quinone-imine or quinone intermediates, while RM2 and RM5 reactive adducts were generated because of a thiophene-S-oxide intermediate. CONCLUSION Brexpirazole is bioactivated due to the presence of a 1-(benzo[b]thiophen-4-yl)piperazine ring in its structure. In contrast to aripiprazole, the quinolinone motif was found latent towards bioactivation in brexpiprazole.
Collapse
Affiliation(s)
- Disha Thakkar
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Gandhinagar, Gujarat, 382355, India
| | - Abhijeet S Kate
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
15
|
Conformational turn triggers regio-selectivity in the bioactivation of thiophene-contained compounds mediated by cytochrome P450. J Biol Inorg Chem 2019; 24:1023-1033. [PMID: 31506822 DOI: 10.1007/s00775-019-01699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
In the present work, we performed Density Functional Theory calculations to explore the bioactivation mechanism of thiophene-containing molecules mediated by P450s. For this purpose, relatively large size compounds, 2,5-diaminothiophene derivatives were selected particularly for this investigation. Here we found the successive regio-selectivity triggered by conformational turn played a significant role in the occurrence of bioactivation. 2,5-Diaminothiophene was oxidized to a 2,5-diimine thiophene-reactive intermediate by Compound I (Cpd I) through successive activations of two N-H bonds (H3-N11 and H1-N6). This reaction exhibited three special characteristics: (1) self-controlled regio-selectivity during the oxidation process. There was a large scale of conformational turn in the abstraction of the first H atom which triggers the selection of the second H for abstraction. (2) Proton-shuttle mechanism. In high spin (HS) state, proton-shuttle mechanism was observed for the abstraction of the second H atom. (3) Spin-selective manner. In protein environment, the energy barrier in HS state was much lower than that in low spin state. The novel proposed bioactivation mechanism of 2,5-diaminothiophene compounds can help us in rational design of thiophene-contained drugs avoiding the occurrence of bioactivation.
Collapse
|
16
|
Slessor KE, Stok JE, Chow S, De Voss JJ. Significance of Protein–Substrate Hydrogen Bonding for the Selectivity of P450‐Catalysed Oxidations. Chemistry 2019; 25:4149-4155. [DOI: 10.1002/chem.201805705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Kate E. Slessor
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| | - Jeanette E. Stok
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| | - Sharon Chow
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| | - James J. De Voss
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| |
Collapse
|
17
|
Guengerich FP, Yoshimoto FK. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem Rev 2018; 118:6573-6655. [PMID: 29932643 DOI: 10.1021/acs.chemrev.8b00031] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many oxidation-reduction (redox) enzymes, particularly oxygenases, have roles in reactions that make and break C-C bonds. The list includes cytochrome P450 and other heme-based monooxygenases, heme-based dioxygenases, nonheme iron mono- and dioxygenases, flavoproteins, radical S-adenosylmethionine enzymes, copper enzymes, and peroxidases. Reactions involve steroids, intermediary metabolism, secondary natural products, drugs, and industrial and agricultural chemicals. Many C-C bonds are formed via either (i) coupling of diradicals or (ii) generation of unstable products that rearrange. C-C cleavage reactions involve several themes: (i) rearrangement of unstable oxidized products produced by the enzymes, (ii) oxidation and collapse of radicals or cations via rearrangement, (iii) oxygenation to yield products that are readily hydrolyzed by other enzymes, and (iv) activation of O2 in systems in which the binding of a substrate facilitates O2 activation. Many of the enzymes involve metals, but of these, iron is clearly predominant.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| | - Francis K Yoshimoto
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|
18
|
Marques Netto CGC, Palmeira DJ, Brondani PB, Andrade LH. Enzymatic reactions involving the heteroatoms from organic substrates. AN ACAD BRAS CIENC 2018; 90:943-992. [PMID: 29742205 DOI: 10.1590/0001-3765201820170741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/01/2018] [Indexed: 11/22/2022] Open
Abstract
Several enzymatic reactions of heteroatom-containing compounds have been explored as unnatural substrates. Considerable advances related to the search for efficient enzymatic systems able to support a broader substrate scope with high catalytic performance are described in the literature. These reports include mainly native and mutated enzymes and whole cells biocatalysis. Herein, we describe the historical background along with the progress of biocatalyzed reactions involving the heteroatom(S, Se, B, P and Si) from hetero-organic substrates.
Collapse
Affiliation(s)
| | - Dayvson J Palmeira
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Patrícia B Brondani
- Departamento de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, SC, Brazil
| | - Leandro H Andrade
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
19
|
Lauver DA, Hollenberg P, Zhang H. CYP-independent inhibition of platelet aggregation in rabbits by a mixed disulfide conjugate of clopidogrel. Thromb Haemost 2017; 112:1304-11. [DOI: 10.1160/th14-04-0388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/25/2014] [Indexed: 01/27/2023]
Abstract
SummaryDual antiplatelet therapy with clopidogrel and aspirin has been the standard of care in the United States for patients with acute coronary syndromes (ACS) and/or undergoing percutaneous coronary interventions (PCI). However, the effectiveness of clopidogrel varies significantly among different sub-populations due to inter-individual variability. In this study we examined the antiplatelet potential of a novel mixed disulfide conjugate of clopidogrel with the aim to overcome the inter-individual variability. In the metabolic studies using human liver microsomes and cDNA-expressed P450s, we confirmed that multiple P450s are involved in the bioactivation of 2-oxoclopidogrel to H4, one of the diastereomers of the pharmacologically active metabolite (AM) possessing antiplatelet activity. Results from kinetic studies demonstrated that 2C19 is the most active in converting 2-oxoclopidogrel to H4 with a catalytic efficiency of 0.027 µM-1min-1 in the reconstituted system. On the basis of this finding, we were able to biosynthesise the conjugate of clopidogrel with 3-nitropyridine-2-thiol, referred to as clopNPT, and examined its antiplatelet activity in male New Zealand white rabbits. After administration as intravenous bolus at 2 mg/kg, the clopNPT conjugate was rapidly converted to the AM leading to the inhibition of platelet aggregation (IPA). Analyses of the blood samples drawn at various time points showed that intravenous administration of clopNPT led to ~70% IPA within 1 hour and the IPA persisted for more than 3 hours. Since the antiplatelet activity of clopNPT does not require bioactivation by P450s, the mixed disulfide conjugate of clopidogrel has the potential to overcome the inter-individual variability in clopidogrel therapy.
Collapse
|
20
|
Liu R, Lyu X, Batt SM, Hsu M, Harbut MB, Vilchèze C, Cheng B, Ajayi K, Yang B, Yang Y, Guo H, Lin C, Gan F, Wang C, Franzblau SG, Jacobs WR, Besra GS, Johnson EF, Petrassi M, Chatterjee AK, Fütterer K, Wang F. Determinants of the Inhibition of DprE1 and CYP2C9 by Antitubercular Thiophenes. Angew Chem Int Ed Engl 2017; 56:13011-13015. [PMID: 28815830 PMCID: PMC5659129 DOI: 10.1002/anie.201707324] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/14/2017] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis (Mtb) DprE1, an essential isomerase for the biosynthesis of the mycobacterial cell wall, is a validated target for tuberculosis (TB) drug development. Here we report the X-ray crystal structures of DprE1 and the DprE1 resistant mutant (Y314C) in complexes with TCA1 derivatives to elucidate the molecular basis of their inhibitory activities and an unconventional resistance mechanism, which enabled us to optimize the potency of the analogs. The selected lead compound showed excellent in vitro and in vivo activities, and low risk of toxicity profile except for the inhibition of CYP2C9. A crystal structure of CYP2C9 in complex with a TCA1 analog revealed the similar interaction patterns to the DprE1-TCA1 complex. Guided by the structures, an optimized molecule was generated with differential inhibitory activities against DprE1 and CYP2C9, which provides insights for development of a clinical candidate to treat TB.
Collapse
Affiliation(s)
- Renhe Liu
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Xiaoxuan Lyu
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Sarah M Batt
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | - Mei‐Hui Hsu
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Michael B Harbut
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Catherine Vilchèze
- Howard Hughes Medical InstituteDepartment of Microbiology and ImmunologyAlbert Einstein College of MedicineBronxNY10461UK
| | - Bo Cheng
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Kehinde Ajayi
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Baiyuan Yang
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Yun Yang
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Hui Guo
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Changyou Lin
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Fei Gan
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Chen Wang
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Scott G. Franzblau
- Institute for Tuberculosis ResearchCollege of PharmacyUniversity of IllinoisChicagoIL60612USA
| | - William R. Jacobs
- Howard Hughes Medical InstituteDepartment of Microbiology and ImmunologyAlbert Einstein College of MedicineBronxNY10461UK
| | - Gurdyal S. Besra
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | - Eric F. Johnson
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Mike Petrassi
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | | | - Klaus Fütterer
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | - Feng Wang
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| |
Collapse
|
21
|
Liu R, Lyu X, Batt SM, Hsu MH, Harbut MB, Vilchèze C, Cheng B, Ajayi K, Yang B, Yang Y, Guo H, Lin C, Gan F, Wang C, Franzblau SG, Jacobs WR, Besra GS, Johnson EF, Petrassi M, Chatterjee AK, Fütterer K, Wang F. Determinants of the Inhibition of DprE1 and CYP2C9 by Antitubercular Thiophenes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Renhe Liu
- California Institute for Biomedical Research (Calibr); La Jolla CA 92037 USA
| | - Xiaoxuan Lyu
- California Institute for Biomedical Research (Calibr); La Jolla CA 92037 USA
| | - Sarah M Batt
- School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Mei-Hui Hsu
- Department of Molecular Medicine; The Scripps Research Institute; La Jolla CA 92037 USA
| | - Michael B Harbut
- California Institute for Biomedical Research (Calibr); La Jolla CA 92037 USA
| | - Catherine Vilchèze
- Howard Hughes Medical Institute; Department of Microbiology and Immunology; Albert Einstein College of Medicine; Bronx NY 10461 UK
| | - Bo Cheng
- California Institute for Biomedical Research (Calibr); La Jolla CA 92037 USA
| | - Kehinde Ajayi
- California Institute for Biomedical Research (Calibr); La Jolla CA 92037 USA
| | - Baiyuan Yang
- California Institute for Biomedical Research (Calibr); La Jolla CA 92037 USA
| | - Yun Yang
- California Institute for Biomedical Research (Calibr); La Jolla CA 92037 USA
| | - Hui Guo
- California Institute for Biomedical Research (Calibr); La Jolla CA 92037 USA
| | - Changyou Lin
- California Institute for Biomedical Research (Calibr); La Jolla CA 92037 USA
| | - Fei Gan
- California Institute for Biomedical Research (Calibr); La Jolla CA 92037 USA
| | - Chen Wang
- California Institute for Biomedical Research (Calibr); La Jolla CA 92037 USA
| | - Scott G. Franzblau
- Institute for Tuberculosis Research; College of Pharmacy; University of Illinois; Chicago IL 60612 USA
| | - William R. Jacobs
- Howard Hughes Medical Institute; Department of Microbiology and Immunology; Albert Einstein College of Medicine; Bronx NY 10461 UK
| | - Gurdyal S. Besra
- School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Eric F. Johnson
- Department of Molecular Medicine; The Scripps Research Institute; La Jolla CA 92037 USA
| | - Mike Petrassi
- California Institute for Biomedical Research (Calibr); La Jolla CA 92037 USA
| | - Arnab K. Chatterjee
- California Institute for Biomedical Research (Calibr); La Jolla CA 92037 USA
| | - Klaus Fütterer
- School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Feng Wang
- California Institute for Biomedical Research (Calibr); La Jolla CA 92037 USA
| |
Collapse
|
22
|
Rudik AV, Dmitriev AV, Bezhentsev VM, Lagunin AA, Filimonov DA, Poroikov VV. Prediction of metabolites of epoxidation reaction in MetaTox. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:833-842. [PMID: 29157013 DOI: 10.1080/1062936x.2017.1399165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Biotransformation is a process of the chemical modifications which may lead to the reactive metabolites, in particular the epoxides. Epoxide reactive metabolites may cause the toxic effects. The prediction of such metabolites is important for drug development and ecotoxicology studies. Epoxides are formed by some oxidation reactions, usually catalysed by cytochromes P450, and represent a large class of three-membered cyclic ethers. Identification of molecules, which may be epoxidized, and indication of the specific location of epoxide functional group (which is called SOE - site of epoxidation) are important for prediction of epoxide metabolites. Datasets from 355 molecules and 615 reactions were created for training and validation. The prediction of SOE is based on a combination of LMNA (Labelled Multilevel Neighbourhood of Atom) descriptors and Bayesian-like algorithm implemented in PASS software and MetaTox web-service. The average invariant accuracy of prediction (AUC) calculated in leave-one-out and 20-fold cross-validation procedures is 0.9. Prediction of epoxide formation based on the created SAR model is included as the component of MetaTox web-service ( http://www.way2drug.com/mg ).
Collapse
Affiliation(s)
- A V Rudik
- a Institute of Biomedical Chemistry (IBMC) , Moscow , Russia
| | - A V Dmitriev
- a Institute of Biomedical Chemistry (IBMC) , Moscow , Russia
| | - V M Bezhentsev
- a Institute of Biomedical Chemistry (IBMC) , Moscow , Russia
| | - A A Lagunin
- a Institute of Biomedical Chemistry (IBMC) , Moscow , Russia
- b Medico-biological Faculty , Pirogov Russian National Research Medical University , Moscow , Russia
| | - D A Filimonov
- a Institute of Biomedical Chemistry (IBMC) , Moscow , Russia
| | - V V Poroikov
- a Institute of Biomedical Chemistry (IBMC) , Moscow , Russia
| |
Collapse
|
23
|
Inhibitory Effects of Trapping Agents of Sulfur Drug Reactive Intermediates against Major Human Cytochrome P450 Isoforms. Int J Mol Sci 2017; 18:ijms18071553. [PMID: 28726718 PMCID: PMC5536041 DOI: 10.3390/ijms18071553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022] Open
Abstract
In some cases, the formation of reactive species from the metabolism of xenobiotics has been linked to toxicity and therefore it is imperative to detect potential bioactivation for candidate drugs during drug discovery. Reactive species can covalently bind to trapping agents in in vitro incubations of compound with human liver microsomes (HLM) fortified with β-nicotinamide adenine dinucleotide phosphate (NADPH), resulting in a stable conjugate of trapping agent and reactive species, thereby facilitating analytical detection and providing evidence of short-lived reactive metabolites. Since reactive metabolites are typically generated by cytochrome P450 (CYP) oxidation, it is important to ensure high concentrations of trapping agents are not inhibiting the activities of CYP isoforms. Here we assessed the inhibitory properties of fourteen trapping agents against the major human CYP isoforms (CYP1A2, 2C9, 2C19, 2D6 and 3A). Based on our findings, eleven trapping agents displayed inhibition, three of which had IC50 values less than 1 mM (2-mercaptoethanol, N-methylmaleimide and N-ethylmaleimide (NEM)). Three trapping agents (dimedone, N-acetyl-lysine and arsenite) did not inhibit CYP isoforms at concentrations tested. To illustrate effects of CYP inhibition by trapping agents on reactive intermediate trapping, an example drug (ticlopidine) and trapping agent (NEM) were chosen for further studies. For the same amount of ticlopidine (1 μM), increasing concentrations of the trapping agent NEM (0.007–40 mM) resulted in a bell-shaped response curve of NEM-trapped ticlopidine S-oxide (TSO-NEM), due to CYP inhibition by NEM. Thus, trapping studies should be designed to include several concentrations of trapping agent to ensure optimal trapping of reactive metabolites.
Collapse
|
24
|
Dang NL, Hughes TB, Miller GP, Swamidass SJ. Computational Approach to Structural Alerts: Furans, Phenols, Nitroaromatics, and Thiophenes. Chem Res Toxicol 2017; 30:1046-1059. [PMID: 28256829 DOI: 10.1021/acs.chemrestox.6b00336] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Structural alerts are commonly used in drug discovery to identify molecules likely to form reactive metabolites and thereby become toxic. Unfortunately, as useful as structural alerts are, they do not effectively model if, when, and why metabolism renders safe molecules toxic. Toxicity due to a specific structural alert is highly conditional, depending on the metabolism of the alert, the reactivity of its metabolites, dosage, and competing detoxification pathways. A systems approach, which explicitly models these pathways, could more effectively assess the toxicity risk of drug candidates. In this study, we demonstrated that mathematical models of P450 metabolism can predict the context-specific probability that a structural alert will be bioactivated in a given molecule. This study focuses on the furan, phenol, nitroaromatic, and thiophene alerts. Each of these structural alerts can produce reactive metabolites through certain metabolic pathways but not always. We tested whether our metabolism modeling approach, XenoSite, can predict when a given molecule's alerts will be bioactivated. Specifically, we used models of epoxidation, quinone formation, reduction, and sulfur-oxidation to predict the bioactivation of furan-, phenol-, nitroaromatic-, and thiophene-containing drugs. Our models separated bioactivated and not-bioactivated furan-, phenol-, nitroaromatic-, and thiophene-containing drugs with AUC performances of 100%, 73%, 93%, and 88%, respectively. Metabolism models accurately predict whether alerts are bioactivated and thus serve as a practical approach to improve the interpretability and usefulness of structural alerts. We expect that this same computational approach can be extended to most other structural alerts and later integrated into toxicity risk models. This advance is one necessary step toward our long-term goal of building comprehensive metabolic models of bioactivation and detoxification to guide assessment and design of new therapeutic molecules.
Collapse
Affiliation(s)
- Na Le Dang
- Department of Pathology and Immunology, Washington University School of Medicine , Campus Box 8118, 660 S. Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Tyler B Hughes
- Department of Pathology and Immunology, Washington University School of Medicine , Campus Box 8118, 660 S. Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205, United States
| | - S Joshua Swamidass
- Department of Pathology and Immunology, Washington University School of Medicine , Campus Box 8118, 660 S. Euclid Avenue, St. Louis, Missouri 63110, United States
| |
Collapse
|
25
|
Cohen SM, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IM, Smith RL, Bastaki M, Harman CL, McGowen MM, Valerio LG, Taylor SV. Safety evaluation of substituted thiophenes used as flavoring ingredients. Food Chem Toxicol 2017; 99:40-59. [DOI: 10.1016/j.fct.2016.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 10/20/2022]
|
26
|
Stok JE, Chow S, Krenske EH, Farfan Soto C, Matyas C, Poirier RA, Williams CM, De Voss JJ. Direct Observation of an Oxepin from a Bacterial Cytochrome P450‐Catalyzed Oxidation. Chemistry 2016; 22:4408-12. [DOI: 10.1002/chem.201600246] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jeanette E. Stok
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australia
| | - Sharon Chow
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australia
| | - Clementina Farfan Soto
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australia
| | - Csongor Matyas
- Department of Chemistry Memorial University of Newfoundland St. John's NL A1B 3X7 Canada
| | - Raymond A. Poirier
- Department of Chemistry Memorial University of Newfoundland St. John's NL A1B 3X7 Canada
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australia
| | - James J. De Voss
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australia
| |
Collapse
|
27
|
Jaladanki CK, Taxak N, Varikoti RA, Bharatam PV. Toxicity Originating from Thiophene Containing Drugs: Exploring the Mechanism using Quantum Chemical Methods. Chem Res Toxicol 2015; 28:2364-76. [PMID: 26574776 DOI: 10.1021/acs.chemrestox.5b00364] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug metabolism of thiophene containing substrates by cytochrome P450s (CYP450) leads to toxic side effects, for example, nephrotoxicity (suprofen, ticlopidine), hepatotoxicity (tienilic acid), thrombotic thrombocytopenic purpura (clopidogrel), and aplastic anemia (ticlopidine). The origin of toxicity in these cases has been attributed to two different CYP450 mediated metabolic reactions: S-oxidation and epoxidation. In this work, the molecular level details of the bioinorganic chemistry associated with the generation of these competitive reactions are reported. Density functional theory was utilized (i) to explore the molecular mechanism for S-oxidation and epoxidation using the radical cationic center Cpd I [(iron(IV)-oxo-heme porphine system with SH(-) as the axial ligand, to mimic CYP450s] as the model oxidant, (ii) to establish the 3D structures of the reactants, transition states, and products on both the metabolic pathways, and (iii) to examine the potential energy (PE) profile for both the pathways to determine the energetically preferred toxic metabolite formation. The energy barrier required for S-oxidation was observed to be 14.75 kcal/mol as compared to that of the epoxidation reaction (13.23 kcal/mol) on the doublet PE surface of Cpd I. The formation of the epoxide metabolite was found to be highly exothermic (-23.24 kcal/mol), as compared to S-oxidation (-8.08 kcal/mol). Hence, on a relative scale the epoxidation process was observed to be thermodynamically and kinetically more favorable. The energy profiles associated with the reactions of the S-oxide and epoxide toxic metabolites were also explored. This study helps in understanding the CYP450-catalyzed toxic reactions of drugs containing the thiophene ring at the atomic level.
Collapse
Affiliation(s)
- Chaitanya K Jaladanki
- Department of Medicinal Chemistry and ‡Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Nikhil Taxak
- Department of Medicinal Chemistry and ‡Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Rohith A Varikoti
- Department of Medicinal Chemistry and ‡Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry and ‡Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| |
Collapse
|
28
|
Landaeta VR, Rodríguez-Lugo RE. Catalytic oxygenation of organic substrates: Toward greener ways for incorporating oxygen. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Scientific Opinion on Flavouring Group Evaluation 21, Revision 5 (FGE.21Rev5): Thiazoles, thiophenes, thiazoline and thienyl derivatives from chemical groups 29 and 30. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
30
|
Bagi N, Kaizer J, Speier G. Oxidation of thiols to disulfides by dioxygen catalyzed by a bioinspired organocatalyst. RSC Adv 2015. [DOI: 10.1039/c5ra05529f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2,3-Dihydro-2,2,2-triphenylphenanthro[9,10-d]-1,3,2-λ5-oxazaphosphole serves as good catalyst for the oxidation of thiophenol, cysteine and glutathione to their disulfides by molecular oxygen.
Collapse
Affiliation(s)
- Nárcisz Bagi
- Department of Chemistry
- University of Pannonia
- Veszprém
- Hungary
| | - József Kaizer
- Department of Chemistry
- University of Pannonia
- Veszprém
- Hungary
| | - Gábor Speier
- Department of Chemistry
- University of Pannonia
- Veszprém
- Hungary
| |
Collapse
|
31
|
Tosh DK, Finley A, Paoletta S, Moss S, Gao ZG, Gizewski ET, Auchampach JA, Salvemini D, Jacobson KA. In vivo phenotypic screening for treating chronic neuropathic pain: modification of C2-arylethynyl group of conformationally constrained A3 adenosine receptor agonists. J Med Chem 2014; 57:9901-14. [PMID: 25422861 PMCID: PMC4266358 DOI: 10.1021/jm501021n] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Indexed: 12/30/2022]
Abstract
(N)-Methanocarba adenosine 5'-methyluronamides containing 2-arylethynyl groups were synthesized as A3 adenosine receptor (AR) agonists and screened in vivo (po) for reduction of neuropathic pain. A small N(6)-methyl group maintained binding affinity, with human > mouse A3AR and MW < 500 and other favorable physicochemical properties. Emax (maximal efficacy in a mouse chronic constriction injury pain model) of previously characterized A3AR agonist, 2-(3,4-difluorophenylethynyl)-N(6)-(3-chlorobenzyl) derivative 6a, MRS5698, was surpassed. More efficacious analogues (in vivo) contained the following C2-arylethynyl groups: pyrazin-2-yl 23 (binding Ki, hA3AR, nM 1.8), fur-2-yl 27 (0.6), thien-2-yl 32 (0.6) and its 5-chloro 33, MRS5980 (0.7) and 5-bromo 34 (0.4) equivalents, and physiologically unstable ferrocene 36, MRS5979 (2.7). 33 and 36 displayed particularly long in vivo duration (>3 h). Selected analogues were docked to an A3AR homology model to explore the environment of receptor-bound C2 and N(6) groups. Various analogues bound with μM affinity at off-target biogenic amine (M2, 5HT2A, β3, 5HT2B, 5HT2C, and α2C) or other receptors. Thus, we have expanded the structural range of orally active A3AR agonists for chronic pain treatment.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Building 8A,
Room B1A-19, Bethesda, Maryland 20892-0810, United States
| | - Amanda Finley
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Building 8A,
Room B1A-19, Bethesda, Maryland 20892-0810, United States
| | - Steven
M. Moss
- Molecular Recognition Section, Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Building 8A,
Room B1A-19, Bethesda, Maryland 20892-0810, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Building 8A,
Room B1A-19, Bethesda, Maryland 20892-0810, United States
| | - Elizabeth T. Gizewski
- Department of Pharmacology, Medical College
of Wisconsin, 8701 Watertown
Plank Road, Milwaukee, Wisconsin 53226, United States
| | - John A. Auchampach
- Department of Pharmacology, Medical College
of Wisconsin, 8701 Watertown
Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Building 8A,
Room B1A-19, Bethesda, Maryland 20892-0810, United States
| |
Collapse
|
32
|
Srivastava A, Ramachandran S, Hameed SP, Ahuja V, Hosagrahara VP. Identification and Mitigation of a Reactive Metabolite Liability Associated with Aminoimidazoles. Chem Res Toxicol 2014; 27:1586-97. [DOI: 10.1021/tx500212c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | | | | | | | - Vinayak P. Hosagrahara
- Drug
Metabolism and Pharmacokinetics, Infection IMED, AstraZeneca, 35 Gatehouse
Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
33
|
Gramec D, Peterlin Mašič L, Sollner Dolenc M. Bioactivation potential of thiophene-containing drugs. Chem Res Toxicol 2014; 27:1344-58. [PMID: 25014778 DOI: 10.1021/tx500134g] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thiophene is a five-membered, sulfur-containing heteroaromatic ring commonly used as a building block in drugs. It is considered to be a structural alert, as its metabolism can lead to the formation of reactive metabolites. Thiophene S-oxides and thiophene epoxides are highly reactive electrophilic thiophene metabolites whose formation is cytochrome P450-dependent. These reactive thiophene-based metabolites are quite often responsible for drug-induced hepatotoxicity. Tienilic acid is an example of a thiophene-based drug that was withdrawn from the market after only a few months of use, due to severe cases of immune hepatitis. However, inclusion of the thiophene moiety in drugs does not necessarily result in toxic effects. The presence of other, less toxic metabolic pathways, as well as an effective detoxification system in our body, protects us from the bioactivation potential of the thiophene ring. Thus, the presence of a structural alert itself is insufficient to predict a compound's toxicity. The question therefore arises as to which factors significantly influence the toxicity of thiophene-containing drugs. There is no easy way to answer this question. However, the findings presented here indicate that, for a number of reasons, daily dose and alternative metabolic pathways are important factors when predicting toxicity and will therefore be discussed together with examples.
Collapse
Affiliation(s)
- Darja Gramec
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
34
|
Scientific Opinion on Flavouring Group Evaluation 21, Revision 4 (FGE.21Rev4): Thiazoles, thiophenes, thiazoline and thienyl derivatives from chemical groups 29 and 30. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
35
|
Lepailleur A, Bureau R, Halm-Lemeille MP, Bouquet M, Pecquet R, Paris-Soubayrol C, Goff JL, André V, Lecluse Y, Lebailly P, Maire MA, Vasseur P. Assessment of the genotoxic and carcinogenic potentials of 3-aminothiophene derivatives using in vitro and in silico methodologies. J Appl Toxicol 2013; 34:775-86. [PMID: 24127219 DOI: 10.1002/jat.2938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/30/2013] [Accepted: 09/05/2013] [Indexed: 11/11/2022]
Abstract
Thiophene derivatives, a class of compounds widely used in products such as pharmaceuticals, agrochemicals or dyestuffs, represent chemicals of concern. Indeed, the thiophene ring is often considered as a structural moiety that may be involved in toxic effects in humans. We primarily focus on the genotoxic/mutagenic and carcinogenic potentials of the methyl 3-amino-4-methylthiophene-2-carboxylate (1), a precursor of the articaine local anesthetic (4) which falls within the scope of the European REACH (Registration, Evaluation, Authorisation and restriction of CHemicals) legislation. To discern some structure-toxicity relationships, we also studied two related compounds, namely the 3-amino 4-methylthiophene (2) and the 2-acetyl 4-chlorothiophene (3). Techniques employed to assess mutagenic and DNA-damaging effects involved the Salmonella mutagenicity assay (or Ames test) and the single-cell gel electrophoresis assay (or Comet assay). In the range of tested doses, none of these derivatives led to a positive response in the Ames tests and DNA damage was only observed in the Comet assay after high concentration exposure of 2. The study of their carcinogenic potential using the in vitro SHE (Syrian Hamster Embryo) cell transformation assay (CTA) highlighted the activity of compound 2. A combination of experimental data with in silico predictions of the reactivity of thiophene derivatives towards cytochrome P450 (CYP450), enabled us to hypothesize possible pathways leading to these toxicological profiles.
Collapse
Affiliation(s)
- Alban Lepailleur
- Normandie Univ, France; UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie, FR CNRS INC3M - SF ICORE, Université de Caen Basse - Normandie, U.F.R. des Sciences Pharmaceutiques), F-14032, Caen, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bibian M, Rahaim RJ, Choi JY, Noguchi Y, Schürer S, Chen W, Nakanishi S, Licht K, Rosenberg LH, Li L, Feng Y, Cameron MD, Duckett DR, Cleveland JL, Roush WR. Development of highly selective casein kinase 1δ/1ε (CK1δ/ε) inhibitors with potent antiproliferative properties. Bioorg Med Chem Lett 2013; 23:4374-80. [PMID: 23787102 PMCID: PMC3783656 DOI: 10.1016/j.bmcl.2013.05.075] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
The development of a series of potent and highly selective casein kinase 1δ/ε (CK1δ/ε) inhibitors is described. Starting from a purine scaffold inhibitor (SR-653234) identified by high throughput screening, we developed a series of potent and highly kinase selective inhibitors, including SR-2890 and SR-3029, which have IC₅₀ ≤ 50 nM versus CK1δ. The two lead compounds have ≤100 nM EC50 values in MTT assays against the human A375 melanoma cell line and have physical, in vitro and in vivo PK properties suitable for use in proof of principle animal xenograft studies against human cancer cell lines.
Collapse
Affiliation(s)
- Mathieu Bibian
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Ronald J. Rahaim
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Jun Yong Choi
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Yoshihiko Noguchi
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Stephan Schürer
- Department of Molecular and Cellular Pharmacology and Center for Computational Science, University of Miami, 1120 NW 14th St., Miami, FL 33136, United States
| | - Weimin Chen
- Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Shima Nakanishi
- Department of Cancer Biology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Konstantin Licht
- Department of Cancer Biology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Laura H. Rosenberg
- Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Lin Li
- Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Yangbo Feng
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Michael D. Cameron
- Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Derek R. Duckett
- Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - John L. Cleveland
- Department of Cancer Biology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - William R. Roush
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| |
Collapse
|
37
|
Kumar D, Latifi R, Kumar S, Rybak-Akimova EV, Sainna MA, de Visser SP. Rationalization of the Barrier Height for p-Z-styrene Epoxidation by Iron(IV)-Oxo Porphyrin Cation Radicals with Variable Axial Ligands. Inorg Chem 2013; 52:7968-79. [DOI: 10.1021/ic4005104] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Devesh Kumar
- Department of Applied Physics, School of Physical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar,
Rae Bareilly Road, Lucknow 226-025, India
| | - Reza Latifi
- Manchester Institute of Biotechnology and School
of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN,
U.K
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United
States
| | - Suresh Kumar
- Department of Applied Physics, School of Physical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar,
Rae Bareilly Road, Lucknow 226-025, India
| | | | - Mala A. Sainna
- Manchester Institute of Biotechnology and School
of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN,
U.K
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and School
of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN,
U.K
| |
Collapse
|
38
|
Kalgutkar AS, Ryder TF, Walker GS, Orr STM, Cabral S, Goosen TC, Lapham K, Eng H. Reactive Metabolite Trapping Studies on Imidazo- and 2-Methylimidazo[2,1-b]thiazole-Based Inverse Agonists of the Ghrelin Receptor. Drug Metab Dispos 2013; 41:1375-88. [DOI: 10.1124/dmd.113.051839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
39
|
Staben ST, Ndubaku C, Blaquiere N, Belvin M, Bull RJ, Dudley D, Edgar K, Gray D, Heald R, Heffron TP, Jones GE, Jones M, Kolesnikov A, Lee L, Lesnick J, Lewis C, Murray J, McLean NJ, Nonomiya J, Olivero AG, Ord R, Pang J, Price S, Prior WW, Rouge L, Salphati L, Sampath D, Wallin J, Wang L, Wei B, Weismann C, Wu P. Discovery of thiazolobenzoxepin PI3-kinase inhibitors that spare the PI3-kinase β isoform. Bioorg Med Chem Lett 2013; 23:2606-13. [PMID: 23540645 DOI: 10.1016/j.bmcl.2013.02.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/15/2013] [Accepted: 02/25/2013] [Indexed: 02/02/2023]
Abstract
A series of suitable five-membered heterocyclic alternatives to thiophenes within a thienobenzoxepin class of PI3-kinase (PI3K) inhibitors was discovered. Specific thiazolobenzoxepin 8-substitution was identified that increased selectivity over PI3Kβ. PI3Kβ-sparing compound 27 (PI3Kβ Ki,app/PI3Kα Ki,app=57) demonstrated dose-dependent knockdown of pAKT, pPRAS40 and pS6RP in vivo as well as differential effects in an in vitro proliferation cell line screen compared to pan PI3K inhibitor GDC-0941. A new structure-based hypothesis for reducing inhibition of the PI3K β isoform while maintaining activity against α, δ and γ isoforms is presented.
Collapse
Affiliation(s)
- Steven T Staben
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Du F, Ruan Q, Zhu M, Xing J. Detection and characterization of ticlopidine conjugates in rat bile using high-resolution mass spectrometry: applications of various data acquisition and processing tools. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:413-422. [PMID: 23494800 DOI: 10.1002/jms.3170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/12/2013] [Accepted: 01/13/2013] [Indexed: 06/01/2023]
Abstract
Ticlopidine, an antiplatelet drug, undergoes extensive oxidative metabolism to form S-oxide, N-oxide, hydroxylated and dealkylated metabolites. However, metabolism of ticlopidine via conjugation has not been thoroughly investigated. In this study, multiple data acquisition and processing tools were applied to the detection and characterization of ticlopidine conjugates in rat bile. Accurate full-scan mass spectrometry (MS) and collision-induced dissociation (CID) MS/MS data sets were recorded using isotope pattern-dependent acquisition on an LTQ/Orbitrap system. In addition, mass spectral data from online H/D exchanging and high collision energy dissociation (HCD) were recorded. Data processes were carried out using extracted ion chromatography (EIC), mass defect filter (MDF) and isotope pattern filter (IPF). The total ion chromatogram displayed a few major conjugated metabolites and many endogenous components. Profiles from EIC and IPF processes exhibited multiple conjugates with no or minimal false positives. However, ticlopidine conjugates that were not predictable or lost a chorine atom were not found by EIC or IPF, respectively. MDF was able to detect almost all of ticlopidine conjugates although it led to a few more false positives. In addition to CID spectra, data from HCD, H/D exchanging experiments and isotope pattern simulation facilitated structural characterization of unknown conjugates. Consequently, 20 significant ticlopidine conjugates, including glucuronide, glutathione, cysteinylglycine, cysteine and N-acetylcysteine conjugates, were identified in rat bile, a majority of which are associated with bioactivation and not previously reported. This study demonstrates the utility and limitation of various high-resolution MS-based data acquisition and processing techniques in detection and characterization of conjugated metabolites.
Collapse
Affiliation(s)
- Fuying Du
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | | | | |
Collapse
|
41
|
Yue Q, Mulder T, Rudewicz PJ, Solon E, Budha N, Ware JA, Lyssikatos J, Hop CECA, Wong H, Khojasteh SC. Evaluation of metabolism and disposition of GDC-0152 in rats using 14C labeling strategy at two different positions: a novel formation of hippuric acid from 4-phenyl-5-amino-1,2,3-thiadiazole. Drug Metab Dispos 2012; 41:508-17. [PMID: 23223496 DOI: 10.1124/dmd.112.047019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The compound (S)-1-[(S)-2-cyclohexyl-2-([S]-2-[methylamino]propanamido)acetyl]-N-(4-phenyl-1,2,3-thiadiazol-5-yl)pyrrolidine-2-carboxamide (GDC-0152) is a peptidomimetic small molecule antagonist of inhibitor of apoptosis (IAP) proteins with antitumor activity. The mass balance, pharmacokinetics, tissue distribution and metabolism of GDC-0152 was investigated in rats following intravenous administration of 15 mg/kg of [(14)C]GDC-0152, labeled either at the terminal phenyl ring (A) or at the carbonyl of the 2-amino-2-cyclohexylacetyl moiety (B). In rats, 92.2%-95.1% of the radiolabeled GDC-0152 dose was recovered. Approximately 62.3% and 25.1% of A was excreted in urine and feces, respectively. By contrast, B was excreted almost equally in urine (27.2%), feces (32.2%), and expired air (27.5%). GDC-0152 underwent extensive metabolism, with less than 9% of the dose recovered as parent in excreta. Similarly, in plasma, GDC-0152 represented 16.7% and 7.5% of the area under the curve of the total radioactivity for A and B, respectively. The terminal half-life (t(1/2)) for total radioactivity was longer for B (21.2 hours) than for A (4.59 hours). GDC-0152 was highly metabolized via oxidation and amide hydrolysis, followed by subsequent sulfation and glucuronidation. The most abundant circulating metabolites were the amide hydrolyzed products, M26, M28, M30, M31, and M34, which ranged from 3.5% to 9.0% of total radioactivity. In quantitative whole-body autoradiography studies, the residence of radioactivity in tissues was longer for B than for A, which is consistent with the t(1/2) of the total radioactivity in circulation. A novel 4-phenyl-5-amino-1,2,3-thiadiazole (M28) oxidative cleavage resulted in the formation of hippuric acid (M24). This biotransformation was also observed in rat hepatocyte incubations with para-substituted M28 analogs. In addition, the formation of M24 was inhibited by 1-aminobenzotriazole, which points to the involvement of P450 enzymes.
Collapse
Affiliation(s)
- Qin Yue
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
The story of clopidogrel and its predecessor, ticlopidine: Could these major antiplatelet and antithrombotic drugs be discovered and developed today? CR CHIM 2012. [DOI: 10.1016/j.crci.2012.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Rademacher PM, Woods CM, Huang Q, Szklarz GD, Nelson SD. Differential oxidation of two thiophene-containing regioisomers to reactive metabolites by cytochrome P450 2C9. Chem Res Toxicol 2012; 25:895-903. [PMID: 22329513 DOI: 10.1021/tx200519d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The uricosuric diuretic agent tienilic acid (TA) is a thiophene-containing compound that is metabolized by P450 2C9 to 5-OH-TA. A reactive metabolite of TA also forms a covalent adduct to P450 2C9 that inactivates the enzyme and initiates immune-mediated hepatic injury in humans, purportedly through a thiophene-S-oxide intermediate. The 3-thenoyl regioisomer of TA, tienilic acid isomer (TAI), is chemically very similar and is reported to be oxidized by P450 2C9 to a thiophene-S-oxide, yet it is not a mechanism-based inactivator (MBI) of P450 2C9 and is reported to be an intrinsic hepatotoxin in rats. The goal of the work presented in this article was to identify the reactive metabolites of TA and TAI by the characterization of products derived from P450 2C9-mediated oxidation. In addition, in silico approaches were used to better understand both the mechanisms of oxidation of TA and TAI and/or the structural rearrangements of oxidized thiophene compounds. Incubation of TA with P450 2C9 and NADPH yielded the well-characterized 5-OH-TA metabolite as the major product. However, contrary to previous reports, it was found that TAI was oxidized to two different types of reactive intermediates that ultimately lead to two types of products, a pair of hydroxythiophene/thiolactone tautomers and an S-oxide dimer. Both TA and TAI incorporated ¹⁸O from ¹⁸O₂ into their respective hydroxythiophene/thiolactone metabolites indicating that these products are derived from an arene oxide pathway. Intrinsic reaction coordinate calculations of the rearrangement reactions of the model compound 2-acetylthiophene-S-oxide showed that a 1,5-oxygen migration mechanism is energetically unfavorable and does not yield the 5-OH product but instead yields a six-membered oxathiine ring. Therefore, arene oxide formation and subsequent NIH-shift rearrangement remains the favored mechanism for formation of 5-OH-TA. This also implicates the arene oxide as the initiating factor in TA induced liver injury via covalent modification of P450 2C9. Finally, in silico modeling of P450 2C9 active site ligand interactions with TA using the catalytically active iron-oxo species revealed significant differences in the orientations of TA and TAI in the active site, which correlated well with experimental results showing that TA was oxidized only to a ring carbon hydroxylated product, whereas TAI formed both ring carbon hydroxylated products and an S-oxide.
Collapse
Affiliation(s)
- Peter M Rademacher
- Department of Medicinal Chemistry, University of Washington, 1959 NE Pacific Street, Health Sciences Building, Seattle, Washington 98195-7610, USA.
| | | | | | | | | |
Collapse
|
45
|
Hsiao YW, Petersson C, Svensson MA, Norinder U. A Pragmatic Approach Using First-Principle Methods to Address Site of Metabolism with Implications for Reactive Metabolite Formation. J Chem Inf Model 2012; 52:686-95. [DOI: 10.1021/ci200523f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ya-Wen Hsiao
- AstraZeneca Research and Development Södertälje, SE-151 85
Södertälje, Sweden
| | - Carl Petersson
- AstraZeneca Research and Development Södertälje, SE-151 85
Södertälje, Sweden
| | - Mats A. Svensson
- AstraZeneca Research and Development Södertälje, SE-151 85
Södertälje, Sweden
| | - Ulf Norinder
- AstraZeneca Research and Development Södertälje, SE-151 85
Södertälje, Sweden
- Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
46
|
Scientific Opinion on Flavouring Group Evaluation 21, Revision 3 (FGE.21Rev3): Thiazoles, thiophenes, thiazoline and thienyl derivatives from chemical groups 29 and 30. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
47
|
Boyd DR, Sharma ND, McMurray B, Haughey SA, Allen CCR, Hamilton JTG, McRoberts WC, More O'Ferrall RA, Nikodinovic-Runic J, Coulombel LA, O'Connor KE. Bacterial dioxygenase- and monooxygenase-catalysed sulfoxidation of benzo[b]thiophenes. Org Biomol Chem 2012; 10:782-90. [DOI: 10.1039/c1ob06678a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
de Visser SP. Predictive studies of oxygen atom transfer reactions by Compound I of cytochrome P450. ADVANCES IN INORGANIC CHEMISTRY 2012. [DOI: 10.1016/b978-0-12-396462-5.00001-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
49
|
Boyd DR, Sharma ND, Brannigan IN, Evans TA, Haughey SA, McMurray BT, Malone JF, McIntyre PBA, Stevenson PJ, Allen CCR. Toluene dioxygenase-catalyzed cis-dihydroxylation of benzo[b]thiophenes and benzo[b]furans: synthesis of benzo[b]thiophene 2,3-oxide. Org Biomol Chem 2012; 10:7292-304. [DOI: 10.1039/c2ob26120k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Mochizuki A, Nagata T, Kanno H, Takano D, Kishida M, Suzuki M, Ohta T. Orally active zwitterionic factor Xa inhibitors with long duration of action. Bioorg Med Chem Lett 2011; 21:7337-43. [DOI: 10.1016/j.bmcl.2011.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/26/2011] [Accepted: 10/07/2011] [Indexed: 02/05/2023]
|