1
|
Patarca R, Haseltine WA. Potential Transcriptional Enhancers in Coronaviruses: From Infectious Bronchitis Virus to SARS-CoV-2. Int J Mol Sci 2024; 25:8012. [PMID: 39125583 PMCID: PMC11311688 DOI: 10.3390/ijms25158012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Coronaviruses constitute a global threat to human and animal health. It is essential to investigate the long-distance RNA-RNA interactions that approximate remote regulatory elements in strategies, including genome circularization, discontinuous transcription, and transcriptional enhancers, aimed at the rapid replication of their large genomes, pathogenicity, and immune evasion. Based on the primary sequences and modeled RNA-RNA interactions of two experimentally defined coronaviral enhancers, we detected via an in silico primary and secondary structural analysis potential enhancers in various coronaviruses, from the phylogenetically ancient avian infectious bronchitis virus (IBV) to the recently emerged SARS-CoV-2. These potential enhancers possess a core duplex-forming region that could transition between closed and open states, as molecular switches directed by viral or host factors. The duplex open state would pair with remote sequences in the viral genome and modulate the expression of downstream crucial genes involved in viral replication and host immune evasion. Consistently, variations in the predicted IBV enhancer region or its distant targets coincide with cases of viral attenuation, possibly driven by decreased open reading frame (ORF)3a immune evasion protein expression. If validated experimentally, the annotated enhancer sequences could inform structural prediction tools and antiviral interventions.
Collapse
Affiliation(s)
- Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
2
|
Liu W, Mu G, Jia Y, Yu M, Zhang S, Wang Z, Fang S. The role of IBV PL1pro in virus replication and suppression of host innate immune responses. BMC Vet Res 2023; 19:270. [PMID: 38087313 PMCID: PMC10717896 DOI: 10.1186/s12917-023-03839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Coronavirus papain-like proteases (PLpros) play a crucial role in virus replication and the evasion of the host immune response. Infectious bronchitis virus (IBV) encodes a proteolytically defective remnant of PL1pro and an active PL2pro. However, the function of PL1pro in IBV remains largely unknown. This study aims to explore the effect of PL1pro on virus replication and underlying mechanisms. RESULTS The recombinant viruses rIBV-ΔPL1pro and rIBV-ΔPL1pro-N were obtained using reverse genetic techniques through the deletion of the IBV PL1pro domain and the N-terminal conserved sequence of PL1pro (PL1pro-N). We observed significantly lower replication of rIBV-ΔPL1pro and rIBV-ΔPL1pro-N than wild-type IBV. Further investigation revealed that the lack of PL1pro-N in IBV decreased virus resistance to interferon (IFN) while also inducing host immune response by enhancing the production of IFN-β and activating the downstream STAT1 signaling pathway of IFNs. In addition, the overexpression of PL1pro-N significantly suppressed type I IFN response by down-regulating the expressions of genes in the IFN pathway. CONCLUSIONS Our data demonstrated that IBV PL1pro plays a crucial role in IBV replication and the suppression of host innate immune responses, suggesting that IBV PL1pro could serve as a promising molecular target for antiviral therapy.
Collapse
Affiliation(s)
- Weirong Liu
- Yangtze University Health Science Center, Jingzhou, Hubei Province, China
| | - Ge Mu
- College of Agriculture, Yangtze University, No.88, Jingmi Road, Jingzhou, Hubei Province, 434025, China
| | - Yiquan Jia
- College of Agriculture, Yangtze University, No.88, Jingmi Road, Jingzhou, Hubei Province, 434025, China
| | - Mengting Yu
- College of Agriculture, Yangtze University, No.88, Jingmi Road, Jingzhou, Hubei Province, 434025, China
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Zhen Wang
- Yangtze University Health Science Center, Jingzhou, Hubei Province, China
| | - Shouguo Fang
- College of Agriculture, Yangtze University, No.88, Jingmi Road, Jingzhou, Hubei Province, 434025, China.
| |
Collapse
|
3
|
Liu SY, Huang M, Fung TS, Chen RA, Liu DX. Characterization of the induction kinetics and antiviral functions of IRF1, ISG15 and ISG20 in cells infected with gammacoronavirus avian infectious bronchitis virus. Virology 2023; 582:114-127. [PMID: 37058744 PMCID: PMC10072953 DOI: 10.1016/j.virol.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
Coronavirus infection induces a variety of cellular antiviral responses either dependent on or independent of type I interferons (IFNs). Our previous studies using Affymetrix microarray and transcriptomic analysis revealed the differential induction of three IFN-stimulated genes (ISGs), IRF1, ISG15 and ISG20, by gammacoronavirus infectious bronchitis virus (IBV) infection of IFN-deficient Vero cells and IFN-competent, p53-defcient H1299 cells, respectively. In this report, the induction kinetics and anti-IBV functions of these ISGs as well as mechanisms underlying their differential induction are characterized. The results confirmed that these three ISGs were indeed differentially induced in H1299 and Vero cells infected with IBV, significantly more upregulation of IRF1, ISG15 and ISG20 was elicited in IBV-infected Vero cells than that in H1299 cells. Induction of these ISGs was also detected in cells infected with human coronavirus-OC43 (HCoV-OC43) and porcine epidemic diarrhea virus (PEDV), respectively. Manipulation of their expression by overexpression, knockdown and/or knockout demonstrated that IRF1 played an active role in suppressing IBV replication, mainly through the activation of the IFN pathway. However, a minor, if any, role in inhibiting IBV replication was played by ISG15 and ISG20. Furthermore, p53, but not IRF1, was implicated in regulating the IBV infection-induced upregulation of ISG15 and ISG20. This study provides new information on the mechanisms underlying the induction of these ISGs and their contributions to the host cell antiviral response during IBV infection.
Collapse
Affiliation(s)
- Si Ying Liu
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Mei Huang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, 526238, Guangdong Province, People's Republic of China
| | - To Sing Fung
- Guangdong Province Key Laboratory Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong Province, People's Republic of China
| | - Ding Xiang Liu
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China.
| |
Collapse
|
4
|
Direct Interaction of Coronavirus Nonstructural Protein 3 with Melanoma Differentiation-Associated Gene 5 Modulates Type I Interferon Response during Coronavirus Infection. Int J Mol Sci 2022; 23:ijms231911692. [PMID: 36232993 PMCID: PMC9570369 DOI: 10.3390/ijms231911692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Coronavirus nonstructural protein 3 (nsp3) is a multi-functional protein, playing a critical role in viral replication and in regulating host antiviral innate immunity. In this study, we demonstrate that nsp3 from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian coronavirus infectious bronchitis virus (IBV) directly interacts with melanoma differentiation-associated gene 5 (MDA5), rendering an inhibitory effect on the MDA5-mediated type I interferon (IFN) response. By the co-expression of MDA5 with wild-type and truncated nsp3 constructs, at least three interacting regions mapped to the papain-like protease (PLpro) domain and two other domains located at the N- and C-terminal regions were identified in SARS-CoV-2 nsp3. Furthermore, by introducing point mutations to the catalytic triad, the deubiquitylation activity of the PLpro domain from both SARS-CoV-2 and IBV nsp3 was shown to be responsible for the suppression of the MDA5-mediated type I IFN response. It was also demonstrated that both MDA5 and nsp3 were able to interact with ubiquitin and ubiquitinated proteins, contributing to the interaction between the two proteins. This study confirms the antagonistic role of nsp3 in the MDA5-mediated type I IFN signaling, highlighting the complex interaction between a multi-functional viral protein and the innate immune response.
Collapse
|
5
|
Strobel HM, Stuart EC, Meyer JR. A Trait-Based Approach to Predicting Viral Host-Range Evolvability. Annu Rev Virol 2022; 9:139-156. [PMID: 36173699 DOI: 10.1146/annurev-virology-091919-092003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting the evolution of virus host range has proven to be extremely difficult, in part because of the sheer diversity of viruses, each with unique biology and ecological interactions. We have not solved this problem, but to make the problem more tractable, we narrowed our focus to three traits intrinsic to all viruses that may play a role in host-range evolvability: mutation rate, recombination rate, and phenotypic heterogeneity. Although each trait should increase evolvability, they cannot do so unbounded because fitness trade-offs limit the ability of all three traits to maximize evolvability. By examining these constraints, we can begin to identify groups of viruses with suites of traits that make them especially concerning, as well as ecological and environmental conditions that might push evolution toward accelerating host-range expansion.
Collapse
Affiliation(s)
- Hannah M Strobel
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth C Stuart
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Justin R Meyer
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
6
|
Yuan LX, Yang B, Fung TS, Chen RA, Liu DX. Transcriptomic analysis reveals crucial regulatory roles of immediate-early response genes and related signaling pathways in coronavirus infectious bronchitis virus infection. Virology 2022; 575:1-9. [PMID: 35987078 PMCID: PMC9375846 DOI: 10.1016/j.virol.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
Coronavirus infection of cells differentially regulates the expression of host genes and their related pathways. In this study, we present the transcriptomic profile of cells infected with gammacoronavirus infectious bronchitis virus (IBV). In IBV-infected human non-small cell lung carcinoma cells (H1299 cells), a total of 1162 differentially expressed genes (DEGs), including 984 upregulated and 178 downregulated genes, was identified. These DEGs were mainly enriched in MAPK and Wnt signaling pathways, and 5 out of the 10 top upregulated genes in all transcripts were immediate-early response genes (IEGs). In addition, the induction of 11 transcripts was validated in IBV-infected H1299 and Vero cells by RT-qPCR. The accuracy, reliability and genericity of the transcriptomic data were demonstrated by functional characterization of these IEGs in cells infected with different coronaviruses in our previous publications. This study provides a reliable transcriptomic profile of host genes and pathways regulated by coronavirus infection.
Collapse
Affiliation(s)
- Li Xia Yuan
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong, China
| | - Bei Yang
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - To Sing Fung
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong, China
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong, China.
| |
Collapse
|
7
|
Ting X, Xiang C, Liu DX, Chen R. Establishment and Cross-Protection Efficacy of a Recombinant Avian Gammacoronavirus Infectious Bronchitis Virus Harboring a Chimeric S1 Subunit. Front Microbiol 2022; 13:897560. [PMID: 35935229 PMCID: PMC9354458 DOI: 10.3389/fmicb.2022.897560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Infectious bronchitis virus (IBV) is a gammacoronavirus that causes a highly contagious disease in chickens and seriously endangers the poultry industry. A diversity of serotypes and genotypes of IBV have been identified worldwide, and the currently available vaccines do not cross-protect. In the present study, an efficient reverse genetics technology based on Beaudette-p65 has been used to construct a recombinant IBV, rIBV-Beaudette-KC(S1), by replacing the nucleotides 21,704–22,411 with the corresponding sequence from an isolate of QX-like genotype KC strain. Continuous passage of this recombinant virus in chicken embryos resulted in the accumulation of two point mutations (G21556C and C22077T) in the S1 region. Further studies showed that the T248S (G21556C) substitution may be essential for the adaptation of the recombinant virus to cell culture. Immunization of chicks with the recombinant IBV elicited strong antibody responses and showed high cross-protection against challenges with virulent M41 and a QX-like genotype IBV. This study reveals the potential of developing rIBV-Beau-KC(S1) as a cell-based vaccine with a broad protective immunity against two different genotypes of IBV.
Collapse
Affiliation(s)
- Xiong Ting
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chengwei Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ding Xiang Liu
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Ding Xiang Liu ;
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- *Correspondence: Ruiai Chen
| |
Collapse
|
8
|
Kariithi HM, Volkening JD, Leyson CM, Afonso CL, Christy N, Decanini EL, Lemiere S, Suarez DL. Genome Sequence Variations of Infectious Bronchitis Virus Serotypes From Commercial Chickens in Mexico. Front Vet Sci 2022; 9:931272. [PMID: 35903135 PMCID: PMC9315362 DOI: 10.3389/fvets.2022.931272] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
New variants of infectious bronchitis viruses (IBVs; Coronaviridae) continuously emerge despite routine vaccinations. Here, we report genome sequence variations of IBVs identified by random non-targeted next generation sequencing (NGS) of vaccine and field samples collected on FTA cards from commercial flocks in Mexico in 2019–2021. Paired-ended sequencing libraries prepared from rRNA-depleted RNAs were sequenced using Illumina MiSeq. IBV RNA was detected in 60.07% (n = 167) of the analyzed samples, from which 33 complete genome sequences were de novo assembled. The genomes are organized as 5'UTR-[Rep1a-Rep1b-S-3a-3b-E-M-4b-4c-5a-5b-N-6b]-3'UTR, except in eight sequences lacking non-structural protein genes (accessory genes) 4b, 4c, and 6b. Seventeen sequences have auxiliary S2' cleavage site located 153 residues downstream the canonically conserved primary furin-specific S1/S2 cleavage site. The sequences distinctly cluster into lineages GI-1 (Mass-type; n = 8), GI-3 (Holte/Iowa-97; n = 2), GI-9 (Arkansas-like; n = 8), GI-13 (793B; n = 14), and GI-17 (California variant; CAV; n = 1), with regional distribution in Mexico; this is the first report of the presence of 793B- and CAV-like strains in the country. Various point mutations, substitutions, insertions and deletions are present in the S1 hypervariable regions (HVRs I-III) across all 5 lineages, including in residues 38, 43, 56, 63, 66, and 69 that are critical in viral attachment to respiratory tract tissues. Nine intra-/inter-lineage recombination events are present in the S proteins of three Mass-type sequences, two each of Holte/Iowa-97 and Ark-like sequence, and one each of 793B-like and CAV-like sequences. This study demonstrates the feasibility of FTA cards as an attractive, adoptable low-cost sampling option for untargeted discovery of avian viral agents in field-collected clinical samples. Collectively, our data points to co-circulation of multiple distinct IBVs in Mexican commercial flocks, underscoring the need for active surveillance and a review of IBV vaccines currently used in Mexico and the larger Latin America region.
Collapse
Affiliation(s)
- Henry M. Kariithi
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
- *Correspondence: Henry M. Kariithi
| | | | - Christina M. Leyson
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | | | - Nancy Christy
- Boehringer Ingelheim Animal Health, Guadalajara, Mexico
| | | | | | - David L. Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States
- David L. Suarez
| |
Collapse
|
9
|
Yuan L, Fung TS, He J, Chen RA, Liu DX. Modulation of Viral Replication, Apoptosis and Antiviral Response by Induction and Mutual Regulation of EGR and AP-1 Family Genes During Coronavirus Infection. Emerg Microbes Infect 2022; 11:1717-1729. [PMID: 35727266 PMCID: PMC9262369 DOI: 10.1080/22221751.2022.2093133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Coronaviruses have evolved a variety of strategies to exploit normal cellular processes and signalling pathways for their efficient reproduction in a generally hostile cellular environment. One immediate-early response gene (IEG) family, the AP-1 gene family, was previously shown to be activated by coronavirus infection. In this study, we report that another IEG family, the EGR family, is also activated in cells infected with four different coronaviruses in three genera, i.e. gammacoronavirus infectious bronchitis virus (IBV), alphacoronaviruses porcine epidemic diarrhoea virus (PEDV) and human coronavirus-229E (HCoV-229E), and betacoronavirus HCoV-OC43. Knockdown of EGR1 reduced the expression of cJUN and cFOS, and knockdown of cJUN and/or cFOS reduced the expression of EGR1, demonstrating that these two IEG families may be cross-activated and mutual regulated. Furthermore, ERK1/2 was identified as an upstream kinase, and JNK and p38 as inhibitors of EGR1 activation in coronavirus-infected cells. However, upregulation of EGR family genes, in particular EGR1, appears to play a differential role in regulating viral replication, apoptosis and antiviral response. EGR1 was shown to play a limited role in regulation of coronavirus replication, and an anti-apoptotic role in cells infected with IBV or PEDV, but not in cells infected with HCoV-229E. Upregulation of EGR1 may also play a differential role in the regulation of antiviral response against different coronaviruses. This study reveals a novel regulatory network shared by different coronaviruses in the immediate-early response of host cells to infection.
Collapse
Affiliation(s)
- Lixia Yuan
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, Guangdong, China
| | - To Sing Fung
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Jiawen He
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, Guangdong, China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, Guangdong, China
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, Guangdong, China
| |
Collapse
|
10
|
Phillygenin activates PKR/eIF2α pathway and induces stress granule to exert anti-avian infectious bronchitis virus. Int Immunopharmacol 2022; 108:108764. [PMID: 35421804 DOI: 10.1016/j.intimp.2022.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022]
Abstract
The prevalence of avian infectious bronchitis virus (IBV) is still one of causes inducing severe losses of production in the poultry industry worldwide. Vaccination does not completely prevent IBV infection and spread due to immune failure and viral mutations. ForsythiaeFructus and its compounds have been widely used in a lot of prescriptions of the traditional Chinese medicine for a long history, and it is well-known as safety and efficiency in heat-clearing and detoxifying. This study aims to investigate the anti-IBV activity and mechanism of phillygenin. The results showed that phillygenin inhibited IBV replication by disturbing multiple stages of the virus life cycle, including viral adsorption, invasion, internalization, and release in Vero cells. After being treated with 100, 125 and 150 μg/mL phillygenin, the expression of G3BP1 was significantly increased and the phosphorylation of PKR/eIF2α was activated, which increased stress granule, thereby triggering the antiviral response in Vero cells. The anti-virus activity of PHI was decreased when G3BP1 was interfered by si-RNA, and G3BP1 was down-regulated when PKR/eIF2α was interfered by si-RNA. In conclusion, our findings indicate that phillygenin activates PKR/eIF2α pathway and induces stress granule formation to exert anti-IBV, which holds promise to develop into a novel anti-IBV drug. Further study in vivo is needed to explore phillygenin as a potential and effective drug to prevent IB in poultry.
Collapse
|
11
|
Activation of the MKK3-p38-MK2-ZFP36 Axis by Coronavirus Infection Restricts the Upregulation of AU-Rich Element-Containing Transcripts in Proinflammatory Responses. J Virol 2022; 96:e0208621. [PMID: 34985993 DOI: 10.1128/jvi.02086-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coronavirus infections induce the expression of multiple proinflammatory cytokines and chemokines. We have previously shown that in cells infected with gammacoronavirus infectious bronchitis virus (IBV), interleukin 6 (IL-6), and IL-8 were drastically upregulated, and the MAP kinase p38 and the integrated stress response pathways were implicated in this process. In this study, we report that coronavirus infection activates a negative regulatory loop that restricts the upregulation of a number of proinflammatory genes. As revealed by the initial transcriptomic and subsequent validation analyses, the anti-inflammatory adenine-uridine (AU)-rich element (ARE)-binding protein, zinc finger protein 36 (ZFP36), and its related family members were upregulated in cells infected with IBV and three other coronaviruses, alphacoronaviruses porcine epidemic diarrhea virus (PEDV), human coronavirus 229E (HCoV-229E), and betacoronavirus HCoV-OC43, respectively. Characterization of the functional roles of ZFP36 during IBV infection demonstrated that ZFP36 promoted the degradation of transcripts coding for IL-6, IL-8, dual-specificity phosphatase 1 (DUSP1), prostaglandin-endoperoxide synthase 2 (PTGS2) and TNF-α-induced protein 3 (TNFAIP3), through binding to AREs in these transcripts. Consistently, knockdown and inhibition of JNK and p38 kinase activities reduced the expression of ZFP36, as well as the expression of IL-6 and IL-8. On the contrary, overexpression of mitogen-activated protein kinase kinase 3 (MKK3) and MAPKAP kinase-2 (MK2), the upstream and downstream kinases of p38, respectively, increased the expression of ZFP36 and decreased the expression of IL-8. Taken together, this study reveals an important regulatory role of the MKK3-p38-MK2-ZFP36 axis in coronavirus infection-induced proinflammatory response. IMPORTANCE Excessive and uncontrolled induction and release of proinflammatory cytokines and chemokines, the so-called cytokine release syndrome (CRS), would cause life-threatening complications and multiple organ failure in severe coronavirus infections, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and COVID-19. This study reveals that coronavirus infection also induces the expression of ZFP36, an anti-inflammatory ARE-binding protein, promoting the degradation of ARE-containing transcripts coding for IL-6 and IL-8 as well as a number of other proteins related to inflammatory response. Furthermore, the p38 MAP kinase, its upstream kinase MKK3 and downstream kinase MK2 were shown to play a regulatory role in upregulation of ZFP36 during coronavirus infection cycles. This MKK3-p38-MK2-ZFP36 axis would constitute a potential therapeutic target for severe coronavirus infections.
Collapse
|
12
|
Brandão PE, Berg M, Leite BA, Silva SO, Taniwaki SA. The order of events on Avian coronavirus life cycle shapes the order of quasispecies evolution during host switches. Genet Mol Biol 2022; 45:e20220034. [PMID: 35671496 PMCID: PMC9173666 DOI: 10.1590/1678-4685-gmb-2022-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/01/2022] [Indexed: 12/02/2022] Open
Abstract
To understand the population genetics events during coronavirus host switches, the Beaudette strain of Avian coronavirus (AvCoV) adapted to BHK-21 cells was passaged 15 times in VERO cells, the virus load and the variants at each passage being determined by RT-qPCR and genome-length deep sequencing. From BHK-21 P2 to VERO P3, a trend for the extinction of variants was followed by stability up to VERO P11 and both the emergence and the rise in frequency in some variants, while the virus loads were stable up to VERO P12. At the spillover from BHK-21 to VERO cells, variants that both emerged, showed a rise in frequency or were extinguished were detected on the spike, while variants at the M gene showed the same pattern only at VERO passage 13. Furthermore, nsps 3-5, 9 and 15 variants were detected at lower passages compared to the consensus sequences, with those at nsp3 being detected in the spectra also at higher passages. This suggests that quasispecies coronavirus evolution in spillovers follows the virus life cycle, starting with the evolution of the receptor binding proteins, followed by the replicase and then proteins involved in virion assembly, keeping the general fitness of the mutant spectrum stable.
Collapse
Affiliation(s)
| | - Mikael Berg
- Swedish University of Agricultural Sciences, Sweden
| | | | | | | |
Collapse
|
13
|
Yu Y, Luo Z, Jin W, Mai J, Qian S, Lu J, Wei Z, Meng S, Wang Z, Guan X, Tong Y, Shen S. Emergence of a novel recombinant of CV-A5 in HFMD epidemics in Xiangyang, China. BMC Med Genomics 2021; 14:279. [PMID: 34819054 PMCID: PMC8611921 DOI: 10.1186/s12920-021-01107-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Background Hand, foot and mouth disease (HFMD) is caused by a variety of enterovirus serotypes and the etiological spectrum worldwide has changed since a large scale of outbreaks occurred in 1997. Methods A large number of clinical specimens of HFMD patients were collected in Xiangyang and genotyping was performed by qRT-PCR, conventional PCR amplification and sequencing. Among the 146 CV-A5 detected cases, the complete genome sequences of representative strains were determined for genotyping and for recombination analysis. Results It was found that CV-A5 was one of the six major serotypes that caused the epidemic from October 2016 to December 2017. Phylogenetic analyses based on the VP1 sequences showed that these CV-A5 belonged to the genotype D which dominantly circulated in China. Recombination occurred between the CV-A5 and CV-A2 strains with a breakpoint in the 2A region at the nucleotide 3791. Conclusions The result may explain the emergence of CV-A5 as one of the major pathogens of HFMD. A multivalent vaccine against HFMD is urgently needed to control the disease and to prevent emerging and spreading of new recombinants.
Collapse
Affiliation(s)
- Yuting Yu
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, 430207, People's Republic of China
| | - Zhiyu Luo
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, 430207, People's Republic of China
| | - Weiping Jin
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, 430207, People's Republic of China
| | - Jianyi Mai
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, 430207, People's Republic of China
| | - Shasha Qian
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, 430207, People's Republic of China
| | - Jia Lu
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, 430207, People's Republic of China
| | - Zhenni Wei
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, 430207, People's Republic of China
| | - Shengli Meng
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, 430207, People's Republic of China
| | - Zejun Wang
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, 430207, People's Republic of China
| | - Xuhua Guan
- Xiangyang Center for Disease Control and Prevention, Hubei, People's Republic of China.
| | - Yeqing Tong
- Xiangyang Center for Disease Control and Prevention, Hubei, People's Republic of China.
| | - Shuo Shen
- Wuhan Institute of Biological Products, Co. Ltd, Wuhan, 430207, People's Republic of China.
| |
Collapse
|
14
|
Zhou Z, Qiu Y, Ge X. The taxonomy, host range and pathogenicity of coronaviruses and other viruses in the Nidovirales order. ANIMAL DISEASES 2021; 1:5. [PMID: 34778878 PMCID: PMC8062217 DOI: 10.1186/s44149-021-00005-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The frequent emergence of coronavirus (CoV) epidemics has seriously threatened public health and stock farming. The major hosts for CoVs are birds and mammals. Although most CoVs inhabit their specific natural hosts, some may occasionally cross the host barrier to infect livestock and even people, causing a variety of diseases. Since the beginning of the new century, increasing attention has been given to research on CoVs due to the emergence of highly pathogenic and genetically diverse CoVs that have caused several epidemics, including the recent COVID-19 pandemic. CoVs belong to the Coronaviridae family of the Nidovirales order. Recently, advanced techniques for viral detection and viral genome analyses have enabled characterization of many new nidoviruses than ever and have greatly expanded the Nidovirales order with new classification and nomenclature. Here, we first provide an overview of the latest research progress in the classification of the Nidovirales order and then introduce the host range, genetic variation, genomic pattern and pathogenic features of epidemic CoVs and other epidemic viruses. This information will promote understanding of the phylogenetic relationship and infectious transmission of various pathogenic nidoviruses, including epidemic CoVs, which will benefit virological research and viral disease control.
Collapse
Affiliation(s)
- Zhijian Zhou
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan China
| | - Xingyi Ge
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan China
| |
Collapse
|
15
|
Zhu QC, Li S, Yuan LX, Chen RA, Liu DX, Fung TS. Induction of the Proinflammatory Chemokine Interleukin-8 Is Regulated by Integrated Stress Response and AP-1 Family Proteins Activated during Coronavirus Infection. Int J Mol Sci 2021; 22:ijms22115646. [PMID: 34073283 PMCID: PMC8198748 DOI: 10.3390/ijms22115646] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/08/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Infection induces the production of proinflammatory cytokines and chemokines such as interleukin-8 (IL-8) and IL-6. Although they facilitate local antiviral immunity, their excessive release leads to life-threatening cytokine release syndrome, exemplified by the severe cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In this study, we investigated the roles of the integrated stress response (ISR) and activator protein-1 (AP-1) family proteins in regulating coronavirus-induced IL-8 and IL-6 upregulation. The mRNA expression of IL-8 and IL-6 was significantly induced in cells infected with infectious bronchitis virus (IBV), a gammacoronavirus, and porcine epidemic diarrhea virus, an alphacoronavirus. Overexpression of a constitutively active phosphomimetic mutant of eukaryotic translation initiation factor 2α (eIF2α), chemical inhibition of its dephosphorylation, or overexpression of its upstream double-stranded RNA-dependent protein kinase (PKR) significantly enhanced IL-8 mRNA expression in IBV-infected cells. Overexpression of the AP-1 protein cJUN or its upstream kinase also increased the IBV-induced IL-8 mRNA expression, which was synergistically enhanced by overexpression of cFOS. Taken together, this study demonstrated the important regulatory roles of ISR and AP-1 proteins in IL-8 production during coronavirus infection, highlighting the complex interactions between cellular stress pathways and the innate immune response.
Collapse
Affiliation(s)
- Qing Chun Zhu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Q.C.Z.); (S.L.); (L.X.Y.)
| | - Shumin Li
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Q.C.Z.); (S.L.); (L.X.Y.)
| | - Li Xia Yuan
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Q.C.Z.); (S.L.); (L.X.Y.)
| | - Rui Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
- Zhaoqing Branch, Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, China
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Q.C.Z.); (S.L.); (L.X.Y.)
- Zhaoqing Branch, Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, China
- Correspondence: or (D.X.L.); (T.S.F.)
| | - To Sing Fung
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Q.C.Z.); (S.L.); (L.X.Y.)
- Correspondence: or (D.X.L.); (T.S.F.)
| |
Collapse
|
16
|
Gammacoronavirus Avian Infectious Bronchitis Virus and Alphacoronavirus Porcine Epidemic Diarrhea Virus Exploit a Cell-Survival Strategy via Upregulation of cFOS to Promote Viral Replication. J Virol 2021; 95:JVI.02107-20. [PMID: 33239458 PMCID: PMC7851560 DOI: 10.1128/jvi.02107-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Coronaviruses have evolved a variety of strategies to optimize cellular microenvironment for efficient replication. In this study, we report the induction of AP-1 transcription factors by coronavirus infection based on genome-wide analyses of differentially expressed genes in cells infected with avian coronavirus infectious bronchitis virus (IBV). Most members of the AP-1 transcription factors were subsequently found to be upregulated during the course of IBV and porcine epidemic diarrhea virus (PEDV) infection of cultured cells as well as in IBV-infected chicken embryos. Further characterization of the induction kinetics and functional roles of cFOS in IBV replication demonstrated that upregulation of cFOS at early to intermediate phases of IBV replication cycles suppresses IBV-induced apoptosis and promotes viral replication. Blockage of nuclear translocation of cFOS by peptide inhibitor NLSP suppressed IBV replication and apoptosis, ruling out the involvement of the cytoplasmic functions of cFOS in the replication of IBV. Furthermore, knockdown of ERK1/2 and inhibition of JNK and p38 kinase activities reduced cFOS upregulation and IBV replication. This study reveals an important function of cFOS in the regulation of coronavirus-induced apoptosis, facilitating viral replication.IMPORTANCE The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by a newly emerged zoonotic coronavirus (SARS-CoV-2), highlights the importance of coronaviruses as human and animal pathogens and our knowledge gaps in understanding the cellular mechanisms, especially mechanisms shared among human and animal coronaviruses, exploited by coronaviruses for optimal replication and enhanced pathogenicity. This study reveals that upregulation of cFOS, along with other AP-1 transcription factors, as a cell-survival strategy is such a mechanism utilized by coronaviruses during their replication cycles. Through induction and regulation of apoptosis of the infected cells at early to intermediate phases of the replication cycles, subtle but appreciable differences in coronavirus replication efficiency were observed when the expression levels of cFOS were manipulated in the infected cells. As the AP-1 transcription factors are multi-functional, further studies of their regulatory roles in proinflammatory responses may provide new insights into the pathogenesis and virus-host interactions during coronavirus infection.
Collapse
|
17
|
Li H, Cui P, Fu X, Zhang L, Yan W, Zhai Y, Lei C, Wang H, Yang X. Identification and analysis of long non-coding RNAs and mRNAs in chicken macrophages infected with avian infectious bronchitis coronavirus. BMC Genomics 2021; 22:67. [PMID: 33472590 PMCID: PMC7816148 DOI: 10.1186/s12864-020-07359-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/29/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Avian infectious bronchitis virus (IBV) is a gamma coronavirus that severely affects the poultry industry worldwide. Long non-coding RNAs (lncRNAs), a subset of non-coding RNAs with a length of more than 200 nucleotides, have been recently recognized as pivotal factors in the pathogenesis of viral infections. However, little is known about the function of lncRNAs in host cultured cells in response to IBV infection. RESULTS We used next-generation high throughput sequencing to reveal the expression profiles of mRNAs and lncRNAs in IBV-infected HD11 cells. Compared with the uninfected cells, we identified 153 differentially expressed (DE) mRNAs (106 up-regulated mRNAs, 47 down-regulated mRNAs) and 181 DE lncRNAs (59 up-regulated lncRNAs, 122 down-regulated lncRNAs) in IBV-infected HD11 cells. Moreover, gene ontology (GO) and pathway enrichment analyses indicated that DE mRNAs and lncRNAs were mainly involved in cellular innate immunity, amino acid metabolism, and nucleic acid metabolism. In addition, 2640 novel chicken lncRNAs were identified, and a competing endogenous RNA (ceRNAs) network centered on gga-miR-30d and miR-146a-5p was established. CONCLUSIONS We identified expression profiles of mRNAs and lncRNAs during IBV infection that provided new insights into the pathogenesis of IBV.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China
| | - Pengfei Cui
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China
| | - Xue Fu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China
| | - Lan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China
| | - Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China
| | - Yaru Zhai
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China
| | - Changwei Lei
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China.
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, 610064, China.
| |
Collapse
|
18
|
Jiang Y, Gao M, Cheng X, Yu Y, Shen X, Li J, Zhou S. The V617I Substitution in Avian Coronavirus IBV Spike Protein Plays a Crucial Role in Adaptation to Primary Chicken Kidney Cells. Front Microbiol 2020; 11:604335. [PMID: 33391226 PMCID: PMC7775488 DOI: 10.3389/fmicb.2020.604335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
The naturally isolated avian coronavirus infectious bronchitis virus (IBV) generally cannot replicate in chicken kidney (CK) cells. To explore the molecular mechanism of IBV adapting to CK cells, a series of recombinant viruses were constructed by chimerizing the S genes of CK cell-adapted strain H120 and non-adapted strain IBYZ. The results showed that the S2 subunit determines the difference in cell tropism of the two strains. After comparing the amino acid sequences of S protein of CK cell-adapted strain YZ120, with its parental strain IBYZ, three amino acid substitutions, A138V, L581F, and V617I, were identified. Using YZ120 as the backbone, one or more of the above-mentioned substitutions were eliminated to verify the correlation between these sites and CK cell tropism. The results showed that the CK cell tropism of the YZ120 strain depends on the V617I substitution, the change of L581F promoted the adaptation in CK cells, and the change at 138 position was not directly related to the CK cell tropism. Further validation experiments also showed that V617I had a decisive role in the adaptation of IBV to CK cells, but other areas of the virus genome also affected the replication efficiency of the virus in CK cells.
Collapse
Affiliation(s)
- Yi Jiang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Jiangsu Institute of Poultry Science (CAAS), Yangzhou, China.,Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Mingyan Gao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Jiangsu Institute of Poultry Science (CAAS), Yangzhou, China
| | - Xu Cheng
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Jiangsu Institute of Poultry Science (CAAS), Yangzhou, China
| | - Yan Yu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Jiangsu Institute of Poultry Science (CAAS), Yangzhou, China
| | - Xinyue Shen
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Jiangsu Institute of Poultry Science (CAAS), Yangzhou, China.,Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jianmei Li
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Jiangsu Institute of Poultry Science (CAAS), Yangzhou, China
| | - Sheng Zhou
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Jiangsu Institute of Poultry Science (CAAS), Yangzhou, China
| |
Collapse
|
19
|
Huang M, Liu Y, Zou C, Tan Y, Han Z, Xue C, Cao Y. A highly pathogenic recombinant infectious bronchitis virus with adaptability in cultured cells. Virus Res 2020; 292:198229. [PMID: 33207263 DOI: 10.1016/j.virusres.2020.198229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 10/25/2022]
Abstract
Infectious bronchitis virus (IBV) of GI-19 (QX), GI-7 (TW), GI-13 (4/91) and GI-1 (Mass) lineages have been frequently detected in China in recent years. Here, An IBV strain, referred as GD17/04, was isolated from the dead yellow feather chicken vaccinated with H52 and 4/91 vaccines, whose genome sequence was obtained through high-throughput sequencing. Then it has been confirmed by the RDP and SimPlot analysis that GD17/04 is a recombinant strain deriving from YX10, 4/91, TW 2575/98 and H52 strains. Therein S1 gene of GD17/04 consists of sequences of TW2575/98 and 4/91, the former for the region of 20,371 to 21,072 nt and 21,847 to 21,975 nt, the latter for the sandwiched region of 21,073 to 21,846 nt. Moreover, as a nephropathogenic variant which caused high morbidity of 100 % and mortality of 60 %, unlike most other IBV strains, GD17/04 can cause obvious cell lesion in primary CEK cell, and even in DF-1 cells, without the process of continuous passage. As the few IBV strain can infect avian passage cell line, GD17/04 provides a material basis for further study of the interaction mechanism between IBV and avian host. Collectively, the findings highlight the significance that biological characteristics of novel strain should be studied, in addition to constant epidemiologic and molecular surveillance for IBV.
Collapse
Affiliation(s)
- Mengjiao Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuan Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuangchao Zou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yazhuo Tan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenling Han
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Liang XY, Zhu QC, Liang JQ, Liu SY, Liu DX, Fung TS. Development of HiBiT-Tagged Recombinant Infectious Bronchitis Coronavirus for Efficient in vitro and in vivo Viral Quantification. Front Microbiol 2020; 11:2100. [PMID: 32983065 PMCID: PMC7485224 DOI: 10.3389/fmicb.2020.02100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
Abstract
Coronaviruses (CoVs) are enveloped (+) ssRNA viruses of veterinary and medical importance. Because recombinant CoVs with reporter proteins fused with viral proteins are usually non-viable or unstable, a small and quantifiable epitope tag would be beneficial to CoV research. In this study, we integrated the NanoLuc Binary Technology to the reverse genetics of infectious bronchitis virus (IBV), a prototypic gammacoronavirus. The 11-amino-acid HiBiT tag was inserted to the spike (S) or membrane (M) protein, and the recombinant IBVs (rS-HiBiT and rM-HiBiT) were characterized. Compared with the rIBV-p65 control, rS-HiBiT exhibited comparable growth kinetics, whereas rM-HiBiT replicated slightly slower. The levels of HiBiT-tagged S and M proteins in the infected cells or the culture supernatant could be both rapidly (~15 min) and efficiently (30 μL sample volume) determined using the HiBiT luminescence assay. Notably, replication of the HiBiT-tagged IBV could be monitored continuously in an infected chicken embryo, and rS-HiBiT was genetically stable for at least 20 passages. By integrating the HiBiT tagging system with CoV reverse genetics, this new reporter system may facilitate future study of CoV replication and pathogenesis.
Collapse
Affiliation(s)
- Xiao Ying Liang
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Qing Chun Zhu
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Jia Qi Liang
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Si Ying Liu
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - To Sing Fung
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Li S, Yuan L, Dai G, Chen RA, Liu DX, Fung TS. Regulation of the ER Stress Response by the Ion Channel Activity of the Infectious Bronchitis Coronavirus Envelope Protein Modulates Virion Release, Apoptosis, Viral Fitness, and Pathogenesis. Front Microbiol 2020; 10:3022. [PMID: 32038520 PMCID: PMC6992538 DOI: 10.3389/fmicb.2019.03022] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 01/31/2023] Open
Abstract
Coronavirus (CoV) envelope (E) protein is a small structural protein critical for virion morphogenesis and release. The recently characterized E protein ion channel activity (EIC) has also been implicated in modulating viral pathogenesis. In this study, we used infectious bronchitis coronavirus (IBV) as a model to study EIC. Two recombinant IBVs (rIBVs) harboring EIC-inactivating mutations – rT16A and rA26F – were serially passaged, and several compensatory mutations were identified in the transmembrane domain (TMD). Two rIBVs harboring these putative EIC-reverting mutations – rT16A/A26V and rA26F/F14N – were recovered. Compared with the parental rIBV-p65 control, all four EIC mutants exhibited comparable levels of intracellular RNA synthesis, structural protein production, and virion assembly. Our results showed that the IBV EIC contributed to the induction of ER stress response, as up-regulation of ER stress-related genes was markedly reduced in cells infected with the EIC-defective mutants. EIC-defective mutants also formed smaller plaques, released significantly less infectious virions into the culture supernatant, and had lower levels of viral fitness in cell culture. Significantly, all these defective phenotypes were restored in cells infected with the putative EIC revertants. EIC mutations were also implicated in regulating IBV-induced apoptosis, induction of pro-inflammatory cytokines, and viral pathogenicity in vivo. Taken together, this study highlights the importance of CoV EIC in modulating virion release and various aspects of CoV – host interaction.
Collapse
Affiliation(s)
- Shumin Li
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lixia Yuan
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Guo Dai
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Rui Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Zhaoqing DaHuaNong Biology Medicine Co., Ltd., Zhaoqing, China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - To Sing Fung
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Doyle N, Neuman BW, Simpson J, Hawes PC, Mantell J, Verkade P, Alrashedi H, Maier HJ. Infectious Bronchitis Virus Nonstructural Protein 4 Alone Induces Membrane Pairing. Viruses 2018; 10:v10090477. [PMID: 30200673 PMCID: PMC6163833 DOI: 10.3390/v10090477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/20/2023] Open
Abstract
Positive-strand RNA viruses, such as coronaviruses, induce cellular membrane rearrangements during replication to form replication organelles allowing for efficient viral RNA synthesis. Infectious bronchitis virus (IBV), a pathogenic avian Gammacoronavirus of significant importance to the global poultry industry, has been shown to induce the formation of double membrane vesicles (DMVs), zippered endoplasmic reticulum (zER) and tethered vesicles, known as spherules. These membrane rearrangements are virally induced; however, it remains unclear which viral proteins are responsible. In this study, membrane rearrangements induced when expressing viral non-structural proteins (nsps) from two different strains of IBV were compared. Three non-structural transmembrane proteins, nsp3, nsp4, and nsp6, were expressed in cells singularly or in combination and the effects on cellular membranes investigated using electron microscopy and electron tomography. In contrast to previously studied coronaviruses, IBV nsp4 alone is necessary and sufficient to induce membrane pairing; however, expression of the transmembrane proteins together was not sufficient to fully recapitulate DMVs. This indicates that although nsp4 is able to singularly induce membrane pairing, further viral or host factors are required in order to fully assemble IBV replicative structures. This study highlights further differences in the mechanism of membrane rearrangements between members of the coronavirus family.
Collapse
Affiliation(s)
- Nicole Doyle
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK.
| | - Benjamin W Neuman
- School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK.
| | | | | | - Judith Mantell
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | - Hasan Alrashedi
- School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK.
| | - Helena J Maier
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK.
| |
Collapse
|
23
|
Manswr B, Ball C, Forrester A, Chantrey J, Ganapathy K. Evaluation of full S1 gene sequencing of classical and variant infectious bronchitis viruses extracted from allantoic fluid and FTA cards. Avian Pathol 2018; 47:418-426. [PMID: 29712443 DOI: 10.1080/03079457.2018.1471196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sequence variability in the S1 gene determines the genotype of infectious bronchitis virus (IBV) strains. A single RT-PCR assay was developed to amplify and sequence the full S1 gene for six classical and variant IBVs (M41, D274, 793B, IS/885/00, IS/1494/06 and Q1) enriched in allantoic fluid (AF) or the same AF inoculated onto Flinders Technology Association (FTA) cards. Representative strains from each genotype were grown in specific-pathogen-free eggs and RNA was extracted from AF. Full S1 gene amplification was achieved using primer A and primer 22.51. Products were sequenced using primers A, 1050+, 1380+ and SX3+ to obtain short sequences covering the full gene. Following serial dilutions of AF, detection limits of the partial assay were higher than those of the full S1 gene. Partial S1 sequences exhibited higher-than-average nucleotide similarity percentages (79%; 352 bp) compared to full S1 sequences (77%; 1756 bp), suggesting that full S1 analysis allows greater strain differentiation. For IBV detection from AF-inoculated FTA cards, four serotypes were incubated for up to 21 days at three temperatures, 4°C, room temperature (approximately 24°C) and 40°C. RNA was extracted and tested with partial and full S1 protocols. Through partial sequencing, all IBVs were successfully detected at all sampling points and storage temperatures. In contrast, using full S1 sequencing it was not possible to amplify the gene beyond 14 days or when stored at 40°C. Data presented show that for full S1 sequencing, a substantial amount of RNA is needed. Field samples collected onto FTA cards are unlikely to yield such quantity or quality. ABBREVIATIONS AF: allantoic fluid; CD50: ciliostatic dose 50; FTA: Flinders Technology Association; IB: infectious bronchitis; IBV: infectious bronchitis virus.
Collapse
Affiliation(s)
- Basim Manswr
- a Institute of Infection and Global Health , University of Liverpool , Cheshire , UK.,b Faculty of Veterinary Medicine , Diyala University , Baqubah , Iraq
| | - Christopher Ball
- a Institute of Infection and Global Health , University of Liverpool , Cheshire , UK
| | - Anne Forrester
- a Institute of Infection and Global Health , University of Liverpool , Cheshire , UK
| | - Julian Chantrey
- c Institute of Veterinary Science , University of Liverpool , Cheshire , UK
| | - Kannan Ganapathy
- a Institute of Infection and Global Health , University of Liverpool , Cheshire , UK
| |
Collapse
|
24
|
Effects of hypervariable regions in spike protein on pathogenicity, tropism, and serotypes of infectious bronchitis virus. Virus Res 2018; 250:104-113. [PMID: 29684409 PMCID: PMC7114591 DOI: 10.1016/j.virusres.2018.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 11/23/2022]
Abstract
For the first time using reverse genetics to reveal the roles of HVRs in coronavirus. The HVRs exchange from IBV S1 subunit weakened the adsorption during IBV infection in vitro. The HVRs exchange in IBV S1 reduced ARV with Beaudette, but not sufficiently change serotypes. The recombinant IBVs provided insights into reverse genetic vaccines.
To study the roles of hypervariable regions (HVRs) in receptor-binding subunit S1 of the spike protein, we manipulated the genome of the IBV Beaudette strain using a reverse genetics system to construct seven recombinant strains by separately or simultaneously replacing the three HVRs of the Beaudette strain with the corresponding fragments from a QX-like nephropathogenic isolate ck/CH/LDL/091022 from China. We characterized the growth properties of these recombinant IBVs in Vero cells and embryonated eggs, and their pathogenicity, tropism, and serotypes in specific pathogen-free (SPF) chickens. All seven recombinant IBVs proliferated in Vero cells, but the heterogenous HVRs could reduce their capacity for adsorption during in vitro infection. The recombinant IBVs did not significantly increase the pathogenicity compared with the Beaudette strain in SPF chickens, and they still shared the same serotype as the Beaudette strain, but the antigenic relatedness values between the recombinant strain and Beaudette strain generally decreased with the increase in the number of the HVRs exchanged. The results of this study demonstrate the functions of HVRs and they may help to develop a vaccine candidate, as well as providing insights into the prevention and control of IBV.
Collapse
|
25
|
Tan YW, Fung TS, Shen H, Huang M, Liu DX. Coronavirus infectious bronchitis virus non-structural proteins 8 and 12 form stable complex independent of the non-translated regions of viral RNA and other viral proteins. Virology 2017; 513:75-84. [PMID: 29035788 PMCID: PMC7112110 DOI: 10.1016/j.virol.2017.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/03/2023]
Abstract
The cleavage products from coronavirus polyproteins, known as the non-structural proteins (nsps), are believed to make up the major components of the viral replication/transcription complex. In this study, several nsps encoded by avian gammacoronavirus infectious bronchitis virus (IBV) were screened for RNA-binding activity and interaction with its RNA-dependent RNA polymerase, nsp12. Nsp2, nsp5, nsp8, nsp9 and nsp10 were found to bind to untranslated regions (UTRs), while nsp8 was confirmed to interact with nsp12. Nsp8 has been reported to interact with nsp7 and functions as a primase synthesizing RNA primers for nsp12. Further characterization revealed that nsp8-nsp12 interaction is independent of the UTRs of viral RNA, and nsp8 interacts with both the N- and C-terminal regions of nsp12. These results have prompted a proposal of how the nsp7-nsp8 complex could possibly function in tandem with nsp12, forming a highly efficient complex that could synthesize both the RNA primer and viral RNA during coronavirus infection.
Collapse
Affiliation(s)
- Yong Wah Tan
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou 510642, Guangdong, People's Republic of China; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 63755, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos 138673, Singapore
| | - To Sing Fung
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou 510642, Guangdong, People's Republic of China
| | - Hongyuan Shen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos 138673, Singapore
| | - Mei Huang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 63755, Singapore
| | - Ding Xiang Liu
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou 510642, Guangdong, People's Republic of China.
| |
Collapse
|
26
|
Guo H, Huang M, Yuan Q, Wei Y, Gao Y, Mao L, Gu L, Tan YW, Zhong Y, Liu D, Sun S. The Important Role of Lipid Raft-Mediated Attachment in the Infection of Cultured Cells by Coronavirus Infectious Bronchitis Virus Beaudette Strain. PLoS One 2017; 12:e0170123. [PMID: 28081264 PMCID: PMC5231368 DOI: 10.1371/journal.pone.0170123] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/29/2016] [Indexed: 11/19/2022] Open
Abstract
Lipid raft is an important element for the cellular entry of some viruses, including coronavirus infectious bronchitis virus (IBV). However, the exact role of lipid rafts in the cellular membrane during the entry of IBV into host cells is still unknown. In this study, we biochemically fractionated IBV-infected cells via sucrose density gradient centrifugation after depleting plasma membrane cholesterol with methyl-β-cyclodextrin or Mevastatin. Our results demonstrated that unlike IBV non-structural proteins, IBV structural proteins co-localized with lipid raft marker caveolin-1. Infectivity assay results of Vero cells illustrated that the drug-induced disruption of lipid rafts significantly suppressed IBV infection. Further studies revealed that lipid rafts were not required for IBV genome replication or virion release at later stages. However, the drug-mediated depletion of lipid rafts in Vero cells before IBV attachment significantly reduced the expression of viral structural proteins, suggesting that drug treatment impaired the attachment of IBV to the cell surface. Our results indicated that lipid rafts serve as attachment factors during the early stages of IBV infection, especially during the attachment stage.
Collapse
Affiliation(s)
- Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
| | - Mei Huang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Quan Yuan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yanquan Wei
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
| | - Yuan Gao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
| | - Lejiao Mao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
| | - Lingjun Gu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
- College of Animal Science, Yangtze University, Jingzhou, P.R. China
| | - Yong Wah Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yanxin Zhong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dingxiang Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (SS); (DL)
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
- * E-mail: (SS); (DL)
| |
Collapse
|
27
|
The establishment and characteristics of cell-adapted IBV strain H120. Arch Virol 2016; 161:3179-87. [PMID: 27558123 DOI: 10.1007/s00705-016-3008-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 08/02/2016] [Indexed: 12/23/2022]
Abstract
Avian infectious bronchitis virus is an important pathogen in poultry worldwide. Vaccination is the only effective way to prevent and control IBV infection. H120, one of the safest vaccine strains, which has been used worldwide as a primary vaccine, cannot adapt to passaged cells, which severely restricts the quality of the vaccine. Based on the reverse genetics of our previous research work, we constructed the recombinant R-H120-Beaudette-p65(S) strain by replacing the complete spike gene of H120 with the corresponding spike gene from the Beaudette p65 strain. Some biological characteristics, including replication kinetics, virulence and immunological properties of R-H120-Beaudette-p65(S) have been evaluated. The results showed that biological characteristics of R-H120-Beaudette-p65(S), such as replication kinetics in embryonated chicken eggs (ECEs) and embryo virulence, were similar to those of H120. In addition, R-H120-Beaudette-p65(S) could induce a similar antibody titre and provide up to 80 % immune protection in chickens challenged with the M41 strain. These results indicate that R-H120-Beaudette-p65(S) has the potential for further development as a cell-adapted vaccine.
Collapse
|
28
|
Ghetas AM, Thaxton GE, Breedlove C, van Santen VL, Toro H. Effects of Adaptation of Infectious Bronchitis Virus Arkansas Attenuated Vaccine to Embryonic Kidney Cells. Avian Dis 2015; 59:106-13. [PMID: 26292543 DOI: 10.1637/10947-093014-reg] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The population structure of an embryo-attenuated infectious bronchitis virus (IBV) Arkansas (Ark) Delmarva Poultry Industry (DPI)-derived vaccine was characterized during serial passages in chicken embryo kidney (CEK) cells and after back-passage in embryonated chicken eggs (ECE) and in chickens. Both conventional and deep-sequencing results consistently showed population changes occurred during adaptation to CEK cells. Specifically, 13 amino acid (aa) positions seemed to be targets of selection when comparing the vaccine genome prior to and after seven passages in CEK (CEKp7). Amino acid changes occurred at four positions in the spike (S) gene and, at two positions in the S gene, large shifts in frequencies of aa encoding were observed. CEK adaptation shifted the virus population towards homogeneity in S. The changes achieved in the S1 gene in CEKp7 were maintained after a back-passage in ECE. Outside the S gene, aa changes at three positions and large shifts in frequencies at four positions were observed. Synonymous nucleotide changes and changes in noncoding regions of the genome were observed at eight genome positions. Inoculation of early CEK passages into chickens induced higher antibody levels and CEKp4 induced increased respiratory signs compared to CEKp7. From an applied perspective, the fact that CEK adaptation of embryo-attenuated Ark vaccines reduces population heterogeneity, and that changes do not revert after one replication cycle in ECE or in chickens, provides an opportunity to improve commercial ArkDPI-derived vaccines.
Collapse
|
29
|
Hewson KA, Robertson T, Steer PA, Devlin JM, Noormohammadi AH, Ignjatovic J. Assessment of the potential relationship between egg quality and infectious bronchitis virus infection in Australian layer flocks. Aust Vet J 2014; 92:132-8. [PMID: 24673141 PMCID: PMC7159702 DOI: 10.1111/avj.12156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2013] [Indexed: 11/28/2022]
Abstract
Objective This investigation aimed to determine if there was a relationship between the production of eggs with poor internal quality, as measured by poor Haugh units, by Australian layer flocks and the detection of infectious bronchitis virus (IBV) in the hens. Other risk factors including flock size, flock type, flock age, chicken breed and vaccination frequency were also assessed. Methods The study group comprised 17 flocks from 14 farms. Data relating to the factors investigated were requested on a regular basis. The Haugh unit data were used to grade eggs as good or poor based on the age and flock at the time of data collection. Cloacal swabs were collected from 20 chickens in each flock approximately every 6 weeks. Results IBV was detected from a majority of the flocks and in 68% of cases the IBV strain detected was an A‐vaccine‐related field strain. Three variant strains were detected. Detection of IBV in a flock, the farm type and flock size were identified as potential risk factors for the production of eggs with poor Haugh units. Conclusion IBV is prevalent in Australian layer flocks, but infection was primarily subclinical. The results complement previous reports indicating that there are many potential risk factors for the production of eggs with poor Haugh units.
Collapse
Affiliation(s)
- K A Hewson
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria, 3030, Australia.
| | | | | | | | | | | |
Collapse
|
30
|
Zhao F, Han Z, Zhang T, Shao Y, Kong X, Ma H, Liu S. Genomic characteristics and changes of avian infectious bronchitis virus strain CK/CH/LDL/97I after serial passages in chicken embryos. Intervirology 2014; 57:319-30. [PMID: 25195733 PMCID: PMC7179551 DOI: 10.1159/000365193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 06/07/2014] [Indexed: 12/12/2022] Open
Abstract
Background We previously attenuated the infectious bronchitis virus (IBV) strain CK/CH/LDL/97I and found that it can convey protection against the homologous pathogenic virus. Objective To compare the full-length genome sequences of the Chinese IBV strain CK/CH/LDL/97I and its embryo-passaged, attenuated level to identify sequence substitutions responsible for the attenuation and define markers of attenuation. Methods The full-length genomes of CK/CH/LDL/97I P5 and P115 were amplified and sequenced. The sequences were assembled and compared using the MEGALIGN program (DNAStar) and a phylogenetic tree was constructed using MEGA4 software. Results The CK/CH/LDL/97I virus population contained subpopulations with a mixture of genetic mutants. Changes were observed in nsp4, nsp9, nsp11/12, nsp14, nsp15, nsp16, and ORF3a, but these did not result in amino acid substitutions or did not show functional variations. Amino acid substitutions occurred in the remaining genes between P5 and P115; most were found in the S region, and some of the nucleotide mutations resulted in amino acid substitutions. Among the 9 nsps in the ORF1 region, nsp3 contained the most nucleotide substitutions. Conclusions Sequence variations in different genes, especially the S gene and nsp3, in the genomes of CK/CH/LDL/97I viruses might contribute to differences in viral replication, pathogenicity, antigenicity, immunogenicity, and tissue tropism.
Collapse
Affiliation(s)
- Fei Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Hewson KA, Noormohammadi AH, Devlin JM, Browning GF, Schultz BK, Ignjatovic J. Evaluation of a novel strain of infectious bronchitis virus emerged as a result of spike gene recombination between two highly diverged parent strains. Avian Pathol 2014; 43:249-57. [DOI: 10.1080/03079457.2014.914624] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Liu S, Xu Q, Han Z, Liu X, Li H, Guo H, Sun N, Shao Y, Kong X. Origin and characteristics of the recombinant novel avian infectious bronchitis coronavirus isolate ck/CH/LJL/111054. INFECTION GENETICS AND EVOLUTION 2014; 23:189-95. [PMID: 24613433 PMCID: PMC7106169 DOI: 10.1016/j.meegid.2014.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 02/03/2023]
Abstract
Recombination among infectious bronchitis viruses (IBVs), coupled with point mutations, insertions, and deletions that occur in the genome, is thought to contribute to the emergence of new IBV variants. In this study an IBV, ck/CH/LJL/111054, was isolated from a H120-vaccinated chicken, which presented with a suspected IBV infection. Phylogenetic analysis of the S1 subunit sequence confirmed that strain ck/CH/LJL/111054 is of the Connecticut-type; however, further extensive full-length genomic analysis identified the occurrence of recombination events. Therefore, strain ck/CH/LJL/111054 may have originated from recombination events between Conn- and Mass-like strains at three recombination breakpoints: two located within the nsp3 gene sequence and one in the nsp12 gene sequence. Further, the uptake of the 5' untranslated regions, nsp2, parts of nsp3, nsp4-11, and parts of nsp 12 from Mass-like virus by ck/CH/LJL/111054 might have resulted in changes in viral replication efficiency rather than antigenic changes, via cross-neutralization analysis with the H120 strain. Recombination events coupled with the accumulation of mutations in the ck/CH/LJL/111054 genome may account for its increased virulence in specific-pathogen free chickens.
Collapse
Affiliation(s)
- Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China.
| | - Qianqian Xu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Xiaoli Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Huixin Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Hongbo Guo
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Nana Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Yuhao Shao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Xiangang Kong
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| |
Collapse
|
33
|
Development and characterization of a recombinant infectious bronchitis virus expressing the ectodomain region of S1 gene of H120 strain. Appl Microbiol Biotechnol 2013; 98:1727-35. [PMID: 24287931 DOI: 10.1007/s00253-013-5352-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
Infectious bronchitis (IB), caused by infectious bronchitis virus (IBV), is a highly contagious chicken disease, and can lead to serious economic losses in poultry enterprises. The continual introduction of new IBV serotypes requires alternative strategies for the production of timely and safe vaccines against the emergence of variants. Modification of the IBV genome using reverse genetics is one way to generate recombinant IBVs as the candidates of new IBV vaccines. In this study, the recombinant IBV is developed by replacing the ectodomain region of the S1 gene of the IBV Beaudette strain with the corresponding fragment from H120 strain, designated as rBeau-H120(S1e). In Vero cells, the virus proliferates as its parental virus and can cause syncytium formation. The peak titer would reach 10(5.9) 50% (median) tissue culture infective dose/mL at 24 h post-infection. After inoculation of chickens with the recombinant virus, it demonstrated that rBeau-H120(S1e) remained nonpathogenic and was restricted in its replication in vivo. Protection studies showed that vaccination with rBeau-H120 (S1e) at 7-day after hatch provided 80% rate of immune protection against challenge with 10(3) 50% embryos infection dose of the virulent IBV M41 strain. These results indicate that rBeau-H120 (S1e) has the potential to be an alternative vaccine against IBV based on excellent propagation property and immunogenicity. This finding might help in providing further information that replacement of the ectodomain fragment of the IBV Beaudette S1 gene with that from a present field strain is promising for IBV vaccine development.
Collapse
|
34
|
Promkuntod N, van Eijndhoven REW, de Vrieze G, Gröne A, Verheije MH. Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus. Virology 2013; 448:26-32. [PMID: 24314633 PMCID: PMC7111965 DOI: 10.1016/j.virol.2013.09.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 08/21/2013] [Accepted: 09/19/2013] [Indexed: 01/03/2023]
Abstract
The infection of the avian coronavirus infectious bronchitis virus (IBV) is initiated by the binding of the spike glycoprotein S to sialic acids on the chicken host cell. In this study we identified the receptor-binding domain (RBD) of the spike of the prototype IBV strain M41. By analyzing the ability of recombinantly expressed chimeric and truncated spike proteins to bind to chicken tissues, we demonstrate that the N-terminal 253 amino acids of the spike are both required and sufficient for binding to chicken respiratory tract in an α-2,3-sialic acid-dependent manner. Critical amino acids for attachment of M41 spike are present within the N-terminal residues 19-69, which overlap with a hypervariable region in the S1 gene. Our results may help to understand the differences between IBV S1 genotypes and the ultimate pathogenesis of IBV in chickens.
Collapse
Affiliation(s)
- N Promkuntod
- Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Promkuntod N, Wickramasinghe INA, de Vrieze G, Gröne A, Verheije MH. Contributions of the S2 spike ectodomain to attachment and host range of infectious bronchitis virus. Virus Res 2013; 177:127-37. [PMID: 24041648 PMCID: PMC7114508 DOI: 10.1016/j.virusres.2013.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 12/11/2022]
Abstract
The spike protein is the major viral attachment protein of the avian coronavirus infectious bronchitis virus (IBV) and ultimately determines viral tropism. The S1 subunit of the spike is assumed to be required for virus attachment. However, we have previously shown that this domain of the embryo- and cell culture adapted Beaudette strain, in contrast to that of the virulent M41 strain, is not sufficient for binding to chicken trachea (Wickramasinghe et al., 2011). In the present study, we demonstrated that the lack of binding of Beaudette S1 was not due to absence of virus receptors on this tissue nor due to the production of S1 from mammalian cells, as S1 proteins expressed from chicken cells also lacked the ability to bind IBV-susceptible embryonic tissue. Subsequently, we addressed the contribution of the S2 subunit of the spike in IBV attachment. Recombinant IBV Beaudette spike ectodomains, comprising the entire S1 domain and the S2 ectodomain, were expressed and analyzed for binding to susceptible embryonic chorio-allantoic membrane (CAM) in our previously developed spike histochemistry assay. We observed that extension of the S1 domain with the S2 subunit of the Beaudette spike was sufficient to gain binding to CAM. A previously suggested heparin sulfate binding site in Beaudette S2 was not required for the observed binding to CAM, while sialic acids on the host tissues were essential for the attachment. To further elucidate the role of S2 the spike ectodomains of virulent IBV M41 and chimeras of M41 and Beaudette were analyzed for their binding to CAM, chicken trachea and mammalian cell lines. While the M41 spike ectodomain showed increased attachment to both CAM and chicken trachea, no binding to mammalian cells was observed. In contrast, Beaudette spike ectodomain had relatively weak ability to bind to chicken trachea, but displayed marked extended host range to mammalian cells. Binding patterns of chimeric spike ectodomains to these tissues and cells indicate that S2 subunits most likely do not contain an additional independent receptor-binding site. Rather, the interplay between S1 and S2 subunits of spikes from the same viral origin might finally determine the avidity and specificity of virus attachment and thus viral host range.
Collapse
Affiliation(s)
- N Promkuntod
- Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Fang S, Xu L, Huang M, Qisheng Li F, Liu DX. Identification of two ATR-dependent phosphorylation sites on coronavirus nucleocapsid protein with nonessential functions in viral replication and infectivity in cultured cells. Virology 2013; 444:225-32. [PMID: 23849791 PMCID: PMC7111981 DOI: 10.1016/j.virol.2013.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 04/27/2013] [Accepted: 06/10/2013] [Indexed: 11/29/2022]
Abstract
Coronavirus encodes an extensively phosphorylated and highly basic nucleocapsid (N) protein. Previous studies have identified Ser190, Ser192, Thr378 and Ser379 as the phosphorylation sites for coronavirus infectious bronchitis virus (IBV) N protein. In this study, we show that phosphorylation at Thr378 and Ser379 sites is dependent on the ataxia-telangiectasia mutated (ATM) and Rad3-related (ATR), a kinase activated during IBV replication. Introduction of Ala substitutions at these two sites individually, in combination of the two and together with other two sites (Ser190 and Ser192) into an infectious IBV clone did not affect recovery of the recombinant viruses containing the mutations. A mutant virus (rIBV-Nm4) carrying the four Ala substitutions grew at a similar, if not better, growth rate as wild type virus. This study reveals a cellular kinase responsible for phosphorylation of a coronavirus N protein at two positions and the functional consequence of this modification on coronavirus replication. We study the functional relevance of phosphorylation of IBV N on viral replication. We identify two ATR-dependent phosphorylation sites on IBV N protein. We analyze the functions of these sites on IBV replication and infectivity.
Collapse
Affiliation(s)
- Shouguo Fang
- Agricultural School, Yangtze University, 266 Jingmilu, Jingzhou City, Hubei Province 434025, China
| | | | | | | | | |
Collapse
|
37
|
Toro H, van Santen VL, Jackwood MW. Genetic diversity and selection regulates evolution of infectious bronchitis virus. Avian Dis 2012; 56:449-55. [PMID: 23050459 DOI: 10.1637/10072-020212-review.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Conventional and molecular epidemiologic studies have confirmed the ability of infectious bronchitis virus (IBV) to rapidly evolve and successfully circumvent extensive vaccination programs implemented since the early 1950s. IBV evolution has often been explained as variation in gene frequencies as if evolution were driven by genetic drift alone. However, the mechanisms regulating the evolution of IBV include both the generation of genetic diversity and the selection process. IBV's generation of genetic diversity has been extensively investigated and ultimately involves mutations and recombination events occurring during viral replication. The relevance of the selection process has been further understood more recently by identifying genetic and phenotypic differences between IBV populations prior to, and during, replication in the natural host. Accumulating evidence suggests that multiple environmental forces within the host, including immune responses (or lack thereof) and affinity for cell receptors, as well as physical and biochemical conditions, are responsible for the selection process. Some scientists have used or adopted the related quasispecies frame to explain IBV evolution. The quasispecies frame, while providing a distinct explanation of the dynamics of populations in which mutation is a frequent event, exhibits relevant limitations which are discussed herein. Instead, it seems that IBV populations evolving by the generation of genetic variability and selection on replicons follow the evolutionary mechanisms originally proposed by Darwin. Understanding the mechanisms underlying the evolution of IBV is of basic relevance and, without doubt, essential to appropriately control and prevent the disease.
Collapse
Affiliation(s)
- Haroldo Toro
- Auburn University, College of Veterinary Medicine, Auburn, AL 36830, USA.
| | | | | |
Collapse
|
38
|
Tay FPL, Huang M, Wang L, Yamada Y, Liu DX. Characterization of cellular furin content as a potential factor determining the susceptibility of cultured human and animal cells to coronavirus infectious bronchitis virus infection. Virology 2012; 433:421-30. [PMID: 22995191 PMCID: PMC7111921 DOI: 10.1016/j.virol.2012.08.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/25/2012] [Accepted: 08/27/2012] [Indexed: 11/21/2022]
Abstract
In previous studies, the Beaudette strain of coronavirus infectious bronchitis virus (IBV) was adapted from chicken embryo to Vero, a monkey kidney cell line, by serial propagation for 65 passages. To characterize the susceptibility of other human and animal cells to IBV, 15 human and animal cell lines were infected with the Vero-adapted IBV and productive infection was observed in four human cell lines: H1299, HepG2, Hep3B and Huh7. In other cell lines, the virus cannot be propagated beyond passage 5. Interestingly, cellular furin abundance in five human cell lines was shown to be strongly correlated with productive IBV infection. Cleavage of IBV spike protein by furin may contribute to the productive IBV infection in these cells. The findings that IBV could productively infect multiple human and animal cells of diverse tissue and organ origins would provide a useful system for studying the pathogenesis of coronavirus.
Collapse
Affiliation(s)
- Felicia P L Tay
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
39
|
Recent progress in studies of arterivirus- and coronavirus-host interactions. Viruses 2012; 4:980-1010. [PMID: 22816036 PMCID: PMC3397358 DOI: 10.3390/v4060980] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 05/30/2012] [Accepted: 06/14/2012] [Indexed: 12/15/2022] Open
Abstract
Animal coronaviruses, such as infectious bronchitis virus (IBV), and arteriviruses, such as porcine reproductive and respiratory syndrome virus (PRRSV), are able to manifest highly contagious infections in their specific native hosts, thereby arising in critical economic damage to animal industries. This review discusses recent progress in studies of virus-host interactions during animal and human coronavirus and arterivirus infections, with emphasis on IBV-host cell interactions. These interactions may be directly involved in viral replication or lead to the alteration of certain signaling pathways, such as cell stress response and innate immunity, to facilitate viral replication and pathogenesis.
Collapse
|
40
|
Zhong Y, Liao Y, Fang S, Tam JP, Liu DX. Up-regulation of Mcl-1 and Bak by coronavirus infection of human, avian and animal cells modulates apoptosis and viral replication. PLoS One 2012; 7:e30191. [PMID: 22253918 PMCID: PMC3256233 DOI: 10.1371/journal.pone.0030191] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/15/2011] [Indexed: 12/14/2022] Open
Abstract
Virus-induced apoptosis and viral mechanisms that regulate this cell death program are key issues in understanding virus-host interactions and viral pathogenesis. Like many other human and animal viruses, coronavirus infection of mammalian cells induces apoptosis. In this study, the global gene expression profiles are first determined in IBV-infected Vero cells at 24 hours post-infection by Affymetrix array, using avian coronavirus infectious bronchitis virus (IBV) as a model system. It reveals an up-regulation at the transcriptional level of both pro-apoptotic Bak and pro-survival myeloid cell leukemia-1 (Mcl-1). These results were further confirmed both in vivo and in vitro, in IBV-infected embryonated chicken eggs, chicken fibroblast cells and mammalian cells at transcriptional and translational levels, respectively. Interestingly, the onset of apoptosis occurred earlier in IBV-infected mammalian cells silenced with short interfering RNA targeting Mcl-1 (siMcl-1), and was delayed in cells silenced with siBak. IBV progeny production and release were increased in infected Mcl-1 knockdown cells compared to similarly infected control cells, while the contrary was observed in infected Bak knockdown cells. Furthermore, IBV infection-induced up-regulation of GADD153 regulated the expression of Mcl-1. Inhibition of the mitogen-activated protein/extracellular signal-regulated kinase (MEK/ERK) and phosphoinositide 3-kinase (PI3K/Akt) signaling pathways by chemical inhibitors and knockdown of GADD153 by siRNA demonstrated the involvement of ER-stress response in regulation of IBV-induced Mcl-1 expression. These results illustrate the sophisticated regulatory strategies evolved by a coronavirus to modulate both virus-induced apoptosis and viral replication during its replication cycle.
Collapse
Affiliation(s)
- Yanxin Zhong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ying Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Shouguo Fang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
41
|
Xu LH, Huang M, Fang SG, Liu DX. Coronavirus infection induces DNA replication stress partly through interaction of its nonstructural protein 13 with the p125 subunit of DNA polymerase δ. J Biol Chem 2011; 286:39546-59. [PMID: 21918226 PMCID: PMC3234778 DOI: 10.1074/jbc.m111.242206] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/29/2011] [Indexed: 12/20/2022] Open
Abstract
Perturbation of cell cycle regulation is a characteristic feature of infection by many DNA and RNA viruses, including Coronavirus infectious bronchitis virus (IBV). IBV infection was shown to induce cell cycle arrest at both S and G(2)/M phases for the enhancement of viral replication and progeny production. However, the underlying mechanisms are not well explored. In this study we show that activation of cellular DNA damage response is one of the mechanisms exploited by Coronavirus to induce cell cycle arrest. An ATR-dependent cellular DNA damage response was shown to be activated by IBV infection. Suppression of the ATR kinase activity by chemical inhibitors and siRNA-mediated knockdown of ATR reduced the IBV-induced ATR signaling and inhibited the replication of IBV. Furthermore, yeast two-hybrid screens and subsequent biochemical and functional studies demonstrated that interaction between Coronavirus nsp13 and DNA polymerase δ induced DNA replication stress in IBV-infected cells. These findings indicate that the ATR signaling activated by IBV replication contributes to the IBV-induced S-phase arrest and is required for efficient IBV replication and progeny production.
Collapse
Affiliation(s)
- Ling Hui Xu
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Mei Huang
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Shou Guo Fang
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Ding Xiang Liu
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
42
|
Liao Y, Wang X, Huang M, Tam JP, Liu DX. Regulation of the p38 mitogen-activated protein kinase and dual-specificity phosphatase 1 feedback loop modulates the induction of interleukin 6 and 8 in cells infected with coronavirus infectious bronchitis virus. Virology 2011; 420:106-16. [PMID: 21959016 PMCID: PMC7111953 DOI: 10.1016/j.virol.2011.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/09/2011] [Accepted: 09/01/2011] [Indexed: 12/21/2022]
Abstract
Induction of pro-inflammatory response is a crucial cellular process that detects and controls the invading viruses at early stages of the infection. Along with other innate immunity, this nonspecific response would either clear the invading viruses or allow the adaptive immune system to establish an effective antiviral response at late stages of the infection. The objective of this study was to characterize cellular mechanisms exploited by coronavirus infectious bronchitis virus (IBV) to regulate the induction of two pro-inflammatory cytokines, interleukin (IL)-6 and IL-8, at the transcriptional level. The results showed that IBV infection of cultured human and animal cells activated the p38 mitogen-activated protein kinase (MAPK) pathway and induced the expression of IL-6 and IL-8. Meanwhile, IBV has developed a strategy to counteract the induction of IL-6 and IL-8 by inducing the expression of dual-specificity phosphatase 1 (DUSP1), a negative regulator of the p38 MAPK, in order to limit the production of an excessive amount of IL-6 and IL-8 in the infected cells. As activation of the p38 MAPK pathway and induction of IL-6 and IL-8 may have multiple pathogenic effects on the whole host as well as on individual infected cells, regulation of the p38 MAPK and DUSP1 feedback loop by IBV may modulate the pathogenesis of the virus.
Collapse
Affiliation(s)
- Ying Liao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
43
|
Phillips JE, Jackwood MW, McKinley ET, Thor SW, Hilt DA, Acevedol ND, Williams SM, Kissinger JC, Paterson AH, Robertson JS, Lemke C. Changes in nonstructural protein 3 are associated with attenuation in avian coronavirus infectious bronchitis virus. Virus Genes 2011; 44:63-74. [PMID: 21909766 PMCID: PMC7089577 DOI: 10.1007/s11262-011-0668-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/25/2011] [Indexed: 01/22/2023]
Abstract
Full-length genome sequencing of pathogenic and attenuated (for chickens) avian coronavirus infectious bronchitis virus (IBV) strains of the same serotype was conducted to identify genetic differences between the pathotypes. Analysis of the consensus full-length genome for three different IBV serotypes (Ark, GA98, and Mass41) showed that passage in embryonated eggs, to attenuate the viruses for chickens, resulted in 34.75–43.66% of all the amino acid changes occurring in nsp 3 within a virus type, whereas changes in the spike glycoprotein, thought to be the most variable protein in IBV, ranged from 5.8 to 13.4% of all changes. The attenuated viruses did not cause any clinical signs of disease and had lower replication rates than the pathogenic viruses of the same serotype in chickens. However, both attenuated and pathogenic viruses of the same serotype replicated similarly in embryonated eggs, suggesting that mutations in nsp 3, which is involved in replication of the virus, might play an important role in the reduced replication observed in chickens leading to the attenuated phenotype.
Collapse
Affiliation(s)
- J. E. Phillips
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602 USA
| | - M. W. Jackwood
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602 USA
| | - E. T. McKinley
- Present Address: Southeast Poultry Research Laboratory, USDA, Agricultural Research Service, 934 College Station Road, Athens, GA 30605 USA
| | - S. W. Thor
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602 USA
| | - D. A. Hilt
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602 USA
| | - N. D. Acevedol
- Present Address: Veterinary Medical Center of Long Island, 75 Sunrise Highway, West Islip, NY 11795 USA
| | - S. M. Williams
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA 30602 USA
| | - J. C. Kissinger
- Department of Genetics, Center for Tropical and Emerging Global Diseases, University of Georgia, 500 D. W. Brooks Drive, Athens, GA 30602 USA
| | - A. H. Paterson
- Plant Genome Mapping Laboratory, Departments of Crop and Soil Sciences, Plant Biology, and Genetics, University of Georgia, 111 Riverbend Road, Athens, GA 30602 USA
| | - J. S. Robertson
- Plant Genome Mapping Laboratory, Departments of Crop and Soil Sciences, Plant Biology, and Genetics, University of Georgia, 111 Riverbend Road, Athens, GA 30602 USA
| | - C. Lemke
- Plant Genome Mapping Laboratory, Departments of Crop and Soil Sciences, Plant Biology, and Genetics, University of Georgia, 111 Riverbend Road, Athens, GA 30602 USA
| |
Collapse
|
44
|
Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity. J Virol 2011; 85:8903-12. [PMID: 21697468 DOI: 10.1128/jvi.05112-11] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding of viruses to host cells is the first step in determining tropism and pathogenicity. While avian infectious bronchitis coronavirus (IBV) infection and avian influenza A virus (IAV) infection both depend on α2,3-linked sialic acids, the host tropism of IBV is restricted compared to that of IAV. Here we investigated whether the interaction between the viral attachment proteins and the host could explain these differences by using recombinant spike domains (S1) of IBV strains with different pathogenicities, as well as the hemagglutinin (HA) protein of IAV H5N1. Protein histochemistry showed that S1 of IBV strain M41 and HA of IAV subtype H5N1 displayed sialic acid-dependent binding to chicken respiratory tract tissue. However, while HA bound with high avidity to a broad range of α2,3-linked sialylated glycans, M41 S1 recognized only one particular α2,3-linked disialoside in a glycan array. When comparing the binding of recombinant IBV S1 proteins derived from IBV strains with known differences in tissue tropism and pathogenicity, we observed that while M41 S1 displayed binding to cilia and goblet cells of the chicken respiratory tract, S1 derived from the vaccine strain H120 or the nonvirulent Beaudette strain had reduced or no binding to chicken tissues, respectively, in agreement with the reduced abilities of these viruses to replicate in vivo. While the S1 protein derived from the nephropathogenic IBV strain B1648 also hardly displayed binding to respiratory tract cells, distinct binding to kidney cells was observed, but only after the removal of sialic acid from S1. In conclusion, our data demonstrate that the attachment patterns of the IBV S proteins correlate with the tropisms and pathogenicities of the corresponding viruses.
Collapse
|
45
|
McKinley ET, Jackwood MW, Hilt DA, Kissinger JC, Robertson JS, Lemke C, Paterson AH. Attenuated live vaccine usage affects accurate measures of virus diversity and mutation rates in avian coronavirus infectious bronchitis virus. Virus Res 2011; 158:225-34. [PMID: 21539870 PMCID: PMC7114461 DOI: 10.1016/j.virusres.2011.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 11/23/2022]
Abstract
The full-length genomes of 11 infectious bronchitis virus (IBV) field isolates from three different types of the virus; Massachusetts (Mass), Connecticut (Conn) and California (CAL) isolated over a 41, 25 and 8 year period respectively, were sequenced and analyzed to determine the mutation rates and level of polymorphisms across the genome. Positive selection was not detected and mutation rates ranged from 10(-4) to 10(-6)substitutions/site/year for Mass and Conn IBV types where attenuated live vaccines are routinely used to control the disease. In contrast, for CAL type viruses, for which no vaccine exists, positive selection was detected and mutation rates were 10 fold higher ranging from 10(-2) to 10(-3)substitutions/site/year. Lower levels of genetic diversity among the Mass and Conn viruses as well as sequence similarities with vaccine virus genomes suggest that the origin of the Mass and all but one of the Conn viruses was likely vaccine virus that had been circulating in the field for an unknown but apparently short period of time. The genetic data also identified a recombinant IBV isolate with 7 breakpoints distributed across the entire genome suggesting that viruses within the same serotype can have a high degree of genetic variability outside of the spike gene. These data are important because inaccurate measures of genetic diversity and mutation rates could lead to underestimates of the ability of IBV to change and potentially emerge to cause disease.
Collapse
Affiliation(s)
- Enid T. McKinley
- Department of Population Health, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30602, USA
| | - Mark W. Jackwood
- Department of Population Health, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30602, USA
| | - Deborah A. Hilt
- Department of Population Health, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30602, USA
| | - Jessica C. Kissinger
- Department of Genetics, Center for Tropical & Emerging Global Diseases, University of Georgia, 500 D. W. Brooks Drive, Athens, GA 30602, USA
| | - Jon S. Robertson
- Plant Genome Mapping Laboratory, Departments of Crop and Soil Sciences, Plant Biology, and Genetics, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | - Cornelia Lemke
- Plant Genome Mapping Laboratory, Departments of Crop and Soil Sciences, Plant Biology, and Genetics, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | - Andrew H. Paterson
- Department of Genetics, Center for Tropical & Emerging Global Diseases, University of Georgia, 500 D. W. Brooks Drive, Athens, GA 30602, USA
- Plant Genome Mapping Laboratory, Departments of Crop and Soil Sciences, Plant Biology, and Genetics, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
46
|
Xu L, Khadijah S, Fang S, Wang L, Tay FPL, Liu DX. The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication. J Virol 2010; 84:8571-83. [PMID: 20573827 PMCID: PMC2918985 DOI: 10.1128/jvi.00392-10] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 06/03/2010] [Indexed: 02/07/2023] Open
Abstract
The involvement of host proteins in the replication and transcription of viral RNA is a poorly understood area for many RNA viruses. For coronaviruses, it was long speculated that replication of the giant RNA genome and transcription of multiple subgenomic mRNA species by a unique discontinuous transcription mechanism may require host cofactors. To search for such cellular proteins, yeast two-hybrid screening was carried out by using the nonstructural protein 14 (nsp14) from the coronavirus infectious bronchitis virus (IBV) as a bait protein, leading to the identification of DDX1, a cellular RNA helicase in the DExD/H helicase family, as a potential interacting partner. This interaction was subsequently confirmed by coimmunoprecipitation assays with cells coexpressing the two proteins and with IBV-infected cells. Furthermore, the endogenous DDX1 protein was found to be relocated from the nucleus to the cytoplasm in IBV-infected cells. In addition to its interaction with IBV nsp14, DDX1 could also interact with the nsp14 protein from severe acute respiratory syndrome coronavirus (SARS-CoV), suggesting that interaction with DDX1 may be a general feature of coronavirus nsp14. The interacting domains were mapped to the C-terminal region of DDX1 containing motifs V and VI and to the N-terminal portion of nsp14. Manipulation of DDX1 expression, either by small interfering RNA-induced knockdown or by overexpression of a mutant DDX1 protein, confirmed that this interaction may enhance IBV replication. This study reveals that DDX1 contributes to efficient coronavirus replication in cell culture.
Collapse
Affiliation(s)
- Linghui Xu
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Siti Khadijah
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Shouguo Fang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Li Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Felicia P. L. Tay
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Ding Xiang Liu
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
47
|
Toro H. Infectious bronchitis virus: dominance of ArkDPI-type strains in the United States broiler industry during the last decade. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2010. [DOI: 10.1590/s1516-635x2010000200002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Yamada Y, Liu XB, Fang SG, Tay FPL, Liu DX. Acquisition of cell-cell fusion activity by amino acid substitutions in spike protein determines the infectivity of a coronavirus in cultured cells. PLoS One 2009; 4:e6130. [PMID: 19572016 PMCID: PMC2700284 DOI: 10.1371/journal.pone.0006130] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 06/03/2009] [Indexed: 12/30/2022] Open
Abstract
Coronavirus host and cell specificities are determined by specific interactions between the viral spike (S) protein and host cell receptor(s). Avian coronavirus infectious bronchitis (IBV) has been adapted to embryonated chicken eggs, primary chicken kidney (CK) cells, monkey kidney cell line Vero, and other human and animal cells. Here we report that acquisition of the cell–cell fusion activity by amino acid mutations in the S protein determines the infectivity of IBV in cultured cells. Expression of S protein derived from Vero- and CK-adapted strains showed efficient induction of membrane fusion. However, expression of S protein cloned from the third passage of IBV in chicken embryo (EP3) did not show apparent syncytia formation. By construction of chimeric S constructs and site-directed mutagenesis, a point mutation (L857-F) at amino acid position 857 in the heptad repeat 1 region of S protein was shown to be responsible for its acquisition of the cell–cell fusion activity. Furthermore, a G405-D point mutation in the S1 domain, which was acquired during further propagation of Vero-adapted IBV in Vero cells, could enhance the cell–cell fusion activity of the protein. Re-introduction of L857 back to the S gene of Vero-adapted IBV allowed recovery of variants that contain the introduced L857. However, compensatory mutations in S1 and some distant regions of S2 were required for restoration of the cell–cell fusion activity of S protein carrying L857 and for the infectivity of the recovered variants in cultured cells. This study demonstrates that acquisition of the cell–cell fusion activity in S protein determines the selection and/or adaptation of a coronavirus from chicken embryo to cultured cells of human and animal origins.
Collapse
Affiliation(s)
- Yoshiyuki Yamada
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Xiao Bo Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Shou Guo Fang
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Felicia P. L. Tay
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Ding Xiang Liu
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
49
|
Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells. J Virol 2009; 83:8744-58. [PMID: 19553314 DOI: 10.1128/jvi.00613-09] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The spike (S) protein of the coronavirus (CoV) infectious bronchitis virus (IBV) is cleaved into S1 and S2 subunits at the furin consensus motif RRFRR(537)/S in virus-infected cells. In this study, we observe that the S2 subunit of the IBV Beaudette strain is additionally cleaved at the second furin site (RRRR(690)/S) in cells expressing S constructs and in virus-infected cells. Detailed time course experiments showed that a peptide furin inhibitor, decanoyl-Arg-Val-Lys-Arg-chloromethylketone, blocked both viral entry and syncytium formation. Site-directed mutagenesis studies revealed that the S1/S2 cleavage by furin was not necessary for, but could promote, syncytium formation by and infectivity of IBV in Vero cells. In contrast, the second site is involved in the furin dependence of viral entry and syncytium formation. Mutations of the second site from furin-cleavable RRRR/S to non-furin-cleavable PRRRS and AAARS, respectively, abrogated the furin dependence of IBV entry. Instead, a yet-to-be-identified serine protease(s) was involved, as revealed by protease inhibitor studies. Furthermore, sequence analysis of CoV S proteins by multiple alignments showed conservation of an XXXR/S motif, cleavable by either furin or other trypsin-like proteases, at a position equivalent to the second IBV furin site. Taken together, these results suggest that proteolysis at a novel XXXR/S motif in the S2 subunit might be a common mechanism for the entry of CoV into cells.
Collapse
|
50
|
Hewson K, Noormohammadi AH, Devlin JM, Mardani K, Ignjatovic J. Rapid detection and non-subjective characterisation of infectious bronchitis virus isolates using high-resolution melt curve analysis and a mathematical model. Arch Virol 2009; 154:649-60. [PMID: 19301093 PMCID: PMC7086978 DOI: 10.1007/s00705-009-0357-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 03/02/2009] [Indexed: 11/03/2022]
Abstract
Infectious bronchitis virus (IBV) is a coronavirus that causes upper respiratory, renal and/or reproductive diseases with high morbidity in poultry. Classification of IBV is important for implementation of vaccination strategies to control the disease in commercial poultry. Currently, the lengthy process of sequence analysis of the IBV S1 gene is considered the gold standard for IBV strain identification, with a high nucleotide identity (e.g. > or =95%) indicating related strains. However, this gene has a high propensity to mutate and/or undergo recombination, and alone it may not be reliable for strain identification. A real-time polymerase chain reaction (RT-PCR) combined with high-resolution melt (HRM) curve analysis was developed based on the 3'UTR of IBV for rapid detection and classification of IBV from commercial poultry. HRM curves generated from 230 to 435-bp PCR products of several IBV strains were subjected to further analysis using a mathematical model also developed during this study. It was shown that a combination of HRM curve analysis and the mathematical model could reliably group 189 out of 190 comparisons of pairs of IBV strains in accordance with their 3'UTR and S1 gene identities. The newly developed RT-PCR/HRM curve analysis model could detect and rapidly identify novel and vaccine-related IBV strains, as confirmed by S1 gene and 3'UTR nucleotide sequences. This model is a rapid, reliable, accurate and non-subjective system for detection of IBVs in poultry flocks.
Collapse
Affiliation(s)
- Kylie Hewson
- Department of Veterinary Science, The University of Melbourne, VIC, Australia.
| | | | | | | | | |
Collapse
|