1
|
Markelova N, Chumak A. Antimicrobial Activity of Bacillus Cyclic Lipopeptides and Their Role in the Host Adaptive Response to Changes in Environmental Conditions. Int J Mol Sci 2025; 26:336. [PMID: 39796193 PMCID: PMC11720072 DOI: 10.3390/ijms26010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Bacillus cyclic lipopeptides (CLP), part of the three main families-surfactins, iturins, and fengycins-are secondary metabolites with a unique chemical structure that includes both peptide and lipid components. Being amphiphilic compounds, CLPs exhibit antimicrobial activity in vitro, damaging the membranes of microorganisms. However, the concentrations of CLPs used in vitro are difficult to achieve in natural conditions. Therefore, in a natural environment, alternative mechanisms of antimicrobial action by CLPs are more likely, such as inducing apoptosis in fungal cells, preventing microbial adhesion to the substrate, and promoting the death of phytopathogens by stimulating plant immune responses. In addition, CLPs in low concentrations act as signaling molecules of Bacillus's own metabolism, and when environmental conditions change, they form an adaptive response of the host bacterium. Namely, they trigger the differentiation of the bacterial population into various specialized cell types: competent cells, flagellated cells, matrix producers, and spores. In this review, we have summarized the current understanding of the antimicrobial action of Bacillus CLPs under both experimental and natural conditions. We have also shown the relationship between some regulatory pathways involved in CLP biosynthesis and bacterial cell differentiation, as well as the role of CLPs as signaling molecules that determine changes in the physiological state of Bacillus subpopulations in response to shifts in environmental conditions.
Collapse
Affiliation(s)
- Natalia Markelova
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow 119021, Russia;
| | | |
Collapse
|
2
|
Wang X, Zhou WT, Dong HH, Li CY, Jiang YY, Xie P, Xu ZY, Xie SH, Yang SX, Huang L, Chen H, Wang LY, Wei X, Huang YQ. Isobavachalcone: A redox antifungal agent impairs the mitochondria protein of Cryptococcus neoformans. Int J Antimicrob Agents 2024; 64:107253. [PMID: 38925229 DOI: 10.1016/j.ijantimicag.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/30/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Isobavachalcone (IBC) is a natural small molecule with various biological activities; however, its inhibitory effects on Cryptococcus neoformans remain unclear. In our study, IBC showed a good antifungal effect. Through in vitro experiments, its minimum inhibitory concentration was 0.5-1 µg/mL. It exhibited the same antifungal effect as Amphotericin B in brain and lung infections in in vivo experiments. IBC also showed a synergistic antifungal effect with emodin with lower toxicity, and C. neoformans did not develop drug resistance to IBC. In the mechanistic study, significantly damaged mitochondria of C. neoformans, a significant reduction in mitochondrial membrane potential and adenosine triphosphate production, and an increase in hydrogen peroxide (H2O2) caused by IBC were observed using transmission electron microscopy. Through drug affinity-responsive target stability combined with phenotype detection, riboflavin synthases of aconitase and succinate dehydrogenase were screened. Molecular docking, quantitative polymerase chain reaction experiments, target inhibitor and agonist intervention, molecular interaction measurements, and minimum inhibitory concentration detection of the constructed expression strains revealed that IBC targeted the activity of these two enzymes, interfered by the tricarboxylic acid cycle, inhibited the production of adenosine triphosphate, blocked electron transport, reduced mitochondrial membrane potential, and induced antioxidation imbalance and reactive oxygen species accumulation, thus producing an antifungal effect. Therefore, IBC is a promising lead drug and redox antifungal agent for C. neoformans.
Collapse
Affiliation(s)
- Xue Wang
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China; Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Wen-Ting Zhou
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China; Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Hui-Hua Dong
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China; Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Chen-Yan Li
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China; Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Yu-Ying Jiang
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China; Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Ping Xie
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China; Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Zhen-Yi Xu
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China; Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Shuo-Hua Xie
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China; Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Shi-Xian Yang
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China
| | - Liang Huang
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China
| | - Hao Chen
- Department of Pathology, Wannan Medical College, Wuhu, China
| | - Lu-Yao Wang
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China.
| | - Xian Wei
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China.
| | - Yan-Qiang Huang
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
3
|
Ghorbani N, Yaghubi R, Davoodi J, Pahlavan S. How does caspases regulation play role in cell decisions? apoptosis and beyond. Mol Cell Biochem 2024; 479:1599-1613. [PMID: 37976000 DOI: 10.1007/s11010-023-04870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
Caspases are a family of cysteine proteases, and the key factors behind the cellular events which occur during apoptosis and inflammation. However, increasing evidence shows the non-conventional pro-survival action of apoptotic caspases in crucial processes. These cellular events include cell proliferation, differentiation, and migration, which may appear in the form of metastasis, and chemotherapy resistance in cancerous situations. Therefore, there should be a precise and strict control of caspases activity, perhaps through maintaining the threshold below the required levels for apoptosis. Thus, understanding the regulators of caspase activities that render apoptotic caspases as non-apoptotic is of paramount importance both mechanistically and clinically. Furthermore, the functions of apoptotic caspases are affected by numerous post-translational modifications. In the present mini-review, we highlight the various mechanisms that directly impact caspases with respect to their anti- or non-apoptotic functions. In this regard, post-translational modifications (PTMs), isoforms, subcellular localization, transient activity, substrate availability, substrate selection, and interaction-mediated regulations are discussed.
Collapse
Affiliation(s)
- Negar Ghorbani
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Roham Yaghubi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Jamshid Davoodi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
4
|
Chen M, Deng Y, Zheng M, Xiao R, Wang X, Liu B, He J, Wang J. Lipopeptides from Bacillus velezensis induced apoptosis-like cell death in the pathogenic fungus Fusarium concentricum. J Appl Microbiol 2024; 135:lxae048. [PMID: 38389225 DOI: 10.1093/jambio/lxae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
AIMS Stem rot caused by Fusarium concentricum is a new disease of Paris polyphylla reported by our research group. The present study investigates the growth inhibitory and apoptotic effects of Bacillus velezensis FJAT-54560 lipopeptide against F. concentricum. METHODS AND RESULTS HPLC preparation and LC-MS analysis results show that the crude lipopeptides secreted by Bacillus velezensis FJAT-54560 isolated from Jasminum sambac consist of C14-17 iturin A, C14 fengycin B, C16 fengycin A/A2, C18 fengycin A, C20 fengycin B2, C21 fengycin A2, C22-23 fengycin A, C12-16 surfactin A, and C15 surfactin A derivatives. The mass ratios (g/g) of iturin, fengycin, and surfactin in lipopeptides are 2.40, 67.51, and 30.08%, respectively. Through inhibition zone and inhibition rate experiments, we found that crude lipopeptides and purified fengycin exhibit strong antifungal activity against F. concentricum, including accumulation of reactive oxygen species, loss of mitochondrial membrane potential, DNA fragmentation, Ca2+ accumulation, chromatin condensation, and phosphatidylserine externalization. Transcriptomic analysis indicates that crude lipopeptide-induced apoptosis in F. concentricum cells may be mediated by apoptosis-inducing factors and apoptosis mediators and can serve as a metacaspase-independent model. CONCLUSION Lipopeptides from Bacillus velezensis FJAT-54560 can control the pathogenic fungus F. concentricum by inducing apoptosis.
Collapse
Affiliation(s)
- Meichun Chen
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Yingjie Deng
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, China
| | - Meixia Zheng
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Rongfeng Xiao
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xun Wang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, China
| | - Bo Liu
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, China
| | - Jieping Wang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
5
|
Eisele-Bürger AM, Eisele F, Malmgren Hill S, Hao X, Schneider KL, Imamoglu R, Balchin D, Liu B, Hartl FU, Bozhkov PV, Nyström T. Calmodulin regulates protease versus co-chaperone activity of a metacaspase. Cell Rep 2023; 42:113372. [PMID: 37938971 DOI: 10.1016/j.celrep.2023.113372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/11/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Metacaspases are ancestral homologs of caspases that can either promote cell death or confer cytoprotection. Furthermore, yeast (Saccharomyces cerevisiae) metacaspase Mca1 possesses dual biochemical activity: proteolytic activity causing cell death and cytoprotective, co-chaperone-like activity retarding replicative aging. The molecular mechanism favoring one activity of Mca1 over another remains elusive. Here, we show that this mechanism involves calmodulin binding to the N-terminal pro-domain of Mca1, which prevents its proteolytic activation and promotes co-chaperone-like activity, thus switching from pro-cell death to anti-aging function. The longevity-promoting effect of Mca1 requires the Hsp40 co-chaperone Sis1, which is necessary for Mca1 recruitment to protein aggregates and their clearance. In contrast, proteolytically active Mca1 cleaves Sis1 both in vitro and in vivo, further clarifying molecular mechanism behind a dual role of Mca1 as a cell-death protease versus gerontogene.
Collapse
Affiliation(s)
- Anna Maria Eisele-Bürger
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, 75007 Uppsala, Sweden
| | - Frederik Eisele
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 413 90 Göteborg, Sweden
| | - Sandra Malmgren Hill
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Xinxin Hao
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Kara L Schneider
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Rahmi Imamoglu
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - David Balchin
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 413 90 Göteborg, Sweden
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, 75007 Uppsala, Sweden.
| | - Thomas Nyström
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
6
|
Antifungal activity and potential mechanism of action of caspofungin in combination with ribavirin against Candida albicans. Int J Antimicrob Agents 2023; 61:106709. [PMID: 36640848 DOI: 10.1016/j.ijantimicag.2023.106709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
The number of invasive fungal infections has increased dramatically, resulting in high morbidity and mortality among immunocompromised patients. With increasing use of caspofungin (CAS), resistant strains have emerged frequently and led to limitations in the treatment of patients with severe invasive Candida albicans infections. Combination therapy is an important method to deal with this issue. As such, this study investigated the activity of CAS in combination with ribavirin (RBV) against C. albicans. The results of this in-vitro study showed that the minimum inhibitory concentrations (MICs) of CAS and RBV when they were used as monotherapy were 0.5-1 μg/mL and 2-8 μg/mL, respectively, while the MIC of CAS decreased from 0.5-1 μg/mL to 0.0625-0.25 μg/mL when used in combination with RBV, with a fractional inhibitory concentration index (FICI) ≤0.5. In addition, the RBV + CAS combination group displayed synergistic effects against C. albicans biofilm over 4 h; the sessile MIC (sMIC) of CAS decreased from 0.5-1 µg/mL to 0.0625-0.25µg/mL and the sMIC of RBV decreased from 4-16 µg/mL to 1-2 µg/mL, with FICI <0.5. The survival of C. albicans-infected Galleria mellonella was prolonged, the fungal burden was decreased, and the area of tissue damage was reduced after combination therapy. Further study showed that the mechanisms of action of the synergistic effect were related to the inhibition of biofilm formation, the inhibition of hyphal growth, and the activation of metacaspases, but were not related to the accumulation of reactive oxygen species. It is hoped that these findings will contribute to the understanding of drug resistance in C. albicans, and provide new insights for the application of RBV.
Collapse
|
7
|
A new bioinspired peptide on defensin from C. annuum fruits: Antimicrobial activity, mechanisms of action and therapeutical potential. Biochim Biophys Acta Gen Subj 2022; 1866:130218. [PMID: 35905923 DOI: 10.1016/j.bbagen.2022.130218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antimicrobial peptides, natural or synthetic, appear as promising molecules for antimicrobial therapy because of their both broad antimicrobial activity and mechanism of action. Herein, we determine the anti-Candida and antimycobacterial activities, mechanism of action on yeasts, and cytotoxicity on mammalian cells in the presence of the bioinspired peptide CaDef2.1G27-K44. METHODS CaDef2.1G27-K44 was designed to attain the following criteria: high positive net charge; low molecular weight (<3000 Da); Boman index ≤2.5; and total hydrophobic ratio ≥ 40%. The mechanism of action was studied by growth inhibition, plasma membrane permeabilization, ROS induction, mitochondrial functionality, and metacaspase activity assays. The cytotoxicity on macrophages, monocytes, and erythrocytes were also determined. RESULTS CaDef2.1G27-K44 showed inhibitory activity against Candida spp. with MIC100 values ranging from 25 to 50 μM and the standard and clinical isolate of Mycobacterium tuberculosis with MIC50 of 33.2 and 55.4 μM, respectively. We demonstrate that CaDef2.1G27-K44 is active against yeasts at different salt concentrations, induced morphological alterations, caused membrane permeabilization, increased ROS, causes loss of mitochondrial functionality, and activation of metacaspases. CaDef2.1G27-K44 has low cytotoxicity against mammalian cells. CONCLUSIONS The results obtained showed that CaDef2.1G27-K44 has great antimicrobial activity against Candida spp. and M. tuberculosis with low toxicity to host cells. For Candida spp., the treatment with CaDef2.1G27-K44 induces a process of regulated cell death with apoptosis-like features. GENERAL SIGNIFICANCE We show a new AMP bioinspired with physicochemical characteristics important for selectivity and antimicrobial activity, which is a promising candidate for drug development, mainly to control Candida infections.
Collapse
|
8
|
Liu X, Guo C, Zhuang K, Chen W, Zhang M, Dai Y, Tan L, Ran Y. A recyclable and light-triggered nanofibrous membrane against the emerging fungal pathogen Candida auris. PLoS Pathog 2022; 18:e1010534. [PMID: 35613180 PMCID: PMC9173615 DOI: 10.1371/journal.ppat.1010534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/07/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
The emerging "super fungus" Candida auris has become an important threat to human health due to its pandrug resistance and high lethality. Therefore, the development of novel antimicrobial strategy is essential. Antimicrobial photodynamic therapy (aPDT) has excellent performance in clinical applications. However, the relevant study on antifungal activity and the mechanism involved against C. auris remains scarce. Herein, a recyclable and biodegradable polylactic acid-hypocrellin A (PLA-HA) nanofibrous membrane is newly developed. In vitro PLA-HA-aPDT could significantly reduce the survival rate of C. auris plankton and its biofilms, and the fungicidal effect of the membrane is still significant after four repeated uses. Simultaneously, PLA-HA exhibits good biocompatibility and low hemolysis. In vivo experiments show that PLA-HA-aPDT can promote C. auris-infected wound healing, reduce inflammatory response, and without obvious toxic side-effects. Further results reveal that PLA-HA-aPDT could increase endogenous reactive oxygen species (ROS) levels, leading to mitochondrial dysfunction, release of cytochrome C, activation of metacaspase, and nuclear fragmentation, thereby triggering apoptosis of C. auris. Compared with HA, PLA-HA shows stronger controllability and reusability, which can greatly improve the utilization efficiency of HA alone. Taken together, the efficacy, safety and antifungal activity make PLA-HA-aPDT a highly promising antifungal candidate for skin or mucous membrane C. auris infection. It is urgent to develop new antifungal strategies to address the problem of Candida auris infection and drug resistance. Previous studies have revealed that antimicrobial photodynamic therapy (aPDT) based on natural products, such as hypocrellin A (HA), is a promising method in clinical applications. However, equivalent studies of aPDT on antifungal activity and its mechanism against C. auris remain scarce. Herein, we successfully prepared a recyclable, biodegradable, and light-driven antifungal PLA-HA nanofibrous membrane through the electrospinning technique. C. auris infection has been treated by aPDT in vitro and in vivo for the first time, especially HA-mediated aPDT. In vitro and in vivo experiments have provided sufficient lines of evidence that PLA-HA is a promising antifungal material for superficial C. auris infections due to its antifungal effect and excellent biocompatibility. Notably, there still remains a very high antifungal activity after utilizing PLA-HA four times. In addition, this study clarifies that the anti-C. auris mechanism of PLA-HA, namely, PLA-HA-mediated aPDT, is attributed to the formation of intracellular ROS, resulting in mitochondrial dysfunction and a decline in the mitochondrial transmembrane potential, releasing cytochrome C from mitochondria to the cytoplasm, promoting the activation of metacaspase, and inducing nuclear condensation and fragmentation of C. auris, thus triggering yeast cell apoptosis. This study lays a foundation for developing new antimicrobial nanofibrous dressings mediated by aPDT and provides an alternative strategy for the treatment of local fungal infectious diseases.
Collapse
Affiliation(s)
- Xinyao Liu
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Academician Workstation of Wanqing Liao, West China Hospital, Sichuan University, Chengdu, China
| | - Chuan Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Kaiwen Zhuang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Academician Workstation of Wanqing Liao, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, Texas United States of America
| | - Muqiu Zhang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Academician Workstation of Wanqing Liao, West China Hospital, Sichuan University, Chengdu, China
| | - Yalin Dai
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Tan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- * E-mail: (LT); (YR)
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Academician Workstation of Wanqing Liao, West China Hospital, Sichuan University, Chengdu, China
- * E-mail: (LT); (YR)
| |
Collapse
|
9
|
Antifungal Activity of a Neodymium-Doped Yttrium Aluminum Garnet 1,064-Nanometer Laser against Sporothrix globosa by Inducing Apoptosis and Pyroptosis via the NLRP3/Caspase-1 Signaling Pathway: In Vitro and In Vivo Study. Microbiol Spectr 2021; 9:e0136421. [PMID: 34908455 PMCID: PMC8672895 DOI: 10.1128/spectrum.01364-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sporotrichosis is a deep fungal infection caused by Sporothrix species. Currently, itraconazole is the main treatment, but fungal resistance, adverse effects, and drug interactions remain major concerns, especially in patients with immune dysfunction. Therefore, an alternative treatment is greatly in demand. This animal study aimed to investigate the inhibitory effect of neodymium-doped yttrium aluminum garnet (Nd:YAG) 1,064-nm laser treatment on Sporothrix globosa and to explore whether it happens through regulation of the Nod-like receptor thermoprotein domain-related protein 3 (NLRP3)/caspase-1 pyroptosis and apoptosis pathway. After laser irradiation, a series of studies, including assays of viability (using the cell counting kit-8 [CCK-8]), morphological structure changes, reactive oxygen species (ROS) accumulation, mitochondrial membrane potential, oxidative stress, cell cycle progression, and metacaspase activation, were conducted to estimate the effect of Nd:YAG 1,064-nm laser treatment on Sporothrix globosa cell apoptosis in vitro. For in vivo studies, mice were infected with S. globosa and then treated with laser or itraconazole, and their footpad skin lesions and the changes in the histology of tissue samples were compared. In addition, changes in the levels of NLRP3, caspase-1, and caspase-3 were assessed by immunohistochemistry, while the levels of interleukin 17 (IL-17), interferon gamma (IFN-γ), and transforming growth factor β1 (TGF-β1) in peripheral blood were tested by enzyme-linked immunosorbent assay (ELISA). The in vitro growth of S. globosa was inhibited and apoptosis was observed after laser treatment. According to the in vivo studies, the efficacy of the laser treatment was similar to that of itraconazole. Moreover, the NLRP3/caspase-1 pyroptosis pathway was activated, with a Th1/Th17 cell response, and the expression of caspase-3 was also upregulated. Nd:YAG 1,064-nm laser treatment can effectively inhibit the growth of S. globosa by activating fungal apoptosis and pyroptosis through the NLRP3/caspase-1 pathway. Therefore, Nd:YAG 1,064-nm laser irradiation is an alternative for sporotrichosis therapy. IMPORTANCE Nd:YAG 1,064-nm laser irradiation is a useful alternative for the treatment of sporotrichosis, especially in patients with liver dysfunction, pregnant women, and children, for whom the administration of antifungal drugs is not suitable. It may improve the overall treatment effect by shortening the duration of antifungal treatment and reducing tissue inflammation.
Collapse
|
10
|
Extracellular pH and high concentration of potassium regulate the primary necrosis in the yeast Saccharomyces cerevisiae. Arch Microbiol 2021; 204:35. [DOI: 10.1007/s00203-021-02708-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
|
11
|
Yan T, Li F, Li J, Chen F. Antifungal Activity of ToAP2D Peptide Against Sporothrix globosa. Front Bioeng Biotechnol 2021; 9:761518. [PMID: 34746111 PMCID: PMC8566951 DOI: 10.3389/fbioe.2021.761518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023] Open
Abstract
Improving clinical efficacy and reducing treatment time have been the focus of sporotrichosis therapy. Antimicrobial peptides ToAP2A, ToAP2C, and ToAP2D were synthesized on the basis of ToAP2 (AP02759), a peptide derived from the antimicrobial peptide database by the database filtering technology, and their physicochemical characteristics were analyzed. Compared with template peptide ToAP2, the modified peptides had much shorter length, lower molecular weight but significantly greater stability, which in return resulted in increases in the aliphatic index, hydrophilicity, and protein binding ability. Here, we show that the three derived peptides inhibit the growth of Sporothrix globosa, among which ToAP2D had the strongest anti-fungal activity. ToAP2D showed good serum stability without acute toxicity. The ToAP2D treatment inhibited the growth of S. globosa and enhanced apoptosis, which was evidenced by the upregulation of apoptosis-related protein caspase-3. The scanning electron microscopy analysis revealed deformation and rupture of S. globosa. The levels of mitochondrial membrane potential were decreased and that of the reactive oxygen species (ROS) were increased in S. globosa upon ToAP2D treatment. Moreover, ToAP2D activated metacaspase. In the in vivo study, we further demonstrated that ToAP2D inhibited the S. globosa infection of mice footpads, and its efficiency was nearly comparable to itraconazole. In summary, our results suggest that antimicrobial peptide ToAP2D has the potential for sporotrichosis therapy.
Collapse
Affiliation(s)
- Tianyi Yan
- Department of Dermatology, Second Hospital of Jilin University, Changchun, China
| | - Fuqiu Li
- Department of Dermatology, Second Hospital of Jilin University, Changchun, China
| | - Jinran Li
- Department of Dermatology, Second Hospital of Jilin University, Changchun, China
| | - Feng Chen
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Extending the Proteomic Characterization of Candida albicans Exposed to Stress and Apoptotic Inducers through Data-Independent Acquisition Mass Spectrometry. mSystems 2021; 6:e0094621. [PMID: 34609160 PMCID: PMC8547427 DOI: 10.1128/msystems.00946-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Candida albicans is a commensal fungus that causes systemic infections in immunosuppressed patients. In order to deal with the changing environment during commensalism or infection, C. albicans must reprogram its proteome. Characterizing the stress-induced changes in the proteome that C. albicans uses to survive should be very useful in the development of new antifungal drugs. We studied the C. albicans global proteome after exposure to hydrogen peroxide (H2O2) and acetic acid (AA), using a data-independent acquisition mass spectrometry (DIA-MS) strategy. More than 2,000 C. albicans proteins were quantified using an ion library previously constructed using data-dependent acquisition mass spectrometry (DDA-MS). C. albicans responded to treatment with H2O2 with an increase in the abundance of many proteins involved in the oxidative stress response, protein folding, and proteasome-dependent catabolism, which led to increased proteasome activity. The data revealed a previously unknown key role for Prn1, a protein similar to pirins, in the oxidative stress response. Treatment with AA resulted in a general decrease in the abundance of proteins involved in amino acid biosynthesis, protein folding, and rRNA processing. Almost all proteasome proteins declined, as did proteasome activity. Apoptosis was observed after treatment with H2O2 but not AA. A targeted proteomic study of 32 proteins related to apoptosis in yeast supported the results obtained by DIA-MS and allowed the creation of an efficient method to quantify relevant proteins after treatment with stressors (H2O2, AA, and amphotericin B). This approach also uncovered a main role for Oye32, an oxidoreductase, suggesting this protein as a possible apoptotic marker common to many stressors. IMPORTANCE Fungal infections are a worldwide health problem, especially in immunocompromised patients and patients with chronic disorders. Invasive candidiasis, caused mainly by C. albicans, is among the most common fungal diseases. Despite the existence of treatments to combat candidiasis, the spectrum of drugs available is limited. For the discovery of new drug targets, it is essential to know the pathogen response to different stress conditions. Our study provides a global vision of proteomic remodeling in C. albicans after exposure to different agents, such as hydrogen peroxide, acetic acid, and amphotericin B, that can cause apoptotic cell death. These results revealed the significance of many proteins related to oxidative stress response and proteasome activity, among others. Of note, the discovery of Prn1 as a key protein in the defense against oxidative stress as well the increase in the abundance of Oye32 protein when apoptotic process occurred point them out as possible drug targets.
Collapse
|
13
|
Wani MY, Ahmad A, Aqlan FM, Al-Bogami AS. Citral derivative activates cell cycle arrest and apoptosis signaling pathways in Candida albicans by generating oxidative stress. Bioorg Chem 2021; 115:105260. [PMID: 34399319 DOI: 10.1016/j.bioorg.2021.105260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022]
Abstract
For combating life-threatening infections caused by Candida albicans there is an urgent requirement of new antifungal agents with a targeted activity and low host cytotoxicity. Manipulating the mechanistic basis of cell death decision in yeast may provide an alternative approach for future antifungal therapeutics. Herein, the effect of an active citral derivative (Cd1) over the physiology of cell death in C. albicans was assessed. The viability of C. albicans SC5314 cells was determined by broth microdilution assay. The crucial morphological changes and apoptotic markers in Cd1-exposed yeast cells were analyzed. Subsequently the results confirmed that Cd1 arrested growth and caused death in yeast cells. Furthermore, this molecule inhibited antioxidant enzymes that resulted in production of reactive oxygen species. DNA fragmentation and condensation, phosphatidylserine exposure at the outer leaflet of cell membrane, mitochondrial disintegration as well as accumulation of cells at G2/M phase of the cell cycle were recorded. Altogether, this derivative induced apoptotic-type cell death in C. albicans SC5314.
Collapse
Affiliation(s)
- Mohmmad Younus Wani
- University of Jeddah, College of Science, Department of Chemistry, Jeddah 21589, Saudi Arabia.
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Faisal Mohammed Aqlan
- University of Jeddah, College of Science, Department of Chemistry, Jeddah 21589, Saudi Arabia
| | - Abdullah Saad Al-Bogami
- University of Jeddah, College of Science, Department of Chemistry, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Gowsalya R, Ravi C, Nachiappan V. Human OVCA2 and its homolog FSH3-induced apoptosis in Saccharomyces cerevisiae. Curr Genet 2021; 67:631-640. [PMID: 33715035 DOI: 10.1007/s00294-021-01171-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 01/26/2023]
Abstract
Mammalian ovarian tumor suppressor candidate 2 (OVCA2) gene belongs to the family of serine hydrolase (FSH). This study aimed to elucidate the functional similarities of OVCA2 with its yeast homolog genes (FSH1, FSH2, and FSH3) regarding apoptosis. We found that the expression of OVCA2 in Saccharomyces cerevisiae increased production of reactive oxygen species (ROS), decreased cell growth, disturbed mitochondrial morphology, reduced membrane potential, increased chromatin condensation, and externalization of phosphatidylserine (PS) (annexin V/propidium iodide staining) indicating induced apoptotic cell death in yeast. We also showed that complementation of OVCA2 in fsh3Δ cells reduced cell growth and increased the apoptotic phenotypes. Collectively, our results suggest that complementation of human OVCA2 in fsh3Δ cells induced apoptosis in S. cerevisiae.
Collapse
Affiliation(s)
- Ramachandran Gowsalya
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620024, India
| | - Chidambaram Ravi
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620024, India
| | - Vasanthi Nachiappan
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620024, India.
| |
Collapse
|
15
|
Raj A, Nachiappan V. Hydroquinone exposure accumulates neutral lipid by the activation of CDP-DAG pathway in Saccharomyces cerevisiae. Toxicol Res (Camb) 2021; 10:354-367. [PMID: 33884185 DOI: 10.1093/toxres/tfab005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 11/13/2022] Open
Abstract
Benzene metabolites (HQ and BQ) are toxic compounds and their presence in human cause alteration in cellular respiration and kidney damage. In the current study, Saccharomyces cerevisiae has been used as a model organism and acute exposure of hydroquinone (HQ) decreased cell growth and increased reactive oxygen species (ROS). The expression of apoptosis regulatory genes (YCA1, NUC1, YSP1 and AIF1) were increased with HQ exposure in the wild-type cells. HQ exposure in the wild-type cells altered both the phospholipid and neutral lipid levels. Phosphatidylcholine is a vital membrane lipid that has a vital role in membrane biogenesis and was increased significantly with HQ. The neutral lipid results were supported with lipid droplets data and mRNA expression study. The phospholipid knockouts (Kennedy pathway) accumulated neutral lipids via the CDP-DAG (cytidine-diphosphate-diacylglycerol) pathway genes both in the presence and absence of HQ.
Collapse
Affiliation(s)
- Abhishek Raj
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| |
Collapse
|
16
|
Role of Two Metacaspases in Development and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae. mBio 2021; 12:mBio.03471-20. [PMID: 33563831 PMCID: PMC7885106 DOI: 10.1128/mbio.03471-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Magnaporthe oryzae causes rice blast disease that threatens global food security by resulting in the severe loss of rice production every year. A tightly regulated life cycle allows M. oryzae to disarm the host plant immune system during its biotrophic stage before triggering plant cell death in its necrotrophic stage. Rice blast disease caused by Magnaporthe oryzae is a devastating disease of cultivated rice worldwide. Infections by this fungus lead to a significant reduction in rice yields and threats to food security. To gain better insight into growth and cell death in M. oryzae during infection, we characterized two predicted M. oryzae metacaspase proteins, MoMca1 and MoMca2. These proteins appear to be functionally redundant and can complement the yeast Yca1 homologue. Biochemical analysis revealed that M. oryzae metacaspases exhibited Ca2+-dependent caspase activity in vitro. Deletion of both MoMca1 and MoMca2 in M. oryzae resulted in reduced sporulation, delay in conidial germination, and attenuation of disease severity. In addition, the double ΔMomca1mca2 mutant strain showed increased radial growth in the presence of oxidative stress. Interestingly, the ΔMomca1mca2 strain showed an increased accumulation of insoluble aggregates compared to the wild-type strain during vegetative growth. Our findings suggest that MoMca1 and MoMca2 promote the clearance of insoluble aggregates in M. oryzae, demonstrating the important role these metacaspases have in fungal protein homeostasis. Furthermore, these metacaspase proteins may play additional roles, like in regulating stress responses, that would help maintain the fitness of fungal cells required for host infection.
Collapse
|
17
|
Simonis P, Garjonyte R, Stirke A. Mediated amperometry as a prospective method for the investigation of electroporation. Sci Rep 2020; 10:19094. [PMID: 33154473 PMCID: PMC7644768 DOI: 10.1038/s41598-020-76086-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 10/22/2020] [Indexed: 12/23/2022] Open
Abstract
Pulsed electric field effects induced in a membrane, as well as intracellular structures, depend on cell type, field and media parameters. To achieve desired outcomes, membranes should be permeabilized in a controlled manner, and thus efficiency of electroporation should be investigated in advance. Here, we present a framework for using mediated amperometry as a prospective method for the investigation of electroporation and its effects on cellular machinery. Whole-cell sensors with single mediator systems comprised of hydrophilic or lipophilic mediators were successfully employed to investigate membrane permeability as well as cellular responses. Exposure of yeast cells to single electric field pulse (τ = 300 µs, E = 16 kV/cm) resulted in up to tenfold increase of current strength mediated with hydrophilic mediators. Exposure to PEF resulted in decrease of menadione mediated current strength (from 138 ± 15 to 32 ± 15 nA), which could be completely compensated by supplementing electrolyte with NADH.
Collapse
Affiliation(s)
- Povilas Simonis
- State Research Institute, Center for Physical Sciences and Technology, Saulėtekio al. 3, Vilnius, Lithuania.
| | - Rasa Garjonyte
- State Research Institute, Center for Physical Sciences and Technology, Saulėtekio al. 3, Vilnius, Lithuania
| | - Arunas Stirke
- State Research Institute, Center for Physical Sciences and Technology, Saulėtekio al. 3, Vilnius, Lithuania
| |
Collapse
|
18
|
Chen X, Shi Y, Li Y, Su S, Wang P, Sun S. Antifungal effects and potential mechanisms of lonidamine in combination with fluconazole against Candida albicans. Expert Rev Anti Infect Ther 2020; 19:109-115. [PMID: 32924656 DOI: 10.1080/14787210.2020.1811684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The resistance of Candida albicans (C. albicans) to classical antifungals has been increasing significantly and poses great challenges to clinical treatment. The objective of this research is to evaluate whether the combination of lonidamine (LND) and fluconazole (FLC) have synergistic antifungal activity against C. albicans and to explore the underlying synergistic mechanisms against FLC-resistant C. albicans. METHODS The antifungal effect on resistant planktonic C. albicans and preformed biofilms were performed by broth microdilution assay and XTT reduction assay. The influence on hyphal growth, cellular ROS level, metacaspase activity and drug transporters were investigated by morphogenesis observation, DCFH-DA, FITC-VAD-FMK and rhodamine6G assay, respectively. RESULTS LND in combination with FLC exhibited synergistic antifungal effects against resistant planktonic C. albicans and preformed biofilms of C. albicans in the early stages (performed at 4 h and 8 h). The synergistic mechanisms associated with the inhibition of the hyphal growth and the activation of metacaspase, but were not related to mediate cellular ROS level or drug uptake and efflux in resistant C. albicans. CONCLUSION LND combined with FLC exhibited synergistic antifungal activity against resistant C. albicans, and the synergistic mechanisms were related to anti-biofilms and reduce virulence factors. EXPERT OPINION The emergence of fluconazole-resistant Candida albicans strains poses great challenges to clinical treatment. Drug combination of non-antifungals and fluconazole has attracted a lot of attention to overcome Candida albicans drug resistance.
Collapse
Affiliation(s)
- Xueqi Chen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, People's Republic of China
| | - Yinping Shi
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University , Jinan, People's Republic of China
| | - Yiman Li
- Department of Pharmacy, Beijing Tongren Hospital Affiliated to Capital Medical University , Beijing, China
| | - Shan Su
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, People's Republic of China
| | - Peng Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University , Jinan, People's Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University , Jinan, People's Republic of China.,Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan, People's Republic of China
| |
Collapse
|
19
|
Su S, Shi X, Xu W, Li Y, Chen X, Jia S, Sun S. Antifungal Activity and Potential Mechanism of Panobinostat in Combination With Fluconazole Against Candida albicans. Front Microbiol 2020; 11:1584. [PMID: 32765454 PMCID: PMC7378535 DOI: 10.3389/fmicb.2020.01584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Invasive fungal infections are an emerging problem worldwide, which bring huge health challenges. Candida albicans, the most common opportunistic fungal pathogen, can cause bloodstream infections with high mortality in susceptible hosts. At present, available antifungal agents used in clinical practice are limited, and most of them also have some serious adverse effects. The emergence of drug resistance because of the wide use of antifungal agents is a new limitation to successful patient therapy. Drug combination therapy is increasingly becoming a way to enhance antifungal efficacy, and reduce drug resistance and potential toxicity. Panobinostat, as a pan-histone deacetylase inhibitor, has been approved by the United States Food and Drug Administration as novel antitumor agents. In this study, the antifungal effects and mechanisms of panobinostat combined with fluconazole (FLC) against C. albicans were explored for the first time. The results indicated that panobinostat could work synergistically with FLC against resistant C. albicans, the minimal inhibitory concentration (MIC) of panobinostat could decrease from 128 to 0.5–2 μg/ml and the MIC of FLC could decrease from >512 to 0.25–0.5 μg/ml, and the fractional inhibitory concentration index (FICI) value ranged from 0.0024 to 0.0166. It was not only synergized against planktonic cells but also against C. albicans biofilms performed ≤8 h when panobinostat is combined with fluconazole; the sessile MIC (sMIC) of panobinostat could decrease from >128 to 0.5–8 μg/ml and the sMIC of FLC from >1024 to 0.5–2 μg/ml, and the FICI value was <0.5. The Galleria mellonella infection model was used to evaluate the in vivo effect of the drug combination, and the result showed that the survival rate could be improved obviously. Finally, we explored the synergistic mechanisms of the drug combination. The hyphal growth, which plays roles in drug resistance, was found to be inhibited, and metacaspase which is related to cell apoptosis was activated (p < 0.01), whereas the synergistic effects were proven not to be related to the efflux pumps (p > 0.05). These findings might provide novel insights into the antifungal drug discovery and the treatment of candidiasis caused by C. albicans.
Collapse
Affiliation(s)
- Shan Su
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiaohong Shi
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wei Xu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yiman Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xueqi Chen
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shuang Jia
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shujuan Sun
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
20
|
Kim S, Hwang JS, Lee DG. Lactoferricin B like peptide triggers mitochondrial disruption‐mediated apoptosis by inhibiting respiration under nitric oxide accumulation in
Candida albicans. IUBMB Life 2020; 72:1515-1527. [DOI: 10.1002/iub.2284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Suhyun Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch GroupKyungpook National University Daegu South Korea
| | - Jae Sam Hwang
- Department of Agricultural BiologyNational Academy of Agricultural Science, RDA Wanju Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch GroupKyungpook National University Daegu South Korea
| |
Collapse
|
21
|
Moon JE, Heo W, Lee SH, Lee SH, Lee HG, Lee JH, Kim YJ. Trehalose Protects the Probiotic Yeast Saccharomyces boulardii against Oxidative Stress-Induced Cell Death. J Microbiol Biotechnol 2020; 30:54-61. [PMID: 31546305 PMCID: PMC9728326 DOI: 10.4014/jmb.1906.06041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Saccharomyces boulardii is the only probiotic yeast with US Food and Drug Administration approval. It is routinely used to prevent or treat acute diarrhea and other gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. The formation of reactive oxygen species (ROS), specifically H2O2 during normal aerobic metabolism, contributes to programmed cell death and represents a risk to the viability of the probiotic microbe. Moreover, a loss of viability reduces the efficacy of the probiotic treatment. Therefore, inhibiting the accumulation of ROS in the oxidant environment could improve the viability of the probiotic yeast and lead to more efficacious treatment. Here, we provide evidence that supplementation with a non-reducing disaccharide, namely trehalose, enhanced the viability of S. boulardii exposed to an oxidative environment by preventing metacaspase YCA1-mediated programmed cell death through inhibition of intracellular ROS production. Our results suggest that supplementation with S. boulardii together with trehalose could increase the viability of the organism, and thus improve its effectiveness as a probiotic and as a treatment for acute diarrhea and other gastrointestinal disorders.
Collapse
Affiliation(s)
- Ji Eun Moon
- Department of Food and Biotechnology, Korea University, Sejong 3009, Republic of Korea
| | - Wan Heo
- Institutes of Natural Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Sang Hoon Lee
- Department of Food and Biotechnology, Korea University, Sejong 3009, Republic of Korea
| | - Suk Hee Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Taegu 41566, Republic of Korea
| | - Hong Gu Lee
- Department of Animal Science and Technology, College of Animal Bioscience and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong 3009, Republic of Korea,Corresponding authors J.H.L. Phone: +82-44-860-1764 Fax: +82-44-860-1430 E-mail:
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 3009, Republic of Korea,Y.J.K. Phone: +82-44-860-1435 Fax: +82-44-860-1780 E-mail:
| |
Collapse
|
22
|
Li Y, Jiao P, Li Y, Gong Y, Chen X, Sun S. The Synergistic Antifungal Effect and Potential Mechanism of D-Penicillamine Combined With Fluconazole Against Candida albicans. Front Microbiol 2019; 10:2853. [PMID: 31921035 PMCID: PMC6930176 DOI: 10.3389/fmicb.2019.02853] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Over the last few decades, candidiasis has exhibited an increasing incidence worldwide, causing high mortality in immunocompromised patients. Candida albicans is one of the leading opportunistic fungal pathogens. However, due to the increased use of antifungal agents, resistance of C. albicans to conventional agents, especially fluconazole, has frequently emerged. Therefore, research on the use of combinations of current drugs to sensitize antifungal agents and overcome fungal resistance has attracted considerable attention. This study demonstrated for the first time that D-penicillamine (PCA) combined with fluconazole showed a synergistic effect against C. albicans. PCA combined with fluconazole not only showed synergistic effects against planktonic cells of C. albicans, but also showed synergistic effects against C. albicans biofilms formed within 12 h in vitro. In addition, a Galleria mellonella infection model was used to evaluate the in vivo effects of this drug combination. The results showed that the combination of the two drugs could improve the survival rate, decrease the fungal burden, and reduce the tissue invasion of G. mellonella larvae. Finally, we explored the potential synergistic mechanisms of the drug combination, mainly including inhibition of the morphological transformation, reduction of the intracellular calcium concentration, and the activation of metacaspase, which is closely related to cell apoptosis. These findings might provide novel insights into antifungal drug discovery and the treatment of candidiasis caused by C. albicans.
Collapse
Affiliation(s)
- Yiman Li
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ping Jiao
- Department of Pharmacy, Jinan Maternity and Child Care Hospital, Jinan, China
| | - Yuanyuan Li
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Ying Gong
- Department of Pharmacy, Wuxi People's Hospital, Wuxi, China
| | - Xueqi Chen
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
23
|
Nanosecond duration pulsed electric field together with formic acid triggers caspase-dependent apoptosis in pathogenic yeasts. Bioelectrochemistry 2019; 128:148-154. [DOI: 10.1016/j.bioelechem.2019.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/13/2023]
|
24
|
FSH1 overexpression triggers apoptosis in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 2019; 112:1775-1784. [DOI: 10.1007/s10482-019-01310-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
|
25
|
Lee W, Woo ER, Lee DG. Effect of apigenin isolated from Aster yomena against Candida albicans: apigenin-triggered apoptotic pathway regulated by mitochondrial calcium signaling. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:19-28. [PMID: 30408533 DOI: 10.1016/j.jep.2018.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/22/2018] [Accepted: 11/03/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aster yomena, a perennial herb that grows mainly in South Korea, has been employed in the traditional temple food for antibiotic efficacy. Recently, it was reported that apigenin isolated from A. yomena has a physical antifungal mechanism targeting membrane against Candida albicans. AIM OF THE STUDY Our study aimed to investigate the biochemical responses underlying the antifungal activity of apigenin isolated from A. yomena due to lack studies reporting the investigation of intracellular responses of apigenin in C. albicans. MATERIALS AND METHODS Apigenin was isolated from the aerial parts of A. yomena. To evaluate apigenin-induced inhibitory effects and membrane damages, the measurement of the cell viability assay and the flux of cytosolic components were performed with at various concentrations. Intracellular external potassium and calcium levels were assayed by an ion-selective electrode meter, Fura2-AM and Rhod2-AM, respectively. Mitochondrial dysfunctions were analyzed by using JC-1, Mitotracker Green FM, and MitoSOX Red dye. H2DCFDA, glutathione, and MDA assay were used to detect oxidative damage. Also, flow cytometry was carried out to detect apoptotic hallmarks using Annexin V-PI, TUNEL, and FITC-VAD-FMK staining. Tetraethylammoniumchloride (TEA), Ruthenium red (RR), and N-acetylcysteine (NAC) were used as a potassium channel blocker, mitochondrial calcium uptake inhibitor, and reactive oxygen species (ROS) scavenger, respectively. RESULTS We confirmed that there was no decrease of cell survival percentages in crude extracts of A. yomena treatment, however, only isolated apigenin has the antifungal effect in C. albicans. Apigenin triggered a dose-dependent mitochondrial calcium uptake followed by mitochondrial dysfunction, loss of the membrane potential and an increase in the mitochondrial mass and ROS. Apigenin also induced intracellular redox imbalance as indicated by the ROS accumulation, glutathione oxidation, and lipid peroxidation. Interestingly, NAC failed the restore the mitochondrial calcium levels and thus alleviate the mitochondrial damages, however, RR reduced the apigenin-induced redox imbalance. Furthermore, apigenin induced apoptosis activation marked by the phosphatidylserine exposure, DNA fragmentation, and caspase activation. The pro-apoptotic effect of apigenin was counteracted by RR and NAC pretreatment. In particular, RR significantly reduced the pro-apoptotic responses. CONCLUSIONS Apigenin isolated from A. yomena induced mitochondrial-mediated apoptotic pathway, and mitochondrial calcium signaling is main factor in its pathway in C. albicans.
Collapse
Affiliation(s)
- Wonjong Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Eun-Rhan Woo
- College of Pharmacy, Chosun University, 375 Seosukdong, Donggu, Gwangju 61452, Republic of Korea.
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| |
Collapse
|
26
|
Reza MSA, Hasan MM, Kamruzzaman M, Hossain MI, Zubair MA, Bari L, Abedin MZ, Reza MA, Khalid‐Bin‐Ferdaus KM, Haque KMF, Islam K, Ahmed MU, Hossain MK. Study of a common azo food dye in mice model: Toxicity reports and its relation to carcinogenicity. Food Sci Nutr 2019; 7:667-677. [PMID: 30847145 PMCID: PMC6392843 DOI: 10.1002/fsn3.906] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/15/2023] Open
Abstract
This study was conducted to evaluate the toxic effects of an azo dye carmoisine widely used in foods and to investigate its relation to carcinogenicity. Carmoisine administered into mice orally in four different doses as control, low, medium, and high equivalent to 0, 4, 200, and 400 mg/kg bw, respectively, for 120 days. The key toxicological endpoint was observed including animal body weight, organ weights, hematology, biochemistry, and molecular biology assessment. The body weights of medium- and high-dose carmoisine-treated mice group were significantly decreased as compared to the control mice group. Platelet, white blood cell and monocyte counts of treated group were considerably higher, while Hb and red blood cell counts were drastically lower than the control group. The biochemical parameters such as serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total protein, globulin, urea, and creatinine level were significantly increased, while serum cholesterol level was decreased after treatment as compared to the control. RT-PCR results showed that expression of Bcl-x and PARP gene was intensively increased, whereas expression of p53 gene was decreased in the mouse liver tissues treated with carmoisine. This study revealed that high-dose (400 mg/kg bw) treatment of carmoisine was attributable to renal failure and hepatotoxicity. It also would be suspected as a culprit for liver oncogenesis.
Collapse
Affiliation(s)
- Md. Sajib Al Reza
- Department of Food Technology and Nutritional ScienceFaculty of Life ScienceMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Mahmudul Hasan
- Department of Food Technology and Nutritional ScienceFaculty of Life ScienceMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Kamruzzaman
- Protein Science LabDepartment of Genetic Engineering and BiotechnologyFaculty of ScienceUniversity of RajshahiRajshahiBangladesh
| | - Md. Imam Hossain
- Department of Biotechnology and Genetic EngineeringFaculty of Life ScienceMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Abu Zubair
- Department of Food Technology and Nutritional ScienceFaculty of Life ScienceMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Luthfunnesa Bari
- Department of Food Technology and Nutritional ScienceFaculty of Life ScienceMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Zainul Abedin
- Department of Food Technology and Nutritional ScienceFaculty of Life ScienceMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Abu Reza
- Protein Science LabDepartment of Genetic Engineering and BiotechnologyFaculty of ScienceUniversity of RajshahiRajshahiBangladesh
| | - Khandaker Md. Khalid‐Bin‐Ferdaus
- Protein Science LabDepartment of Genetic Engineering and BiotechnologyFaculty of ScienceUniversity of RajshahiRajshahiBangladesh
| | - Kazi Md. Faisal Haque
- Protein Science LabDepartment of Genetic Engineering and BiotechnologyFaculty of ScienceUniversity of RajshahiRajshahiBangladesh
| | - Khairul Islam
- Department of Biochemistry and Molecular BiologyFaculty of Life ScienceMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Mahtab Uddin Ahmed
- Biochemistry & Cell Biology LabBangladesh University of Health SciencesDhakaBangladesh
| | - Md. Khaled Hossain
- Department of Biochemistry and molecular biologyFaculty of ScienceUniversity of RajshahiRajshahiBangladesh
| |
Collapse
|
27
|
The metacaspase Yca1 maintains proteostasis through multiple interactions with the ubiquitin system. Cell Discov 2019; 5:6. [PMID: 30675380 PMCID: PMC6341073 DOI: 10.1038/s41421-018-0071-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 01/07/2023] Open
Abstract
Metacaspase enzymes are critical regulatory factors that paradoxically engage apoptosis and also maintain cell viability. For example, the Saccharomyces cerevisiae metacaspase Yca1 has been shown to be important for maintaining cellular proteostasis during stress, and the loss of this enzyme results in increased retention of aggregated material within the insoluble proteome. However, the molecular mechanism(s) by which Yca1 maintains cellular proteostasis remains unknown. Here, using proteomic analysis coupled with protein interaction studies we identified a direct interplay between Yca1 and the ubiquitin-proteasome system. We noted multiple ubiquitination sites on Yca1 and established Rsp5 as the candidate E3 ligase involved in this process. Further characterization of the ubiquitination sites identified the K355 residue on Yca1 as a critical modification for proteostasis function, managing both insoluble protein content and vacuolar response. We also identified a Yca1 phosphorylation site at S346, which promoted interaction with Rsp5 and the aggregate dispersal function of the metacaspase. Interestingly, proteomic analysis also revealed that Yca1 interacts with the ubiquitin precursor protein Rps31, cleaving the protein to release free ubiquitin. In turn, loss of Yca1 or its catalytic activity reduced the levels of monomeric ubiquitin in vivo, concurrent to increased protein aggregation. The K355 and S346 residues were also observed to influence the abundance of low-molecular weight ubiquitin. Together, these observations suggest that Yca1 maintains proteostasis and limits protein aggregation by ensuring a free flow of monoubiquitin, an essential precursor for ligase-enhanced Yca1 enzymatic activity and general proteasome-mediated protein degradation.
Collapse
|
28
|
de Oliveira Mello É, Taveira GB, de Oliveira Carvalho A, Gomes VM. Improved smallest peptides based on positive charge increase of the γ-core motif from PνD 1 and their mechanism of action against Candida species. Int J Nanomedicine 2019; 14:407-420. [PMID: 30666103 PMCID: PMC6331069 DOI: 10.2147/ijn.s187957] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Plant defensins have a hallmark γ-core motif (GXCX3-9C) that is related to their antimicrobial properties. The aim of this work was to design synthetic peptides based on the region corresponding to the PvD1 defensin γ-core that are the smallest amino acid sequences that bear the strongest biological activity. METHODS We made rational substitutions of negatively charged amino acid residues with positively charged ones, and the reduction in length in the selected PvD1 γ-core sequence to verify whether the increased net positive charges and shortened length are related to the increase in antifungal activity. Herein, we opted to evaluate the action mechanism of γ33-41 PvD1 ++ peptide due to its significant inhibitory effect on tested yeasts. In addition, it is the smallest construct comprising only nine amino acid residues, giving it a better possibility to be a prototype for designing a new antifungal drug, with lower costs to the pharmaceutical industry while still maintaining the strongest antimicrobial properties. RESULTS The γ33-41 PvD1 ++ peptide caused the most toxic effects in the yeast Candida buinensis, leading to membrane permeabilization, viability loss, endogenous reactive oxygen species increase, the activation of metacaspase, and the loss of mitochondrial functionality, suggesting that this peptide triggers cell death via apoptosis. CONCLUSION We observed that the antifungal activity of PvD1 is not strictly localized in the structural domain, which comprises the γ-core region and that the increase in the net positive charge is directly related to the increase in antifungal activity.
Collapse
Affiliation(s)
- Érica de Oliveira Mello
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadualdo Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil, ;
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadualdo Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil, ;
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadualdo Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil, ;
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadualdo Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil, ;
| |
Collapse
|
29
|
Jia C, Zhang J, Yu L, Wang C, Yang Y, Rong X, Xu K, Chu M. Antifungal Activity of Coumarin Against Candida albicans Is Related to Apoptosis. Front Cell Infect Microbiol 2019; 8:445. [PMID: 30662877 PMCID: PMC6328497 DOI: 10.3389/fcimb.2018.00445] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Coumarin (1,2-benzopyrone), an aromatic oxygen-containing heterocyclic compound, has various biological functions. Previous studies have demonstrated that coumarin and its derivatives exhibit antifungal activity against Candida albicans. In this study, we investigated the exact mechanism by which coumarin works against this fungus using Annexin V-FITC/PI double staining, TUNEL assay, and DAPI staining, and found that it induced a series of apoptotic features, including phosphatidylserine (PS) externalization, DNA fragmentation, and nuclear condensation. Moreover, it also induced cytochrome c release from the mitochondria to the cytoplasm and metacaspase activation. Further study revealed that intracellular reactive oxygen species (ROS) levels were increased and mitochondrial functions, such as mitochondrial membrane potential and mitochondrial morphology, were altered after treatment with coumarin. Cytosolic and mitochondrial Ca2+ levels were also found to be elevated. However, pretreatment with ruthenium red (RR), a known mitochondrial Ca2+ channel inhibitor, attenuated coumarin-mediated DNA fragmentation and metacaspase activity, indicating that the coumarin-induced C. albicans apoptosis is associated with mitochondrial Ca2+ influx. Finally, coumarin was found to be low-toxic and effective in prolonging the survival of C. albicans-infected mice. This study highlights the antifungal activity and mechanism of coumarin against C. albicans and provides a potential treatment strategy for C. albicans infection.
Collapse
Affiliation(s)
- Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Zhang
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Yu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenglu Wang
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yijia Yang
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xing Rong
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Maoping Chu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
Regulated Cell Death as a Therapeutic Target for Novel Antifungal Peptides and Biologics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5473817. [PMID: 29854086 PMCID: PMC5944218 DOI: 10.1155/2018/5473817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/07/2018] [Indexed: 12/17/2022]
Abstract
The rise of microbial pathogens refractory to conventional antibiotics represents one of the most urgent and global public health concerns for the 21st century. Emergence of Candida auris isolates and the persistence of invasive mold infections that resist existing treatment and cause severe illness has underscored the threat of drug-resistant fungal infections. To meet these growing challenges, mechanistically novel agents and strategies are needed that surpass the conventional fungistatic or fungicidal drug actions. Host defense peptides have long been misunderstood as indiscriminant membrane detergents. However, evidence gathered over the past decade clearly points to their sophisticated and selective mechanisms of action, including exploiting regulated cell death pathways of their target pathogens. Such peptides perturb transmembrane potential and mitochondrial energetics, inducing phosphatidylserine accessibility and metacaspase activation in fungi. These mechanisms are often multimodal, affording target pathogens fewer resistance options as compared to traditional small molecule drugs. Here, recent advances in the field are examined regarding regulated cell death subroutines as potential therapeutic targets for innovative anti-infective peptides against pathogenic fungi. Furthering knowledge of protective host defense peptide interactions with target pathogens is key to advancing and applying novel prophylactic and therapeutic countermeasures to fungal resistance and pathogenesis.
Collapse
|
31
|
CGA-N12, a peptide derived from chromogranin A, promotes apoptosis of Candida tropicalis by attenuating mitochondrial functions. Biochem J 2018; 475:1385-1396. [PMID: 29559502 PMCID: PMC5902677 DOI: 10.1042/bcj20170894] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
CGA-N12 (the amino acid sequence from the 65th to the 76th residue of the N-terminus of chromagranin A) is an antifungal peptide derived from human chromogranin A (CGA). In our previous investigation, CGA-N12 was found to have specific anti-candidal activity, though the mechanism of action remained unclear. Here, we investigated the effects of CGA-N12 on mitochondria. We found that CGA-N12 induced an over-generation of intracellular reactive oxygen species and dissipation in mitochondrial membrane potential, in which the former plays key roles in the initiation of apoptosis and the latter is a sign of the cell apoptosis. Accordingly, we assessed the apoptosis features of Candida tropicalis cells after treatment with CGA-N12 and found the following: leakage of cytochrome c and uptake of calcium ions into mitochondria and the cytosol; metacaspase activation; and apoptotic phenotypes, such as chromatin condensation and DNA degradation. In conclusion, CGA-N12 is capable of inducing apoptosis in C. tropicalis cells through mitochondrial dysfunction and metacaspase activation. Antifungal peptide CGA-N12 from human CGA exhibits a novel apoptotic mechanism as an antifungal agent.
Collapse
|
32
|
Yeast Cells Exposed to Exogenous Palmitoleic Acid Either Adapt to Stress and Survive or Commit to Regulated Liponecrosis and Die. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3074769. [PMID: 29636840 PMCID: PMC5831759 DOI: 10.1155/2018/3074769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
A disturbed homeostasis of cellular lipids and the resulting lipotoxicity are considered to be key contributors to many human pathologies, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer. The yeast Saccharomyces cerevisiae has been successfully used for uncovering molecular mechanisms through which impaired lipid metabolism causes lipotoxicity and elicits different forms of regulated cell death. Here, we discuss mechanisms of the “liponecrotic” mode of regulated cell death in S. cerevisiae. This mode of regulated cell death can be initiated in response to a brief treatment of yeast with exogenous palmitoleic acid. Such treatment prompts the incorporation of exogenously added palmitoleic acid into phospholipids and neutral lipids. This orchestrates a global remodeling of lipid metabolism and transfer in the endoplasmic reticulum, mitochondria, lipid droplets, and the plasma membrane. Certain features of such remodeling play essential roles either in committing yeast to liponecrosis or in executing this mode of regulated cell death. We also outline four processes through which yeast cells actively resist liponecrosis by adapting to the cellular stress imposed by palmitoleic acid and maintaining viability. These prosurvival cellular processes are confined in the endoplasmic reticulum, lipid droplets, peroxisomes, autophagosomes, vacuoles, and the cytosol.
Collapse
|
33
|
Carmona-Gutierrez D, Bauer MA, Zimmermann A, Aguilera A, Austriaco N, Ayscough K, Balzan R, Bar-Nun S, Barrientos A, Belenky P, Blondel M, Braun RJ, Breitenbach M, Burhans WC, Büttner S, Cavalieri D, Chang M, Cooper KF, Côrte-Real M, Costa V, Cullin C, Dawes I, Dengjel J, Dickman MB, Eisenberg T, Fahrenkrog B, Fasel N, Fröhlich KU, Gargouri A, Giannattasio S, Goffrini P, Gourlay CW, Grant CM, Greenwood MT, Guaragnella N, Heger T, Heinisch J, Herker E, Herrmann JM, Hofer S, Jiménez-Ruiz A, Jungwirth H, Kainz K, Kontoyiannis DP, Ludovico P, Manon S, Martegani E, Mazzoni C, Megeney LA, Meisinger C, Nielsen J, Nyström T, Osiewacz HD, Outeiro TF, Park HO, Pendl T, Petranovic D, Picot S, Polčic P, Powers T, Ramsdale M, Rinnerthaler M, Rockenfeller P, Ruckenstuhl C, Schaffrath R, Segovia M, Severin FF, Sharon A, Sigrist SJ, Sommer-Ruck C, Sousa MJ, Thevelein JM, Thevissen K, Titorenko V, Toledano MB, Tuite M, Vögtle FN, Westermann B, Winderickx J, Wissing S, Wölfl S, Zhang ZJ, Zhao RY, Zhou B, Galluzzi L, Kroemer G, Madeo F. Guidelines and recommendations on yeast cell death nomenclature. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:4-31. [PMID: 29354647 PMCID: PMC5772036 DOI: 10.15698/mic2018.01.607] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 12/18/2022]
Abstract
Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi-nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ-ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou-tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au-thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro-gress of this vibrant field of research.
Collapse
Affiliation(s)
| | - Maria Anna Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andrés Aguilera
- Centro Andaluz de Biología, Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Sevilla, Spain
| | | | - Kathryn Ayscough
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Rena Balzan
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Antonio Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, USA
- Department of Neurology, University of Miami Miller School of Medi-cine, Miami, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, USA
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Etablissement Français du Sang Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Ralf J. Braun
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | | | - William C. Burhans
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sabrina Büttner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katrina F. Cooper
- Dept. Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, USA
| | - Manuela Côrte-Real
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Ian Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Martin B. Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, Texas, USA
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Birthe Fahrenkrog
- Laboratory Biology of the Nucleus, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Kai-Uwe Fröhlich
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Ali Gargouri
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Center de Biotechnologie de Sfax, Sfax, Tunisia
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Campbell W. Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Chris M. Grant
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael T. Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada
| | - Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | | | - Jürgen Heinisch
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Eva Herker
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Sebastian Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | | | - Helmut Jungwirth
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Dimitrios P. Kontoyiannis
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Minho, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, UMR5095, CNRS & Université de Bordeaux, Bordeaux, France
| | - Enzo Martegani
- Department of Biotechnolgy and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Cristina Mazzoni
- Instituto Pasteur-Fondazione Cenci Bolognetti - Department of Biology and Biotechnology "C. Darwin", La Sapienza University of Rome, Rome, Italy
| | - Lynn A. Megeney
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Canada
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heinz D. Osiewacz
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Dina Petranovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Stephane Picot
- Malaria Research Unit, SMITh, ICBMS, UMR 5246 CNRS-INSA-CPE-University Lyon, Lyon, France
- Institut of Parasitology and Medical Mycology, Hospices Civils de Lyon, Lyon, France
| | - Peter Polčic
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, UC Davis, Davis, California, USA
| | - Mark Ramsdale
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mark Rinnerthaler
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Patrick Rockenfeller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Raffael Schaffrath
- Institute of Biology, Division of Microbiology, University of Kassel, Kassel, Germany
| | - Maria Segovia
- Department of Ecology, Faculty of Sciences, University of Malaga, Malaga, Spain
| | - Fedor F. Severin
- A.N. Belozersky Institute of physico-chemical biology, Moscow State University, Moscow, Russia
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Cornelia Sommer-Ruck
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria João Sousa
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | - Michel B. Toledano
- Institute for Integrative Biology of the Cell (I2BC), SBIGEM, CEA-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mick Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - F.-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee, Belgium
| | | | - Stefan Wölfl
- Institute of Pharmacy and Molecu-lar Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Zhaojie J. Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, USA
| | - Bing Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Université Paris Descartes/Paris V, Paris, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
- INSERM, U1138, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
34
|
Liu J, Yuan C, Pu L, Wang J. Nutrient deprivation induces apoptosis of nucleus pulposus cells via activation of the BNIP3/AIF signalling pathway. Mol Med Rep 2017; 16:7253-7260. [PMID: 28944876 PMCID: PMC5865853 DOI: 10.3892/mmr.2017.7550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/29/2017] [Indexed: 01/03/2023] Open
Abstract
Nutrient deprivation (ND)-induced nucleus pulposus (NP) cell death serves an important role in intervertebral disc degeneration disease. However, the underlying mechanisms have yet to be thoroughly elucidated. The present study created a cell culture model under ND conditions to investigate the roles of the nutrient-sensitive protein B-cell lymphoma 2/adenovirus E1B 19 kDa-interacting protein (BNIP3) and the mitochondrial pro-death protein apoptosis-inducing factor (AIF) in the death pathway of NP cells. The present study demonstrated that cells subjected to ND for up to 72 h exhibited a time-dependent increase in cell death and decrease in mitochondrial membrane potential (Δψm), as compared with cells cultured under normal conditions. The results of western blotting demonstrated that BNIP3 expression was significantly upregulated in NP cells subjected to ND for 24 h, which coincided with AIF translocation to the cell nucleus and alterations in cell viability and Δψm. Furthermore, BNIP3 overexpression increased ND-induced NP cell death, whereas knockdown of BNIP3 or AIF abolished ND-induced NP cell death. In addition, BNIP3 overexpression increased AIF expression and BNIP3 knockdown decreased AIF expression in NP cells subjected to ND. In conclusion, ND induced NP cell death partially via activation of the BNIP3/AIF signalling pathway. These findings provide novel insights into the potential mechanisms underlying ND-induced death of NP cells during disc degeneration.
Collapse
Affiliation(s)
- Jie Liu
- Department of Orthopaedics, The First People's Hospital of Yunnan, Kunming, Yunnan 650032, P.R. China
| | - Chao Yuan
- Department of Orthopaedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Luqiao Pu
- Department of Orthopaedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Jian Wang
- Department of Orthopaedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
35
|
Zhao RY. Yeast for virus research. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 4:311-330. [PMID: 29082230 PMCID: PMC5657823 DOI: 10.15698/mic2017.10.592] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/27/2017] [Indexed: 12/25/2022]
Abstract
Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented.
Collapse
Affiliation(s)
- Richard Yuqi Zhao
- Department of Pathology, Department of Microbiology and Immunology, Institute of Global Health, and Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
36
|
Caspase dependent apoptosis induced in yeast cells by nanosecond pulsed electric fields. Bioelectrochemistry 2017; 115:19-25. [DOI: 10.1016/j.bioelechem.2017.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/18/2017] [Accepted: 01/31/2017] [Indexed: 02/03/2023]
|
37
|
Minina EA, Coll NS, Tuominen H, Bozhkov PV. Metacaspases versus caspases in development and cell fate regulation. Cell Death Differ 2017; 24:1314-1325. [PMID: 28234356 DOI: 10.1038/cdd.2017.18] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 12/18/2022] Open
Abstract
Initially found to be critically involved in inflammation and apoptosis, caspases have since then been implicated in the regulation of various signaling pathways in animals. How caspases and caspase-mediated processes evolved is a topic of great interest and hot debate. In fact, caspases are just the tip of the iceberg, representing a relatively small group of mostly animal-specific enzymes within a broad family of structurally related cysteine proteases (family C14 of CD clan) found in all kingdoms of life. Apart from caspases, this family encompasses para- and metacaspases, and all three groups of proteases exhibit significant variation in biochemistry and function in vivo. Notably, metacaspases are present in all eukaryotic lineages with a remarkable absence in animals. Thus, metacaspases and caspases must have adapted to operate under distinct cellular and physiological settings. Here we discuss biochemical properties and biological functions of metacaspases in comparison to caspases, with a major focus on the regulation of developmental aspects in plants versus animals.
Collapse
Affiliation(s)
- E A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - N S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - H Tuominen
- Umeaå Plant Science Centre, Department of Plant Physiology, Umeaå University, Umeaå, Sweden
| | - P V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
38
|
Scolopendin, an antimicrobial peptide from centipede, attenuates mitochondrial functions and triggers apoptosis in Candida albicans. Biochem J 2017; 474:635-645. [PMID: 28008133 DOI: 10.1042/bcj20161039] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/23/2023]
Abstract
Centipedes, a type of arthropod, reportedly produce antimicrobial peptides as part of an innate immune response. Scolopendin (SPSEKAGLQPVGRIGRMLKK) is a novel antimicrobial peptide derived from Scolopendra subspinipes mutilans Many antifungal agents have more than one type of cell death mechanism. Although scolopendin is involved in membrane perturbation, the corresponding intracellular changes require further investigation. Therefore, we assessed the cell morphology and calcium ion concentration of the cytosol and mitochondria of scolopendin-treated cells. The treated cells were shrunken, and calcium ion homeostasis was disrupted in both the cytosol and mitochondria. These conditions attenuated mitochondrial homeostasis, disrupting mitochondrial membrane potential and cytochrome c levels. Fungal cells treated with scolopendin exhibited various apoptotic phenotypes such as reactive oxygen species accumulation, phosphatidylserine exposure, chromatin condensation, and nuclear fragmentation. Scolopendin-induced cell death also triggered metacaspase activation. In conclusion, treatment of Candida albicans with scolopendin induced the apoptotic response, which in turn led to mitochondrial dysfunction, metacaspase activation, and cell death. The antimicrobial peptide scolopendin from the centipede S.s. mutilans demonstrated a novel apoptotic mechanism as an antifungal agent.
Collapse
|
39
|
Arlia-Ciommo A, Svistkova V, Mohtashami S, Titorenko VI. A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis. Oncotarget 2017; 7:5204-25. [PMID: 26636650 PMCID: PMC4868681 DOI: 10.18632/oncotarget.6440] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/21/2015] [Indexed: 02/04/2023] Open
Abstract
A recently conducted chemical genetic screen for pharmaceuticals that can extend longevity of the yeast Saccharomyces cerevisiae has identified lithocholic acid as a potent anti-aging molecule. It was found that this hydrophobic bile acid is also a selective anti-tumor chemical compound; it kills different types of cultured cancer cells if used at concentrations that do not compromise the viability of non-cancerous cells. These studies have revealed that yeast can be successfully used as a model organism for high-throughput screens aimed at the discovery of selectively acting anti-tumor small molecules. Two metabolic traits of rapidly proliferating fermenting yeast, namely aerobic glycolysis and lipogenesis, are known to be similar to those of cancer cells. The mechanisms underlying these key metabolic features of cancer cells and fermenting yeast have been established; such mechanisms are discussed in this review. We also suggest how a yeast-based chemical genetic screen can be used for the high-throughput development of selective anti-tumor pharmaceuticals that kill only cancer cells. This screen consists of searching for chemical compounds capable of increasing the abundance of membrane lipids enriched in unsaturated fatty acids that would therefore be toxic only to rapidly proliferating cells, such as cancer cells and fermenting yeast.
Collapse
Affiliation(s)
| | | | - Sadaf Mohtashami
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
40
|
Zheng J, Mao Y, Su Y, Wang J. Effects of nitrite stress on mRNA expression of antioxidant enzymes, immune-related genes and apoptosis-related proteins in Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:239-252. [PMID: 27582290 DOI: 10.1016/j.fsi.2016.08.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 06/06/2023]
Abstract
Nitrite accumulation in aquaculture systems is a potential risk factor that may trigger stress responses in aquatic organisms. However, the mechanisms regulating the responses of shrimp to nitrite stress remain unclear. In this study, full-length cDNA sequences of two apoptosis-related genes, caspase-3 and defender against apoptotic death (DAD-1), were cloned from Marsupenaeus japonicus for the first time, and their expression levels and tissue distribution were analyzed by quantitative real-time PCR (qRT-PCR). The full lengths of Mjcaspase-3 and MjDAD-1 were 1203 bp and 640 bp respectively, with deduced amino acid (AA) sequences of 321 and 114 AA. Mjcaspase-3 was predominantly expressed in haemocytes and weakly expressed in the seven other tissues tested. MjDAD-1 was mainly expressed in the defense and digestive tissues, especially in the hepatopancreas and hemocytes. To explore the influence of nitrite stress on the genetic response of antioxidant enzymes, immune-related genes and apoptosis-related proteins, the mRNA expression profiles of MjCAT, MjMnSOD, Mj-ilys, Mj-sty, Mjcaspase-3 and MjDAD-1 in response to nitrite stress were analyzed by qRT-PCR. The mRNA levels of MjCAT, MjMnSOD, Mj-ilys, Mj-sty, Mjcaspase-3 and MjDAD-1 show both time- and dose-dependent changes in response to nitrite stress. The mRNA expression levels of MjCAT and MjSOD peaked at 6 h for all nitrite concentrations tested (p < 0.05) and the up-regulated of MjCAT and MjSOD exhibited a positive correlation with the nitrite concentration. The mRNA expression levels of Mj-ilys and Mj-sty gradually decreased during the experiment period. Mjcaspase-3 mRNA level reached a maximum at 6 h (p < 0.05), and MjDAD-1 reached its peak at 12 h and 48 h in 10 mg/L and 20 mg/L nitrite, respectively. In addition, CAT and SOD activity showed changes in response to nitrite stress that mirrored the induced expression of MjCAT and MjMnSOD, and prolonged nitrite exposure reduced the activity of CAT. This study provided basic data for further elucidating the responses of shrimp to nitrite stress at the molecular level.
Collapse
Affiliation(s)
- Jinbin Zheng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yong Mao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jun Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
41
|
Soares JR, José Tenório de Melo E, da Cunha M, Fernandes KVS, Taveira GB, da Silva Pereira L, Pimenta S, Trindade FG, Regente M, Pinedo M, de la Canal L, Gomes VM, de Oliveira Carvalho A. Interaction between the plant ApDef 1 defensin and Saccharomyces cerevisiae results in yeast death through a cell cycle- and caspase-dependent process occurring via uncontrolled oxidative stress. Biochim Biophys Acta Gen Subj 2016; 1861:3429-3443. [PMID: 27614033 DOI: 10.1016/j.bbagen.2016.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/24/2016] [Accepted: 09/04/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Plant defensins were discovered at beginning of the 90s'; however, their precise mechanism of action is still unknown. Herein, we studied ApDef1-Saccharomyces cerevisiae interaction. METHODS ApDef1-S. cerevisiae interaction was studied by determining the MIC, viability and death kinetic assays. Viability assay was repeated with hydroxyurea synchronized-yeast and pretreated with CCCP. Plasma membrane permeabilization, ROS induction, chromatin condensation, and caspase activation analyses were assessed through Sytox green, DAB, DAPI and FITC-VAD-FMK, respectively. Viability assay was done in presence of ascorbic acid and Z-VAD-FMK. Ultrastructural analysis was done by electron microscopy. RESULTS ApDef1 caused S. cerevisiae cell death and MIC was 7.8μM. Whole cell population died after 18h of ApDef1 interaction. After 3h, 98.76% of synchronized cell population died. Pretreatment with CCCP protected yeast from ApDef1 induced death. ApDef1-S. cerevisiae interaction resulted in membrane permeabilization, H2O2 increased production, chromatin condensation and caspase activation. Ascorbic acid prevented yeast cell death and membrane permeabilization. Z-VAD-FMK prevented yeast cell death. CONCLUSIONS ApDef1-S. cerevisiae interaction caused cell death through cell cycle dependentprocess which requires preserved membrane potential. After interaction, yeast went through uncontrolled ROS production and accumulation, which led to plasma membrane permeabilization, chromatin condensation and, ultimately, cell death by activation of caspase-dependent apoptosis via. GENERAL SIGNIFICANCE We show novel requirements for the interaction between plant defensin and fungi cells, i.e. cell cycle phase and membrane potential, and we indicate that membrane permeabilization is probably caused by ROS and therefore, it would be an indirect event of the ApDef1-S. cerevisiae interaction.
Collapse
Affiliation(s)
- Júlia Ribeiro Soares
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Edésio José Tenório de Melo
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Maura da Cunha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Kátia Valevski Sales Fernandes
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Lidia da Silva Pereira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Samy Pimenta
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Fernanda Gomes Trindade
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Mariana Regente
- Instituto de Investigaciones Biologicas, Universidad Nacional de Mar del Plata -CONICET, Mar del Plata, Argentina
| | - Marcela Pinedo
- Instituto de Investigaciones Biologicas, Universidad Nacional de Mar del Plata -CONICET, Mar del Plata, Argentina
| | - Laura de la Canal
- Instituto de Investigaciones Biologicas, Universidad Nacional de Mar del Plata -CONICET, Mar del Plata, Argentina
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
42
|
Petitjean M, Teste MA, Léger-Silvestre I, François JM, Parrou JL. RETRACTED:A new function for the yeast trehalose-6P synthase (Tps1) protein, as key pro-survival factor during growth, chronological ageing, and apoptotic stress. Mech Ageing Dev 2016; 161:234-246. [PMID: 27507670 DOI: 10.1016/j.mad.2016.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 12/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of Marie-Ange Teste, Isabelle Léger-Silvestre, Jean M François and Jean-Luc Parrou. Marjorie Petitjean could not be reached.
The corresponding author identified major issues and brought them to the attention of the Journal.
These issues span from significant errors in the Material and Methods section of the article and major flaws in cytometry data analysis to data fabrication on the part of one of the authors.
Given these errors, the retracting authors state that the only responsible course of action would be to retract the article, to respect scientific integrity and maintain the standards and rigor of literature from the retracting authors' group as well as the Journal.
The retracting authors sincerely apologize to the readers and editors.
Collapse
Affiliation(s)
| | - Marie-Ange Teste
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Isabelle Léger-Silvestre
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS, Université de Toulouse, 118 route de Narbonne, F-31000 Toulouse, France
| | - Jean M François
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean-Luc Parrou
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| |
Collapse
|
43
|
Laprade DJ, Brown MS, McCarthy ML, Ritch JJ, Austriaco N. Filamentation protects Candida albicans from amphotericin B-induced programmed cell death via a mechanism involving the yeast metacaspase, MCA1. MICROBIAL CELL 2016; 3:285-292. [PMID: 27683660 PMCID: PMC5036395 DOI: 10.15698/mic2016.07.512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The budding yeast Candida albicans is one of the most
significant fungal pathogens worldwide. It proliferates in two distinct cell
types: blastopores and filaments. Only cells that are able to transform from one
cell type into the other are virulent in mouse disease models. Programmed cell
death is a controlled form of cell suicide that occurs when C.
albicans cells are exposed to fungicidal drugs like amphotericin B
and caspofungin, and to other stressful conditions. We now provide evidence that
suggests that programmed cell death is cell-type specific in yeast: Filamentous
C. albicans cells are more resistant to amphotericin B- and
caspofungin-induced programmed cell death than their blastospore counterparts.
Finally, our genetic data suggests that this phenomenon is mediated by a
protective mechanism involving the yeast metacaspase, MCA1.
Collapse
Affiliation(s)
- David J Laprade
- Department of Biology, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, U.S.A
| | - Melissa S Brown
- Department of Biology, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, U.S.A
| | - Morgan L McCarthy
- Department of Biology, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, U.S.A
| | - James J Ritch
- Department of Biology, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, U.S.A
| | - Nicanor Austriaco
- Department of Biology, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, U.S.A
| |
Collapse
|
44
|
Ding Y, Li Y, Li Z, Zhang J, Lu C, Wang H, Shen Y, Du L. Alteramide B is a microtubule antagonist of inhibiting Candida albicans. Biochim Biophys Acta Gen Subj 2016; 1860:2097-106. [PMID: 27373684 DOI: 10.1016/j.bbagen.2016.06.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Alteramide B (ATB), isolated from Lysobacter enzymogenes C3, was a new polycyclic tetramate macrolactam (PTM). ATB exhibited potent inhibitory activity against several yeasts, particularly Candida albicans SC5314, but its antifungal mechanism is unknown. METHODS The structure of ATB was established by extensive spectroscopic analyses, including high-resolution mass spectrometry, 1D- and 2D-NMR, and CD spectra. Flow cytometry, fluorescence microscope, transmission electron microscope, molecular modeling, overexpression and site-directed mutation studies were employed to delineate the anti-Candida molecular mechanism of ATB. RESULTS ATB induced apoptosis in C. albicans through inducing reactive oxygen species (ROS) production by disrupting microtubules. Molecular dynamics studies revealed the binding patterns of ATB to the β-tubulin subunit. Overexpression of the wild type and site-directed mutants of the β-tubulin gene (TUBB) changed the sensitivity of C. albicans to ATB, confirming the binding of ATB to β-tubulin, and indicating that the binding sites are L215, L217, L273, L274 and R282. In vivo, ATB significantly improved the survival of the candidiasis mice and reduced fungal burden. CONCLUSION The molecular mechanism underlying the ATB-induced apoptosis in C. albicans is through inhibiting tubulin polymerization that leads to cell cycle arrest at the G2/M phase. The identification of ATB and the study of its activity provide novel mechanistic insights into the mode of action of PTMs against the human pathogen. GENERAL SIGNIFICANCE This study shows that ATB is a new microtubule inhibitor and a promising anti-Candida lead compound. The results also support β-tubulin as a potential target for anti-Candida drug discovery.
Collapse
Affiliation(s)
- Yanjiao Ding
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhenyu Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Juanli Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Haoxin Wang
- State Key laboratory of Microbial Technology, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, PR China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, PR China; State Key laboratory of Microbial Technology, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, PR China.
| | - Liangcheng Du
- State Key laboratory of Microbial Technology, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, PR China; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
45
|
Ma F, Zhang Y, Wang Y, Wan Y, Miao Y, Ma T, Yu Q, Li M. Role of Aif1 in regulation of cell death under environmental stress in Candida albicans. Yeast 2016; 33:493-506. [PMID: 27121326 DOI: 10.1002/yea.3167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/10/2016] [Accepted: 04/12/2016] [Indexed: 01/31/2023] Open
Abstract
Apoptosis-inducing factor (AIF) is a conserved flavoprotein localized in the mitochondria, inducing apoptosis after translocation into the nucleus. However, its role in the important fungal pathogen, Candida albicans, remains to be investigated. In this study, we find that the C. albicans AIF protein Aif1, similar to its homologues in other organisms, is localized at the mitochondria and translocated into the nucleus under apoptosis-inducing conditions. Moreover, deletion of AIF1 causes attenuated apoptosis in this pathogen under apoptosis-inducing conditions, such as the treatment of 2 mm H2 O2 , 10 mm acetic acid or 0.08 mg/l caspofungin, and its overexpression enhances this process. Interestingly, treatment with high levels of these agents leads to reversed sensitivity of aif1Δ/Δ and the overexpression strain AIF1ov. In addition, the virulence of C. albicans is not affected by deletion or overexpression of AIF1. Hence, C. albicans Aif1, as a mitochondria-localized protein, plays a dual role in the regulation of cell death under different concentrations of the stress-caused agents. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Feiyang Ma
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yueqi Zhang
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yuzhou Wang
- Laboratory Animal Centre, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yajuan Wan
- College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yunheng Miao
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Tianyu Ma
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
46
|
Abstract
Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals.
Collapse
|
47
|
Caloric restriction alleviates alpha-synuclein toxicity in aged yeast cells by controlling the opposite roles of Tor1 and Sir2 on autophagy. Mech Ageing Dev 2016; 161:270-276. [PMID: 27109470 DOI: 10.1016/j.mad.2016.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 01/28/2023]
Abstract
Alpha-synuclein (syn) is the main component of proteinaceous inclusions known as Lewy bodies (LBs), which are implicated in the pathogenesis of the neurodegenerative diseases known as synucleinopathies, like Parkinson's disease (PD). Aging is a major risk factor for PD and thus, interventions that delay aging will have promising effects in PD and other synucleinopathies. Caloric restriction (CR) is the only non-genetic intervention shown to promote lifespan extension in several model organisms. CR has been shown to alleviate syn toxicity and herein we confirmed the same effect on the yeast model for synucleinopathies during chronological lifespan. The data gathered showed that TOR1 deletion also results in similar longevity extension and abrogation of syn toxicity. Intriguingly, these interventions were associated with decreased autophagy, which was maintained at homeostatic levels. Autophagy maintenance at homeostatic levels promoted by CR or TOR1 abrogation in syn-expressing cells was achieved by decreasing Sir2 levels and activity. Furthermore, the opposite function of Tor1 and Sir2 in autophagy is probably associated with the maintenance of autophagy activity at homeostatic levels, a central event linked to abrogation of syn toxicity promoted by CR.
Collapse
|
48
|
Galluzzi L, Kepp O, Kroemer G. Mitochondrial regulation of cell death: a phylogenetically conserved control. MICROBIAL CELL 2016; 3:101-108. [PMID: 28357340 PMCID: PMC5349020 DOI: 10.15698/mic2016.03.483] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mitochondria are fundamental for eukaryotic cells as they participate in critical
catabolic and anabolic pathways. Moreover, mitochondria play a key role in the
signal transduction cascades that precipitate many (but not all) regulated
variants of cellular demise. In this short review, we discuss the differential
implication of mitochondria in the major forms of regulated cell death.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France.,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris.,Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Oliver Kepp
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France.,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France.,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; 75015 Paris, France
| |
Collapse
|
49
|
Amigoni L, Frigerio G, Martegani E, Colombo S. Involvement of Aif1 in apoptosis triggered by lack of Hxk2 in the yeastSaccharomyces cerevisiae. FEMS Yeast Res 2016; 16:fow016. [DOI: 10.1093/femsyr/fow016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2016] [Indexed: 12/26/2022] Open
|
50
|
Bandyopadhaya A, Constantinou C, Psychogios N, Ueki R, Yasuhara S, Martyn JAJ, Wilhelmy J, Mindrinos M, Rahme LG, Tzika AA. Bacterial-excreted small volatile molecule 2-aminoacetophenone induces oxidative stress and apoptosis in murine skeletal muscle. Int J Mol Med 2016; 37:867-78. [PMID: 26935176 PMCID: PMC4790710 DOI: 10.3892/ijmm.2016.2487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/04/2015] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress induces mitochondrial dysfunction and facilitates apoptosis, tissue damage or metabolic alterations following infection. We have previously discovered that the Pseudomonas aeruginosa (PA) quorum sensing (QS)-excreted small volatile molecule, 2-aminoacetophenone (2-AA), which is produced in infected human tissue, promotes bacterial phenotypes that favor chronic infection, while also compromising muscle function and dampens the pathogen-induced innate immune response, promoting host tolerance to infection. In this study, murine whole-genome expression data have demonstrated that 2-AA affects the expression of genes involved in reactive oxygen species (ROS) homeostasis, thus producing an oxidative stress signature in skeletal muscle. The results of the present study demonstrated that the expression levels of genes involved in apoptosis signaling pathways were upregulated in the skeletal muscle of 2-AA-treated mice. To confirm the results of our transcriptome analysis, we used a novel high-resolution magic-angle-spinning (HRMAS), proton (1H) nuclear magnetic resonance (NMR) method and observed increased levels of bisallylic methylene fatty acyl protons and vinyl protons, suggesting that 2-AA induces skeletal muscle cell apoptosis. This effect was corroborated by our results demonstrating the downregulation of mitochondrial membrane potential in vivo in response to 2-AA. The findings of the present study indicate that the bacterial infochemical, 2-AA, disrupts mitochondrial functions by inducing oxidative stress and apoptosis signaling and likely promotes skeletal muscle dysfunction, which may favor chronic/persistent infection.
Collapse
Affiliation(s)
- Arunava Bandyopadhaya
- Department of Surgery, Microbiology and Immunobiology, Harvard Medical School and Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - Caterina Constantinou
- Department of Surgery, Microbiology and Immunobiology, Harvard Medical School and Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - Nikolaos Psychogios
- NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - Ryusuke Ueki
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shingo Yasuhara
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - J A Jeevendra Martyn
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Julie Wilhelmy
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Mindrinos
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laurence G Rahme
- Department of Surgery, Microbiology and Immunobiology, Harvard Medical School and Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - A Aria Tzika
- NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|