1
|
Lattanzi GR, Dias MAD, Hashimoto DT, Costa AC, Neto SD, Pazo FD, Diaz J, Villanova GV, Reis Neto RV. Characterization of the myostatin gene in the neotropical species Piaractus mesopotamicus and the possibility of its use in genetic improvement programs. Mol Biol Rep 2024; 51:1048. [PMID: 39388010 DOI: 10.1007/s11033-024-09960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND The myostatin gene has played an important role in the genetic improvement of the main species of economic importance; however, it has not yet been described for some Neotropical fish essential for aquaculture. This study aimed to characterize the myostatin gene of pacu, Piaractus mesopotamicus, and investigate the association of a microsatellite marker in this gene with the weight of fish. METHODS AND RESULTS The myostatin gene sequence was obtained after following a RACE-PCR strategy based on a partial mRNA sequence available in the GenBank database and the alignment of myostatin sequences from other fish species. The obtained sequence for the P. mesopotamicus gene was analyzed for short tandem repeats, and one dinucleotide was observed at the 3´untranslated region. A short tandem repeat polymorphism was verified in a wild population. Subsequently, the STR was evaluated in a test population of 232 animals in two 220 m² concrete tanks at the Aquaculture Center of Unesp. Eight alleles and 22 genotype combinations were identified. A significant association was observed between microsatellite marker polymorphisms and the weight traits (WEIGHT1 and WEIGHT2). Alleles 210, 222, 226, and 230 were found to favor weight gain. CONCLUSIONS In summary, this study contributes to the characterization of the myostatin gene in pacu fish and identifies an association between a STR and weight traits. Thus, this gene could be used as a target for genetic breeding using molecular strategies such as CRISPR and quantitative strategies such as marker-assisted selection, which would contribute to improving the production of the species.
Collapse
Affiliation(s)
| | | | | | | | | | - Felipe Del Pazo
- Laboratorio de Biotecnología Acuática-UNR, Rosario, Argentina
| | - Juan Diaz
- Laboratorio de Biotecnología Acuática-UNR, Rosario, Argentina
| | - Gabriela Vanina Villanova
- Laboratorio de Biotecnología Acuática-UNR, Rosario, Argentina
- National Scientific and Technical Research Council - Argentina (CONICET), Buenos Aires, Argentina
| | - Rafael Vilhena Reis Neto
- UNESP Aquaculture Center (CAUNESP), Jaboticabal, Brasil.
- Agricultural Sciences School of the Vale do Ribeira of UNESP (FCAVR), Registro, Brazil.
| |
Collapse
|
2
|
Deng AF, Wang FX, Wang SC, Zhang YZ, Bai L, Su JC. Bone-organ axes: bidirectional crosstalk. Mil Med Res 2024; 11:37. [PMID: 38867330 PMCID: PMC11167910 DOI: 10.1186/s40779-024-00540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
In addition to its recognized role in providing structural support, bone plays a crucial role in maintaining the functionality and balance of various organs by secreting specific cytokines (also known as osteokines). This reciprocal influence extends to these organs modulating bone homeostasis and development, although this aspect has yet to be systematically reviewed. This review aims to elucidate this bidirectional crosstalk, with a particular focus on the role of osteokines. Additionally, it presents a unique compilation of evidence highlighting the critical function of extracellular vesicles (EVs) within bone-organ axes for the first time. Moreover, it explores the implications of this crosstalk for designing and implementing bone-on-chips and assembloids, underscoring the importance of comprehending these interactions for advancing physiologically relevant in vitro models. Consequently, this review establishes a robust theoretical foundation for preventing, diagnosing, and treating diseases related to the bone-organ axis from the perspective of cytokines, EVs, hormones, and metabolites.
Collapse
Affiliation(s)
- An-Fu Deng
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fu-Xiao Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Si-Cheng Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Ying-Ze Zhang
- Department of Orthopaedics, the Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, 050051, China.
| | - Long Bai
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, Zhejiang, China.
| | - Jia-Can Su
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
3
|
Xu J, Wen Y, Li X, Peng W, Zhang Z, Liu X, Yang P, Chen N, Lei C, Zhang J, Wang E, Chen H, Huang Y. Bovine enhancer-regulated circSGCB acts as a ceRNA to regulate skeletal muscle development via enhancing KLF3 expression. Int J Biol Macromol 2024; 261:129779. [PMID: 38290628 DOI: 10.1016/j.ijbiomac.2024.129779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
Skeletal muscle growth and development in livestock and poultry play a pivotal role in determining the quality and yield of meat production. However, the mechanisms of myogenesis are remained unclear due to it finely regulated by a complex network of biological macromolecules. In this study, leveraging previous sequencing data, we investigated a differentially expressed circular RNA (circSGCB) present in fetal and adult muscle tissues among various ruminant species, including cattle, goat, and sheep. Our analysis revealed that circSGCB is a single exon circRNA, potentially regulated by an adjacent bovine enhancer. Functional analysis through loss-of-function tests demonstrated that circSGCB exerts inhibitory effects on bovine myoblast proliferation while promoting myocytes generation. Furthermore, we discovered that circSGCB primarily localizes to the cytoplasm, where it functions as a molecular sponge by binding to bta-miR-27a-3p. This interaction releases the mRNAs of KLF3 gene and further activates downstream functional pathways. In vivo, studies provided evidence that up-regulation of KLF3 contributes to muscle regeneration. These findings collectively suggest that circSGCB operates via a competing endogenous RNA (ceRNA) mechanism to regulate KLF3, thereby influencing myogenesis in ruminants and highlights it may as potential molecular targets for enhancing meat production in livestock and poultry industries.
Collapse
Affiliation(s)
- Jiawei Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinmiao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, China
| | - Peng Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Zhang
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Han L, Li P, He Q, Yang C, Jiang M, Wang Y, Cao Y, Han X, Liu X, Wu W. Revisiting Skeletal Muscle Dysfunction and Exercise in Chronic Obstructive Pulmonary Disease: Emerging Significance of Myokines. Aging Dis 2023; 15:2453-2469. [PMID: 38270119 PMCID: PMC11567253 DOI: 10.14336/ad.2023.1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/25/2023] [Indexed: 01/26/2024] Open
Abstract
Skeletal muscle dysfunction (SMD) is the most significant extrapulmonary complication and an independent prognostic indicator in patients with chronic obstructive pulmonary disease (COPD). Myokines, such as interleukin (IL)-6, IL-15, myostatin, irisin, and insulin-like growth factor (IGF)-1, play important roles in skeletal muscle mitochondrial function, protein synthesis and breakdown balance, and regeneration of skeletal muscles in COPD. As the main component of pulmonary rehabilitation, exercise can improve muscle strength, muscle endurance, and exercise capacity in patients with COPD, as well as improve the prognosis of SMD and COPD by regulating the expression levels of myokines. The mechanisms by which exercise regulates myokine levels are related to microRNAs. IGF-1 expression is upregulated by decreasing the expression of miR-1 or miR-29b. Myostatin downregulation and irisin upregulation are associated with increased miR-27a expression and decreased miR-696 expression, respectively. These findings suggest that myokines are potential targets for the prevention and treatment of SMD in COPD. A comprehensive analysis of the role and regulatory mechanisms of myokines can facilitate the development of new exercise-based therapeutic approaches for patients with COPD.
Collapse
Affiliation(s)
- Lihua Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qinglan He
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Chen Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Meiling Jiang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuanyuan Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Xiaoyu Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Weibing Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
5
|
Greene MA, Worley GA, Udoka ANS, Powell RR, Bruce T, Klotz JL, Bridges WC, Duckett SK. Use of AgomiR and AntagomiR technologies to alter satellite cell proliferation in vitro, miRNA expression, and muscle fiber hypertrophy in intrauterine growth-restricted lambs. Front Mol Biosci 2023; 10:1286890. [PMID: 38028550 PMCID: PMC10656622 DOI: 10.3389/fmolb.2023.1286890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: microRNAs (miRNAs) are small non-coding RNAs that work at the posttranscriptional level to repress gene expression. Several miRNAs are preferentially expressed in skeletal muscle and participate in myogenesis. This research was conducted to alter endogenous miRNA expression in skeletal muscle to promote muscle hypertrophy. Methods: Two experiments were conducted using mimic/agomiR or antagomir technologies to alter miRNA expression and examine changes in myoblast proliferation in vitro (experiment 1) and muscle hypertrophy in vivo (experiment 2). In vitro experiments found that antagomiR-22-3p and mimic-127 increased myoblast proliferation compared to other miRNA treatments or controls. These miRNA treatments, antagomiR-22-3p (ANT22) and agomiR-127 (AGO127), were then used for intramuscular injections in longissimus muscle. Results and discussion: The use of antagomiR or mimic/agomiR treatments down-regulated or up-regulated, respectively, miRNA expression for that miRNA of interest. Expression of predicted target KIF3B mRNA for miR-127 was up-regulated and ACVR2a mRNA was up-regulated for miR-22-3p. ANT22 injection also up-regulated the major regulator of protein synthesis (mTOR). Proteomic analyses identified 11 proteins for AGO127 and 9 proteins for ANT22 that were differentially expressed. Muscle fiber type and cross-sectional area were altered for ANT22 treatments to transition fibers to a more oxidative state. The use of agomiR and antagomir technologies allows us to alter miRNA expression in vitro and in vivo to enhance myoblast proliferation and alter muscle fiber hypertrophy in IUGR lambs during early postnatal growth.
Collapse
Affiliation(s)
- M. A. Greene
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| | - G. A. Worley
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| | - A. N. S. Udoka
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| | - R. R. Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, United States
| | - T. Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - J. L. Klotz
- U. S. Department of Agriculture-Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY, United States
| | - W. C. Bridges
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, United States
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, United States
| | - S. K. Duckett
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
6
|
Dalle Carbonare L, Minoia A, Zouari S, Piritore FC, Vareschi A, Romanelli MG, Valenti MT. Crosstalk between Bone and Muscles during Physical Activity. Cells 2023; 12:2088. [PMID: 37626898 PMCID: PMC10453939 DOI: 10.3390/cells12162088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Bone-muscle crosstalk is enabled thanks to the integration of different molecular signals, and it is essential for maintaining the homeostasis of skeletal and muscle tissue. Both the skeletal system and the muscular system perform endocrine activity by producing osteokines and myokines, respectively. These cytokines play a pivotal role in facilitating bone-muscle crosstalk. Moreover, recent studies have highlighted the role of non-coding RNAs in promoting crosstalk between bone and muscle in physiological or pathological conditions. Therefore, positive stimuli or pathologies that target one of the two systems can affect the other system as well, emphasizing the reciprocal influence of bone and muscle. Lifestyle and in particular physical activity influence both the bone and the muscular apparatus by acting on the single system but also by enhancing its crosstalk. Several studies have in fact demonstrated the modulation of circulating molecular factors during physical activity. These molecules are often produced by bone or muscle and are capable of activating signaling pathways involved in bone-muscle crosstalk but also of modulating the response of other cell types. Therefore, in this review we will discuss the effects of physical activity on bone and muscle cells, with particular reference to the biomolecular mechanisms that regulate their cellular interactions.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Arianna Minoia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Sharazed Zouari
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Francesca Cristiana Piritore
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| | - Anna Vareschi
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| |
Collapse
|
7
|
Grieb A, Schmitt A, Fragasso A, Widmann M, Mattioni Maturana F, Burgstahler C, Erz G, Schellhorn P, Nieß AM, Munz B. Skeletal Muscle MicroRNA Patterns in Response to a Single Bout of Exercise in Females: Biomarkers for Subsequent Training Adaptation? Biomolecules 2023; 13:884. [PMID: 37371465 DOI: 10.3390/biom13060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
microRNAs (miRs) have been proposed as a promising new class of biomarkers in the context of training adaptation. Using microarray analysis, we studied skeletal muscle miR patterns in sedentary young healthy females (n = 6) before and after a single submaximal bout of endurance exercise ('reference training'). Subsequently, participants were subjected to a structured training program, consisting of six weeks of moderate-intensity continuous endurance training (MICT) and six weeks of high-intensity interval training (HIIT) in randomized order. In vastus lateralis muscle, we found significant downregulation of myomiRs, specifically miR-1, 133a-3p, and -5p, -133b, and -499a-5p. Similarly, exercise-associated miRs-23a-3p, -378a-5p, -128-3p, -21-5p, -107, -27a-3p, -126-3p, and -152-3p were significantly downregulated, whereas miR-23a-5p was upregulated. Furthermore, in an untargeted approach for differential expression in response to acute exercise, we identified n = 35 miRs that were downregulated and n = 20 miRs that were upregulated by factor 4.5 or more. Remarkably, KEGG pathway analysis indicated central involvement of this set of miRs in fatty acid metabolism. To reproduce these data in a larger cohort of all-female subjects (n = 29), qPCR analysis was carried out on n = 15 miRs selected from the microarray, which confirmed their differential expression. Furthermore, the acute response, i.e., the difference between miR concentrations before and after the reference training, was correlated with changes in maximum oxygen uptake (V̇O2max) in response to the training program. Here, we found that miRs-199a-3p and -19b-3p might be suitable acute-response candidates that correlate with individual degrees of training adaptation in females.
Collapse
Affiliation(s)
- Alexandra Grieb
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Angelika Schmitt
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Annunziata Fragasso
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Manuel Widmann
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Felipe Mattioni Maturana
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Christof Burgstahler
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Gunnar Erz
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Philipp Schellhorn
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Andreas M Nieß
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Barbara Munz
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| |
Collapse
|
8
|
Odame E, Li L, Nabilla JA, Cai H, Xiao M, Ye J, Chen Y, Kyei B, Dai D, Zhan S, Cao J, Guo J, Zhong T, Wang L, Zhang H. miR-145-3p Inhibits MuSCs Proliferation and Mitochondria Mass via Targeting MYBL1 in Jianzhou Big-Eared Goats. Int J Mol Sci 2023; 24:ijms24098341. [PMID: 37176056 PMCID: PMC10179409 DOI: 10.3390/ijms24098341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Muscle growth and injury-induced regeneration are controlled by skeletal muscle satellite cells (MuSCs) through myogenesis in postnatal animals. Meanwhile, myogenesis is accompanied by mitochondrial function and enzyme activity. Nevertheless, the underlying molecular mechanisms involving non-coding RNAs including circular RNAs (circRNAs) and microRNAs (miRNAs) remain largely unsolved. Here, we explored the myogenic roles of miR-145-3p and MYBL1 on muscle development and mitochondrial mass. We noticed that overexpression of miR-145-3p inhibited MuSCs proliferation and reduced the number of viable cells. Meanwhile, deficiency of miR-145-3p caused by LNAantimiR-145-3p or an inhibitor retarded the differentiation of MuSCs. miR-145-3p altered the mitochondrial mass in MuSCs. Moreover, miR-145-3p targeted and negatively regulated the expression of CDR1as and MYBL1. The knockdown of the MYBL1 using ASO-2'MOE modification simulated the inhibitory function of miR-145-3p on cell proliferation. Additionally, MYBL1 mediated the regulation of miR-145-3p on Vexin, VCPIP1, COX1, COX2, and Pax7. These imply that CDR1as/miR-145-3p/MYBL1/COX1, COX2, VCPIP1/Vexin expression at least partly results in a reduction in mitochondrial mass and MuSCs proliferation. These novel findings confirm the importance of mitochondrial mass during myogenesis and the boosting of muscle/meat development in mammals.
Collapse
Affiliation(s)
- Emmanuel Odame
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Joshua Abdulai Nabilla
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - He Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Miao Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiangfeng Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bismark Kyei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Mitra A, Qaisar R, Bose B, Sudheer SP. The elusive role of myostatin signaling for muscle regeneration and maintenance of muscle and bone homeostasis. Osteoporos Sarcopenia 2023; 9:1-7. [PMID: 37082359 PMCID: PMC10111947 DOI: 10.1016/j.afos.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 04/22/2023] Open
Abstract
Skeletal muscle is one of the leading frameworks of the musculo-skeletal system, which works in synergy with the bones. Long skeletal muscles provide stability and mobility to the human body and are primarily composed of proteins. Conversely, improper functioning of various skeletal muscles leads to diseases and disorders, namely, age-related muscle disorder called sarcopenia, a group of genetic muscle disorders such as muscular dystrophies, and severe muscle wasting in cancer known as cachexia. However, skeletal muscle has an excellent ability to undergo hypertrophy and enhanced functioning during sustained exercise over time. Indeed, these processes of skeletal muscle regeneration/hypertrophy, as well as degeneration and atrophy, involve an interplay of various signaling pathways. Myostatin is one such chemokine/myokine with a significant contribution to muscle regeneration or atrophy in multiple conditions. In this review, we try to put together the role and regulation of myostatin as a function of muscle regeneration extrapolated to multiple aspects of its molecular functions.
Collapse
Affiliation(s)
- Akash Mitra
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
- Corresponding author.
| | - Shenoy P Sudheer
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
- Corresponding author.
| |
Collapse
|
10
|
Gu X, Wang S, Jin B, Qi Z, Deng J, Huang C, Yin X. A pathway analysis-based algorithm for calculating the participation degree of ncRNA in transcriptome. Sci Rep 2022; 12:22654. [PMID: 36587048 PMCID: PMC9805457 DOI: 10.1038/s41598-022-27178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
After sequencing, it is common to screen ncRNA according to expression differences. But this may lose a lot of valuable information and there is currently no indicator to characterize the regulatory function and participation degree of ncRNA on transcriptome. Based on existing pathway enrichment methods, we developed a new algorithm to calculating the participation degree of ncRNA in transcriptome (PDNT). Here we analyzed multiple data sets, and differentially expressed genes (DEGs) were used for pathway enrichment analysis. The PDNT algorithm was used to calculate the Contribution value (C value) of each ncRNA based on its target genes and the pathways they participates in. The results showed that compared with ncRNAs screened by log2 fold change (FC) and p-value, those screened by C value regulated more DEGs in IPA canonical pathways, and their target DEGs were more concentrated in the core region of the protein-protein interaction (PPI) network. The ranking of disease critical ncRNAs increased integrally after sorting with C value. Collectively, we found that the PDNT algorithm provides a measure from another view compared with the log2FC and p-value and it may provide more clues to effectively evaluate ncRNA.
Collapse
Affiliation(s)
- Xinyi Gu
- grid.411634.50000 0004 0632 4559Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, 100044 China ,grid.11135.370000 0001 2256 9319Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Shen Wang
- grid.411634.50000 0004 0632 4559Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, 100044 China ,grid.11135.370000 0001 2256 9319Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Bo Jin
- grid.411634.50000 0004 0632 4559Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, 100044 China ,grid.11135.370000 0001 2256 9319Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Zhidan Qi
- grid.411634.50000 0004 0632 4559Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, 100044 China ,grid.11135.370000 0001 2256 9319Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Jin Deng
- grid.411634.50000 0004 0632 4559Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, 100044 China ,grid.11135.370000 0001 2256 9319Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Chen Huang
- grid.411634.50000 0004 0632 4559Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, 100044 China ,grid.11135.370000 0001 2256 9319Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Xiaofeng Yin
- grid.411634.50000 0004 0632 4559Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, 100044 China ,grid.11135.370000 0001 2256 9319Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| |
Collapse
|
11
|
Knockdown of CDR1as Decreases Differentiation of Goat Skeletal Muscle Satellite Cells via Upregulating miR-27a-3p to Inhibit ANGPT1. Genes (Basel) 2022; 13:genes13040663. [PMID: 35456469 PMCID: PMC9026999 DOI: 10.3390/genes13040663] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Myogenesis is a complex process controlled by several coding and non-coding RNAs (ncRNAs), such as circular RNAs (circRNAs) that are known to function as endogenous microRNAs (miRNAs) sponges. Cerebellar Degeneration-Related protein 1 antisense (CDR1as) is the most spotlighted circRNA that is known as an miR-7 sponge, which has bloomed circRNAs’ research in animal disease and physiology. Here, we screened for miRNAs and mRNA associated with CDR1as and further characterized their regulatory function during muscle differentiation. We found that a total of 43 miRNAs (including miR-107-3p, miR-125b-5p, miR-140-5p, miR-29a-3p, and miR-27a-3p upregulated) and 789 mRNAs (including ANGPT1, E2F2, CCN1, FGFR1, and MEF2C downregulated) were differentially expressed in goat skeletal muscle satellite cells (SMSCs). Further, knockdown of CDR1as and ANGPT1 inhibited SMSCs differentiation. miR-27a-3p was differentially upregulated after the knockdown of CDR1as in SMSCs. Overexpressed miR-27a-3p decreased SMSCs differentiation. Via RNAhybrid and luciferase, miR-27a-3p was identified to regulate ANGPT1. We discovered that miR-27a-3p has an inverse relationship with CDR1as and decreases the expression level of ANGPT1 during SMSCs differentiation. In summary, our study demonstrates that siCDR1as inhibits myoblast differentiation by downregulating ANGPT1 mRNA via miR-27a-3p in SMSCs.
Collapse
|
12
|
Physical Activity Modulates miRNAs Levels and Enhances MYOD Expression in Myoblasts. Stem Cell Rev Rep 2022; 18:1865-1874. [PMID: 35316486 PMCID: PMC9209351 DOI: 10.1007/s12015-022-10361-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2022] [Indexed: 01/18/2023]
Abstract
Stem cells functions are regulated by different factors and non-conding RNAs, such as microRNA. MiRNAsplay an important role in modulating the expression of genes involved in the commitment and differentiation of progenitor cells. MiRNAs are post transcriptional regulators which may be modulated by physical exercise. MiRNAs, by regulating different signaling pathways, play an important role in myogenesis as well as in muscle activity. MiRNAs quantification may be considered for evaluating physical performance or muscle recovery. With the aim to identify specific miRNAs potentially involved in myogenesis and modulated by physical activity, we investigated miRNAs expression following physical performance in Peripheral Blood Mononuclear Cells (PBMCs) and in sera of half marathon (HM) runnners. The effect of runners sera on Myogenesis in in vitro cellular models was also explored. Therefore, we performed Microarray Analysis and Real Time PCR assays, as well as in vitro cell cultures analysis to investigate myogenic differentiation. Our data demonstrated gender-specific expression patterns of PBMC miRNAs before physical performance. In particular, miR223-3p, miR26b-5p, miR150-5p and miR15-5p expression was higher, while miR7a-5p and miR7i-5p expression was lower in females compared to males. After HM, miR152-3p, miR143-3p, miR27a-3p levels increased while miR30b-3p decreased in both females and males: circulating miRNAs mirrored these modulations. Furthermore, we also observed that the addition of post-HM participants sera to cell cultures exerted a positive effect in stimulating myogenesis. In conclusion, our data suggest that physical activity induces the modulation of myogenesis-associated miRNAs in bothfemales and males, despite the gender-associated different expression of certain miRNAs, Noteworthy, these findings might be useful for evaluating potential targets for microRNA based-therapies in diseases affecting the myogenic stem cells population.
Collapse
|
13
|
Dey P, Soyer MA, Dey BK. MicroRNA-24-3p promotes skeletal muscle differentiation and regeneration by regulating HMGA1. Cell Mol Life Sci 2022; 79:170. [PMID: 35238991 PMCID: PMC11072726 DOI: 10.1007/s00018-022-04168-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Abstract
Numerous studies have established the critical roles of microRNAs in regulating post-transcriptional gene expression in diverse biological processes. Here, we report on the role and mechanism of miR-24-3p in skeletal muscle differentiation and regeneration. miR-24-3p promotes myoblast differentiation and skeletal muscle regeneration by directly targeting high mobility group AT-hook 1 (HMGA1) and regulating it and its direct downstream target, the inhibitor of differentiation 3 (ID3). miR-24-3p knockdown in neonatal mice increases PAX7-positive proliferating muscle stem cells (MuSCs) by derepressing Hmga1 and Id3. Similarly, inhibition of miR-24-3p in the tibialis anterior muscle prevents Hmga1 and Id3 downregulation and impairs regeneration. These findings provide evidence that the miR-24-3p/HMGA1/ID3 axis is required for MuSC differentiation and skeletal muscle regeneration in vivo.
Collapse
Affiliation(s)
- Paromita Dey
- The RNA Institute, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Miles A Soyer
- The RNA Institute, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA
- Department of Biological Sciences, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Bijan K Dey
- The RNA Institute, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA.
- Department of Biological Sciences, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
14
|
Esposito P, Picciotto D, Battaglia Y, Costigliolo F, Viazzi F, Verzola D. Myostatin: Basic biology to clinical application. Adv Clin Chem 2022; 106:181-234. [PMID: 35152972 DOI: 10.1016/bs.acc.2021.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myostatin is a member of the transforming growth factor (TGF)-β superfamily. It is expressed by animal and human skeletal muscle cells where it limits muscle growth and promotes protein breakdown. Its effects are influenced by complex mechanisms including transcriptional and epigenetic regulation and modulation by extracellular binding proteins. Due to its actions in promoting muscle atrophy and cachexia, myostatin has been investigated as a promising therapeutic target to counteract muscle mass loss in experimental models and patients affected by different muscle-wasting conditions. Moreover, growing evidence indicates that myostatin, beyond to regulate skeletal muscle growth, may have a role in many physiologic and pathologic processes, such as obesity, insulin resistance, cardiovascular and chronic kidney disease. In this chapter, we review myostatin biology, including intracellular and extracellular regulatory pathways, and the role of myostatin in modulating physiologic processes, such as muscle growth and aging. Moreover, we discuss the most relevant experimental and clinical evidence supporting the extra-muscle effects of myostatin. Finally, we consider the main strategies developed and tested to inhibit myostatin in clinical trials and discuss the limits and future perspectives of the research on myostatin.
Collapse
Affiliation(s)
- Pasquale Esposito
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Daniela Picciotto
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Yuri Battaglia
- Nephrology and Dialysis Unit, St. Anna University Hospital, Ferrara, Italy
| | - Francesca Costigliolo
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
15
|
MicroRNAs associated with signaling pathways and exercise adaptation in sarcopenia. Life Sci 2021; 285:119926. [PMID: 34480932 DOI: 10.1016/j.lfs.2021.119926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/06/2023]
Abstract
Considering the expansion of human life-span over the past few decades; sarcopenia, a physiological consequence of aging process characterized with a diminution in mass and strength of skeletal muscle, has become more frequent. Thus, there is a growing need for expanding our knowledge on the molecular mechanisms of muscle atrophy in sarcopenia which are complex and involve many signaling pathways associated with protein degradation and synthesis. MicroRNAs (miRNAs) as evolutionary conserved small RNAs, could complementarily bind to their target mRNAs and post-transcriptionally inhibit their translation. Aberrant expression of miRNAs contributes to the development of sarcopenia by regulating the expression of critical genes involved in age-related skeletal muscle mass loss. Here we have a review on the signaling pathways along with the miRNAs controlling their components expression and subsequently we provide a brief overview on the effects of exercise on expression pattern of miRNAs in sarcopenia.
Collapse
|
16
|
Song C, Fang X, Yang Z, Wang Q, Meng F, Chen Y, Chen J, Zhao B, Wang Y, Fang X, Gu L, Zhang C. miR-152 Regulates Bovine Myoblast Proliferation by Targeting KLF6. Animals (Basel) 2021; 11:ani11103001. [PMID: 34680020 PMCID: PMC8532817 DOI: 10.3390/ani11103001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 01/03/2023] Open
Abstract
Though miRNAs have been reported to regulate bovine myoblast proliferation, but many miRNAs still need to be further explored. Specifically, miR-152 is a highly expressed miRNA in cattle skeletal muscle tissues, but its function in skeletal muscle development is unknown. Herein, we aimed to investigate the role of miR-152 in regulating bovine myoblast proliferation. Functionally, RT-qPCR, Western blotting, EdU assay, and flow cytometry detection results showed that miR-152 inhibited bovine myoblast proliferation. Mechanistically, we demonstrated transcription factor KLF6 was a target gene of miR-152 by means of bioinformatics software prediction and dual-luciferase report analysis, which had been demonstrated to be favorable for myoblast proliferation. Collectively, our research suggested that miR-152 inhibits bovine myoblast proliferation via targeting KLF6.
Collapse
Affiliation(s)
- Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Xue Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Zhaoxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Qi Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Fantong Meng
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Yaqi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Junhao Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Bei Zhao
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Lihong Gu
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China;
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
- Correspondence:
| |
Collapse
|
17
|
Aránega AE, Lozano-Velasco E, Rodriguez-Outeiriño L, Ramírez de Acuña F, Franco D, Hernández-Torres F. MiRNAs and Muscle Regeneration: Therapeutic Targets in Duchenne Muscular Dystrophy. Int J Mol Sci 2021; 22:ijms22084236. [PMID: 33921834 PMCID: PMC8072594 DOI: 10.3390/ijms22084236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs required for the post-transcriptional control of gene expression. MicroRNAs play a critical role in modulating muscle regeneration and stem cell behavior. Muscle regeneration is affected in muscular dystrophies, and a critical point for the development of effective strategies for treating muscle disorders is optimizing approaches to target muscle stem cells in order to increase the ability to regenerate lost tissue. Within this framework, miRNAs are emerging as implicated in muscle stem cell response in neuromuscular disorders and new methodologies to regulate the expression of key microRNAs are coming up. In this review, we summarize recent advances highlighting the potential of miRNAs to be used in conjunction with gene replacement therapies, in order to improve muscle regeneration in the context of Duchenne Muscular Dystrophy (DMD).
Collapse
Affiliation(s)
- Amelia Eva Aránega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
- Correspondence:
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Lara Rodriguez-Outeiriño
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Felicitas Ramírez de Acuña
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Francisco Hernández-Torres
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Avda. de la Investigación 11, 18016 Granada, Spain
| |
Collapse
|
18
|
He C, He W, Hou J, Chen K, Huang M, Yang M, Luo X, Li C. Bone and Muscle Crosstalk in Aging. Front Cell Dev Biol 2020; 8:585644. [PMID: 33363144 PMCID: PMC7758235 DOI: 10.3389/fcell.2020.585644] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis and sarcopenia are two age-related diseases that affect the quality of life in the elderly. Initially, they were thought to be two independent diseases; however, recently, increasing basic and clinical data suggest that skeletal muscle and bone are both spatially and metabolically connected. The term "osteosarcopenia" is used to define a condition of synergy of low bone mineral density with muscle atrophy and hypofunction. Bone and muscle cells secrete several factors, such as cytokines, myokines, and osteokines, into the circulation to influence the biological and pathological activities in local and distant organs and cells. Recent studies reveal that extracellular vesicles containing microRNAs derived from senescent skeletal muscle and bone cells can also be transported and aid in regulating bone-muscle crosstalk. In this review, we summarize the age-related changes in the secretome and extracellular vesicle-microRNAs secreted by the muscle and bone, and discuss their interactions between muscle and bone cells during aging.
Collapse
Affiliation(s)
- Chen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
19
|
Lam NT, Gartz M, Thomas L, Haberman M, Strande JL. Influence of microRNAs and exosomes in muscle health and diseases. J Muscle Res Cell Motil 2020; 41:269-284. [PMID: 31564031 PMCID: PMC7101267 DOI: 10.1007/s10974-019-09555-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
microRNAs are short, (18-22 nt) non-coding RNAs involved in important cellular processes due to their ability to regulate gene expression at the post-transcriptional level. Exosomes are small (50-200 nm) extracellular vesicles, naturally secreted from a variety of living cells and are believed to mediate cell-cell communication through multiple mechanisms, including uptake in destination cells. Circulating microRNAs and exosome-derived microRNAs can have key roles in regulating muscle cell development and differentiation. Several microRNAs are highly expressed in muscle and their regulation is important for myocyte homeostasis. Changes in muscle associated microRNA expression are associated with muscular diseases including muscular dystrophies, inflammatory myopathies, and congenital myopathies. In this review, we aim to highlight the biology of microRNAs and exosomes as well as their roles in muscle health and diseases. We also discuss the potential crosstalk between skeletal and cardiac muscle through exosomes and their contents.
Collapse
Affiliation(s)
- Ngoc Thien Lam
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melanie Gartz
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Leah Thomas
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margaret Haberman
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer L Strande
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Medical College of Wisconsin, CVC/MEB 4679, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| |
Collapse
|
20
|
Marceca GP, Nigita G, Calore F, Croce CM. MicroRNAs in Skeletal Muscle and Hints on Their Potential Role in Muscle Wasting During Cancer Cachexia. Front Oncol 2020; 10:607196. [PMID: 33330108 PMCID: PMC7732629 DOI: 10.3389/fonc.2020.607196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated cachexia is a heterogeneous, multifactorial syndrome characterized by systemic inflammation, unintentional weight loss, and profound alteration in body composition. The main feature of cancer cachexia is represented by the loss of skeletal muscle tissue, which may or may not be accompanied by significant adipose tissue wasting. Such phenotypic alteration occurs as the result of concomitant increased myofibril breakdown and reduced muscle protein synthesis, actively contributing to fatigue, worsening of quality of life, and refractoriness to chemotherapy. According to the classical view, this condition is primarily triggered by interactions between specific tumor-induced pro-inflammatory cytokines and their cognate receptors expressed on the myocyte membrane. This causes a shift in gene expression of muscle cells, eventually leading to a pronounced catabolic condition and cell death. More recent studies, however, have shown the involvement of regulatory non-coding RNAs in the outbreak of cancer cachexia. In particular, the role exerted by microRNAs is being widely addressed, and several mechanistic studies are in progress. In this review, we discuss the most recent findings concerning the role of microRNAs in triggering or exacerbating muscle wasting in cancer cachexia, while mentioning about possible roles played by long non-coding RNAs and ADAR-mediated miRNA modifications.
Collapse
Affiliation(s)
- Gioacchino P Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Federica Calore
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
21
|
Lou Z, Zhao Y, Zhang Y, Zheng B, Feng H, Hosain MA, Xue L. MiR-2014-5p and miR-1231-5p regulate muscle growth of Larimichthys crocea by targeting MSTN gene. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110535. [PMID: 33186699 DOI: 10.1016/j.cbpb.2020.110535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) play an important role in regulating gene expression, and myostatin (MSTN) has been widely recognized as a key gene for muscle growth and development. Through high-throughput sequencing to study the effects of starvation on miRNA transcriptomes in Larimichthys crocea muscle tissue, we found that the expression of miR-2014, miR-1231 and miR-1470 were significantly different between fasting and normal feeding Larimichthys crocea. Bioinformatics analysis predicted that miR-2014, miR-1231 and miR-1470 target MSTN mRNA 3'UTR. To verify the accuracy of predictions, we constructed double luciferase plasmids containing MSTN 3'UTR and confirmed that miR-2014-5p and miR-1231-5p can inhibit MSTN expression by targeting MSTN 3'UTR using double luciferase experiments, while miR-1470 is not involved in regulation. Subsequent site-directed mutation experiments reflected the specificity of the target sequence. In addition, quantitative PCR experiments revealed that miR-2014-5p and miR-1231-5p may participate in the regulation of MSTN expression in fasting and refeeding period, respectively. These results implied that miRNA may take part in muscle growth regulation during starvation. It provides some insights into the molecular regulation mechanism of MSTN in response to starvation stress in fish.
Collapse
Affiliation(s)
- Zhengjia Lou
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yayun Zhao
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yu Zhang
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Baoxiao Zheng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Huijie Feng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | | | - Liangyi Xue
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
22
|
Cruz A, Ferian A, Alves PKN, Silva WJ, Bento MR, Gasch A, Labeit S, Moriscot AS. Skeletal Muscle Anti-Atrophic Effects of Leucine Involve Myostatin Inhibition. DNA Cell Biol 2020; 39:2289-2299. [PMID: 33136436 DOI: 10.1089/dna.2020.5423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lack of mechanical load leads to skeletal muscle atrophy, and one major underlying mechanism involves the myostatin pathway that negatively regulates protein synthesis and also activates Atrogin-1/MAFbx and MuRF1 genes. In hindlimb immobilization, leucine was observed to attenuate the upregulation of the referred atrogenes, thereby shortening the impact on fiber cross-sectional area, nonetheless, the possible connection with myostatin is still elusive. This study sought to verify the impact of leucine supplementation on myostatin expression. Male Wistar rats were supplemented with leucine and hindlimb immobilized for 3 and 7 days, after which soleus muscles were removed for morphometric measurements and analyzed for gene and protein expression by real-time PCR and Western blotting, respectively. Muscle wasting was prominent 7 days after immobilization, as expected, leucine feeding mitigated this effect. Atrogin-1/MAFbx gene expression was upregulated only after 3 days of immobilization, and this effect was attenuated by leucine supplementation. Atrogin-1/MAFbx protein levels were elevated after 7 days of immobilization, which leucine supplementation was not able to lessen. On the other hand, myostatin gene expression was upregulated in immobilization for 3 and 7 days, which returned to normal levels after leucine supplementation. Myostatin protein levels followed gene expression at a 3-day time point only. Follistatin gene expression was upregulated during immobilization and accentuated by leucine after 3 days of supplementation. Concerning protein expression, follistatin was not altered neither by immobilization nor in immobilized animals treated with leucine. In conclusion, leucine protects against skeletal muscle mass loss during disuse, and the underlying molecular mechanisms appear to involve myostatin inhibition and Atrogin-1 normalization independently of follistatin signaling.
Collapse
Affiliation(s)
- André Cruz
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrea Ferian
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula K N Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - William Jose Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mirella Ribeiro Bento
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexander Gasch
- Institute for Integrative Pathophysiology, Faculty for Clinical Medicine Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Siegfried Labeit
- Institute for Integrative Pathophysiology, Faculty for Clinical Medicine Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Anselmo Sigari Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
miR-365 inhibits duck myoblast proliferation by targeting IGF-I via PI3K/Akt pathway. Biosci Rep 2020; 39:220950. [PMID: 31658358 PMCID: PMC6859117 DOI: 10.1042/bsr20190295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 01/07/2023] Open
Abstract
miR-365 is found to be involved in cancer cell proliferation and apoptosis. However, it remains unknown if and how miR-365 plays a role in myoblast proliferation. In the present study, we found that overexpression of miR-365 can inhibit duck myoblast proliferation. To uncover the mechanism by which miR-365 inhibits duck myoblast proliferation, we showed that miR-365 can down-regulate insulin-like growth factor-I (IGF-I) by directly targeting its 3′untranslated region (UTR). Moreover, enhanced miR-365 decreased the mRNA expression of PI3K, Akt, mTOR and S6K. Importantly, the enhanced PI3K, Akt, mTOR and S6K expression by miR-365 inhibitor (anti-miR-365) was abrogated by treatment with LY294002, a PI3K inhibitor. Together, our results indicated that miR-365 may target IGF-I to inhibit duck myoblast proliferation via PI3K/Akt pathway.
Collapse
|
24
|
Van Pelt DW, Vechetti IJ, Lawrence MM, Van Pelt KL, Patel P, Miller BF, Butterfield TA, Dupont-Versteegden EE. Serum extracellular vesicle miR-203a-3p content is associated with skeletal muscle mass and protein turnover during disuse atrophy and regrowth. Am J Physiol Cell Physiol 2020; 319:C419-C431. [PMID: 32639875 PMCID: PMC7500218 DOI: 10.1152/ajpcell.00223.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Small noncoding microRNAs (miRNAs) are important regulators of skeletal muscle size, and circulating miRNAs within extracellular vesicles (EVs) may contribute to atrophy and its associated systemic effects. The purpose of this study was to understand how muscle atrophy and regrowth alter in vivo serum EV miRNA content. We also associated changes in serum EV miRNA with protein synthesis, protein degradation, and miRNA within muscle, kidney, and liver. We subjected adult (10 mo) F344/BN rats to three conditions: weight bearing (WB), hindlimb suspension (HS) for 7 days to induce muscle atrophy, and HS for 7 days followed by 7 days of reloading (HSR). Microarray analysis of EV miRNA content showed that the overall changes in serum EV miRNA were predicted to target major anabolic, catabolic, and mechanosensitive pathways. MiR-203a-3p was the only miRNA demonstrating substantial differences in HS EVs compared with WB. There was a limited association of EV miRNA content to the corresponding miRNA content within the muscle, kidney, or liver. Stepwise linear regression demonstrated that EV miR-203a-3p was correlated with muscle mass and muscle protein synthesis and degradation across all conditions. Finally, EV miR-203a-3p expression was significantly decreased in human subjects who underwent unilateral lower limb suspension (ULLS) to induce muscle atrophy. Altogether, we show that serum EV miR-203a-3p expression is related to skeletal muscle protein turnover and atrophy. We suggest that serum EV miR-203a-3p content may be a useful biomarker and future work should investigate whether serum EV miR-203a-3p content is mechanistically linked to protein synthesis and degradation.
Collapse
Affiliation(s)
- Douglas W Van Pelt
- Department of Physical Therapy and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Ivan J Vechetti
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Marcus M Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Kathryn L Van Pelt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Parth Patel
- Department of Physical Therapy and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Timothy A Butterfield
- Department of Athletic Training and Clinical Nutrition and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
25
|
Yin J, Qian Z, Chen Y, Li Y, Zhou X. MicroRNA regulatory networks in the pathogenesis of sarcopenia. J Cell Mol Med 2020; 24:4900-4912. [PMID: 32281300 PMCID: PMC7205827 DOI: 10.1111/jcmm.15197] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is an age‐related disease characterized by disturbed homeostasis of skeletal muscle, leading to a decline in muscle mass and function. Loss of muscle mass and strength leads to falls and fracture, and is often accompanied by other geriatric diseases, including osteoporosis, frailty and cachexia, resulting in a general decrease in quality of life and an increase in mortality. Although the underlying mechanisms of sarcopenia are still not completely understood, there has been a marked improvement in the understanding of the pathophysiological changes leading to sarcopenia in recent years. The role of microRNAs (miRNAs), especially, has been clearer in skeletal muscle development and homeostasis. miRNAs form part of a gene regulatory network and have numerous activities in many biological processes. Intervention based on miRNAs may develop into an innovative treatment strategy to conquer sarcopenia. This review is divided into three sections: firstly, the latest understanding of the pathogenesis of sarcopenia is summarized; secondly, increasing evidence for the involvement of miRNAs in the regulation of muscle quantity or quality and muscle homeostasis is highlighted; and thirdly, the possibilities and limitations of miRNAs as a treatment for sarcopenia are explored.
Collapse
Affiliation(s)
- Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Raza SHA, Kaster N, Khan R, Abdelnour SA, El-Hack MEA, Khafaga AF, Taha A, Ohran H, Swelum AA, Schreurs NM, Zan L. The Role of MicroRNAs in Muscle Tissue Development in Beef Cattle. Genes (Basel) 2020; 11:genes11030295. [PMID: 32168744 PMCID: PMC7140828 DOI: 10.3390/genes11030295] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
In this review, we highlight information on microRNA (miRNA) identification and functional characterization in the beef for muscle and carcass composition traits, with an emphasis on Qinchuan beef cattle, and discuss the current challenges and future directions for the use of miRNA as a biomarker in cattle for breeding programs to improve meat quality and carcass traits. MicroRNAs are endogenous and non-coding RNA that have the function of making post-transcriptional modifications during the process of preadipocyte differentiation in mammals. Many studies claim that diverse miRNAs have an impact on adipogenesis. Furthermore, their target genes are associated with every phase of adipocyte differentiation. It has been confirmed that, during adipogenesis, several miRNAs are differentially expressed, including miR-204, miR-224, and miR-33. The development of mammalian skeletal muscle is sequentially controlled by somite commitment into progenitor cells, followed by their fusion and migration, the proliferation of myoblasts, and final modification into fast- and slow-twitch muscle fibers. It has been reported that miRNA in the bovine MEG3-DIO3 locus has a regulatory function for myoblast differentiation. Likewise, miR-224 has been associated with controlling the differentiation of bovine adipocytes by targeting lipoprotein lipase. Through the posttranscriptional downregulation of KLF6, miR-148a-3p disrupts the proliferation of bovine myoblasts and stimulates apoptosis while the miR-23a~27a~24-2 cluster represses adipogenesis. Additional to influences on muscle and fat, bta-mir-182, bta-mir-183, and bta-mir-338 represent regulators of proteolysis in muscle, which influences meat tenderness.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (S.H.A.R.); (N.K.); (R.K.)
| | - Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (S.H.A.R.); (N.K.); (R.K.)
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (S.H.A.R.); (N.K.); (R.K.)
| | - Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Mohamed E. Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt;
| | - Ayman Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt;
| | - Husein Ohran
- Department of Physiology, University of Sarajevo, Veterinary Faculty, Zmaja od Bosne 90, 71 000 Sarajevo, Bosnia and Herzegovina;
| | - Ayman A. Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Nicola M. Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand;
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (S.H.A.R.); (N.K.); (R.K.)
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
- Correspondence: ; Tel.: +86-2987-091-923
| |
Collapse
|
27
|
Zhao Y, Li JY, Jiang Q, Zhou XQ, Feng L, Liu Y, Jiang WD, Wu P, Zhou J, Zhao J, Jiang J. Leucine Improved Growth Performance, Muscle Growth, and Muscle Protein Deposition Through AKT/TOR and AKT/FOXO3a Signaling Pathways in Hybrid Catfish Pelteobagrus v achelli × Leiocassis longirostris. Cells 2020; 9:cells9020327. [PMID: 32019276 PMCID: PMC7072317 DOI: 10.3390/cells9020327] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Background: l-leucine (Leu) plays a positive role in regulating protein turnover in skeletal muscle in mammal. However, the molecular mechanism for the effects of Leu on muscle growth and protein deposition is not clearly demonstrated in fish. This study investigated the effects of dietary Leu on growth performance and muscle growth, protein synthesis, and degradation-related signaling pathways of hybrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). (2) Methods: A total of 630 hybrid catfish (23.19 ± 0.20 g) were fed 6 different experimental diets containing graded levels of Leu at 10.0 (control), 15.0, 20.0, 25.0, 30.0, 35.0, and 40.0 g Leu kg-1 for 8 weeks. (3) Results: Results showed that dietary Leu increased percent weight gain (PWG), specific growth rate (SGR), FI (feed intake), feed efficiency (FE), protein efficiency ratio (PER), muscle fibers diameter, and muscle fibers density; up-regulated insulin-like growth factor I (IGF-I), insulin-like growth factor I receptor (IGF-IR), proliferating cell nuclear antigen (PCNA), myogenic regulation factors (MyoD, Myf5, MyoG, and Mrf4), and MyHC mRNA levels; increased muscle protein synthesis via regulating the AKT/TOR signaling pathway; and attenuated protein degradation via regulating the AKT/FOXO3a signaling pathway. (4) Conclusions: These results suggest that Leu has potential role to improve muscle growth and protein deposition in fish, which might be due to the regulation of IGF mRNA expression, muscle growth related gene, and protein synthesis and degradation-related signaling pathways. Based on the broken-line model, the Leu requirement of hybrid catfish (23.19-54.55 g) for PWG was estimated to be 28.10 g kg-1 of the diet (73.04 g kg-1 of dietary protein). These results will improve our understanding of the mechanisms responsible for muscle growth and protein deposition effects of Leu in fish.
Collapse
Affiliation(s)
- Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin-Yang Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Zhou
- Fisheries Institute of Sichuan Academy of Agricultural Science, Chengdu 611731, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-28-8629-1133
| |
Collapse
|
28
|
Shen X, Zhang X, Ru W, Huang Y, Lan X, Lei C, Chen H. circINSR Promotes Proliferation and Reduces Apoptosis of Embryonic Myoblasts by Sponging miR-34a. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:986-999. [PMID: 32036250 PMCID: PMC7013137 DOI: 10.1016/j.omtn.2019.12.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
As a diverse and abundant class of endogenous RNAs, circular RNAs (circRNAs) participate in processes including cell proliferation and apoptosis. Nevertheless, few researchers have investigated the function of circRNAs in bovine muscle development. Based on existing sequencing data, we identified circINSR. The localization of circINSR in bovine myoblasts was investigated by fluorescence in situ hybridization. Molecular and biochemical assays were used to confirm the role of circINSR in myoblast proliferation and the cell cycle. Mitochondrial membrane potential and annexin V-PE/7-AAD staining assays were performed to assess cell apoptosis. Additionally, interactions between circINSR, miR-34a, and target mRNAs were examined using bioinformatics, a luciferase assay, and RNA immunoprecipitation. We found that circINSR was highly expressed in embryonic muscle tissue. Overexpression of circINSR significantly promoted proliferation and reduced apoptosis of embryonic myoblasts. Our data suggested that circINSR may act as a sponge of miR-34a and could function through de-repression of target genes in muscle cells. This study proposes that circINSR may function as a regulator of embryonic muscle development. circINSR regulates cells proliferation and apoptosis through miR-34a-modulated Bcl-2 and CyclinE2 expression.
Collapse
Affiliation(s)
- Xuemei Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenxiu Ru
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
29
|
Song C, Yang J, Jiang R, Yang Z, Li H, Huang Y, Lan X, Lei C, Ma Y, Qi X, Chen H. miR-148a-3p regulates proliferation and apoptosis of bovine muscle cells by targeting KLF6. J Cell Physiol 2019; 234:15742-15750. [PMID: 30793769 DOI: 10.1002/jcp.28232] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Skeletal muscle development is regulated by a series of regulatory factors, and also including noncoding RNA, especially microRNAs (miRNAs). Recently, miR-148a has been found to be involved in murine C2C12 differentiation by targeting ROCK1. However, the function of miR-148a-3p for the proliferation and apoptosis of bovine muscle cells has not been determined. In this study, we found that miR-148a-3p was highly expressed in fetal bovine skeletal muscle and exhibited a decreasing trend in muscle cells during its growth phase. Functional studies indicated that gain of miR-148a-3p inhibited the proliferation of bovine muscle cells and promoted apoptosis. Conversely, interference with miR-148a-3p inhibitor promoted muscle cell proliferation and inhibited its apoptosis. Mechanistically, KLF6 was confirmed as a new potential target gene of miR-148a-3p by TargetScan software prediction and the dual-luciferase assay verification. Additionally, after a gain or loss of KLF6, the function of KLF6 for muscle cell proliferation and apoptosis was opposite to that of miR-148a-3p. Collectively, these findings proposed a novel avenue whereby miR-148a-3p impeded bovine myoblast cell proliferation and promoted apoptosis through the posttranscriptional downregulation of KLF6.
Collapse
Affiliation(s)
- Chengchuang Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiameng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaoxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yun Ma
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Xinglei Qi
- Bureau of Animal Husbandry of Biyang County, Biyang, Henan, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
30
|
Xu M, Chen X, Chen D, Yu B, Li M, He J, Huang Z. Regulation of skeletal myogenesis by microRNAs. J Cell Physiol 2019; 235:87-104. [DOI: 10.1002/jcp.28986] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Meng Xu
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| | - Daiwen Chen
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| | - Bing Yu
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology Sichuan Agricultural University Chengdu Sichuan China
| | - Jun He
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| |
Collapse
|
31
|
Masouminia M, Gelfand R, Kovanecz I, Vernet D, Tsao J, Salas R, Castro K, Loni L, Rajfer J, Gonzalez-Cadavid NF. Dyslipidemia Is a Major Factor in Stem Cell Damage Induced by Uncontrolled Long-Term Type 2 Diabetes and Obesity in the Rat, as Suggested by the Effects on Stem Cell Culture. J Sex Med 2018; 15:1678-1697. [PMID: 30527052 PMCID: PMC6645779 DOI: 10.1016/j.jsxm.2018.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/04/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Previous work showed that muscle-derived stem cells (MDSCs) exposed long-term to the milieu of uncontrolled type 2 diabetes (UC-T2D) in male obese Zucker (OZ) rats, were unable to correct the associated erectile dysfunction and the underlying histopathology when implanted into the corpora cavernosa, and were also imprinted with a noxious gene global transcriptional signature (gene-GTS), suggesting that this may interfere with their use as autografts in stem cell therapy. AIM To ascertain the respective contributions of dyslipidemia and hyperglycemia to this MDSC damage, clarify its mechanism, and design a bioassay to identify the damaged stem cells. METHODS Early diabetes MDSCs and late diabetes MDSCs were respectively isolated from nearly normal young OZ rats and moderately hyperglycemic and severely dyslipidemic/obese aged rats with erectile dysfunction. Monolayer cultures of early diabetic MDSCs were incubated 4 days in DMEM/10% fetal calf serum + or - aged OZ or lean Zucker serum from non-diabetic lean Zucker rats (0.5-5%) or with soluble palmitic acid (PA) (0.5-2 mM), cholesterol (CHOL) (50-400 mg/dL), or glucose (10-25 mM). MAIN OUTCOME MEASURE Fat infiltration was estimated by Oil red O, apoptosis by TUNEL, protein expression by Western blots, and gene-GTS and microRNA (miR)-GTS were determined in these stem cells' RNA. RESULTS Aged OZ serum caused fat infiltration, apoptosis, myostatin overexpression, and impaired differentiation. Some of these changes, and also a proliferation decrease occurred with PA and CHOL. The gene-GTS changes by OZ serum did not resemble the in vivo changes, but some occurred with PA and CHOL. The miR-GTS changes by OZ serum, PA, and CHOL resembled most of the in vivo changes. Hyperglycemia did not replicate most alterations. CLINICAL IMPLICATIONS MDSCs may be damaged in long-term UC-T2D/obese patients and be ineffective in autologous human stem cell therapy, which may be prevented by excluding the damaged MDSCs. STRENGTH & LIMITATIONS The in vitro test of MDSCs is innovative and fast to define dyslipidemic factors inducing stem cell damage, its mechanism, prevention, and counteraction. Confirmation is required in other T2D/obesity rat models and stem cells (including human), as well as miR-GTS biomarker validation as a stem cell damage biomarker. CONCLUSION Serum from long-term UC-T2D/obese rats or dyslipidemic factors induces a noxious phenotype and miR-GTS on normal MDSCs, which may lead in vivo to the repair inefficacy of late diabetic MDSCs. This suggests that autograft therapy with MDSCs in long-term UT-T2D obese patients may be ineffective, albeit this may be predictable by prior stem cell miR-GTS tests. Masouminia M, Gelfand R, Kovanecz I, et al. Dyslipidemia Is a Major Factor in Stem Cell Damage Induced by Uncontrolled Long-Term Type 2 Diabetes and Obesity in the Rat, as Suggested by the Effects on Stem Cell Culture. J Sex Med 2018;15:1678-1697.
Collapse
Affiliation(s)
- Maryam Masouminia
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Robert Gelfand
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Istvan Kovanecz
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dolores Vernet
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - James Tsao
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Ruben Salas
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Kenny Castro
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Leila Loni
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Jacob Rajfer
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Nestor F Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Leucine promotes porcine myofibre type transformation from fast-twitch to slow-twitch through the protein kinase B (Akt)/forkhead box 1 signalling pathway and microRNA-27a. Br J Nutr 2018; 121:1-8. [DOI: 10.1017/s000711451800301x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractMuscle fibre types can transform from slow-twitch (slow myosin heavy chain (MyHC)) to fast-twitch (fast MyHC) or vice versa. Leucine plays a vital effect in the development of skeletal muscle. However, the role of leucine in porcine myofibre type transformation and its mechanism are still unclear. In this study, effects of leucine and microRNA-27a (miR-27a) on the transformation of porcine myofibre type were investigatedin vitro. We found that leucine increased slow MyHC protein level and decreased fast MyHC protein level, increased the levels of phospho-protein kinase B (Akt)/Akt and phospho-forkhead box 1 (FoxO1)/FoxO1 and decreased the FoxO1 protein level. However, blocking the Akt/FoxO1 signalling pathway by wortmannin attenuated the role of leucine in porcine myofibre type transformation. Over-expression of miR-27a decreased slow MyHC protein level and increased fast MyHC protein level, whereas inhibition of miR-27a had an opposite effect. We also found that expression of miR-27a was down-regulated following leucine treatment. Moreover, over-expression of miR-27a repressed transformation from fast MyHC to slow MyHC caused by leucine, suggesting that miR-27a is interdicted by leucine and then contributes to porcine muscle fibre type transformation. Our finding provided the first evidence that leucine promotes porcine myofibre type transformation from fast MyHC to slow MyHC via the Akt/FoxO1 signalling pathway and miR-27a.
Collapse
|
33
|
Van Pelt DW, Confides AL, Judge AR, Vanderklish PW, Dupont-Versteegden EE. Cold shock protein RBM3 attenuates atrophy and induces hypertrophy in skeletal muscle. J Muscle Res Cell Motil 2018; 39:35-40. [PMID: 30051360 DOI: 10.1007/s10974-018-9496-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022]
Abstract
RNA-binding motif protein 3 (RBM3), a stress-inducible RNA-binding protein that increases protein synthesis and confers cell protection in multiple cell types, has been identified as a possible regulator of skeletal muscle mass. Therefore, the primary aim of this study was to examine the impact of elevated RBM3 on skeletal muscle hypertrophy and resistance to atrophy. Plasmid-mediated overexpression of RBM3 in vitro and in vivo was used to assess the role of RBM3 in muscle. C2C12 myotubes overexpressing RBM3 were approximately 1.6 times larger than non-transfected myotubes, suggesting a role for RBM3 in hypertrophy. In addition, elevated RBM3 attenuated atrophy in myotubes exposed to dexamethasone. In agreement with in vitro results, overexpression of RBM3 in soleus muscle of F344/BN rats using electroporation techniques increased the cross sectional area of muscle fibers. Overexpression of RBM3 also attenuated muscle atrophy in rat soleus muscle undergoing disuse atrophy. These findings provide direct evidence for a novel role of RBM3 in inducing hypertrophy as well as attenuating atrophy.
Collapse
Affiliation(s)
- Douglas W Van Pelt
- Department Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S. Limestone, RM 210E, Lexington, KY, 40536-0200, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536-0200, USA
| | - Amy L Confides
- Department Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S. Limestone, RM 210E, Lexington, KY, 40536-0200, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536-0200, USA
| | - Andrew R Judge
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610-0154, USA
| | - Peter W Vanderklish
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Esther E Dupont-Versteegden
- Department Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S. Limestone, RM 210E, Lexington, KY, 40536-0200, USA. .,Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536-0200, USA.
| |
Collapse
|
34
|
Xi Y, Liu H, Zhao Y, Li J, Li W, Liu G, Lin J, Liu W, Zhang J, Lei M, Ni D. Comparative analyses of longissimus muscle miRNAomes reveal microRNAs associated with differential regulation of muscle fiber development between Tongcheng and Yorkshire pigs. PLoS One 2018; 13:e0200445. [PMID: 29995940 PMCID: PMC6040776 DOI: 10.1371/journal.pone.0200445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 06/26/2018] [Indexed: 01/07/2023] Open
Abstract
Tongcheng (TC) and Yorkshire (YK) are two pig breeds with distinctive muscle morphology. Porcine microRNAome (miRNAome) of the longissimus muscle during five developmental stages (40, 55, 63, 70, and 90 days post coitum (dpc)) was explored by Solexa sequencing in the present study to find miRNAs involved in the different regulation of skeletal muscle development between the two breeds. A total of 320 known porcine miRNAs, 64 miRNAs corresponding to other mammals, and 224 potentially novel miRNAs were identified. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) suggested that the factor “pig breed” affected the miRNA expression profiles to a lesser extent than the factor “developmental stage”. Fifty-seven miRNAs were differentially expressed (DE) between the neighbor developmental stages in TC and 45 such miRNAs were found in YK, 34 in common; there were more down-regulated stage-DE miRNAs than up-regulated. And a total of 23, 30, 12, 6, and 30 breed-DE miRNAs between TC and YK were identified at 40, 55, 63, 70, and 90 dpc, respectively, which were mainly involved in cellular protein modification process, protein transport, and metabolic process. As the only highly expressed breed-DE miRNA found in no less than four developmental stages, and also a stage-DE miRNA found both in TC and YK, miR-499-5p could bind the 3’-UTR of a myofibrillogenesis regulator, destrin/actin depolymerizing factor (DSTN), as validated in dual luciferase reporter assay. The results suggested that miR-499-5p possibly play a noteworthy role in the breed-distinctive porcine muscle fiber development associated with the regulation of DSTN.
Collapse
Affiliation(s)
- Yu Xi
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education and Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P.R. China
| | - Huijing Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education and Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yuqiang Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education and Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P.R. China
| | - Ji Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education and Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P.R. China
| | - Wenchao Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education and Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P.R. China
| | - Guorong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education and Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jiayong Lin
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education and Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P.R. China
| | - Wanghong Liu
- Swine Breeding Quality Supervision and Inspection Center of the Ministry of Agriculture (Wuhan), Huazhong Agricultural University, Wuhan, P.R. China
| | - Jinlong Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education and Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P.R. China
| | - Minggang Lei
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education and Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, P.R. China
- Swine Breeding Quality Supervision and Inspection Center of the Ministry of Agriculture (Wuhan), Huazhong Agricultural University, Wuhan, P.R. China
- National Engineering Research Center For Livestock, Huazhong Agricultural University, Wuhan, P.R. China
- * E-mail: (ML); (DN)
| | - Debin Ni
- Swine Breeding Quality Supervision and Inspection Center of the Ministry of Agriculture (Wuhan), Huazhong Agricultural University, Wuhan, P.R. China
- * E-mail: (ML); (DN)
| |
Collapse
|
35
|
Ge J, Zhu J, Xia B, Cao H, Peng Y, Li X, Yu T, Chu G, Yang G, Shi X. miR-423-5p inhibits myoblast proliferation and differentiation by targeting Sufu. J Cell Biochem 2018; 119:7610-7620. [PMID: 29923621 DOI: 10.1002/jcb.27103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/07/2018] [Indexed: 01/22/2023]
Abstract
Myoblast proliferation and terminal differentiation are the key steps of myogenesis. MicroRNAs are a class of small noncoding RNAs that play important roles in gene expression regulation. They negatively regulate gene expression by causing messenger RNA translational repression or target messenger RNA degradation. Here, we found that microRNA-423-5p (miR-423-5p) is highly expressed in both slow and fast muscles. Our gain-of-function study indicated that miR-423-5p actually plays a negative role in regulating myoblast proliferation and differentiation. We also found that miR-423-5p is able to inhibit the expression of suppressor of fused homolog to inactivate the expression of the marker genes in myoblast proliferation and differentiation. Taken together, our findings indicated miR-423-5p as a potential inhibitor of myogenesis by targeting suppressor of fused homolog in myoblast, and it also contributes to a better understanding of the microRNAs-target gene regulatory network in different types of porcine muscle types and may benefit the practice of improving the meat quality in animal husbandry.
Collapse
Affiliation(s)
- Jing Ge
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayu Zhu
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bo Xia
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haigang Cao
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Peng
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Li
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Taiyong Yu
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guiyan Chu
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xine Shi
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
36
|
Hu J, Meng Y, Zeng J, Zeng B, Jiang X. Ubiquitin E3 Ligase MARCH7 promotes proliferation and invasion of cervical cancer cells through VAV2-RAC1-CDC42 pathway. Oncol Lett 2018; 16:2312-2318. [PMID: 30008934 PMCID: PMC6036418 DOI: 10.3892/ol.2018.8908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
Ubiquitin E3 Ligase MARCH7 is involved in T cell proliferation and neuronal development. In our previous study, we demonstrated MARCH7 promoted malignant behavior of ovarian cancer via the nuclear factor (NF)-κB and Wnt/β-catenin signaling pathway. However, the expression and function of MARCH7 in cervical cancer remains unknown. The present study aimed to unravel the expression and function of MARCH7 in cervical cancer to elucidate its potential role in the diagnosis and pathogenesis of cervical cancer. Results indicated that the expression of MARCH7 was abnormally high in cervical cancer tissues than normal cervical tissues. However, silencing the expression of MARCH7 in HeLa cells resulted in decreased cell proliferation and invasion. Mechanistic investigations revealed that MARCH7 interacted with VAV2. Silencing the expression of MARCH7 in HeLa cells inhibited the VAV2-RAC1-CDC42 signaling pathway. Overall, the results of the present study identified MARCH7 as a candidate oncogene in cervical cancer, and a potential target for cervical cancer therapy.
Collapse
Affiliation(s)
- Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Ying Meng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jianhua Zeng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Biao Zeng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xingwei Jiang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
37
|
Differential expression of microRNAs and other small RNAs in muscle tissue of patients with ALS and healthy age-matched controls. Sci Rep 2018; 8:5609. [PMID: 29618798 PMCID: PMC5884852 DOI: 10.1038/s41598-018-23139-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/05/2018] [Indexed: 02/08/2023] Open
Abstract
Amyotrophic lateral sclerosis is a late-onset disorder primarily affecting motor neurons and leading to progressive and lethal skeletal muscle atrophy. Small RNAs, including microRNAs (miRNAs), can serve as important regulators of gene expression and can act both globally and in a tissue-/cell-type-specific manner. In muscle, miRNAs called myomiRs govern important processes and are deregulated in various disorders. Several myomiRs have shown promise for therapeutic use in cellular and animal models of ALS; however, the exact miRNA species differentially expressed in muscle tissue of ALS patients remain unknown. Following small RNA-Seq, we compared the expression of small RNAs in muscle tissue of ALS patients and healthy age-matched controls. The identified snoRNAs, mtRNAs and other small RNAs provide possible molecular links between insulin signaling and ALS. Furthermore, the identified miRNAs are predicted to target proteins that are involved in both normal processes and various muscle disorders and indicate muscle tissue is undergoing active reinnervation/compensatory attempts thus providing targets for further research and therapy development in ALS.
Collapse
|
38
|
Ling YH, Sui MH, Zheng Q, Wang KY, Wu H, Li WY, Liu Y, Chu MX, Fang FG, Xu LN. miR-27b regulates myogenic proliferation and differentiation by targeting Pax3 in goat. Sci Rep 2018; 8:3909. [PMID: 29500394 PMCID: PMC5834623 DOI: 10.1038/s41598-018-22262-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/19/2018] [Indexed: 02/08/2023] Open
Abstract
This study found that miR-27 is expressed in muscle and regulates muscle proliferation and differentiation. We explored the function and regulatory mechanism of miR-27b in goat muscle proliferation and differentiation. Compared with the Boer goat, higher expression of miR-27b was observed in all of the collected muscle tissues of Anhuai goat, excluding the kidney, whereas the opposite expression pattern was observed for Pax3, which showed lower expression in Anhuai goat. Expression of miR-27b decreased gradually during the proliferation of skeletal muscle satellite cells in Anhuai goat and increased during differentiation; however, the expression pattern of Pax3 was opposite. The regulatory activity of miR-27b demonstrated that miR-27b inhibited the proliferation of skeletal muscle satellite cells, but promoted their differentiation. Moreover, function research demonstrated that Pax3 negatively regulated myogenic differentiation of goat skeletal muscle satellite cells, but accelerated their proliferation. The results of a dual-luciferase reporter analysis showed that miR-27b directly targeted the 3’-untranslated regions of Pax3 mRNA, and western blot and immunofluorescence staining analyses showed that miR-27b inhibited expression of the Pax3 protein. In goats, miR-27b can regulate myogenic proliferation and differentiation by targeting Pax3.
Collapse
Affiliation(s)
- Ying-Hui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Meng-Hua Sui
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Kang-Yan Wang
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Hao Wu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Wen-Yong Li
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, China
| | - Yong Liu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, China
| | - Ming-Xing Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, CAAS, Beijing, 100193, China
| | - Fu-Gui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Li-Na Xu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China. .,Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China.
| |
Collapse
|
39
|
Regulatory Role of MicroRNAs in Muscle Atrophy during Exercise Intervention. Int J Mol Sci 2018; 19:ijms19020405. [PMID: 29385720 PMCID: PMC5855627 DOI: 10.3390/ijms19020405] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle comprising approximately 40% of body weight is highly important for locomotion and metabolic homeostasis. The growth and regeneration of skeletal muscle are highly organized processes; thus, it is not surprising to reveal certain complexity during these regulatory processes. Recently, a large number of evidence indicate that microRNAs can result in obvious impacts on growth, regeneration and metabolism of skeletal muscle. In this review, recent research achievements of microRNAs in regulating myogenesis, atrophy and aging during exercise intervention are discussed, which will provide the guidance for developing potential applications of microRNAs in health promotion and rehabilitation of sports injuries.
Collapse
|
40
|
Jiao Y, Huang B, Chen Y, Hong G, Xu J, Hu C, Wang C. Integrated Analyses Reveal Overexpressed Notch1 Promoting Porcine Satellite Cells' Proliferation through Regulating the Cell Cycle. Int J Mol Sci 2018; 19:ijms19010271. [PMID: 29337929 PMCID: PMC5796217 DOI: 10.3390/ijms19010271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/19/2022] Open
Abstract
Notch signaling as a conserved cell fate regulator is involved in the regulation of cell quiescence, proliferation, differentiation and postnatal tissue regeneration. However, how Notch signaling regulates porcine satellite cells (PSCs) has not been elucidated. We stably transfected Notch1 intracellular domain (N1ICD) into PSCs to analyze the gene expression profile and miRNA-seq. The analysis of the gene expression profile identified 295 differentially-expressed genes (DEGs) in proliferating-N1ICD PSCs (P-N1ICD) and nine DEGs on differentiating-N1ICD PSCs (D-N1ICD), compared with that in control groups (P-Control and D-Control, respectively). Analyzing the underlying function of DEGs showed that most of the upregulated DEGs enriched in P-N1ICD PSCs are related to the cell cycle. Forty-four and 12 known differentially-expressed miRNAs (DEMs) were identified in the P-N1ICD PSCs and D-N1ICD PSCs group, respectively. Furthermore, we constructed the gene-miRNA network of the DEGs and DEMs. In P-N1ICD PSCs, miR-125a, miR-125b, miR-10a-5p, ssc-miR-214, miR-423 and miR-149 are downregulated hub miRNAs, whose corresponding hub genes are marker of proliferation Ki-67 (MKI67) and nuclear receptor binding SET domain protein 2 (WHSC1). By contrast, miR-27a, miR-146a-5p and miR-221-3p are upregulated hub miRNAs, whose hub genes are RUNX1 translocation partner 1 (RUNX1T1) and fibroblast growth factor 2 (FGF2). All the hub miRNAs and genes are associated with cell proliferation. Quantitative RT-PCR results are consistent with the gene expression profile and miRNA-seq results. The results of our study provide valuable information for understanding the molecular mechanisms underlying Notch signaling in PSCs and skeletal muscle development.
Collapse
Affiliation(s)
- Yiren Jiao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Bo Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yu Chen
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Guangliang Hong
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jian Xu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Chingyuan Hu
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Chong Wang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
41
|
Domańska-Senderowska D, Jastrzębski Z, Kiszałkiewicz J, Brzeziański M, Pastuszak-Lewandoska D, Radzimińki Ł, Brzeziańska-Lasota E, Jegier A. Expression analysis of selected classes of circulating exosomal miRNAs in soccer players as an indicator of adaptation to physical activity. Biol Sport 2017; 34:331-338. [PMID: 29472735 PMCID: PMC5819468 DOI: 10.5114/biolsport.2017.69820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/17/2017] [Accepted: 05/01/2017] [Indexed: 01/01/2023] Open
Abstract
Recently studies have shown that, depending on the type of training and its duration, the expression levels of selected circulating myomiRNAs (c-miR-27a,b, c-miR-29a,b,c, c-miR-133a) differ and correlate with the physiological indicators of adaptation to physical activity. To analyse the expression of selected classes of miRNAs in soccer players during different periods of their training cycle. The study involved 22 soccer players aged 17-18 years. The multi-stage 20-m shuttle run test was used to estimate VO2 max among the soccer players. Samples serum were collected at baseline (time point I), after one week (time point II), and after 2 months of training (time point III). The analysis of the relative quantification (RQ) level of three exosomal myomiRNAs, c-miRNA-27b, c-miR-29a, and c-miR-133, was performed by quantitative polymerase chain reaction (qPCR) at three time points - before the training, after 1 week of training and after the completion of two months of competition season training. The expression analysis showed low expression levels (according to references) of all evaluated myomiRNAs before the training cycle. Analysis performed after a week of the training cycle and after completion of the entire training cycle showed elevated expression of all tested myomiRNAs. Statistical analysis revealed significant differences between the first and the second time point in soccer players for c-miR-27b and c-miR-29a; between the first and the third time point for c-miR-27b and c-miR-29a; and between the second and the third time point for c-miR-27b. Statistical analysis showed a positive correlation between the levels of c-miR-29a and VO2 max. Two months of training affected the expression of c-miR-27b and miR-29a in soccer players. The increased expression of c-miR-27b and c-miR-29 with training could indicate their probable role in the adaptation process that takes place in the muscular system. Possibly, the expression of c-miR-29a will be found to be involved in cardiorespiratory fitness in future research.
Collapse
Affiliation(s)
| | - Zbigniew Jastrzębski
- Gdansk University of Physical Education and Sport, Gdansk, Poland (Department of Tourism and Recreation)
| | | | - Michał Brzeziański
- Department of Molecular Bases of Medicine, Medical University of Lodz
- Department of Sports Medicine, Medical University of Lodz
| | | | - Łukasz Radzimińki
- Gdansk University of Physical Education and Sport, Gdansk, Poland (Department of Tourism and Recreation)
| | | | - Anna Jegier
- Department of Sports Medicine, Medical University of Lodz
| |
Collapse
|
42
|
Fan X, Sun L, Li K, Yang X, Cai B, Zhang Y, Zhu Y, Ma Y, Guan Z, Wu Y, Zhang L, Yang Z. The Bioactivity of D-/L-Isonucleoside- and 2'-Deoxyinosine-Incorporated Aptamer AS1411s Including DNA Replication/MicroRNA Expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:218-229. [PMID: 29246300 PMCID: PMC5651494 DOI: 10.1016/j.omtn.2017.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022]
Abstract
In this study, chemical modification of 2'-deoxyinosine (2'-dI) and D-/L-isothymidine (D-/L-isoT) was performed on AS1411. They could promote the nucleotide-protein interaction by changing the local conformation. Twenty modified sequences were obtained, FCL-I and FCL-II showed the most noticeable activity improvement. They stabilized the G-quadruplex, remained highly resistant to serum degradation and specificity for nucleolin, further inhibited tumor cell growth, exhibited a stronger ability to influence the different phases of the tumor cell cycle, induced S-phase arrest, promoted the inhibition of DNA replication, and suppressed the unwound function of a large T antigen as powerful as AS1411. The microarray analysis and TaqMan PCR results showed that FCL-II can upregulate the expression of four breast-cancer-related, lowly expressed miRNAs and downregulate the expression of three breast-cancer-related, highly expressed miRNAs (>2.5-fold). FCL-II resulted in enhanced treatment effects greater than AS1411 in animal experiments (p < 0.01). The computational results further proved that FCL-II exhibits more structural advantages than AS1411 for binding to the target protein nucleolin, indicating its great potential in antitumor therapy.
Collapse
Affiliation(s)
- Xinmeng Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Lidan Sun
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University Medical College, Yichang 443002, PR China
| | - Kunfeng Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Xiantao Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Baobin Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yanfen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yuejie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yun Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
43
|
Zhang S, Chen X, Huang Z, Chen D, Yu B, He J, Zheng P, Yu J, Luo J, Luo Y, Chen H. Effects of MicroRNA-27a on Myogenin Expression and Akt/FoxO1 Signal Pathway during Porcine Myoblast Differentiation. Anim Biotechnol 2017; 29:183-189. [DOI: 10.1080/10495398.2017.1348357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shurun Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, P. R. China
| |
Collapse
|
44
|
Mak RH, Cheung WW. MicroRNA as Novel Exercise Mimetic for Muscle Wasting in CKD. J Am Soc Nephrol 2017; 28:2557-2559. [PMID: 28720683 DOI: 10.1681/asn.2017060631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, La Jolla, California
| | - Wai W Cheung
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, La Jolla, California
| |
Collapse
|
45
|
Pegoraro V, Merico A, Angelini C. Micro-RNAs in ALS muscle: Differences in gender, age at onset and disease duration. J Neurol Sci 2017; 380:58-63. [PMID: 28870590 PMCID: PMC5598142 DOI: 10.1016/j.jns.2017.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/25/2022]
Abstract
Few studies have explored the role of microRNAs (or miRNAs) in Amyotrophic Lateral Sclerosis (ALS) muscle, possibly because of the difficulty in obtaining samples and because this is a rare disease. We measured the expression levels of muscle-specific miRNAs (miRNA-1, miRNA-206, miRNA-133a, miRNA-133b, miRNA-27a) and inflammatory/angiogenic miRNAs (miRNA-155, miRNA-146a, miRNA-221, miRNA-149*) in the muscles of 13 ALS patients and controls. To highlight differences, patients were subdivided according to their gender, age at onset of symptoms, and disease duration. A significant over-expression of all miRNAs was observed in ALS patients versus controls, in male patients versus females, in patients with early onset versus patients with late onset, and in patients with long disease duration versus patients with short duration. A differential expression of miRNAs according to gender could be explained by the hormonal regulation which determines the body muscle mass. The course of the disease might reflect differential degree of muscle atrophy and signaling at miRNA levels. An evident role is also played by inflammatory/angiogenetic factors as shown by the observed miRNA changes. MyomiRNAs (especially miRNA-206) are up-regulated in ALS muscle than in controls. Inflammatory miRNA-(especially miRNA-221) is up-regulated in ALS than in controls. There is gender difference in expression of myo-miRNAs and inflammatory miRNAs. MiRNAs levels differ according to age at onset and disease duration.
Collapse
Affiliation(s)
| | - Antonio Merico
- Fondazione San Camillo Hospital IRCCS, Lido Venice, Italy
| | | |
Collapse
|
46
|
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression of target messenger RNAs (mRNAs) and miRNAs have been proven to play vital roles in skeletal muscle development. The miRNA-499-5p has been reported to be negatively related with the expression of Sox6, a critical transcription factor for the maintenance of fast-twitch skeletal muscle. In this study, we amplified a length of 2012-bp mRNA that contains a 1512-bp porcine Sox6 (pSox6) 3'UTR from skeletal muscle of a Duroc×Landrace×Yorkshire pig. By luciferase reporter assay we verified that pSox6 is a target of miR-499-5p. In extensor digitorum longus and Soleus muscles of pigs, the expression levels of miR-499-5p and pSox6 mRNA were also inversely correlated. Besides, overexpression of miR-499-5p in porcine satellite cells promoted the expression of MyHC I and MyHC IIa mRNA, along with a reduction of pSox6 mRNA. Taken together, these results indicate that miR-499-5p may facilitate the oxidative myofibers formation by downregulating pSox6 expression.
Collapse
|
47
|
McCormick R, Goljanek-Whysall K. MicroRNA Dysregulation in Aging and Pathologies of the Skeletal Muscle. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:265-308. [PMID: 28838540 DOI: 10.1016/bs.ircmb.2017.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is one of the biggest organs of the body with important mechanistic and metabolic functions. Muscle homeostasis is controlled by environmental, genetic, and epigenetic factors. Indeed, MiRNAs, small noncoding RNAs robust regulators of gene expression, have and have been shown to regulate muscle homeostasis on several levels: through controlling myogenesis, muscle growth (hypertrophy) and atrophy, as well as interactions of muscle with other tissues. Given the large number of MiRNA target genes and the important role of MiRNAs in most physiological processes and various diseases, MiRNAs may have an enormous potential as therapeutic targets against numerous disorders, including pathologies of muscle. The purpose of this review is to present the current knowledge of the role of MiRNAs in skeletal muscle homeostasis and pathologies and the potential of MiRNAs as therapeutics for skeletal muscle wasting, with particular focus on the age- and disease-related loss of muscle mass and function.
Collapse
Affiliation(s)
- Rachel McCormick
- Musculoskeletal Biology II, Centre for Integrated Research into Musculoskeletal Aging, Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| | - Katarzyna Goljanek-Whysall
- Musculoskeletal Biology II, Centre for Integrated Research into Musculoskeletal Aging, Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
48
|
Wang B, Zhang C, Zhang A, Cai H, Price SR, Wang XH. MicroRNA-23a and MicroRNA-27a Mimic Exercise by Ameliorating CKD-Induced Muscle Atrophy. J Am Soc Nephrol 2017; 28:2631-2640. [PMID: 28400445 DOI: 10.1681/asn.2016111213] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/14/2017] [Indexed: 11/03/2022] Open
Abstract
Muscle atrophy is a frequent complication of CKD, and exercise can attenuate the process. This study investigated the role of microRNA-23a (miR-23a) and miR-27a in the regulation of muscle mass in mice with CKD. These miRs are located in a gene cluster that is regulated by the transcription factor NFAT. CKD mice expressed less miR-23a in muscle than controls, and resistance exercise (muscle overload) increased the levels of miR-23a and miR-27a in CKD mice. Injection of an adeno-associated virus encoding the miR-23a/27a/24-2 precursor RNA into the tibialis anterior muscles of normal and CKD mice led to increases in mature miR-23a and miR-27a but not miR-24-2 in the muscles of both cohorts. Overexpression of miR-23a/miR-27a in CKD mice attenuated muscle loss, improved grip strength, increased the phosphorylation of Akt and FoxO1, and decreased the activation of phosphatase and tensin homolog (PTEN) and FoxO1 and the expression of TRIM63/MuRF1 and FBXO32/atrogin-1 proteins. Provision of miR-23a/miR-27a also reduced myostatin expression and downstream SMAD-2/3 signaling, decreased activation of caspase-3 and -7, and increased the expression of markers of muscle regeneration. Lastly, in silico miR target analysis and luciferase reporter assays in primary satellite cells identified PTEN and caspase-7 as targets of miR-23a and FoxO1 as a target of miR-27a in muscle. These findings provide new insights about the roles of the miR-23a/27a-24-2 cluster in CKD-induced muscle atrophy in mice and suggest a mechanism by which exercise helps to maintain muscle mass.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia.,Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Cong Zhang
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia.,Division of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Aiqing Zhang
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia.,Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; and
| | - Hui Cai
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia.,Research Service Line, Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - S Russ Price
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia.,Research Service Line, Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Xiaonan H Wang
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia;
| |
Collapse
|
49
|
Tang KQ, Wang YN, Zan LS, Yang WC. miR-27a controls triacylglycerol synthesis in bovine mammary epithelial cells by targeting peroxisome proliferator-activated receptor gamma. J Dairy Sci 2017; 100:4102-4112. [PMID: 28284697 DOI: 10.3168/jds.2016-12264] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022]
Abstract
Growing evidence has revealed that microRNA are central elements in milk fat synthesis in mammary epithelial cells. A negative regulator of adipocyte fat synthesis, miR-27a has been reported to be involved in the regulation of milk fat synthesis in goat mammary epithelial cells; however, the regulatory role of miR-27a in bovine milk fat synthesis remains unclear. In the present study, primary bovine mammary epithelial cells (BMEC) were harvested from mid-lactation cows and cultured in Dulbecco's modified Eagle's medium/F-12 medium with 10% fetal bovine serum, 5 μg/mL of insulin, 1 μg/mL of hydrocortisone, 2 μg/mL of prolactin, 1 μg/mL of progesterone, 100 U/mL of penicillin, and 100 μg/mL of streptomycin. We found that the overexpression of miR-27a significantly suppressed lipid droplet formation and decreased the cellular triacylglycerol (TAG) levels, whereas inhibition of miR-27a resulted in a greater lipid droplet formation and TAG accumulation in BMEC. Meanwhile, overexpression of miR-27a inhibited mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), CCAAT/enhancer-binding protein beta (C/EBPβ), perilipin 2 (PLIN2), and fatty acid binding protein 3 (FABP3), whereas miR-27a downregulation increased PPARG, C/EBPβ, FABP3, and CCAAT enhancer binding protein alpha (C/EBPα) mRNA expression. Furthermore, Western blot analysis revealed the protein level of PPARG in miR-27a mimic and inhibitor transfection groups to be consistent with the mRNA expression response. Moreover, luciferase reporter assays verified that PPARG was the direct target of miR-27a. In summary, these results indicate that miR-27a has the ability to control TAG synthesis in BMEC via targeting PPARG, suggesting that miR-27a could potentially be used to improve beneficial milk components in dairy cows.
Collapse
Affiliation(s)
- K Q Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Y N Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - L S Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - W C Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
50
|
Koganti PP, Wang J, Cleveland B, Ma H, Weber GM, Yao J. Estradiol regulates expression of miRNAs associated with myogenesis in rainbow trout. Mol Cell Endocrinol 2017; 443:1-14. [PMID: 28011237 DOI: 10.1016/j.mce.2016.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/14/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
17β-Estradiol (E2) is a steroid hormone that negatively affects muscle growth in rainbow trout, but the mechanism associated with this response is not fully understood. To better characterize the effects of E2 on muscle, we identified differentially regulated microRNAs (miRNAs) and muscle atrophy-related transcripts in juvenile rainbow trout exposed to E2. Small RNA-Seq analysis of E2-treated vs. control muscle identified 36 differentially expressed miRNAs including those known to be involved in myogenesis, cell cycle, apoptosis, and cell death. Some important myogenic miRNAs, such as miR-133 and miR-206, are upregulated while others like miR-145 and miR-499, are downregulated. Gene Ontology analysis of the target genes regulated by the miRNAs involved in atrophy and cell cycle indicates that E2 influence leads to expansion of quiescent myogenic precursor cell population to address atrophying mature muscle in rainbow trout during sexual development.
Collapse
Affiliation(s)
- Prasanthi P Koganti
- Genetics and Developmental Biology, West Virginia University, Morgantown, WV, United States
| | - Jian Wang
- Genetics and Developmental Biology, West Virginia University, Morgantown, WV, United States
| | - Beth Cleveland
- USDA/ARS, National Center for Cool and Cold Water Aquaculture Research, Kearneysville, WV, United States
| | - Hao Ma
- USDA/ARS, National Center for Cool and Cold Water Aquaculture Research, Kearneysville, WV, United States
| | - Gregory M Weber
- USDA/ARS, National Center for Cool and Cold Water Aquaculture Research, Kearneysville, WV, United States
| | - Jianbo Yao
- Genetics and Developmental Biology, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|