1
|
Wojtyła C, Bertuccio P, Giermaziak W, Santucci C, Odone A, Ciebiera M, Negri E, Wojtyła A, La Vecchia C. European trends in ovarian cancer mortality, 1990-2020 and predictions to 2025. Eur J Cancer 2023; 194:113350. [PMID: 37837925 DOI: 10.1016/j.ejca.2023.113350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 10/16/2023]
Abstract
INTRODUCTION Over the last decades, ovarian cancer mortality in Europe has been decreasing, but disparities in trends were observed. In this paper, we analysed ovarian cancer mortality trends in Europe over the period 1990-2020 and predicted the number of deaths and rates by 2025. METHODS We extracted population and death certification data from ovarian cancer in women for 31 European countries, between 1990 and 2020 from the World Health Organization database. We computed age-standardised mortality rates (ASMR) per 100,000 women-years, based on the world standard population. We also obtained predictions for 2025 using a joinpoint regression model and calculated the number of avoided deaths over the period 1994-2025. RESULTS Over the observed period, mortality from ovarian cancer showed a favourable pattern in most countries. In the EU-27, rates declined by 5.9% from 2010-2014 to 2015-2019, reaching an ASMR of 4.66/100,000. During the same period, the decline in ovarian cancer mortality was more pronounced in the EU-14 countries (-7.0%) compared to Transitional countries (-2.1%). Declines were also observed in the United Kingdom, to reach an ASMR of 5.29. Decreases in mortality from ovarian cancer are predicted until 2025, to 4.17/100,000 for the EU-27. CONCLUSIONS Favourable trends in ovarian cancer mortality are expected to persist in Europe and can be mainly attributed to the increased use of oral contraceptives in subsequent generations of European women. Decreased use of menopausal Hormone Replacement Therapy and improved diagnosis and management may also have played a role.
Collapse
Affiliation(s)
- Cezary Wojtyła
- Women's Health Research Institute, Calisia University, 62-800 Kalisz, Poland.
| | - Paola Bertuccio
- Department of Public Health, Experimental and Forensic Medicine, Università degli Studi di Pavia, Pavia, Italy
| | | | - Claudia Santucci
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anna Odone
- Department of Public Health, Experimental and Forensic Medicine, Università degli Studi di Pavia, Pavia, Italy
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland; Warsaw Institute of Women's Health, 00-189 Warsaw, Poland
| | - Eva Negri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Andrzej Wojtyła
- Faculty of Health Sciences, Calisia University, 16 Kaszubska St., 62-800 Kalisz, Poland
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Sabit H, Tombuloglu H, Cevik E, Abdel-Ghany S, El-Zawahri E, El-Sawy A, Isik S, Al-Suhaimi E. Knockdown of c-MYC Controls the Proliferation of Oral Squamous Cell Carcinoma Cells in vitro via Dynamic Regulation of Key Apoptotic Marker Genes. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:45-55. [PMID: 34268253 PMCID: PMC8256829 DOI: 10.22088/ijmcm.bums.10.1.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/09/2021] [Indexed: 01/09/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial cancer occurring in the oral cavity, where it accounts for nearly 90% of all oral cavity neoplasms. The c-MYC transcription factor plays an important role in the control of programmed cell death, normal-to-malignant cellular transformation, and progression of the cell cycle. However, the role of c-MYC in controlling the proliferation of OSCC cells is not well known. In this study, c-MYC gene was silenced in OSCC cells (ORL-136T), and molecular and cellular responses were screened. To identify the pathway through which cell death occurred, cytotoxicity, colony formation, western blotting, caspase-3, and RT-qPCR analyzes were performed. Results indicated that knockdown of c-MYC has resulted in a significant decrease in the cell viability and c-MYC protein synthesis. Furthermore, caspase-3 was shown to be upregulated leading to apoptosis via the intrinsic pathway. In response to c-MYC knockdown, eight cell proliferation-associated genes showed variable expression profiles: c-MYC (-21.2), p21 (-2.5), CCNA1(1.8), BCL2 (-1.4), p53(-3.7), BAX(1.1), and CYCS (19.3). p27 expression was dramatically decreased in c-MYC-silenced cells in comparison with control, and this might indicate that the relative absence of c-MYC triggered intrinsic apoptosis in OSCC cells via p27 and CYCS.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Genetics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Emre Cevik
- Department of Genetics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shaimaa Abdel-Ghany
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Engy El-Zawahri
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Amr El-Sawy
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Sevim Isik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, Turkey.,SANKARA Brain & Biotechnology Research Center, Istanbul Biotechnology Inc, Technocity, Avcilar, Istanbul, Turkey
| | - Ebtesam Al-Suhaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Langdon R, Richmond R, Elliott HR, Dudding T, Kazmi N, Penfold C, Ingarfield K, Ho K, Bretherick A, Haley C, Zeng Y, Walker RM, Pawlita M, Waterboer T, Gaunt T, Smith GD, Suderman M, Thomas S, Ness A, Relton C. Identifying epigenetic biomarkers of established prognostic factors and survival in a clinical cohort of individuals with oropharyngeal cancer. Clin Epigenetics 2020; 12:95. [PMID: 32600451 PMCID: PMC7322918 DOI: 10.1186/s13148-020-00870-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/19/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Smoking status, alcohol consumption and HPV infection (acquired through sexual activity) are the predominant risk factors for oropharyngeal cancer and are thought to alter the prognosis of the disease. Here, we conducted single-site and differentially methylated region (DMR) epigenome-wide association studies (EWAS) of these factors, in addition to ∼ 3-year survival, using Illumina Methylation EPIC DNA methylation profiles from whole blood in 409 individuals as part of the Head and Neck 5000 (HN5000) study. Overlapping sites between each factor and survival were then assessed using two-step Mendelian randomization to assess whether methylation at these positions causally affected survival. RESULTS Using the MethylationEPIC array in an OPC dataset, we found novel CpG associations with smoking, alcohol consumption and ~ 3-year survival. We found no CpG associations below our multiple testing threshold associated with HPV16 E6 serological response (used as a proxy for HPV infection). CpG site associations below our multiple-testing threshold (PBonferroni < 0.05) for both a prognostic factor and survival were observed at four gene regions: SPEG (smoking), GFI1 (smoking), PPT2 (smoking) and KHDC3L (alcohol consumption). Evidence for a causal effect of DNA methylation on survival was only observed in the SPEG gene region (HR per SD increase in methylation score 1.28, 95% CI 1.14 to 1.43, P 2.12 × 10-05). CONCLUSIONS Part of the effect of smoking on survival in those with oropharyngeal cancer may be mediated by methylation at the SPEG gene locus. Replication in data from independent datasets and data from HN5000 with longer follow-up times is needed to confirm these findings.
Collapse
Affiliation(s)
- Ryan Langdon
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca Richmond
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hannah R. Elliott
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom Dudding
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nabila Kazmi
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Chris Penfold
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and University of Bristol, Bristol, UK
| | - Kate Ingarfield
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and University of Bristol, Bristol, UK
| | - Karen Ho
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew Bretherick
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Scotland Bristol, EH4 2XU UK
| | - Chris Haley
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Scotland Bristol, EH4 2XU UK
| | - Yanni Zeng
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Scotland Bristol, EH4 2XU UK
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Rosie M. Walker
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ UK
| | - Michael Pawlita
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tom Gaunt
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and University of Bristol, Bristol, UK
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Steve Thomas
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and University of Bristol, Bristol, UK
| | - Andy Ness
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and University of Bristol, Bristol, UK
| | - Caroline Relton
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Al-Eitan LN, Rababa'h DM, Alghamdi MA, Khasawneh RH. Genetic association of XRCC5 gene polymorphisms with breast cancer among Jordanian women. Onco Targets Ther 2019; 12:7923-7928. [PMID: 31920325 PMCID: PMC6936298 DOI: 10.2147/ott.s220226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose Breast cancer (BC) is a complex disease that is governed by several different environmental and inherited factors. There are many genes have been linked with BC development by screening specific genetic variants within these genes. In this study, we aim to investigate the correlation between Variable Number Tandem Repeat (VNTR) in XRCC5 gene and BC. Materials and methods Polymerase Chain Reaction (PCR) and Gel electrophoresis were used to genotype the XRCC5 gene polymorphism in 200 cases with breast cancer and 200 healthy individuals. All participants were Jordanian women from Arab descents. Clinical and pathological characteristics for BC patients were summarized and categorized according to their medical records. Results In this study, we found a strong correlation between the VNTR polymorphism in the XRCC5 gene and BC risk (P-value<0.0001). Remarkably, three different genotypes (2R\2R, 3R\2R and 3R\3R) showed significant association with BC (P-value<0.0001). This study also reported a significant difference in the distribution of allele frequencies between BC patients and healthy individuals (3R; P-value<0.0001 and 2R; P-value<0.001). However, we propose that VNTR of XRCC5 gene did not interfere with BC prognosis. Conclusion We speculate that the VNTR of XRCC5 gene may influence BC development. More investigations are needed in this regard to clarify the underlying role of the XRCC5 genetic variant in tumorgenesis including BC development.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Doaa M Rababa'h
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | | | - Rame H Khasawneh
- Department of Hematopathology, King Hussein Medical Center (KHMC), Jordan Royal Medical Services (RMS), Amman 11118, Jordan
| |
Collapse
|
5
|
Primary and Secondary Prevention of Pancreatic Cancer. CURR EPIDEMIOL REP 2019. [DOI: 10.1007/s40471-019-00189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Pinel C, Prainsack B, McKevitt C. Markers as mediators: A review and synthesis of epigenetics literature. BIOSOCIETIES 2019; 13:276-303. [PMID: 31105763 PMCID: PMC6520226 DOI: 10.1057/s41292-017-0068-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigenetics, the study of the processes that control gene expression without a change in DNA sequence, highlights the importance of environmental factors in gene regulation. This paper maps the terrain of epigenetics and identifies four main research subfields: gene expression; molecular epigenetics; clinical epigenetics and epigenetic epidemiology. Within and across these fields, we analyse of what is conceptualised as environment and demonstrate the variable ways authors understand epigenetics environments. Then, following an analysis of the discursive strategies employed by epigenetics researchers, we demonstrate how authors portray the interactions between genes, epigenetics, and environment as relationships linking the outside (where the environment is located) with the inside (where the genes are located). We argue that authors assign specific roles to each actor: the environment as the active player initiating the relationship, the genes as recipients, and epigenetics as mediators between environment and genes. Framed as mediators, epigenetic markers can be understood as enablers of communication between environment and genome, capable of processing and organising signals so as to regulate the interactions between the actors of epigenetic relationships. This finding complicates the observation by social science scholars that the interactions between environment and genes can be understood through the concept of signal.
Collapse
Affiliation(s)
- Clémence Pinel
- School of Population Sciences and Health Services Research, King’s College London, UK
| | - Barbara Prainsack
- Department of Political Science, University of Vienna, Austria
- Department of Global Health & Social Medicine, King’s College London, UK
| | - Christopher McKevitt
- School of Population Sciences and Health Services Research, King’s College London, UK
| |
Collapse
|
7
|
Thirumavalavan N, Gabrielsen JS, Lamb DJ. Where are we going with gene screening for male infertility? Fertil Steril 2019; 111:842-850. [PMID: 31029238 DOI: 10.1016/j.fertnstert.2019.03.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 01/11/2023]
Abstract
Male infertility is a heterogenous disease process requiring the proper functioning and interaction of thousands of genes. Given the number of genes involved, it is thought that genetic causes contribute to most cases of infertility. Identifying these causes, however, is challenging. Infertility is associated with negative health outcomes, such as cancer, highlighting the need to further understand the genetic underpinnings of this condition. This paper describes the genetic and genomic tests currently available to identify the etiology of male infertility and then will discuss emerging technologies that may facilitate diagnosis and treatment of in the future.
Collapse
Affiliation(s)
| | | | - Dolores J Lamb
- Department of Urology, Center for Reproductive Genomics and Caryle and Israel Englander, Institute for Precision Medicine, Weill Cornell School of Medicine, New York, New York.
| |
Collapse
|
8
|
Maekawa R, Mihara Y, Sato S, Okada M, Tamura I, Shinagawa M, Shirafuta Y, Takagi H, Taketani T, Tamura H, Sugino N. Aberrant DNA methylation suppresses expression of estrogen receptor 1 (ESR1) in ovarian endometrioma. J Ovarian Res 2019; 12:14. [PMID: 30728052 PMCID: PMC6364435 DOI: 10.1186/s13048-019-0489-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background In ovarian endometriomas (OE), the expression statuses of various steroid hormone receptors are altered compared with their expression statuses in eutopic endometrium (EE). For example, in OE, the expressions of estrogen receptor 1 (ESR1), which encodes ERα, and progesterone receptor (PGR) are downregulated, while the expression of ESR2, which encodes ERβ, is upregulated. The causes of these changes are unclear. DNA methylation of a specific region of a gene can result in tissue-specific gene expression. Such regions are called tissue-dependent and differentially methylated regions (T-DMRs). We previously reported that the tissue-specific expression of ESR1 is regulated by DNA methylation of a T-DMR in normal tissues. In the present study, we examined whether aberrant DNA methylation of the T-DMR is associated with the altered expressions of ESR1, ESR2 and PGR in OE. Results Gene expression levels of ESR1, ESR2 and PGR were measured by quantitative RT-PCR. The expression levels of ESR1 and PGR were significantly lower and the expression level of ESR2 was significantly higher in OE than in EE. DNA methylation statuses were examined with an Infinium HumanMethylation450K BeadChip and sodium bisulfite sequencing. DNA methylation at the T-DMRs of ESR1 were significantly higher in OE than in EE, but no significant differences were observed in the DNA methylation statuses of ESR2 and PGR. Conclusions Aberrant DNA methylation of the T-DMR was associated with the impaired expression of ESR1, but not the altered expressions of ESR2 and PGR, in OE.
Collapse
Affiliation(s)
- Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan.
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Maki Okada
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Haruka Takagi
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| |
Collapse
|
9
|
Ogino S, Nowak JA, Hamada T, Phipps AI, Peters U, Milner DA, Giovannucci EL, Nishihara R, Giannakis M, Garrett WS, Song M. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut 2018; 67:1168-1180. [PMID: 29437869 PMCID: PMC5943183 DOI: 10.1136/gutjnl-2017-315537] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
Immunotherapy strategies targeting immune checkpoints such as the CTLA4 and CD274 (programmed cell death 1 ligand 1, PD-L1)/PDCD1 (programmed cell death 1, PD-1) T-cell coreceptor pathways are revolutionising oncology. The approval of pembrolizumab use for solid tumours with high-level microsatellite instability or mismatch repair deficiency by the US Food and Drug Administration highlights promise of precision immuno-oncology. However, despite evidence indicating influences of exogenous and endogenous factors such as diet, nutrients, alcohol, smoking, obesity, lifestyle, environmental exposures and microbiome on tumour-immune interactions, integrative analyses of those factors and immunity lag behind. Immune cell analyses in the tumour microenvironment have not adequately been integrated into large-scale studies. Addressing this gap, the transdisciplinary field of molecular pathological epidemiology (MPE) offers research frameworks to integrate tumour immunology into population health sciences, and link the exposures and germline genetics (eg, HLA genotypes) to tumour and immune characteristics. Multilevel research using bioinformatics, in vivo pathology and omics (genomics, epigenomics, transcriptomics, proteomics and metabolomics) technologies is possible with use of tissue, peripheral blood circulating cells, cell-free plasma, stool, sputum, urine and other body fluids. This immunology-MPE model can synergise with experimental immunology, microbiology and systems biology. GI neoplasms represent exemplary diseases for the immunology-MPE model, given rich microbiota and immune tissues of intestines, and the well-established carcinogenic role of intestinal inflammation. Proof-of-principle studies on colorectal cancer provided insights into immunomodulating effects of aspirin, vitamin D, inflammatory diets and omega-3 polyunsaturated fatty acids. The integrated immunology-MPE model can contribute to better understanding of environment-tumour-immune interactions, and effective immunoprevention and immunotherapy strategies for precision medicine.
Collapse
Affiliation(s)
- Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marios Giannakis
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy S Garrett
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Perrier F, Novoloaca A, Ambatipudi S, Baglietto L, Ghantous A, Perduca V, Barrdahl M, Harlid S, Ong KK, Cardona A, Polidoro S, Nøst TH, Overvad K, Omichessan H, Dollé M, Bamia C, Huerta JM, Vineis P, Herceg Z, Romieu I, Ferrari P. Identifying and correcting epigenetics measurements for systematic sources of variation. Clin Epigenetics 2018; 10:38. [PMID: 29588806 PMCID: PMC5863487 DOI: 10.1186/s13148-018-0471-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/12/2018] [Indexed: 01/08/2023] Open
Abstract
Background Methylation measures quantified by microarray techniques can be affected by systematic variation due to the technical processing of samples, which may compromise the accuracy of the measurement process and contribute to bias the estimate of the association under investigation. The quantification of the contribution of the systematic source of variation is challenging in datasets characterized by hundreds of thousands of features. In this study, we introduce a method previously developed for the analysis of metabolomics data to evaluate the performance of existing normalizing techniques to correct for unwanted variation. Illumina Infinium HumanMethylation450K was used to acquire methylation levels in over 421,000 CpG sites for 902 study participants of a case-control study on breast cancer nested within the EPIC cohort. The principal component partial R-square (PC-PR2) analysis was used to identify and quantify the variability attributable to potential systematic sources of variation. Three correcting techniques, namely ComBat, surrogate variables analysis (SVA) and a linear regression model to compute residuals were applied. The impact of each correcting method on the association between smoking status and DNA methylation levels was evaluated, and results were compared with findings from a large meta-analysis. Results A sizeable proportion of systematic variability due to variables expressing ‘batch’ and ‘sample position’ within ‘chip’ was identified, with values of the partial R2 statistics equal to 9.5 and 11.4% of total variation, respectively. After application of ComBat or the residuals’ methods, the contribution was 1.3 and 0.2%, respectively. The SVA technique resulted in a reduced variability due to ‘batch’ (1.3%) and ‘sample position’ (0.6%), and in a diminished variability attributable to ‘chip’ within a batch (0.9%). After ComBat or the residuals’ corrections, a larger number of significant sites (k = 600 and k = 427, respectively) were associated to smoking status than the SVA correction (k = 96). Conclusions The three correction methods removed systematic variation in DNA methylation data, as assessed by the PC-PR2, which lent itself as a useful tool to explore variability in large dimension data. SVA produced more conservative findings than ComBat in the association between smoking and DNA methylation. Electronic supplementary material The online version of this article (10.1186/s13148-018-0471-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Flavie Perrier
- 1Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer (IARC), World Health Organization, 150 cours Albert Thomas, 69372 Lyon CEDEX 08, France
| | | | | | - Laura Baglietto
- 3Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Vittorio Perduca
- 4MAP5 - UMR CNRS 8145, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Myrto Barrdahl
- 5Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sophia Harlid
- 6Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Ken K Ong
- 7MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Alexia Cardona
- 7MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Silvia Polidoro
- IIGM - Italian Institute for Genomic Medicine, Torino, Italy
| | - Therese Haugdahl Nøst
- 9Department of Community Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kim Overvad
- 10Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark.,11Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Hanane Omichessan
- 12CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France.,13Gustave Roussy, Villejuif, France
| | - Martijn Dollé
- 14Centre for Health Protection (pb12), National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Christina Bamia
- 15Hellenic Health Foundation, Athens, Greece.,16WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - José Marìa Huerta
- 17Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain.,18CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Paolo Vineis
- 19MRC/PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | | | | | - Pietro Ferrari
- 1Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer (IARC), World Health Organization, 150 cours Albert Thomas, 69372 Lyon CEDEX 08, France
| |
Collapse
|
11
|
Konicke K, López-Luna A, Muñoz-Carrillo JL, Servín-González LS, Flores-de la Torre A, Olasz E, Lazarova Z. The microRNA landscape of cutaneous squamous cell carcinoma. Drug Discov Today 2018; 23:864-870. [PMID: 29317340 DOI: 10.1016/j.drudis.2018.01.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 11/19/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a keratinocyte-derived skin tumor. It is the second-most-common cancer affecting the Caucasian population and is responsible for >20% of all skin-cancer-related deaths. The estimated incidence of non-melanoma skin cancer in the USA is >1000000 cases per year, of which roughly 20-30% are squamous cell carcinoma. To better understand and treat this challenging cancer, current research focuses on development of novel strategies to improve the understanding of tumor biogenesis on an individual basis. microRNAs are becoming important biomarkers in the diagnosis, prognosis and treatment of cSCC. This review describes the current knowledge on miRNA expression in cSCC and its role as a biomarker for personalized medicine.
Collapse
Affiliation(s)
- Kathryn Konicke
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - José Luis Muñoz-Carrillo
- Faculty of Odontology, School of Biomedical Sciences of the Cuauhtémoc University Aguascalientes, Aguascalientes, Mexico.
| | | | | | - Edit Olasz
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zelmira Lazarova
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
12
|
Mutational and epigenetic signatures in cancer tissue linked to environmental exposures and lifestyle. Curr Opin Oncol 2018; 30:61-67. [DOI: 10.1097/cco.0000000000000418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Davis A, Tao MH, Chen J, Scelo G, Bencko V, Fabianova E, Foretova L, Janout V, Lissowska J, Mates D, Mates IN, Rudnai P, Zaridze D, Boffetta P. No association between global DNA methylation in peripheral blood and lung cancer risk in nonsmoking women: results from a multicenter study in Eastern and Central Europe. Eur J Cancer Prev 2018; 27:1-5. [PMID: 27045934 DOI: 10.1097/cej.0000000000000244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alterations in global DNA methylation have been suggested to play an important role in cancer development. We evaluated the association of global DNA methylation in peripheral blood with the risk of lung cancer in nonsmoking women from six countries in Central and Eastern Europe. This multicenter case-control study included primary, incident lung cancer cases diagnosed from 1998 to 2001 and controls frequency-matched for geographic area, sex, and age. Global methylation was assessed in peripheral blood DNA from 83 nonsmoking female cases and 181 nonsmoking female controls using the luminometric methylation assay (LUMA). Unconditional logistic regression models were used to estimate associations between DNA methylation in the blood and the risk of lung cancer. LUMA methylation level was not associated with the risk of lung cancer in nonsmoking women. Associations were not significantly different according to different strata of age, BMI, alcohol drinking, or second-hand tobacco smoke exposure status. In our study of nonsmoking women, the LUMA methylation level in peripheral blood was not associated with the risk of lung cancer. Our findings do not support an association of global blood DNA methylation with the risk of lung cancer in nonsmoking women.
Collapse
Affiliation(s)
- Ann Davis
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, Texas
| | - Meng-Hua Tao
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, Texas
- Institute for Translational Epidemiology
| | - Jia Chen
- Department of Community and Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Vladimir Bencko
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University in Prague, Prague
| | - Eleonora Fabianova
- Department of Occupational Health, Specialized State Health Institute, Banska Bystrica, Slovakia
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Cancer Institute and Medical Faculty of Masaryk University, Brno
| | - Vladimir Janout
- Department of Preventive Medicine, Palacky University of Medicine, Olomouc, Czech Republic
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, Cancer Center and M. Sklodowska-Curie Memorial Institute of Oncology, Warsaw, Poland
| | - Dana Mates
- Institute of Hygiene, Public Health, Health Services and Management
| | - Ioan N Mates
- General Surgery Department, "St Mary" Clinical Hospital, University of Medicine and Pharmacy 'Carol Davila' Bucharest, Romania
| | - Peter Rudnai
- National Institute of Environmental Health, Budapest, Hungary
| | - David Zaridze
- Department of Epidemiology and Prevention, Russian N.N. Blokhin Cancer Research Center, Moscow, Russia
| | | |
Collapse
|
14
|
Abstract
Our understanding of the epigenetic changes occurring in gastrointestinal cancers has gained tremendous advancements in recent years, and some epigenetic biomarkers are already translated into the clinics for cancer diagnostics. In parallel, pharmacoepigenetics and pharmacoepigenomics of solid tumors are relevant novel, but emerging and promising fields. Areas covered: A comprehensive review of the literature to summarize and update the emerging field of pharmacoepigenetics and pharmacoepigenomics of gastrointestinal cancers. Expert commentary: Several epigenetic modifications have been proposed to account for interindividual variations in drug response in gastrointestinal cancers. Similarly, single-agent or combined strategies with high doses of drugs that target epigenetic modifications (epi-drugs) were scarcely tolerated by the patients, and current research has moved to their combination with standard therapies to achieve chemosensitization, radiosensitization, and immune modulation of cancerous cells. In parallel, recent genome-wide technologies are revealing the pathways that are epigenetically deregulated during cancer-acquired resistance, including those targeted by non-coding RNAs. Indeed, novel, less toxic, and more specific molecules are under investigation to specifically target those pathways. The field is rapidly expanding and gathering together information coming from these investigations has the potential to lead to clinical applications in the coming new years.
Collapse
Affiliation(s)
- Angela Lopomo
- a Department of Translational Research and New Technologies in Medicine and Surgery, Laboratory of Medical Genetics , University of Pisa, Medical School , Pisa , Italy
| | - Fabio Coppedè
- a Department of Translational Research and New Technologies in Medicine and Surgery, Laboratory of Medical Genetics , University of Pisa, Medical School , Pisa , Italy
| |
Collapse
|
15
|
El Bairi K, Tariq K, Himri I, Jaafari A, Smaili W, Kandhro AH, Gouri A, Ghazi B. Decoding colorectal cancer epigenomics. Cancer Genet 2018; 220:49-76. [PMID: 29310839 DOI: 10.1016/j.cancergen.2017.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is very heterogeneous and presents different types of epigenetic alterations including DNA methylation, histone modifications and microRNAs. These changes are considered as characteristics of various observed clinical phenotypes. Undoubtedly, the discovery of epigenetic pathways with novel epigenetic-related mechanisms constitutes a promising advance in cancer biomarker discovery. In this review, we provide an evidence-based discussing of the current understanding of CRC epigenomics and its role in initiation, epithelial-to-mesenchymal transition and metastasis. We also discuss the recent findings regarding the potential clinical perspectives of these alterations as potent biomarkers for CRC diagnosis, prognosis, and therapy in the era of liquid biopsy.
Collapse
Affiliation(s)
- Khalid El Bairi
- Independent Research Team in Cancer Biology and Bioactive Compounds, Mohamed 1(st) University, Oujda, Morocco.
| | - Kanwal Tariq
- B-10 Jumani Center, Garden East, Karachi 74400, Pakistan
| | - Imane Himri
- Laboratory of Biochemistry, Faculty of Sciences, Mohamed I(st) Universiy, Oujda, Morocco; Delegation of the Ministry of Health, Oujda, Morocco
| | - Abdeslam Jaafari
- Laboratoire de Génie Biologique, Equipe d'Immunopharmacologie, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, Beni Mellal, Maroc
| | - Wiam Smaili
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohamed V, Rabat, Maroc; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Maroc
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Bouchra Ghazi
- National Laboratory of Reference, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
16
|
Karlsson Linnér R, Marioni RE, Rietveld CA, Simpkin AJ, Davies NM, Watanabe K, Armstrong NJ, Auro K, Baumbach C, Jan Bonder M, Buchwald J, Fiorito G, Ismail K, Iurato S, Joensuu A, Karell P, Kasela S, Lahti J, McRae AF, Mandaviya PR, Seppälä I, Wang Y, Baglietto L, Binder EB, Harris SE, Hodge AM, Horvath S, Hurme M, Johannesson M, Latvala A, Mather KA, Medland SE, Metspalu A, Milani L, Milne RL, Pattie A, Pedersen NL, Peters A, Polidoro S, Räikkönen K, Severi G, Starr JM, Stolk L, Waldenberger M, Eriksson JG, Esko T, Franke L, Gieger C, Giles GG, Hägg S, Jousilahti P, Kaprio J, Kähönen M, Lehtimäki T, Martin NG, van Meurs JBC, Ollikainen M, Perola M, Posthuma D, Raitakari OT, Sachdev PS, Taskesen E, Uitterlinden AG, Vineis P, Wijmenga C, Wright MJ, Relton C, Davey Smith G, Deary IJ, Koellinger PD, Benjamin DJ. An epigenome-wide association study meta-analysis of educational attainment. Mol Psychiatry 2017; 22:1680-1690. [PMID: 29086770 PMCID: PMC6372242 DOI: 10.1038/mp.2017.210] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 01/29/2023]
Abstract
The epigenome is associated with biological factors, such as disease status, and environmental factors, such as smoking, alcohol consumption and body mass index. Although there is a widespread perception that environmental influences on the epigenome are pervasive and profound, there has been little evidence to date in humans with respect to environmental factors that are biologically distal. Here we provide evidence on the associations between epigenetic modifications-in our case, CpG methylation-and educational attainment (EA), a biologically distal environmental factor that is arguably among the most important life-shaping experiences for individuals. Specifically, we report the results of an epigenome-wide association study meta-analysis of EA based on data from 27 cohort studies with a total of 10 767 individuals. We find nine CpG probes significantly associated with EA. However, robustness analyses show that all nine probes have previously been found to be associated with smoking. Only two associations remain when we perform a sensitivity analysis in the subset of never-smokers, and these two probes are known to be strongly associated with maternal smoking during pregnancy, and thus their association with EA could be due to correlation between EA and maternal smoking. Moreover, the effect sizes of the associations with EA are far smaller than the known associations with the biologically proximal environmental factors alcohol consumption, body mass index, smoking and maternal smoking during pregnancy. Follow-up analyses that combine the effects of many probes also point to small methylation associations with EA that are highly correlated with the combined effects of smoking. If our findings regarding EA can be generalized to other biologically distal environmental factors, then they cast doubt on the hypothesis that such factors have large effects on the epigenome.
Collapse
Affiliation(s)
- Richard Karlsson Linnér
- Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Center for Neurogenomics and Cognitive Research, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
- Institute for Behavior and Biology, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Riccardo E Marioni
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, United Kingdom
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Cornelius A Rietveld
- Institute for Behavior and Biology, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Burgemeester Oudlaan 50, Rotterdam, 3062 PA, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Andrew J Simpkin
- MRC Intergrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Barley House, Oakfield Grove, Bristol, BS28BN, United Kingdom
| | - Neil M Davies
- MRC Intergrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Barley House, Oakfield Grove, Bristol, BS28BN, United Kingdom
| | - Kyoko Watanabe
- Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Center for Neurogenomics and Cognitive Research, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
| | - Nicola J Armstrong
- Mathematics and Statistics, Murdoch University, 90 South St., Murdoch, 6150, WA, Australia
| | - Kirsi Auro
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, 2B, Helsinki, FI-00014, Finland
- National Institute for Health and Welfare, Genomics and Biomarkers, PO Box 30, Helsinki, FI-00271, Finland
| | - Clemens Baumbach
- Research Unit of Molecular Epidemiology (AME), Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Munich, Germany, Neuherberg, 85764, Germany
| | - Marc Jan Bonder
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jadwiga Buchwald
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, 2B, Helsinki, FI-00014, Finland
| | - Giovanni Fiorito
- Molecular and genetic epidemiology unit, Human Genetics Foundation Torino (HuGeF), Via Nizza 52, Turin, 10126, Italy
- Department of Medical Sciences, University of Torino, Corso Dogliotti 14
| | - Khadeeja Ismail
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, 2B, Helsinki, FI-00014, Finland
| | - Stella Iurato
- Department Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany, Kraepelinstr. 2-10, Munich, 80804, Germany
| | - Anni Joensuu
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, 2B, Helsinki, FI-00014, Finland
- National Institute for Health and Welfare, Genomics and Biomarkers, PO Box 30, Helsinki, FI-00271, Finland
| | - Pauliina Karell
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, 2B, Helsinki, FI-00014, Finland
| | - Silva Kasela
- Estonian Genome Center, University of Tartu, Riia 23B, Tartu, 51010, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu, 51010, Estonia
| | - Jari Lahti
- Institute of Behavioural Studies, Siltavuorenpenger 1A, University of Helsinki, Helsinki, FI-00014, Finland
- Collegium for Advanced Studies, University of Helsinki, Helsinki, FI-00014, Finland
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD
| | - Pooja R Mandaviya
- Department of Clinical Chemistry, Erasmus University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
| | - Yunzhang Wang
- Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, Stockholm, 17177, Sweden
| | - Laura Baglietto
- Centre for Research in Epidemiology and Population Health, Inserm (Institut National de la Santé et de la Recherche Médicale), 114 rue Edouard Vaillant, Villejuif, 94805, France
| | - Elisabeth B Binder
- Department Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany, Kraepelinstr. 2-10, Munich, 80804, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, United Kingdom
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Allison M Hodge
- Cancer Epidemiology Centre, Cancer Council Victoria, 615 St Kilda Road, Melbourne, 3004, Victoria, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Level 3, 207 Bouverie Street, Carlton, Melbourne, 3010, Victoria, Australia
| | - Steve Horvath
- Human Genetics and Biostatistics, University of California Los Angeles, 695 Charles E. Young Drive South, Box 708822, Los Angeles, CA 90095-7088, USA
| | - Mikko Hurme
- Department of Microbiology and Immunology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
- Gerontology Research Center, University of Tampere, Tampere 33014, Finland
- Fimlab Laboratories, Tampere 33520, Finland
| | - Magnus Johannesson
- Department of Economics, Stockholm School of Economics, Box 6501, Stockholm, 11383, Sweden
| | - Antti Latvala
- Department of Public Health, University of Helsinki, Tukholmankatu 8, 2B, Helsinki, FI-00014, Finland
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Psychiatry, UNSW Australia, High St., Sydney, NSW 2052, Australia
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, 300 Herston Rd., Herston, QLD 4006, Australia
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Riia 23B, Tartu, 51010, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu, 51010, Estonia
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Riia 23B, Tartu, 51010, Estonia
| | - Roger L Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, 615 St Kilda Road, Melbourne, 3004, Victoria, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Level 3, 207 Bouverie Street, Carlton, Melbourne, 3010, Victoria, Australia
| | - Alison Pattie
- Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, United Kingdom
| | - Nancy L Pedersen
- Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, Stockholm, 17177, Sweden
| | - Annette Peters
- Research Unit of Molecular Epidemiology (AME), Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Munich, Germany, Neuherberg, 85764, Germany
| | - Silvia Polidoro
- Molecular and genetic epidemiology unit, Human Genetics Foundation Torino (HuGeF), Via Nizza 52, Turin, 10126, Italy
| | - Katri Räikkönen
- Institute of Behavioural Studies, Siltavuorenpenger 1A, University of Helsinki, Helsinki, FI-00014, Finland
| | - Gianluca Severi
- Molecular and genetic epidemiology unit, Human Genetics Foundation Torino (HuGeF), Via Nizza 52, Turin, 10126, Italy
- Cancer Epidemiology Centre, Cancer Council Victoria, 615 St Kilda Road, Melbourne, 3004, Victoria, Australia
- Centre for Research in Epidemiology and Population Health (CESP), Inserm (Institut National de la Santé et de la Recherche Médicale), 28 Rue Laennec, Lyon, 69373, France
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, United Kingdom
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, United Kingdom
| | - Lisette Stolk
- Department of Clinical Chemistry, Erasmus University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
- Netherlands Consortium for Healthy Ageing, Erasmus University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology (AME), Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Munich, Germany, Neuherberg, 85764, Germany
| | | | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Tukholmankatu 8 B, Helsinki, FI-00014, Finland
- National Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Riia 23B, Tartu, 51010, Estonia
- Program in Medical and Population Genetics, Broad Institute, 415 Main St., Cambridge, MA 02142, USA
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christian Gieger
- Research Unit of Molecular Epidemiology (AME), Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Munich, Germany, Neuherberg, 85764, Germany
| | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, 615 St Kilda Road, Melbourne, 3004, Victoria, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Level 3, 207 Bouverie Street, Carlton, Melbourne, 3010, Victoria, Australia
| | - Sara Hägg
- Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, Stockholm, 17177, Sweden
| | - Pekka Jousilahti
- National Institute for Health and Welfare, Genomics and Biomarkers, PO Box 30, Helsinki, FI-00271, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, 2B, Helsinki, FI-00014, Finland
- Department of Public Health, University of Helsinki, Tukholmankatu 8, 2B, Helsinki, FI-00014, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere 33521, Finland
- Department of Clinical Physiology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia
| | - Joyce B C van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
- Netherlands Consortium for Healthy Ageing, Erasmus University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, 2B, Helsinki, FI-00014, Finland
- Department of Public Health, University of Helsinki, Tukholmankatu 8, 2B, Helsinki, FI-00014, Finland
| | - Markus Perola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, 2B, Helsinki, FI-00014, Finland
- National Institute for Health and Welfare, Genomics and Biomarkers, PO Box 30, Helsinki, FI-00271, Finland
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Center for Neurogenomics and Cognitive Research, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20521, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20014, Finland
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Psychiatry, UNSW Australia, High St., Sydney, NSW 2052, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Barker St. Randwick
| | - Erdogan Taskesen
- Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Center for Neurogenomics and Cognitive Research, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
- VU University Medical Center (VUMC), Alzheimer Center, Department of Neurology, Amsterdam, the Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
- Netherlands Consortium for Healthy Ageing, Erasmus University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - Paolo Vineis
- Molecular and genetic epidemiology unit, Human Genetics Foundation Torino (HuGeF), Via Nizza 52, Turin, 10126, Italy
- MRC/PHE Centre for Environment and Health, School of Public Health, Imperial College London, St Mary’s Campus, Norfolk Place, London, W2 1PG, United Kingdom
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Margaret J Wright
- Queensland Brain Institute and Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Caroline Relton
- MRC Intergrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Barley House, Oakfield Grove, Bristol, BS28BN, United Kingdom
| | - George Davey Smith
- MRC Intergrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Barley House, Oakfield Grove, Bristol, BS28BN, United Kingdom
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, United Kingdom
- Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, United Kingdom
| | - Philipp D Koellinger
- Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Center for Neurogenomics and Cognitive Research, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
- Institute for Behavior and Biology, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Daniel J Benjamin
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA 90089-3332, USA
| |
Collapse
|
17
|
Romeiro Lopes TC, Gravena AAF, Demitto MDO, Borghesan DHP, Dell`Agnolo CM, Brischiliari SCR, Carvalho MDDB, Pelloso SM. Delay in Diagnosis and Treatment of Breast Cancer among Women Attending a Reference Service in Brazil. Asian Pac J Cancer Prev 2017; 18:3017-3023. [PMID: 29172274 PMCID: PMC5773786 DOI: 10.22034/apjcp.2017.18.11.3017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Cancer is a major public health problem. Early diagnosis and treatment are essential for reducing mortality. This study aimed to analyze factors associated with delay in breast cancer diagnosis and treatment among women attending a reference cancer service. Methods: This retrospective, cross-sectional study was performed with data collected from medical records and interviews conducted with women diagnosed with breast cancer and treated from October 2013 to October 2014 at a cancer reference hospital in Paraná, Southern Brazil. Results: A total of 82 participants were enrolled during the study period; their average age was 58.2 ± 11.5 years. The average time taken for final diagnosis of breast cancer was 102.5 ± 165.5 days. Treatment onset was delayed in the majority of cases, and the average time elapsing from diagnostic biopsy to onset of primary treatment was 72.3 ± 54.0 days. The odds of treatment delay were higher among the women with a low educational level. Conclusions: The results underline the need for proposals aimed at early detection, identification of risk factors and timely provision of treatment by health managers that focus on this group.
Collapse
Affiliation(s)
- Tiara Cristina Romeiro Lopes
- Department of Health Science, Faculty Post Graduate in Health Science, State University Maringa, Parana, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chu SK, Yang HC. Interethnic DNA methylation difference and its implications in pharmacoepigenetics. Epigenomics 2017; 9:1437-1454. [PMID: 28882057 DOI: 10.2217/epi-2017-0046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AIM This is the first systematic study to examine the population differentiation effect of DNA methylation on the treatment response and drug absorption, distribution, metabolism and excretion in multiple tissue types and cancer types. MATERIALS & METHODS We analyzed the whole methylome and transcriptome data of primary tumor tissues of four cancer types (breast, colon, head & neck and uterine corpus) and lymphoblastoid cell lines for African and European ancestry populations. RESULTS Ethnicity-associated CpG sites exhibited similar methylation patterns in the two studied populations, but the patterns differed between tumor tissues and lymphoblastoid cell lines. Ethnicity-associated CpG sites may have triggered gene expression, influenced drug absorption, distribution, metabolism and excretion, and showed tumor-specific patterns of methylation and gene regulation. CONCLUSION Ethnicity should be carefully accounted for in future pharmacoepigenetics research.
Collapse
Affiliation(s)
- Shih-Kai Chu
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei 115, Taiwan.,Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei 112, Taiwan
| | - Hsin-Chou Yang
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei 115, Taiwan.,Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan.,Department of Statistics, National Cheng Kung University, Tainan 701, Taiwan.,Institute of Statistics, National Tsing Hua University, Hsinchu 300, Taiwan.,Instutite of Public Health, National Yang-Ming University, Taipei 112, Taiwan.,School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
19
|
Danese E, Montagnana M. Epigenetics of colorectal cancer: emerging circulating diagnostic and prognostic biomarkers. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:279. [PMID: 28758105 DOI: 10.21037/atm.2017.04.45] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and the second leading cause of cancer-related mortality in western countries. Despite the high incidence, treatment options for advanced CRC remain limited and unsuccessful, resulting in a poor prognosis. Therefore, novel accurate diagnostic, prognostic and predictive biomarkers are clearly and urgently needed to detect advanced colon polyps and early stage CRC and to identify the most effective treatments for specific CRC patients. CRC is known to develop from early premalignant lesions to full blown cancer via a multi-step process involving a series of genetic mutations that accumulate over time. Recent improvement of our understanding of CRC biology and advances in genomic technologies has led to the identification of a variety of epigenetic alterations strongly involved in cancer initiation and progression. Among the epigenetic marks implicated in CRC the most widely studied are the global DNA hypomethylation, the promoter hypermethylation and the miRNAs dysregulations. Many evidence exist that such tumour associated alterations may serve as new potential biomarkers. Moreover, due the non-invasive, objective, and potential reproducible assessment, circulating epigenetic biomarkers have reached increasing attentions in the last few years. In this review, we attempt to analyze the existing most recent literature on the role of circulating DNA methylations and miRNAs alterations in CRC diagnosis and prognosis.
Collapse
Affiliation(s)
- Elisa Danese
- Clinical Biochemistry Section, University Hospital of Verona, Verona, Italy
| | - Martina Montagnana
- Clinical Biochemistry Section, University Hospital of Verona, Verona, Italy
| |
Collapse
|
20
|
Abstract
Decades of studies have shown that epigenetic alterations play a significant role on cancer development both in vitro and in vivo. However, considering that many cancers harbor mutations at epigenetic modifier genes and that transcription factor-mediated gene regulations are tightly coupled with epigenetic modifications, the majority of epigenetic alterations in cancers could be the consequence of the dysfunction or dysregulation of epigenetic modifiers caused by genetic abnormalities. Therefore, it remains unclear whether bona fide epigenetic abnormalities have causal roles on cancer development. Reprogramming technologies enable us to actively alter epigenetic regulations while preserving genomic information. Taking advantage, recent studies have provided in vivo evidence for the significant impact of epigenetic abnormalities on the initiation, maintenance and progression of cancer cells.
Collapse
Affiliation(s)
- Kenji Ito
- Center for iPS Cell Research & Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yasuhiro Yamada
- Center for iPS Cell Research & Application, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
21
|
Yang Y, Yin W, Wu F, Fan J. Combination of azacitidine and trichostatin A decreased the tumorigenic potential of lung cancer cells. Onco Targets Ther 2017; 10:2993-2999. [PMID: 28652781 PMCID: PMC5476757 DOI: 10.2147/ott.s136218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose This study aims to investigate the possibility of using epigenetic inhibitors against lung cancer. Methods The changes in the proliferation of human lung cancer cells, NCI-H1975 and NCI-H1299 cells, treated with various doses of inhibitors of DNA methyltransferase (azacitidine [5-AZA]) or histone deacetylase inhibitors (trichostatin A [TSA]) were determined by cell counting. The cell viability of NCI-H1975 and NCI-H1299 cells treated with 5-AZA and/or TSA was measured by the MTT assay. The changes in expression of the AKT signaling pathway molecules caused by the application of 5-AZA and TSA were analyzed through their protein and mRNA levels. A xenograft model was used to observe the effects of 5-AZA and TSA on tumor growth in vivo. Results 5-AZA and TSA inhibited the proliferation and viability of NCI-H1975 and NCI-H1299 cells. Their joint application significantly influenced the expression of key molecules in AKT signaling pathway in vitro, and inhibited the growth of xenograft tumors in vivo. Furthermore, TSA and 5-AZA decreased the tumorigenic ability of NCI-H1975 cells in vivo. Conclusion The decreased cell viability and tumorigenic ability, as well as increased anti-oncogene expression following the joint application of 5-AZA and TSA, make these epigenetic inhibitors prospective therapeutic agents for lung cancer.
Collapse
Affiliation(s)
- Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Wei Yin
- Key Laboratory of Oral Biomedical Engineering of Ministry of Education, Hospital of Stomatology, School of Stomatology, Wuhan University, Wuhan, China
| | - Fengying Wu
- Oncology Department, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Ciesielski TH, Aldrich MC, Marsit CJ, Hiatt RA, Williams SM. Transdisciplinary approaches enhance the production of translational knowledge. Transl Res 2017; 182:123-134. [PMID: 27893987 PMCID: PMC5362296 DOI: 10.1016/j.trsl.2016.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 10/12/2016] [Accepted: 11/02/2016] [Indexed: 12/28/2022]
Abstract
The primary goal of translational research is to generate and apply knowledge that can improve human health. Although research conducted within the confines of a single discipline has helped us to achieve this goal in many settings, this unidisciplinary approach may not be optimal when disease causation is complex and health decisions are pressing. To address these issues, we suggest that transdisciplinary approaches can facilitate the progress of translational research, and we review publications that demonstrate what these approaches can look like. These examples serve to (1) demonstrate why transdisciplinary research is useful, and (2) stimulate a conversation about how it can be further promoted. While we note that open-minded communication is a prerequisite for germinating any transdisciplinary work and that epidemiologists can play a key role in promoting it, we do not propose a rigid protocol for conducting transdisciplinary research, as one really does not exist. These achievements were developed in settings where typical disciplinary and institutional barriers were surmountable, but they were not accomplished with a single predetermined plan. The benefits of cross-disciplinary communication are hard to predict a priori and a detailed research protocol or process may impede the realization of novel and important insights. Overall, these examples demonstrate that enhanced cross-disciplinary information exchange can serve as a starting point that helps researchers frame better questions, integrate more relevant evidence, and advance translational knowledge more effectively. Specifically, we discuss examples where transdisciplinary approaches are helping us to better explore, assess, and intervene to improve human health.
Collapse
Affiliation(s)
- Timothy H Ciesielski
- Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH; Public Health Program, Regis College, Weston, Mass.
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tenn; Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Carmen J Marsit
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Robert A Hiatt
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, Calif
| | - Scott M Williams
- Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
23
|
Pollock RA, Abji F, Gladman DD. Epigenetics of psoriatic disease: A systematic review and critical appraisal. J Autoimmun 2017; 78:29-38. [DOI: 10.1016/j.jaut.2016.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/22/2016] [Accepted: 12/04/2016] [Indexed: 12/20/2022]
|
24
|
Abstract
Breast cancer, the most frequently occurring cancer in women, is a major public health problem, with 1,384,155 estimated new cases worldwide with nearly 459,000 related deaths. Breast cancer is highly heterogeneous in its pathological characteristics, some cases showing slow growth with excellent prognosis, while others being aggressive tumors. Current predictions and statistics suggest that both worldwide incidence of breast cancer and related mortality are on the rise. According to 2012 GLOBOCAN statistics, nearly 1.7 million women were diagnosed with breast cancer with 522,000 related deaths-an increase in breast cancer incidence and related mortality by nearly 18 % from 2008. According to American Cancer Society, one in eight women in the United States will develop breast cancer in her lifetime. It has been predicted that the worldwide incidence of female breast cancer will reach approximately 3.2 million new cases per year by 2050. These numbers reflect the magnitude of breast cancer incidence, its effect on society worldwide and the need for urgency for preventive and treatment measures. While technological advances in medical sciences and health care have made it possible to detect the disease early and to start the treatment early on to prevent the progress of the disease into a metastatic state, there are several unanswered questions with regard to the molecular mechanisms that underlie the aggressiveness of certain forms of this disease. Epidemiological studies suggest that addressing socio economical issues is utmost important, so that all women have equal access to medical care from screening to advanced treatment, and only such decisive action can help reduce the worldwide burden of breast cancer.
Collapse
|
25
|
Kyono Y, Sachs LM, Bilesimo P, Wen L, Denver RJ. Developmental and Thyroid Hormone Regulation of the DNA Methyltransferase 3a Gene in Xenopus Tadpoles. Endocrinology 2016; 157:4961-4972. [PMID: 27779916 PMCID: PMC5133355 DOI: 10.1210/en.2016-1465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022]
Abstract
Thyroid hormone is essential for normal development in vertebrates. In amphibians, T3 controls metamorphosis by inducing tissue-specific gene regulation programs. A hallmark of T3 action is the modification of chromatin structure, which underlies changes in gene transcription. We found that mRNA for the de novo DNA methyltransferase (DNMT) dnmt3a, but not dnmt1, increased in the brain of Xenopus tadpoles during metamorphosis in parallel with plasma [T3]. Addition of T3 to the rearing water caused a time-dependent increase in dnmt3a mRNA in tadpole brain, tail, and hind limb. By analyzing data from a genome-wide analysis of T3 receptor (TR) binding in tadpole tail, we identified several putative T3 response elements (TREs) within the dnmt3a locus. Using in vitro DNA binding, transient transfection-reporter, and chromatin immunoprecipitation assays for TRs, we identified two functional TREs at -7.1 kb and +5.1 kb relative to the dnmt3a transcription start site. Sequence alignment showed that these TREs are conserved between two related frog species, X. laevis and X. tropicalis, but not with amniotes. Our previous findings showed that this gene is directly regulated by liganded TRs in mouse brain, and whereas the two mouse TREs are conserved among Eutherian mammals, they are not conserved in Xenopus species. Thus, although T3 regulation of dnmt3a may be an ancient pathway in vertebrates, the genomic sites responsible for hormone regulation may have diverged or arisen by convergent evolution. We hypothesize that direct T3 regulation of dnmt3a may be an important mechanism for modulating global changes in DNA methylation.
Collapse
Affiliation(s)
- Yasuhiro Kyono
- Neuroscience Graduate Program (Y.K.), The University of Michigan, Ann Arbor, Michigan 48109-1048; UMR-7221, Centre National de la Recherche Scientifique (L.M.S., P.B.), Muséum National d'Histoire Naturelle, 75005 Paris, France; and Department of Molecular, Cellular, and Developmental Biology (L.W., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Laurent M Sachs
- Neuroscience Graduate Program (Y.K.), The University of Michigan, Ann Arbor, Michigan 48109-1048; UMR-7221, Centre National de la Recherche Scientifique (L.M.S., P.B.), Muséum National d'Histoire Naturelle, 75005 Paris, France; and Department of Molecular, Cellular, and Developmental Biology (L.W., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Patrice Bilesimo
- Neuroscience Graduate Program (Y.K.), The University of Michigan, Ann Arbor, Michigan 48109-1048; UMR-7221, Centre National de la Recherche Scientifique (L.M.S., P.B.), Muséum National d'Histoire Naturelle, 75005 Paris, France; and Department of Molecular, Cellular, and Developmental Biology (L.W., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Luan Wen
- Neuroscience Graduate Program (Y.K.), The University of Michigan, Ann Arbor, Michigan 48109-1048; UMR-7221, Centre National de la Recherche Scientifique (L.M.S., P.B.), Muséum National d'Histoire Naturelle, 75005 Paris, France; and Department of Molecular, Cellular, and Developmental Biology (L.W., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Robert J Denver
- Neuroscience Graduate Program (Y.K.), The University of Michigan, Ann Arbor, Michigan 48109-1048; UMR-7221, Centre National de la Recherche Scientifique (L.M.S., P.B.), Muséum National d'Histoire Naturelle, 75005 Paris, France; and Department of Molecular, Cellular, and Developmental Biology (L.W., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109-1048
| |
Collapse
|
26
|
Falco M, Palma G, Rea D, De Biase D, Scala S, D'Aiuto M, Facchini G, Perdonà S, Barbieri A, Arra C. Tumour biomarkers: homeostasis as a novel prognostic indicator. Open Biol 2016; 6:160254. [PMID: 27927793 PMCID: PMC5204124 DOI: 10.1098/rsob.160254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/10/2016] [Indexed: 12/15/2022] Open
Abstract
The term 'personalized medicine' refers to a medical procedure that consists in the grouping of patients based on their predicted individual response to therapy or risk of disease. In oncologic patients, a 'tailored' therapeutic approach may potentially improve their survival and well-being by not only reducing the tumour, but also enhancing therapeutic response and minimizing the adverse effects. Diagnostic tests are often used to select appropriate and optimal therapies that rely both on patient genome and other molecular/cellular analysis. Several studies have shown that lifestyle and environmental factors can influence the epigenome and that epigenetic events may be involved in carcinogenesis. Thus, in addition to traditional biomarkers, epigenetic factors are raising considerable interest, because they could potentially be used as an excellent tool for cancer diagnosis and prognosis. In this review, we summarize the role of conventional cancer genetic biomarkers and their association with epigenomics. Furthermore, we will focus on the so-called 'homeostatic biomarkers' that result from the physiological response to cancer, emphasizing the concept that an altered 'new' homeostasis influence not only tumour environment, but also the whole organism.
Collapse
Affiliation(s)
- Michela Falco
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| | - Giuseppe Palma
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| | - Domenica Rea
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| | - Davide De Biase
- Department of Veterinary Medicine and Animal Production, University of Naples 'Federico II', Via Delpino 1, 80137 Naples, Italy
| | - Stefania Scala
- Molecular lmmunology and Immuneregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS Naples 'Fondazione G. Pascale', Naples, italy, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| | - Massimiliano D'Aiuto
- Division of Breast Surgery, Department of Breast Disease, National Cancer Institute, IRCCS, 'Fondazione Pascale', Naples, Italy
| | - Gaetano Facchini
- Division of Medical Oncology, Department of Uro-Gynaecological Oncology, , Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione G. Pascale', IRCCS, 80131 Naples, Italy
| | - Sisto Perdonà
- Department of Urology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione G. Pascale', IRCCS, 80131 Naples, Italy
| | - Antonio Barbieri
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| | - Claudio Arra
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| |
Collapse
|
27
|
Investigation of EZH2 pathways for novel epigenetic treatment strategies in oropharyngeal cancer. J Otolaryngol Head Neck Surg 2016; 45:54. [PMID: 27793210 PMCID: PMC5084374 DOI: 10.1186/s40463-016-0168-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022] Open
Abstract
Background In recent decades, the incidence of oropharyngeal squamous cell carcinoma (OPSCC) has been rising worldwide as a result of increasing oncogenic human papillomavirus (HPV) infections in the oropharynx. EZH2 is an epigenetic regulatory protein associated with tumor aggressiveness and negative survival outcomes in several human cancers. We aimed to determine the role of EZH2 as a potential therapeutic epigenetic target in HPV-positive and negative OPSCC. Methods The expression of EZH2 was measured by immunohistochemistry (IHC) and droplet digital PCR (ddPCR) in 2 HPV-positive and 2 HPV-negative cell lines. The cell lines were then cultured and treated with one of 3 EZH2 epigenetic inhibitors (3-deazaneplanocin A, GSK-343 and EPZ005687) or DMSO (control). Following 2, 4 and 7 days of treatment, cells were analyzed and compared by gene expression, cell survival and proliferation assays. Results EZH2 targeting resulted in greater inhibition of growth and survival in HPV-positive compared to HPV-negative cells lines. The expression profile of genes important in OPSCC also differed according to HPV-positivity for Ki67, CCND1, MET and PTEN/PIK3CA, but remained unchanged for EGFR, CDKN2A and p53. Conclusion Inhibition of EZH2 has anti-tumorigenic effects on OPSCC cells in culture that is more pronounced in HPV-positive cell lines. EZH2 is a promising epigenetic target for the treatment of OPSCC.
Collapse
|
28
|
Immunohistochemical Analysis of Epigenetic Markers in Cervical Pathologies Associated with Human Papillomavirus Infection. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0339-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Kyono Y, Subramani A, Ramadoss P, Hollenberg AN, Bonett RM, Denver RJ. Liganded Thyroid Hormone Receptors Transactivate the DNA Methyltransferase 3a Gene in Mouse Neuronal Cells. Endocrinology 2016; 157:3647-57. [PMID: 27387481 PMCID: PMC5007891 DOI: 10.1210/en.2015-1529] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
Abstract
Thyroid hormone (T3) is essential for proper neurological development. The hormone, bound to its receptors, regulates gene transcription in part by modulating posttranslational modifications of histones. Methylation of DNA, which is established by the de novo DNA methyltransferase (DNMT)3a and DNMT3b, and maintained by DNMT1 is another epigenetic modification influencing gene transcription. The expression of Dnmt3a, but not other Dnmt genes, increases in mouse brain in parallel with the postnatal rise in plasma [T3]. We found that treatment of the mouse neuroblastoma cell line Neuro2a[TRβ1] with T3 caused rapid induction of Dnmt3a mRNA, which was resistant to protein synthesis inhibition, supporting that it is a direct T3-response gene. Injection of T3 into postnatal day 6 mice increased Dnmt3a mRNA in the brain by 1 hour. Analysis of two chromatin immunoprecipitation-sequencing datasets, and targeted analyses using chromatin immunoprecipitation, transfection-reporter assays, and in vitro DNA binding identified 2 functional T3-response elements (TREs) at the mouse Dnmt3a locus located +30.3 and +49.3 kb from the transcription start site. Thyroid hormone receptors associated with both of these regions in mouse brain chromatin, but with only 1 (+30.3 kb) in Neuro2a[TRβ1] cells. Deletion of the +30.3-kb TRE using CRISPR/Cas9 genome editing eliminated or strongly reduced the Dnmt3a mRNA response to T3. Bioinformatics analysis showed that both TREs are highly conserved among eutherian mammals. Thyroid regulation of Dnmt3a may be an evolutionarily conserved mechanism for modulating global changes in DNA methylation during postnatal neurological development.
Collapse
Affiliation(s)
- Yasuhiro Kyono
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| | - Arasakumar Subramani
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| | - Preeti Ramadoss
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| | - Anthony N Hollenberg
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| | - Ronald M Bonett
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| | - Robert J Denver
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| |
Collapse
|
30
|
Defining, distinguishing and detecting the contribution of heterogeneous methylation to cancer heterogeneity. Semin Cell Dev Biol 2016; 64:5-17. [PMID: 27582426 DOI: 10.1016/j.semcdb.2016.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 01/07/2023]
Abstract
DNA methylation is a fundamental means of epigenetic gene regulation that occurs in virtually all cell types. In many higher organisms, including humans, it plays vital roles in cell differentiation and homeostatic maintenance of cell phenotype. The control of DNA methylation has traditionally been attributed to a highly coordinated, linear process, whose dysregulation has been associated with numerous pathologies including cancer, where it occurs early in, and even prior to, the development of neoplastic tissues. Recent experimental evidence has demonstrated that, contrary to prevailing paradigms, methylation patterns are actually maintained through inexact, dynamic processes. These processes normally result in minor stochastic differences between cells that accumulate with age. However, various factors, including cancer itself, can lead to substantial differences in intercellular methylation patterns, viz. methylation heterogeneity. Advancements in molecular biology techniques are just now beginning to allow insight into how this heterogeneity contributes to clonal evolution and overall cancer heterogeneity. In the current review, we begin by presenting a didactic overview of how the basal bimodal methylome is established and maintained. We then provide a synopsis of some of the factors that lead to the accrual of heterogeneous methylation and how this heterogeneity may lead to gene silencing and impact the development of cancerous phenotypes. Lastly, we highlight currently available methylation assessment techniques and discuss their suitability to the study of heterogeneous methylation.
Collapse
|
31
|
Huang RL, Su PH, Liao YP, Wu TI, Hsu YT, Lin WY, Wang HC, Weng YC, Ou YC, Huang THM, Lai HC. Integrated Epigenomics Analysis Reveals a DNA Methylation Panel for Endometrial Cancer Detection Using Cervical Scrapings. Clin Cancer Res 2016; 23:263-272. [DOI: 10.1158/1078-0432.ccr-16-0863] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
|
32
|
Song Y, Li A, Zhang L, Duan L. Expression of G protein-coupled receptor 56 is associated with tumor progression in non-small-cell lung carcinoma patients. Onco Targets Ther 2016; 9:4105-12. [PMID: 27462165 PMCID: PMC4939992 DOI: 10.2147/ott.s106907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background G protein-coupled receptor 56 (GPR56) is an adhesion G protein-coupled receptor with essential functions for cell physiology and survival, and its expression correlates with prognosis in a number of malignancies. The aim of this study is to determine the relationship of GPR56 expression with clinicopathological parameters and prognosis in non-small-cell lung carcinoma (NSCLC). Methods The levels of GPR56 were evaluated by immunohistochemistry in 157 NSCLC tissue samples. The association between GPR56 and clinicopathological parameters was evaluated by χ2 test. Univariate and multivariate analyses were performed to demonstrate the prognosis role of GPR56. The function of GPR56 in NSCLC cell lines was also explored through overexpression and knockdown studies. Results The expression level of GPR56 in tumor tissues was significantly correlated with the TNM stage of NSCLC (P=0.005). Univariate and multivariate analyses revealed that GPR56 can act as an independent prognostic factor for overall survival. Furthermore, through overexpression and knockdown experiments, we confirmed that GPR56 can promote the proliferation and invasion of NSCLC cells. Conclusion GPR56 plays an important role in tumor development and may serve as a promising target for prognostic prediction in NSCLC.
Collapse
Affiliation(s)
- Yanjie Song
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang Medical University, Qingzhou
| | - Aiqin Li
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang Medical University, Qingzhou
| | - Li Zhang
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang Medical University, Qingzhou
| | - Lingling Duan
- Medical Care Department for Personnel, Jinan Central Hospital, Shangdong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
33
|
Qi JH, Wang YP, Lu QM. Hypermethylated tumor suppressor genes as potential biomarkers in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:2506-2512. [DOI: 10.11569/wcjd.v24.i16.2506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a common malignant tumor and the fourth cause of cancer related death in the world. Colorectal cancer is a consequence of the accumulation of multiple genetic and epigenetic changes that transform colon epithelial cells into invasive malignant adenoma. Epigenetic changes, especially CpG island methylation in the promoter region, occur more frequently than genetic mutations in colorectal cancer. Hypermethylation contributes to carcinogenesis by inducing transcriptional silencing or downregulation of tumor suppressor genes. Up to now, more than 600 hypermethylated gene candidates have been identified. The use of methylated tumor suppressor genes as minimally invasive biomarkers has broad prospects, and great progress has been made in this area. These biomarkers, either stool-based or blood-based, are now commercially available for diagnostics. However, hypermethylated tumor suppressor genes as prognostic and predictive markers are still at the primary stage of development.
Collapse
|
34
|
De Marchi T, Foekens JA, Umar A, Martens JWM. Endocrine therapy resistance in estrogen receptor (ER)-positive breast cancer. Drug Discov Today 2016; 21:1181-8. [PMID: 27233379 DOI: 10.1016/j.drudis.2016.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/25/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor (ER)-positive breast cancer represents the majority (∼70%) of all breast malignancies. In this subgroup of breast cancers, endocrine therapies are effective both in the adjuvant and recurrent settings, although resistance remains a major issue. Several high-throughput approaches have been used to elucidate mechanisms of resistance and to derive potential predictive markers or alternative therapies. In this review, we cover the state-of-the-art of endocrine-resistance biomarker discovery with regard to the latest technological developments, and discuss current opportunities and restrictions for their implementation into a clinical setting.
Collapse
Affiliation(s)
- Tommaso De Marchi
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Arzu Umar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
35
|
Wei K, Ye Z, Li Z, Dang Y, Chen X, Huang N, Bao C, Gan T, Yang L, Chen G. An immunohistochemical study of cyclin-dependent kinase 5 (CDK5) expression in non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC): a possible prognostic biomarker. World J Surg Oncol 2016; 14:34. [PMID: 26860827 PMCID: PMC4746778 DOI: 10.1186/s12957-016-0787-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/26/2016] [Indexed: 01/22/2023] Open
Abstract
Background Cyclin-dependent kinase 5 (CDK5) is an atypical CDK which plays a vital role in several cancers via regulating migration and motility of cancer cells. However, the clinicopathological impact and function of CDK5 in lung cancer remain poorly understood. The present study was aimed at exploring expression and clinicopathological significance of CDK5 in lung cancer. Methods There were 395 samples of lung tissue including 365 lung tumors (339 non-small cell lung cancers and 26 small cell lung cancers) and 30 samples of normal lung. CDK5 expression was detected by immunohistochemistry on lung tissue microarrays. Results Over expression was detected in lung cancer compared with normal lung tissues (P = 0.001). Furthermore, area under curve (AUC) of receiver operating characteristic (ROC) of CDK5 was 0.685 (95 % CI 0.564~0.751, P = 0.004). In lung cancer, we also discovered close correlations between CDK5 and pathological grading (r = 0.310, P < 0.001), TNM stage (r = 0.155, P = 0.003), and lymph node metastasis (r = 0.279, P < 0.001) by using Spearman analysis. In two subgroups of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), the expression of CDK5 was also higher than that of normal lung tissue, respectively (P = 0.001 and P = 0.004). Moreover, in NSCLCs, Spearman analysis revealed that expression of CDK5 was correlated with TNM stages (r = 0.129, P = 0.017), lymph node metastasis (r = 0.365, P < 0.001), and pathological grading (r = 0.307, P < 0.001), respectively. The significant correlation was also found between CDK5 expression and TNM stages (r = 0.415, P = 0.049) and lymphatic metastasis (r = 0.469, P = 0.024) in SCLCs. Conclusions The results of this present study suggest that the CDK5 expression is associated with several clinicopathological factors linked with poorer prognosis.
Collapse
Affiliation(s)
- Kanglai Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| | - Zhihua Ye
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| | - Zuyun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| | - Xin Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| | - Na Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| | - Chongxi Bao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| | - Tingqing Gan
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| | - Lihua Yang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| |
Collapse
|
36
|
Evelönn EA, Degerman S, Köhn L, Landfors M, Ljungberg B, Roos G. DNA methylation status defines clinicopathological parameters including survival for patients with clear cell renal cell carcinoma (ccRCC). Tumour Biol 2016; 37:10219-28. [PMID: 26831665 DOI: 10.1007/s13277-016-4893-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022] Open
Abstract
Epigenetic alterations in the methylome have been associated with tumor development and progression in renal cell carcinoma (RCC). In this study, 45 tumor samples, 12 tumor-free kidney cortex tissues, and 24 peripheral blood samples from patients with clear cell RCC (ccRCC) were analyzed by genome-wide promoter-directed methylation arrays and related to clinicopathological parameters. Unsupervised hierarchical clustering separated the tumors into two distinct methylation groups (clusters A and B), where cluster B had higher average methylation and increased number of hypermethylated CpG sites (CpGs). Furthermore, tumors in cluster B had, compared with cluster A, a larger tumor diameter (p = 0.033), a higher morphologic grade (p < 0.001), a higher tumor-node-metastasis (TNM) stage (p < 0.001), and a worse prognosis (p = 0.005). Higher TNM stage was correlated to an increase in average methylation level (p = 0.003) and number of hypermethylated CpGs (p = 0.003), whereas a number of hypomethylated CpGs were mainly unchanged. However, the predicted age of the tumors based on methylation profile did not correlate with TNM stage, morphological grade, or methylation cluster. Differently methylated (DM) genes (n = 840) in ccRCC samples compared with tumor-free kidney cortex samples were predominantly hypermethylated and a high proportion were identified as polycomb target genes. The DM genes were overrepresented by transcription factors, ligands, and receptors, indicating functional alterations of significance for ccRCC progression. To conclude, increased number of hypermethylated genes was associated with increased TNM stage of the tumors. DNA methylation classification of ccRCC tumor samples at diagnosis can serve as a clinically applicable prognostic marker in ccRCC.
Collapse
Affiliation(s)
| | - Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, SE-90185, Umeå, Sweden
| | - Linda Köhn
- Department of Medical Biosciences, Pathology, Umeå University, SE-90185, Umeå, Sweden
| | - Mattias Landfors
- Department of Medical Biosciences, Pathology, Umeå University, SE-90185, Umeå, Sweden
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Göran Roos
- Department of Medical Biosciences, Pathology, Umeå University, SE-90185, Umeå, Sweden.
| |
Collapse
|
37
|
Sun R, Qin C, Jiang B, Fang S, Pan X, Peng L, Liu Z, Li W, Li Y, Li G. Down-regulation of MALAT1 inhibits cervical cancer cell invasion and metastasis by inhibition of epithelial-mesenchymal transition. MOLECULAR BIOSYSTEMS 2016; 12:952-62. [PMID: 26798987 DOI: 10.1039/c5mb00685f] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The metastasis-associated lung adenocarcinoma transcript 1(MALAT1), a member of the long non-coding RNA (lncRNA) family, has been reported to be highly enriched in many kinds of cancers and to be a metastasis marker and a prognostic factor. In this study, we found that MALAT1 expression levels were significantly increased in cervical cancer (CC) cells and tissues. The down-regulation of MALAT1 by shRNA in CC cells inhibited the invasion and metastasis in vitro and in vivo. Microarray analysis showed that the knockdown of MALAT1 up-regulated the epithelial markers E-cadherin and ZO-1, and down-regulated the mesenchymal markers β-catenin and Vimentin. This regulation was further confirmed by subsequent observation from RT-PCR, western blot, and immunofluorescence results. Meanwhile, the transcription factor snail, which functions to modulate epithelial-mesenchymal transition (EMT), was also down-regulated at both transcript and protein levels by MALAT1 down-regulation. In addition, we found that MALAT1 expression levels were positively related to HPV infection in cervical epithelial tissues by microarray analysis. Taken together, these results suggest that MALAT1 functions to promote cervical cancer invasion and metastasis via induction of EMT, and it may be a target for the prevention and therapy of cervical cancers.
Collapse
Affiliation(s)
- Ruili Sun
- Cancer Research Institute, Central South University, Xiangya Road 110#, Hunan Province, Changsha 410078, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shakeri H, Gharesouran J, Fakhrjou A, Esfahani A, Mohaddes Ardebili SM. DNA methylation assessment as a prognostic factor in invasive breast cancer using methylation-specific multiplex ligation dependent probe amplification. EXCLI JOURNAL 2016; 15:11-20. [PMID: 27065772 PMCID: PMC4822054 DOI: 10.17179/excli2015-485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/05/2015] [Indexed: 12/17/2022]
Abstract
DNA methylation of promoter regions is a common molecular mechanism for inactivation of tumor suppressor genes that participates in carcinogenesis. Determining the methylation status of genes in cancer and their association with clinical features play an essential role in early diagnosis, prognosis and determine appropriate treatment for patients. The purpose of the present study was to evaluate the methylation of tumor suppressor genes in patients with invasive ductal carcinoma (IDC). Furthermore, we evaluated the association between clinical parameters and DNA methylation as a biomarker in diagnostic IDC patients. The methylation-specific multiplex ligation dependent probe amplification (MS-MLPA) assay was used to analyze the methylation profile of 24 genes in formalin-fixed paraffin embedded (FFPE) tissue samples from 75 patients with IDC. Each of the patients showed a distinctive methylation profile. We observed higher methylation in the RASSF1 (48 %), CDH13 (44 %) and GSTP1 (36 %) genes. Some of the methylated genes were associated with clinical features. Methylation of GSTP1 (P=0.028) and RASSF1 (P=0.012) were related with lymph node metastasis. Methylation of GSTP1 (P=0.005) was associated with high histological grade. Moreover, concurrent methylation of GSTP1 and CDH13 was observed in IDC patients (p<0.001). Hierarchical cluster analysis based on the methylation profile revealed two main clusters of patients, the highly methylated cluster being significantly associated with high histological grade and lymph node metastasis. The results of this study indicate that the methylation status of RASSF1 and CDH13 and GSTP1 can be a prognostic marker to better management of IDC patients.
Collapse
Affiliation(s)
- Halaleh Shakeri
- Hematology & Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Gharesouran
- Department of Biochemistry and Clinical Laboratories, Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashraf Fakhrjou
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Esfahani
- Hematology & Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Mojtaba Mohaddes Ardebili
- Hematology & Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Ahmad A. Epigenetics in Personalized Management of Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 890:111-22. [PMID: 26703801 DOI: 10.1007/978-3-319-24932-2_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In last several years, the focus on the origin and progression of human cancers has shifted from genetic to epigenetic regulation, with particular attention to methylation and acetylation events that have profound effect on the eventual expression of oncogenes and the suppression of tumor suppressors. A few drugs targeting these epigenetic changes have already been approved for treatment, albeit not for lung cancer. With the recent advances in the push towards personalized therapy, questions have been asked about the possible targeting of epigenetic events for personalized lung cancer therapy. Some progress has been made but a lot needs to be done. In this chapter, a succinct review of these topics is provided.
Collapse
Affiliation(s)
- Aamir Ahmad
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
40
|
Pan LJ, Zhong TF, Tang RX, Li P, Dang YW, Huang SN, Chen G. Upregulation and clinicopathological significance of long non-coding NEAT1 RNA in NSCLC tissues. Asian Pac J Cancer Prev 2015; 16:2851-5. [PMID: 25854373 DOI: 10.7314/apjcp.2015.16.7.2851] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent reports have shown that nuclear enriched abundant transcript 1 (NEAT1), a long non- coding RNA (lncRNA), contributes to the precise control of gene expression and is related to several human malignancies. However, limited data are available on the expression and function of NEAT1 in lung cancer. The major objective of the current study was to profile the expression and clinicopathological significance of NEAT1 in non-small cell lung cancers (NSCLCs). MATERIALS AND METHODS NEAT1 expression in 125 NSCLC cases and paired adjacent non-cancer tissues was assessed by real-time quantitative reverse transcription-PCR (qRT-PCR). Relationships between NEAT1 and clinicopathological factors were also investigated. RESULTS The relative level of NEAT1 was 6.98±3.74 in NSCLC tissues, significantly elevated as compared to that of the adjacent non-cancer lung tissues (4.83±2.98, p<0.001). The area under curve (AUC) of high expression of NEAT1 to diagnose NSCLC was 0.684 (95% CI: 0.619~0.750, p<0.001). NEAT1 expression was positively correlated with patient age (r=-2.007, p=0.047), lymphatic metastasis (r=-2.731, p=0.007), vascular invasion (r=-3.617, p=0.001) and clinical TNM stage (r=-4.134, p<0.001). CONCLUSIONS This study indicates that NEAT1 might be associated with oncogenesis and progression in NSCLC, and suggests application in molecular targeted therapy.
Collapse
Affiliation(s)
- Lin-Jiang Pan
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
41
|
Maekawa R, Sato S, Okada M, Lee L, Tamura I, Jozaki K, Kajimura T, Asada H, Yamagata Y, Tamura H, Yamamoto S, Sugino N. Tissue-Specific Expression of Estrogen Receptor 1 Is Regulated by DNA Methylation in a T-DMR. Mol Endocrinol 2015; 30:335-47. [PMID: 26683811 DOI: 10.1210/me.2015-1058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mechanism controlling tissue-specific expression of estrogen receptor 1 (ESR1) is unclear. In other genes, DNA methylation of a region called the tissue-dependent and differentially methylated region (T-DMR) has been associated with tissue-specific gene expression. This study investigated whether human ESR1 has a T-DMR and whether DNA methylation of the T-DMR regulates its expression. ESR1 expression was tissue-specific, being high in the endometrium and mammary gland and low/nil in the placenta and skin. Therefore, DNA methylation profiles of the promoter of ESR1 were analyzed in these tissues and in breast cancer tissues. In all of the normal tissues, the proximal promoter regions were unmethylated. On the other hand, the distal regions (T-DMR) were unmethylated in the endometrium and mammary gland, but were moderately methylated and hypermethylated in the placenta and skin, respectively. T-DMR-methylated reporter assay was performed to examine whether DNA methylation at the T-DMR suppresses ESR1 transcription. T-DMR, but not the promoter region, had transcriptional activities and DNA methylation of the T-DMR suppressed ESR1 transcription. Early growth response protein 1 was shown to be a possible transcription factor to bind the T-DMR and up-regulate ESR1 expression. ESR1 has several upstream exons, and each upstream exon, Exon-A/Exon-B/Exon-C, had its own T-DMR. In some breast cancer cases and breast cancer cell lines, ESR1 expression was not regulated by DNA methylation at T-DMR as it is in normal tissues. In conclusion, ESR1 has a T-DMR. DNA methylation status at the T-DMR is involved in tissue-specific ESR1 expression in normal tissues but not always in breast cancer.
Collapse
Affiliation(s)
- Ryo Maekawa
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Shun Sato
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Maki Okada
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Lifa Lee
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Isao Tamura
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Kosuke Jozaki
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Takuya Kajimura
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Hiromi Asada
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Yoshiaki Yamagata
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Hiroshi Tamura
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Shigeru Yamamoto
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Norihiro Sugino
- Departments of Obstetrics and Gynecology (R.M., S.S., M.O., L.L., I.T., K.J., T.K., H.A., Y.Y., H.T., N.S.) and Digestive Surgery and Surgical Oncology (S.Y.), Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| |
Collapse
|
42
|
Relton CL, Davey Smith G. Mendelian randomization: applications and limitations in epigenetic studies. Epigenomics 2015; 7:1239-43. [PMID: 26639554 PMCID: PMC5330409 DOI: 10.2217/epi.15.88] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
43
|
Nishi A, Milner DA, Giovannucci EL, Nishihara R, Tan AS, Kawachi I, Ogino S. Integration of molecular pathology, epidemiology and social science for global precision medicine. Expert Rev Mol Diagn 2015; 16:11-23. [PMID: 26636627 PMCID: PMC4713314 DOI: 10.1586/14737159.2016.1115346] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The precision medicine concept and the unique disease principle imply that each patient has unique pathogenic processes resulting from heterogeneous cellular genetic and epigenetic alterations and interactions between cells (including immune cells) and exposures, including dietary, environmental, microbial and lifestyle factors. As a core method field in population health science and medicine, epidemiology is a growing scientific discipline that can analyze disease risk factors and develop statistical methodologies to maximize utilization of big data on populations and disease pathology. The evolving transdisciplinary field of molecular pathological epidemiology (MPE) can advance biomedical and health research by linking exposures to molecular pathologic signatures, enhancing causal inference and identifying potential biomarkers for clinical impact. The MPE approach can be applied to any diseases, although it has been most commonly used in neoplastic diseases (including breast, lung and colorectal cancers) because of availability of various molecular diagnostic tests. However, use of state-of-the-art genomic, epigenomic and other omic technologies and expensive drugs in modern healthcare systems increases racial, ethnic and socioeconomic disparities. To address this, we propose to integrate molecular pathology, epidemiology and social science. Social epidemiology integrates the latter two fields. The integrative social MPE model can embrace sociology, economics and precision medicine, address global health disparities and inequalities, and elucidate biological effects of social environments, behaviors and networks. We foresee advancements of molecular medicine, including molecular diagnostics, biomedical imaging and targeted therapeutics, which should benefit individuals in a global population, by means of an interdisciplinary approach of integrative MPE and social health science.
Collapse
Affiliation(s)
- Akihiro Nishi
- Yale Institute for Network Science, New Haven, CT, USA (AN); Department of Sociology, Yale University, New Haven, CT, USA (AN); Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (DAM, SO); Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA (DAM); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN, SO); Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (ELG); Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA (RN); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA (RN, AST, SO); Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA (AST, IK)
| | - Danny A Milner
- Yale Institute for Network Science, New Haven, CT, USA (AN); Department of Sociology, Yale University, New Haven, CT, USA (AN); Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (DAM, SO); Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA (DAM); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN, SO); Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (ELG); Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA (RN); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA (RN, AST, SO); Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA (AST, IK)
| | - Edward L. Giovannucci
- Yale Institute for Network Science, New Haven, CT, USA (AN); Department of Sociology, Yale University, New Haven, CT, USA (AN); Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (DAM, SO); Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA (DAM); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN, SO); Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (ELG); Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA (RN); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA (RN, AST, SO); Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA (AST, IK)
| | - Reiko Nishihara
- Yale Institute for Network Science, New Haven, CT, USA (AN); Department of Sociology, Yale University, New Haven, CT, USA (AN); Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (DAM, SO); Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA (DAM); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN, SO); Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (ELG); Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA (RN); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA (RN, AST, SO); Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA (AST, IK)
| | - Andy S. Tan
- Yale Institute for Network Science, New Haven, CT, USA (AN); Department of Sociology, Yale University, New Haven, CT, USA (AN); Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (DAM, SO); Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA (DAM); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN, SO); Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (ELG); Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA (RN); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA (RN, AST, SO); Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA (AST, IK)
| | - Ichiro Kawachi
- Yale Institute for Network Science, New Haven, CT, USA (AN); Department of Sociology, Yale University, New Haven, CT, USA (AN); Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (DAM, SO); Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA (DAM); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN, SO); Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (ELG); Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA (RN); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA (RN, AST, SO); Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA (AST, IK)
| | - Shuji Ogino
- Yale Institute for Network Science, New Haven, CT, USA (AN); Department of Sociology, Yale University, New Haven, CT, USA (AN); Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (DAM, SO); Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA (DAM); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN, SO); Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (ELG); Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA (RN); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA (RN, AST, SO); Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA (AST, IK)
| |
Collapse
|
44
|
Wang M, Spiegelman D, Kuchiba A, Lochhead P, Kim S, Chan AT, Poole EM, Tamimi R, Tworoger SS, Giovannucci E, Rosner B, Ogino S. Statistical methods for studying disease subtype heterogeneity. Stat Med 2015; 35:782-800. [PMID: 26619806 DOI: 10.1002/sim.6793] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/08/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022]
Abstract
A fundamental goal of epidemiologic research is to investigate the relationship between exposures and disease risk. Cases of the disease are often considered a single outcome and assumed to share a common etiology. However, evidence indicates that many human diseases arise and evolve through a range of heterogeneous molecular pathologic processes, influenced by diverse exposures. Pathogenic heterogeneity has been considered in various neoplasms such as colorectal, lung, prostate, and breast cancers, leukemia and lymphoma, and non-neoplastic diseases, including obesity, type II diabetes, glaucoma, stroke, cardiovascular disease, autism, and autoimmune disease. In this article, we discuss analytic options for studying disease subtype heterogeneity, emphasizing methods for evaluating whether the association of a potential risk factor with disease varies by disease subtype. Methods are described for scenarios where disease subtypes are categorical and ordinal and for cohort studies, matched and unmatched case-control studies, and case-case study designs. For illustration, we apply the methods to a molecular pathological epidemiology study of alcohol intake and colon cancer risk by tumor LINE-1 methylation subtypes. User-friendly software to implement the methods is publicly available.
Collapse
Affiliation(s)
- Molin Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Donna Spiegelman
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A
| | - Aya Kuchiba
- Department of Biostatistics, National Cancer Center, Tokyo, Japan
| | - Paul Lochhead
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, U.S.A
| | - Sehee Kim
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, U.S.A
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, U.S.A
| | - Elizabeth M Poole
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Rulla Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Shelley S Tworoger
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Bernard Rosner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
| |
Collapse
|
45
|
Du Y, Li M, Chen J, Duan Y, Wang X, Qiu Y, Cai Z, Gui Y, Jiang H. Promoter targeted bisulfite sequencing reveals DNA methylation profiles associated with low sperm motility in asthenozoospermia. Hum Reprod 2015; 31:24-33. [PMID: 26628640 DOI: 10.1093/humrep/dev283] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/20/2015] [Indexed: 01/18/2023] Open
Abstract
STUDY QUESTION Is there an association between sperm DNA methylation profiles and asthenozoospermia? SUMMARY ANSWER DNA methylation, at specific CpGs but not at the global level, was significantly different between low motile sperm cells of asthenozoospermic individuals and high motile sperm cells of normozoospermic controls. WHAT IS KNOWN ALREADY Aberrant DNA methylation, both globally and restricted to a specific gene locus, has been associated with male infertility and abnormal semen parameters. STUDY DESIGN, SIZE, DURATION This was a case-control study investigating the differences in DNA methylation at CpGs in promoter regions between high and low motile sperm cells from eight normozoospermic controls and seven asthenozoospermic patients. PARTICIPANTS/MATERIALS, SETTING, METHODS The liquid hybridization capture-based bisulfite sequencing method was used to determine DNA methylation at CpGs in promoter regions. The global inter-individual and intra-individual methylation variability were estimated by evaluating the methylation variance between and within different motile sperm fractions from the same or different individuals. Asthenozoospermia-associated differentially methylated or variable CpGs and differentially methylated regions were identified by comparing the DNA methylation of high motile sperm cells from normozoospermic controls with that of low motile sperm cells from asthenozoospermic patients. MAIN RESULTS AND THE ROLE OF CHANCE In this study, we determined the global DNA methylation level (24.7%), inter-individual variance (14.4%) and intra-individual differences between high and low motile sperm fractions (3.9%). We demonstrated that there were no statistically significant differences in either the global DNA methylation level or global methylation variability between sperm from men with normozoospermia or asthenozoospermia. Between high motile sperm from men with normozoospermia and low motile sperm from men with asthenozoospermia, we identified 134 differentially methylated CpGs, 41 differentially methylated regions and 134 differentially variable CpGs. The genomic distribution patterns of the differential methylation spectrum suggested that gene expression may be affected in low motile sperm cells of asthenozoospermic patients. Finally, through a functional analysis, we detected 16 differentially methylated or variable genes that are required for spermatogenesis and sperm motility or dominantly expressed in testis. LIMITATIONS, REASONS FOR CAUTION The sample size in this study was limited, although the participants in the two groups were carefully selected and well matched. Our results must be verified in larger cohorts with the use of different techniques. Furthermore, our results were descriptive, and follow-up studies will be needed to elucidate the effect of differential methylation profiles on asthenozoospermia. WIDER IMPLICATIONS OF THE FINDINGS Our study identified asthenozoospermia-associated DNA methylation profiles and proposed a list of genes, which were suggested to be involved in the regulation of sperm motility through an alteration of DNA methylation. These results will provide promising clues for understanding the effect of DNA methylation on sperm motility and asthenozoospermia. STUDY FUNDING/COMPETING INTERESTS This study was funded primarily by the National Natural Science Foundation of China, Shenzhen Project of Science and Technology and the National Basic Research Program of China. The authors have no competing interests.
Collapse
Affiliation(s)
- Ye Du
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, FuTian District, Shenzhen 518036, China
| | - Meiyan Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jing Chen
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, FuTian District, Shenzhen 518036, China
| | - Yonggang Duan
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, FuTian District, Shenzhen 518036, China
| | | | - Yong Qiu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Zhiming Cai
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, FuTian District, Shenzhen 518036, China
| | - Yaoting Gui
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, FuTian District, Shenzhen 518036, China
| | - Hui Jiang
- BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
46
|
Abstract
Melanoma, one of the most virulent forms of human malignancy, is the primary cause of mortality from cancers arising from the skin. The prognosis of metastatic melanoma remains dismal despite targeted therapeutic regimens that exploit our growing understanding of cancer immunology and genetic mutations that drive oncogenic cell signaling pathways in cancer. Epigenetic mechanisms, including DNA methylation/demethylation, histone modifications and noncoding RNAs recently have been shown to play critical roles in melanoma pathogenesis. Current evidence indicates that imbalance of DNA methylation and demethylation, dysregulation of histone modification and chromatin remodeling, and altered translational control by noncoding RNAs contribute to melanoma tumorigenesis. Here, we summarize the most recent insights relating to epigenetic markers, focusing on diagnostic potential as well as novel therapeutic approaches for more effective treatment of advanced melanoma.
Collapse
Affiliation(s)
- Weimin Guo
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| | - Ting Xu
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| | - Jonathan J Lee
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| | - George F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| | - Christine G Lian
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| |
Collapse
|
47
|
Inamura K, Song M, Jung S, Nishihara R, Yamauchi M, Lochhead P, Qian ZR, Kim SA, Mima K, Sukawa Y, Masuda A, Imamura Y, Zhang X, Pollak MN, Mantzoros CS, Harris CC, Giovannucci E, Fuchs CS, Cho E, Chan AT, Wu K, Ogino S. Prediagnosis Plasma Adiponectin in Relation to Colorectal Cancer Risk According to KRAS Mutation Status. J Natl Cancer Inst 2015; 108:djv363. [PMID: 26598515 DOI: 10.1093/jnci/djv363] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 10/27/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Low levels of adiponectin (ADIPOQ; HGNC ID; HGNC:13633), an adipokine, are associated with obesity, adiposity, excess energy balance, and increased risk of colorectal neoplasia. Given the reported association of increased body mass index (BMI) and low-level physical activity with KRAS-mutated colorectal tumor, we hypothesized that low-level plasma adiponectin might be associated with increased risk of KRAS-mutant colorectal carcinoma but not with risk of KRAS wild-type carcinoma. METHODS We conducted molecular pathological epidemiology research using a nested case-control study design (307 incident rectal and colon cancer case patients and 593 matched control individuals) within prospective cohort studies, the Nurses' Health Study (152 case patients and 297 control individuals, with blood collection in 1989-1990) and the Health Professionals Follow-up Study (155 case patients and 296 control individuals, with blood collection in 1993-1995). Multivariable conditional logistic regression models and two-sided likelihood ratio tests were used to assess etiologic heterogeneity of the associations. RESULTS The association of low-level plasma adiponectin with colorectal cancer risk statistically significantly differed by KRAS mutation status (P heterogeneity = .004). Low levels of plasma adiponectin were associated with KRAS-mutant colorectal cancer (for the lowest vs highest tertile: multivariable odds ratio [OR] = 2.83, 95% confidence interval [CI] = 1.50 to 5.34, P trend = .002) but not with KRAS wild-type cancer (for the lowest vs highest tertile: multivariable OR = 0.83, 95% CI = 0.49 to 1.43, P trend = .48). In secondary analyses, the association between plasma adiponectin and colorectal cancer did not appreciably differ by BRAF or PIK3CA oncogene mutation status. CONCLUSIONS Low-level plasma adiponectin is associated with KRAS-mutant colorectal cancer risk but not with KRAS wild-type cancer risk.
Collapse
Affiliation(s)
- Kentaro Inamura
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Mingyang Song
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Seungyoun Jung
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Reiko Nishihara
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Mai Yamauchi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Paul Lochhead
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Sun A Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Yasutaka Sukawa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Atsuhiro Masuda
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Yu Imamura
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Xuehong Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Michael N Pollak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Christos S Mantzoros
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Curtis C Harris
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Edward Giovannucci
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Charles S Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Eunyoung Cho
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Andrew T Chan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Kana Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (KI, RN, MY, PL, ZRQ, SAK, KM, YS, YI, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI, CCH); Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan (KI); Department of Nutrition (MS, RN, EG, KW), Department of Epidemiology (MS, EG, SO), and Department of Biostatistics (RN), Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine (SJ, XZ, EG, CSF, EC, ATC) and Department of Pathology (SO), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA (PL, ATC); Department of Oncology, McGill University, Montreal, Quebec, Canada (MNP); Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (CSM); Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA (CSM); Department of Dermatology, Warren Alpert Medical School of Brown University, Province, RI (EC)
| |
Collapse
|
48
|
Aberrant methylation of the TERT promoter in esophageal squamous cell carcinoma. Cancer Genet 2015; 208:602-9. [PMID: 26669682 DOI: 10.1016/j.cancergen.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023]
Abstract
A recent study indicated that upstream of the transcription start site (UTSS) hypermethylation of the telomerase reverse transcriptase (TERT) gene was associated with tumor progression and poor prognosis in pediatric brain tumors. The potential for methylation-mediated regulation of the UTSS region of the TERT gene in esophageal squamous cell carcinoma (ESCC) has not yet been investigated. Here, TERT methylation was investigated in tumor and paired adjacent non-cancerous tissues (ANT) from 185 ESCC patients, and the expression of TERT was investigated in 26 tumors paired with ANTs selected from the same cohort. The methylation level of TERT was analyzed in three different regions: region 1, region 2, and the UTSS region. Comparison and correlation of methylation level and clinical features were analyzed in the abovementioned regions. The results showed that the methylation level of TERT was significantly elevated in the tumor relative to the ANT in ESCC. TERT RNA expression was significantly reduced in primary tumors. Tumor stage was the major determinant of survival. The UTSS region may not be an accessible biomarker for ESCC.
Collapse
|
49
|
Ma L, Bai Y, Pu H, Gou F, Dai M, Wang H, He J, Zheng T, Cheng N. Histone Methylation in Nickel-Smelting Industrial Workers. PLoS One 2015. [PMID: 26474320 DOI: 10.1371/journal.pone.0140339]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Nickel is an essential trace metal naturally found in the environment. It is also common in occupational settings, where it associates with various levels of both occupational and nonoccupational exposure In vitro studies have shown that nickel exposure can lead to intracellular accumulation of Ni2+, which has been associated with global decreases in DNA methylation, increases in chromatin condensation, reductions in H3K9me2, and elevated levels of H3K4me3. Histone modifications play an important role in modulating chromatin structure and gene expression. For example, tri-methylation of histone H3k4 has been found to be associated with transcriptional activation, and tri-methylation of H3k27 has been found to be associated with transcriptional repression. Aberrant histone modifications have been found to be associated with various human diseases, including cancer. The purpose of this work was to identify biomarkers for populations with occupational nickel exposure and to examine the relationship between histone methylation and nickel exposure. This may provide a scientific indicator of early health impairment and facilitate exploration of the molecular mechanism underlying cancer pathogenesis. METHODS One hundred and forty subjects with occupational exposure to Ni and 140 referents were recruited. H3K4 and H3K27 trimethylation levels were measured in subjects' blood cells. RESULTS H3K4me3 levels were found to be higher in nickel smelting workers (47.24±20.85) than in office workers (22.65±8.81; P = 0.000), while the opposite was found for levels of H3K27me3(nickel smelting workers, 13.88± 4.23; office workers, 20.67± 5.96; P = 0.000). H3K4me3 was positively (r = 0.267, P = 0.001) and H3K27 was negatively (r = -0.684, P = 0.000) associated with age and length of service in smelting workers. CONCLUSION This study indicated that occupational exposure to Ni is associated with alterations in levels of histone modification.
Collapse
Affiliation(s)
- Li Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Yana Bai
- School of Public Health, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Hongquan Pu
- Workers' Hospital of Jinchuan Company, Jinchuan Group CO., LTD, Jinchang, Gansu, P.R. China
| | - Faxiang Gou
- School of Public Health, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Min Dai
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Wang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Jie He
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Tongzhang Zheng
- School of Public Health, Yale University, 60 College Street, New Haven, Connecticut, United States of America
| | - Ning Cheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, P.R. China; College of Basic Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
| |
Collapse
|
50
|
Histone Methylation in Nickel-Smelting Industrial Workers. PLoS One 2015; 10:e0140339. [PMID: 26474320 PMCID: PMC4608576 DOI: 10.1371/journal.pone.0140339] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/24/2015] [Indexed: 11/23/2022] Open
Abstract
Background Nickel is an essential trace metal naturally found in the environment. It is also common in occupational settings, where it associates with various levels of both occupational and nonoccupational exposure In vitro studies have shown that nickel exposure can lead to intracellular accumulation of Ni2+, which has been associated with global decreases in DNA methylation, increases in chromatin condensation, reductions in H3K9me2, and elevated levels of H3K4me3. Histone modifications play an important role in modulating chromatin structure and gene expression. For example, tri-methylation of histone H3k4 has been found to be associated with transcriptional activation, and tri-methylation of H3k27 has been found to be associated with transcriptional repression. Aberrant histone modifications have been found to be associated with various human diseases, including cancer. The purpose of this work was to identify biomarkers for populations with occupational nickel exposure and to examine the relationship between histone methylation and nickel exposure. This may provide a scientific indicator of early health impairment and facilitate exploration of the molecular mechanism underlying cancer pathogenesis. Methods One hundred and forty subjects with occupational exposure to Ni and 140 referents were recruited. H3K4 and H3K27 trimethylation levels were measured in subjects’ blood cells. Results H3K4me3 levels were found to be higher in nickel smelting workers (47.24±20.85) than in office workers (22.65±8.81; P = 0.000), while the opposite was found for levels of H3K27me3(nickel smelting workers, 13.88± 4.23; office workers, 20.67± 5.96; P = 0.000). H3K4me3 was positively (r = 0.267, P = 0.001) and H3K27 was negatively (r = -0.684, P = 0.000) associated with age and length of service in smelting workers. Conclusion This study indicated that occupational exposure to Ni is associated with alterations in levels of histone modification.
Collapse
|