1
|
Yuan Z, He J, Li Z, Fan B, Zhang L, Man X. Targeting autophagy in urological system cancers: From underlying mechanisms to therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189196. [PMID: 39426690 DOI: 10.1016/j.bbcan.2024.189196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The urological system, including kidneys, ureters, bladder, urethra and prostate is known to be vital for blood filtration, waste elimination and electrolyte balance. Notably, urological system cancers represent a significant portion of global cancer diagnoses and mortalities. The current therapeutic strategies for early-stage cancer primarily involve resection surgery, which significantly affects the quality of life of patients, whereas advanced-stage cancer often relies on less effective chemo- or radiotherapy. Recently, accumulating evidence has revealed that autophagy, a crucial process in which excess organelles or inclusions within cells are removed to maintain cell homeostasis, has numerous links to urological system cancers. In this review, we focus on summarizing the underlying two-sided mechanisms of autophagy in urological system cancers. We also review the current clinical drugs targeting autophagy, which demonstrate significant potential in improving treatment outcomes for urological system cancers. In addition, we provide an overview of the research status of novel small molecule compounds targeting autophagy that are in the preclinical stages of investigation. Furthermore, drug combinations based on autophagy modulation strategies in urological system cancers are systematically summarized and discussed. These findings provide comprehensive new insight for the future discovery of more autophagy-related drug candidates.
Collapse
Affiliation(s)
- Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiani He
- Department of Urology, Department of Surgical Oncology and Breast Surgery, Institute of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Fan
- Department of Urology, Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Urology, Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Xiaojun Man
- Department of Urology, Department of Surgical Oncology and Breast Surgery, Institute of Urology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Elshazly AM, Xu J, Melhem N, Abdulnaby A, Elzahed AA, Saleh T, Gewirtz DA. Is Autophagy Targeting a Valid Adjuvant Strategy in Conjunction with Tyrosine Kinase Inhibitors? Cancers (Basel) 2024; 16:2989. [PMID: 39272847 PMCID: PMC11394573 DOI: 10.3390/cancers16172989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) represent a relatively large class of small-molecule inhibitors that compete with ATP for the catalytic binding site of tyrosine kinase proteins. While TKIs have demonstrated effectiveness in the treatment of multiple malignancies, including chronic myelogenous leukemia, gastrointestinal tumors, non-small cell lung cancers, and HER2-overexpressing breast cancers, as is almost always the case with anti-neoplastic agents, the development of resistance often imposes a limit on drug efficacy. One common survival response utilized by tumor cells to ensure their survival in response to different stressors, including anti-neoplastic drugs, is that of autophagy. The autophagic machinery in response to TKIs in multiple tumor models has largely been shown to be cytoprotective in nature, although there are a number of cases where autophagy has demonstrated a cytotoxic function. In this review, we provide an overview of the literature examining the role that autophagy plays in response to TKIs in different preclinical tumor model systems in an effort to determine whether autophagy suppression or modulation could be an effective adjuvant strategy to increase efficiency and/or overcome resistance to TKIs.
Collapse
Affiliation(s)
- Ahmed M Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Nebras Melhem
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Alsayed Abdulnaby
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Aya A Elzahed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, Hashemite University, Zarqa 13133, Jordan
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA
| |
Collapse
|
3
|
Walweel N, Aydin O. Enhancing Therapeutic Efficacy in Cancer Treatment: Integrating Nanomedicine with Autophagy Inhibition Strategies. ACS OMEGA 2024; 9:27832-27852. [PMID: 38973850 PMCID: PMC11223161 DOI: 10.1021/acsomega.4c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024]
Abstract
The complicated stepwise lysosomal degradation process known as autophagy is in charge of destroying and eliminating damaged organelles and defective cytoplasmic components. This mechanism promotes metabolic adaptability and nutrition recycling. Autophagy functions as a quality control mechanism in cells that support homeostasis and redox balance under normal circumstances. However, the role of autophagy in cancer is controversial because, mostly depending on the stage of the tumor, it may either suppress or support the disease. While autophagy delays the onset of tumors and slows the dissemination of cancer in the early stages of tumorigenesis, numerous studies demonstrate that autophagy promotes the development and spread of tumors as well as the evolution and development of resistance to several anticancer drugs in advanced cancer stages. In this Review, we primarily emphasize the therapeutic role of autophagy inhibition in improving the treatment of multiple cancers and give a broad overview of how its inhibition modulates cancer responses. There have been various attempts to inhibit autophagy, including the use of autophagy inhibitor drugs, gene silencing therapy (RNA interference), and nanoparticles. In this Review, all these topics are thoroughly covered and illustrated by recent studies and field investigations.
Collapse
Affiliation(s)
- Nada Walweel
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
| | - Omer Aydin
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
- ERNAM-Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- ERKAM-Clinical-Engineering
Research and Implementation Center, Erciyes
University, Kayseri 38030, Turkey
| |
Collapse
|
4
|
Yang Y, Liu X, Yang D, Li L, Li S, Lu S, Li N. Interplay of CD36, autophagy, and lipid metabolism: insights into cancer progression. Metabolism 2024; 155:155905. [PMID: 38548128 DOI: 10.1016/j.metabol.2024.155905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
CD36, a scavenger receptor B2 that is dynamically distributed between cell membranes and organelle membranes, plays a crucial role in regulating lipid metabolism. Abnormal CD36 activity has been linked to a range of metabolic disorders, such as obesity, nonalcoholic fatty liver disease, insulin resistance and cardiovascular disease. CD36 undergoes various modifications, including palmitoylation, glycosylation, and ubiquitination, which greatly affect its binding affinity to various ligands, thereby triggering and influencing various biological effects. In the context of tumors, CD36 interacts with autophagy to jointly regulate tumorigenesis, mainly by influencing the tumor microenvironment. The central role of CD36 in cellular lipid homeostasis and recent molecular insights into CD36 in tumor development indicate the applicability of CD36 as a therapeutic target for cancer treatment. Here, we discuss the diverse posttranslational modifications of CD36 and their respective roles in lipid metabolism. Additionally, we delve into recent research findings on CD36 in tumors, outlining ongoing drug development efforts targeting CD36 and potential strategies for future development and highlighting the interplay between CD36 and autophagy in the context of cancer. Our aim is to provide a comprehensive understanding of the function of CD36 in both physiological and pathological processes, facilitating a more in-depth analysis of cancer progression and a better development and application of CD36-targeting drugs for tumor therapy in the near future.
Collapse
Affiliation(s)
- Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaokun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Di Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lianhui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sheng Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sen Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Han Z, Luo W, Shen J, Xie F, Luo J, Yang X, Pang T, Lv Y, Li Y, Tang X, He J. Non-coding RNAs are involved in tumor cell death and affect tumorigenesis, progression, and treatment: a systematic review. Front Cell Dev Biol 2024; 12:1284934. [PMID: 38481525 PMCID: PMC10936223 DOI: 10.3389/fcell.2024.1284934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/08/2024] [Indexed: 11/02/2024] Open
Abstract
Cell death is ubiquitous during development and throughout life and is a genetically determined active and ordered process that plays a crucial role in regulating homeostasis. Cell death includes regulated cell death and non-programmed cell death, and the common types of regulatory cell death are necrosis, apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis. Apoptosis, Necrosis and necroptosis are more common than autophagy, ferroptosis and pyroptosis among cell death. Non-coding RNAs are regulatory RNA molecules that do not encode proteins and include mainly microRNAs, long non-coding RNAs, and circular RNAs. Non-coding RNAs can act as oncogenes and tumor suppressor genes, with significant effects on tumor occurrence and development, and they can also regulate tumor cell autophagy, ferroptosis, and pyroptosis at the transcriptional or post-transcriptional level. This paper reviews the recent research progress on the effects of the non-coding RNAs involved in autophagy, ferroptosis, and pyroptosis on tumorigenesis, tumor development, and treatment, and looks forward to the future direction of this field, which will help to elucidate the molecular mechanisms of tumorigenesis and tumor development, as well as provide a new vision for the treatment of tumors.
Collapse
Affiliation(s)
- Zeping Han
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Rehabilitation Medicine Institute of Panyu District, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jinggen Luo
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Xiang Yang
- Department of Gynaecology and Obstetrics, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Ting Pang
- Clinical Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yubing Lv
- Clinical Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yuguang Li
- He Xian Memorial Hospital, Southern Medical University, Guangzhou, China
| | - Xingkui Tang
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jinhua He
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Rehabilitation Medicine Institute of Panyu District, Guangzhou, China
| |
Collapse
|
6
|
Landry J, Shows K, Jagdeesh A, Shah A, Pokhriyal M, Yakovlev V. Regulatory miRNAs in cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Enzymes 2023; 53:113-196. [PMID: 37748835 DOI: 10.1016/bs.enz.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The desired outcome of cancer therapies is the eradication of disease. This can be achieved when therapy exposure leads to therapy-induced cancer cell death as the dominant outcome. Theoretically, a permanent therapy-induced growth arrest could also contribute to a complete response, which has the potential to lead to remission. However, preclinical models have shown that therapy-induced growth arrest is not always durable, as recovering cancer cell populations can contribute to the recurrence of cancer. Significant research efforts have been expended to develop strategies focusing on the prevention of recurrence. Recovery of cells from therapy exposure can occur as a result of several cell stress adaptations. These include cytoprotective autophagy, cellular quiescence, a reversable form of senescence, and the suppression of apoptosis and necroptosis. It is well documented that microRNAs regulate the response of cancer cells to anti-cancer therapies, making targeting microRNAs therapeutically a viable strategy to sensitization and the prevention of recovery. We propose that the use of microRNA-targeting therapies in prolonged sequence, that is, a significant period after initial therapy exposure, could reduce toxicity from the standard combination strategy, and could exploit new epigenetic states essential for cancer cells to recover from therapy exposure. In a step toward supporting this strategy, we survey the available scientific literature to identify microRNAs which could be targeted in sequence to eliminate residual cancer cell populations that were arrested as a result of therapy exposure. It is our hope that by successfully identifying microRNAs which could be targeted in sequence we can prevent disease recurrence.
Collapse
Affiliation(s)
- Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Aashka Shah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mihir Pokhriyal
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
7
|
Conrad O, Burgy M, Foppolo S, Jehl A, Thiéry A, Guihard S, Vauchelles R, Jung AC, Mourtada J, Macabre C, Ledrappier S, Chenard MP, Onea MA, Danic A, Dourlhes T, Thibault C, Schultz P, Dontenwill M, Martin S. Tumor-Suppressive and Immunomodulating Activity of miR-30a-3p and miR-30e-3p in HNSCC Cells and Tumoroids. Int J Mol Sci 2023; 24:11178. [PMID: 37446353 DOI: 10.3390/ijms241311178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are heterogeneous tumors, well known for their frequent relapsing nature. To counter recurrence, biomarkers for early diagnosis, prognosis, or treatment response prediction are urgently needed. miRNAs can profoundly impact normal physiology and enhance oncogenesis. Among all of the miRNAs, the miR-30 family is frequently downregulated in HNSCC. Here, we determined how levels of the 3p passenger strands of miR-30a and miR-30e affect tumor behavior and clarified their functional role in LA-HNSCC. In a retrospective study, levels of miR-30a-3p and miR-30e-3p were determined in 110 patients and correlated to overall survival, locoregional relapse, and distant metastasis. miR-30a/e-3p were expressed in HNSCC cell lines and HNSCC patient-derived tumoroids (PDTs) to investigate their effect on tumor cells and their microenvironment. Both miRNAs were found to have a prognosis value since low miR-30a/e-3p expression correlates to adverse prognosis and reduces overall survival. Low expression of miR-30a/e-3p is associated with a shorter time until locoregional relapse and a shorter time until metastasis, respectively. miR-30a/e-3p expression downregulates both TGF-βR1 and BMPR2 and attenuates the survival and motility of HNSCC. Results were confirmed in PDTs. Finally, secretomes of miR-30a/e-3p-transfected HNSCC activate M1-type macrophages, which exert stronger phagocytic activities toward tumor cells. miR-30a/e-3p expression can discriminate subgroups of LA-HNSCC patients with different prognosis, making them good candidates as prognostic biomarkers. Furthermore, by targeting members of the TGF-β family and generating an immune-permissive microenvironment, they may emerge as an alternative to anti-TGF-β drugs to use in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Ombline Conrad
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Mickaël Burgy
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Sophie Foppolo
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Aude Jehl
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Alicia Thiéry
- Department of Public Health, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Sébastien Guihard
- Department of Radiotherapy, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Romain Vauchelles
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Alain C Jung
- Laboratory STREINTH, Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France
- Laboratory of Tumor Biology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Jana Mourtada
- Laboratory STREINTH, Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France
| | - Christine Macabre
- Laboratory STREINTH, Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France
- Laboratory of Tumor Biology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Sonia Ledrappier
- Laboratory STREINTH, Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France
- Laboratory of Tumor Biology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Marie-Pierre Chenard
- Department of Pathology, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Mihaela-Alina Onea
- Department of Pathology, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Aurélien Danic
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Thomas Dourlhes
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Claire Thibault
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Philippe Schultz
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Monique Dontenwill
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Sophie Martin
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| |
Collapse
|
8
|
Kowalewski A, Jaworski D, Borowczak J, Maniewski M, Szczerbowski K, Antosik P, Durślewicz J, Smolińska M, Ligmanowska J, Grzanka D, Szylberg Ł. TOLLIP Protein Expression Predicts Unfavorable Outcome in Renal Cell Carcinoma. Int J Mol Sci 2022; 23:ijms232314702. [PMID: 36499030 PMCID: PMC9741407 DOI: 10.3390/ijms232314702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Resistance to systemic therapy is one of the hallmarks of renal cell carcinoma (RCC). Recently, TOLLIP has emerged as a possible driver of autophagy and chemoresistance. We explored the relationship between primary and metastatic RCC tumor characteristics, patient survival, and TOLLIP expression. The tissue microarrays cohort contained 95 cores of the primary tumor, matched metastases, and matched adjacent tissues derived from 32 RCC patients. TOLLIP expression in tumor samples was evaluated using the H-score. All examined samples showed cytoplasmic TOLLIP expression, with a median value of 100 in primary tumors, 107.5 in metastases, and 220 in the control group. The expression was significantly higher in the normal adjacent tissues compared to primary or metastatic RCC (p < 0.05). We found a positive correlation between expressions of TOLLIP in the primary tumor and its metastases (p < 0.05; k = 0.48). TOLLIP expression significantly correlates with a lower overall survival rate (p = 0.047). TOLLIP functions as a ubiquitin-LC3 adaptor in the intracellular pathway associated with autophagy. Relative TOLLIP overexpression may augment autophagy-related signaling, limiting susceptibility to therapy. The blockade of TOLLIP physiological function seems to be a promising approach to overcoming resistance to systemic therapy.
Collapse
Affiliation(s)
- Adam Kowalewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-52-5854200; Fax: +48-52-5854049
| | - Damian Jaworski
- Division of Ophthalmology and Optometry, Department of Ophthalmology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
| | - Jędrzej Borowczak
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Mateusz Maniewski
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Krzysztof Szczerbowski
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Marta Smolińska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Joanna Ligmanowska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| |
Collapse
|
9
|
Xu F, Tautenhahn HM, Dirsch O, Dahmen U. Blocking autophagy with chloroquine aggravates lipid accumulation and reduces intracellular energy synthesis in hepatocellular carcinoma cells, both contributing to its anti-proliferative effect. J Cancer Res Clin Oncol 2022; 148:3243-3256. [PMID: 35695930 DOI: 10.1007/s00432-022-04074-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE The autophagy inhibitor chloroquine enhances the effect of targeted therapy using tyrosine kinase inhibitor in liver cancer. We would like to further understand the specific mechanism by which chloroquine inhibits the proliferation of tumor cells. METHODS We used a human hepatocarcinoma cell line (HepG2) as cell culture model. In contrast to the control groups (treated only with complete medium), cells in experimental groups were treated either with complete medium + 40 ng/ml Hepatocyte growth factor (HGF), or with complete medium + 60 μM chloroquine or with complete medium + 40 ng/ml HGF + 60 μM chloroquine for 24 h. Cell number and ATP content were investigated using spectrophotometric assays. Cell proliferation and apoptosis were detected by immunohistochemistry. Cell morphological alterations were examined by Giemsa and H&E staining. Cellular lipid content was determined by Oil Red O staining and Triglyceride quantification assay. Autophagy-related proteins (LC3B and p62) and hepatocyte proliferation-related protein (S6K1) were examined using western blot. The autophagic flux of cells was assessed by mRFP-EGFP-LC3 transfection assay. RESULTS We found that chloroquine inhibited the proliferation of HepG2 cells, as evidenced by a decrease in cellular ATP content, Ki-67 and S6K1 protein expression and a reduction in cell number. This finding was associated with an increase in lipid content. As expected, chloroquine inhibited autophagy of HepG2 cells, as evidenced by the accumulation of LC3B-II and the significant upregulation of p62. mRFP-EGFP-LC3 transfection assay showed that indeed chloroquine blocked the autophagic flux in HepG2 cells. CONCLUSION Chloroquine impaired proliferation of HepG2 cells might be due to intracellular accumulation of lipids and inhibition of energy synthesis.
Collapse
Affiliation(s)
- Fengming Xu
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747, Jena, Germany
- Else Kröner Graduate School for Medical Students "JSAM", Jena University Hospital, 07747, Jena, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747, Jena, Germany
- Else Kröner Research Schools for Physicians "AntiAge", Jena University Hospital, 07747, Jena, Germany
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz gGmbH, 09111, Chemnitz, Germany
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747, Jena, Germany.
| |
Collapse
|
10
|
Non-coding RNAs associated with autophagy and their regulatory role in cancer therapeutics. Mol Biol Rep 2022; 49:7025-7037. [PMID: 35534587 DOI: 10.1007/s11033-022-07517-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Cancer widely affects the world's health population and ranks second leading cause of death globally. Because of poor prognosis of various types of cancer such as sarcoma, lymphoma, adenomas etc., their high recurrence and metastasis rate and low early diagnosis rate have become concern lately. Role of autophagy in cancer progression is being studied since long. Autophagy is cell's self-degradative mechanism towards stress and has role in degradation of the cytoplasmic macromolecules which has potential to damage other cytosolic molecules. Autophagy can promote as well as inhibit tumorigenesis depending upon the associated protein combinations in cancer cells. Recent studies have shown that non-coding RNAs (ncRNAs) do not code for protein but play essential role in modulation of gene expression. At transcriptional level, different ncRNAs like lncRNAs, miRNAs and circRNAs directly or indirectly affect different stages of autophagy like autophagy-dependent and non-apoptotic cell death in cancer cells. This review focuses on the involvement of ncRNAs in autophagy and the modulation of several cancer signal transduction pathways in cancers such as lung, breast, prostate, pancreatic, thyroid, and kidney cancer.
Collapse
|
11
|
Lei Y, Chen L, Liu J, Zhong Y, Deng L. The MicroRNA-Based Strategies to Combat Cancer Chemoresistance via Regulating Autophagy. Front Oncol 2022; 12:841625. [PMID: 35211417 PMCID: PMC8861360 DOI: 10.3389/fonc.2022.841625] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance frequently occurs in cancer treatment, which results in chemotherapy failure and is one of the most leading causes of cancer-related death worldwide. Understanding the mechanism of chemoresistance and exploring strategies to overcome chemoresistance have become an urgent need. Autophagy is a highly conserved self-degraded process in cells. The dual roles of autophagy (pro-death or pro-survival) have been implicated in cancers and chemotherapy. MicroRNA (miRNA) is a class of small non-coding molecules that regulate autophagy at the post-transcriptional level in cancer cells. The association between miRNAs and autophagy in cancer chemoresistance has been emphasized. In this review, we focus on the dual roles of miRNA-mediated autophagy in facilitating or combating chemoresistance, aiming to shed lights on the potential role of miRNAs as targets to overcome chemoresistance.
Collapse
Affiliation(s)
- Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lei Chen
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yinqin Zhong
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Li J, Guo S, Sun Z, Fu Y. Noncoding RNAs in Drug Resistance of Gastrointestinal Stromal Tumor. Front Cell Dev Biol 2022; 10:808591. [PMID: 35174150 PMCID: PMC8841737 DOI: 10.3389/fcell.2022.808591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor in the gastrointestinal tracts and a model for the targeted therapy of solid tumors because of the oncogenic driver mutations in KIT and PDGDRA genes, which could be effectively inhibited by the very first targeted agent, imatinib mesylate. Most of the GIST patients could benefit a lot from the targeted treatment of this receptor tyrosine kinase inhibitor. However, more than 50% of the patients developed resistance within 2 years after imatinib administration, limiting the long-term effect of imatinib. Noncoding RNAs (ncRNAs), the non-protein coding transcripts of human, were demonstrated to play pivotal roles in the resistance of various chemotherapy drugs. In this review, we summarized the mechanisms of how ncRNAs functioning on the drug resistance in GIST. During the drug resistance of GIST, there were five regulating mechanisms where the functions of ncRNAs concentrated: oxidative phosphorylation, autophagy, apoptosis, drug target changes, and some signaling pathways. Also, these effects of ncRNAs in drug resistance were divided into two aspects. How ncRNAs regulate drug resistance in GIST was further summarized according to ncRNA types, different drugs and categories of resistance. Moreover, clinical applications of these ncRNAs in GIST chemotherapies concentrated on the prognostic biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Jiehan Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuning Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yang Fu, ; Zhenqiang Sun,
| | - Yang Fu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
- *Correspondence: Yang Fu, ; Zhenqiang Sun,
| |
Collapse
|
13
|
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, Sadoughi F, Dana PM, Rafiyan M, Zamani M, Taghavi SP, Dashti F, Mirazimi SMA, Bannazadeh Baghi H, Moghoofei M, Karimzadeh M, Vosough M, Mirzaei H. Virus, Exosome, and MicroRNA: New Insights into Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:97-162. [DOI: 10.1007/5584_2022_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Lin Q, Shi Y, Liu Z, Mehrpour M, Hamaï A, Gong C. Non-coding RNAs as new autophagy regulators in cancer progression. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166293. [PMID: 34688868 DOI: 10.1016/j.bbadis.2021.166293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/17/2021] [Accepted: 10/10/2021] [Indexed: 12/09/2022]
Abstract
Recent advances highlight that non-coding RNAs (ncRNAs) are emerging as fundamental regulators in various physiological as well as pathological processes by regulating macro-autophagy. Studies have disclosed that macro-autophagy, which is a highly conserved process involving cellular nutrients, components, and recycling of organelles, can be either selective or non-selective and ncRNAs show their regulation on selective autophagy as well as non-selective autophagy. The abnormal expression of ncRNAs will result in the impairment of autophagy and contribute to carcinogenesis and cancer progression by regulating both selective autophagy as well as non-selective autophagy. This review focuses on the regulatory roles of ncRNAs in autophagy and their involvement in cancer which may provide valuable therapeutic targets for cancer management.
Collapse
Affiliation(s)
- Qun Lin
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Bioland Laboratory, 510005 Guangzhou, China
| | - Yu Shi
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Bioland Laboratory, 510005 Guangzhou, China
| | - Zihao Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Bioland Laboratory, 510005 Guangzhou, China
| | - Maryam Mehrpour
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, 75993, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 75993 Paris, France
| | - Ahmed Hamaï
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, 75993, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 75993 Paris, France
| | - Chang Gong
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Bioland Laboratory, 510005 Guangzhou, China.
| |
Collapse
|
15
|
Shi L, Wang M, Li H, You P. MicroRNAs in Body Fluids: A More Promising Biomarker for Clear Cell Renal Cell Carcinoma. Cancer Manag Res 2021; 13:7663-7675. [PMID: 34675663 PMCID: PMC8502019 DOI: 10.2147/cmar.s330881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) is the second most common cancer of the urinary system, accounting for approximately 10–15% of kidney cancers in the world. Clear cell renal cell carcinoma (ccRCC) is the most common RCC subtype with the highest mortality. Surgical resection or puncture of tumor tissue is still an important clinical treatment and diagnosis of ccRCC, but its high recurrence rate and poor prognosis often lead to the short survival period of patients. Hence, the development of novel molecular biomarkers is of great clinical importance. miRNAs are endogenous non-coding small RNAs with a length of 19–24 nt. A growing number of studies have reported that miRNAs, as proto-oncogenes or tumor suppressor genes, play a key role in the development of ccRCC and might be effective diagnostic and prognostic biomarkers. In addition, miRNAs can also predict the efficacy of treatment drug, thus improving the accuracy of clinical medication. Furthermore, non-invasive detection of miRNAs or extracellular vesicles (EV) in body fluids has better convenience and repeatability, which shows remarkable advantages compared with tissue detection. In this review, we summarized the typical miRNAs reported in recent years and place emphasis on evaluating miRNAs in different body fluids to provide reference for the clinical diagnosis and prognosis of ccRCC in the future.
Collapse
Affiliation(s)
- Lei Shi
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Mengheng Wang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Haiping Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Pengtao You
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
16
|
Footprints of microRNAs in Cancer Biology. Biomedicines 2021; 9:biomedicines9101494. [PMID: 34680611 PMCID: PMC8533183 DOI: 10.3390/biomedicines9101494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs involved in post-transcriptional gene regulation. Over the past years, various studies have demonstrated the role of aberrant miRNA expression in the onset of cancer. The mechanisms by which miRNA exerts its cancer-promoting or inhibitory effects are apparent through the various cancer hallmarks, which include selective proliferative advantage, altered stress response, vascularization, invasion and metastasis, metabolic rewiring, the tumor microenvironment and immune modulation; therefore, this review aims to highlight the association between miRNAs and the various cancer hallmarks by dissecting the mechanisms of miRNA regulation in each hallmark separately. It is hoped that the information presented herein will provide further insights regarding the role of cancer and serve as a guideline to evaluate the potential of microRNAs to be utilized as biomarkers and therapeutic targets on a larger scale in cancer research.
Collapse
|
17
|
He Y, Luo Y, Huang L, Zhang D, Wang X, Ji J, Liang S. New frontiers against sorafenib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers. Pharmacol Res 2021; 170:105732. [PMID: 34139345 DOI: 10.1016/j.phrs.2021.105732] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
Renal cell carcinoma (RCC) is a highly vascularized tumor and prone to distant metastasis. Sorafenib is the first targeted multikinase inhibitor and first-line chemical drug approved for RCC therapy. In fact, only a small number of RCC patients benefit significantly from sorafenib treatment, while the growing prevalence of sorafenib resistance has become a major obstacle for drug therapy effectivity of sorafenib. The molecular mechanisms of sorafenib resistance in RCC are not completely understood by now. Herein, we comprehensively summarize the underlying mechanisms of sorafenib resistance and molecular biomarkers for predicting sorafenib responsiveness. Moreover, we outline strategies suitable for overcoming sorafenib resistance and prospect potential approaches for identifying biomarkers associated with sorafenib resistance in RCC, which contributes to guide individualized and precision drug therapy.
Collapse
Affiliation(s)
- Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| | - Yang Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| | - Lan Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| | - Dan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| | - Jiayi Ji
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| |
Collapse
|
18
|
Shen M, Li X, Qian B, Wang Q, Lin S, Wu W, Zhu S, Zhu R, Zhao S. Crucial Roles of microRNA-Mediated Autophagy in Urologic Malignancies. Int J Biol Sci 2021; 17:3356-3368. [PMID: 34512152 PMCID: PMC8416737 DOI: 10.7150/ijbs.61175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Urologic oncologies are major public health problems worldwide. Both microRNA and autophagy, separately or concurrently, are involved in a variety of the cellular and molecular processes of multiple cancers, including urologic malignancies. In this review, we have summarized the related studies and found that microRNA-mediated autophagy acted as carcinogenic factors or suppressors in prostate cancer, kidney cancer, and bladder cancer. MiRNAs, targeted genes, and the different signaling pathways constitute a complex network that orchestrates autophagy regulation, militating the oncogenic and tumor-suppressive effects in urologic malignancies. Aberrant expression of miRNAs may induce the dysregulation of the autophagy process, resulting in tumorigenesis, progression, and resistance to anticancer therapies. Targeting specific miRNAs for autophagy modulation may present as reliable diagnostic and prognostic biomarkers or promising therapeutic strategies for urologic oncologies.
Collapse
Affiliation(s)
- Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Biao Qian
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiang Wang
- Department of Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Shanan Lin
- Department of Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Wenhao Wu
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Shuai Zhu
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Rui Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| |
Collapse
|
19
|
Lin X, Lai X, Feng W, Yu X, Gu Q, Zheng X. MiR-30a sensitized lung cancer against neoadjuvant chemotherapy by depressing autophagy. Jpn J Clin Oncol 2021; 51:675-684. [PMID: 33537721 DOI: 10.1093/jjco/hyaa272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE This study was aimed at exploring whether miR-30a enhanced sensitivity of non-small-cell lung cancer (NSCLC) cells against neoadjuvant chemotherapy through an autophagy-dependent way. METHODS We totally recruited 304 NSCLC patients who have underwent chemotherapy, as well as 185 NSCLC patients who did not receive chemotherapy. NSCLC cell lines (i.e. H1299 and H460) were also purchased, and they were transfected by miR-30a mimic/inhibitor. Furthermore, cisplatin (DDP)/pemetrexed (PEM) resistance of NSCLC cells was assessed utilizing MTT assay, and autophagic proteins isolated from NSCLC tissues and cells were quantitated by western blotting. RESULTS Lowly expressed miR-30a was reflective of lymph node metastasis, advanced TNM stage and poor 5-year survival among NSCLC patients treated by neoadjuvant chemotherapy (i.e. combined treatment of DDP and PEM) (P < 0.05). Moreover, DDP combined with PEM attenuated viability and proliferation, but, on the contrary, promoted autophagy of H1299 and H460 cell lines (P < 0.05). However, miR-30a undermined resistance of NSCLC cells against DDP and PEM (P < 0.05), and it suppressed DDP/PEM-induced autophagy and promoted DDP/PEM-triggered apoptosis of NSCLC cells (P < 0.05). CONCLUSIONS Intentionally elevating miR-30a expression was conducive to improving NSCLC prognosis after neoadjuvant chemotherapy, for its depressing drug-caused autophagy and resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao Zheng
- Department of Thoracic Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital), Hangzhou City, China
| |
Collapse
|
20
|
The Regulating Effect of Autophagy-Related MiRNAs in Kidney, Bladder, and Prostate Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5510318. [PMID: 33976697 PMCID: PMC8084683 DOI: 10.1155/2021/5510318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Autophagy is a treatment target for many disorders, including cancer, and its specific role is becoming increasingly well known. In tumors, researchers pay attention to microribonucleic acids (miRNAs) with regulatory effects to develop more effective therapeutic drugs for autophagy and find new therapeutic targets. Various studies have shown that autophagy-related miRNAs play an irreplaceable role in different tumors, such as miR-495, miR-30, and miR-101. These miRNAs are associated with autophagy resistance in gastric cancer, non-small cell lung cancer, and cervical cancer. In recent years, autophagy-related miRNAs have also been reported to play a role in autophagy in urinary system tumors. This article reviews the regulatory effects of autophagy-related miRNAs in kidney, bladder, and prostate cancer and provides new ideas for targeted therapy of the three major tumors of the urinary system.
Collapse
|
21
|
Fei H, Chen S, Xu C. Construction autophagy-related prognostic risk signature combined with clinicopathological validation analysis for survival prediction of kidney renal papillary cell carcinoma patients. BMC Cancer 2021; 21:411. [PMID: 33858375 PMCID: PMC8048278 DOI: 10.1186/s12885-021-08139-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Little data is available on prognostic biomarkers and effective treatment options for Kidney Renal Papillary Cell Carcinoma (KIRP) patients, to find potential prognostic biomarkers and new targets was an urgent mission for KIRP therapy. METHODS The differentially expressed autophagy-related genes (DEARGs) were screened out according to the RNA sequencing data in The Cancer Genome Atlas database, then identified survival-related DEARGs to establish a prognostic model for survival predicting of KIRP patients. Then we verified the robustness and validity of the prognostic risk model through clinicopathological data. At last, we evaluate the prognostic value of genes that formed the prognostic risk model individually. RESULTS We analyzed the expression of 232 autophagy-related genes (ARGs) in 289 KIRP and 32 non-tumor tissue cases, and 40 mRNAs were screened out as DEARGs. The functional and pathway enrichment analysis was done and protein-protein interaction network was constructed for all DEARGs. To sift candidate DEARGs associated with KIRP patients' survival and create an autophagy-related risk prognostic model, univariate and multivariate Cox regression analysis were did separately. Eventually 3 desirable independent prognostic DEARGs (P4HB, NRG1, and BIRC5) were picked out and used for construct the autophagy-related risk model. The accuracy of the prognostic risk model for survival prediction was assessed by Kaplan-Meier plotter, receiver-operator characteristic curve, and clinicopathological correlational analyses. The prognostic value of above 3 genes was verified individually by survival analysis and expression analysis on mRNA and protein level. CONCLUSIONS The autophagy-related prognostic model is accurate and applicable, it can predict OS independently for KIRP patients. Three independent prognostic DEARGs can benefit for facilitate personalized target treatment too.
Collapse
Affiliation(s)
- Hongjun Fei
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai Jiao Tong University School of Medicine, No.910, Hengshan Road, Shanghai, 200030, PR China
| | - Songchang Chen
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai Jiao Tong University School of Medicine, No.910, Hengshan Road, Shanghai, 200030, PR China.,Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Chenming Xu
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai Jiao Tong University School of Medicine, No.910, Hengshan Road, Shanghai, 200030, PR China. .,Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| |
Collapse
|
22
|
The Ambivalent Role of miRNAs in Carcinogenesis: Involvement in Renal Cell Carcinoma and Their Clinical Applications. Pharmaceuticals (Basel) 2021; 14:ph14040322. [PMID: 33918154 PMCID: PMC8065760 DOI: 10.3390/ph14040322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
The analysis of microRNA (miRNAs), small, non-coding endogenous RNA, plays a crucial role in oncology. These short regulatory sequences, acting on thousands of messenger RNAs (mRNAs), modulate gene expression at the transcriptional and post-transcriptional level leading to translational repression or degradation of target molecules. Although their function is required for several physiological processes, such as proliferation, apoptosis and cell differentiation, miRNAs are also responsible for development and/or progression of several cancers, since they may interact with classical tumor pathways. In this review, we highlight recent advances in deregulated miRNAs in cancer focusing on renal cell carcinoma (RCC) and provide an overview of the potential use of miRNA in their clinical settings, such as diagnostic and prognostic markers.
Collapse
|
23
|
Patel NH, Bloukh S, Alwohosh E, Alhesa A, Saleh T, Gewirtz DA. Autophagy and senescence in cancer therapy. Adv Cancer Res 2021; 150:1-74. [PMID: 33858594 DOI: 10.1016/bs.acr.2021.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tumor cells can undergo diverse responses to cancer therapy. While apoptosis represents the most desirable outcome, tumor cells can alternatively undergo autophagy and senescence. Both autophagy and senescence have the potential to make complex contributions to tumor cell survival via both cell autonomous and cell non-autonomous pathways. The induction of autophagy and senescence in tumor cells, preclinically and clinically, either individually or concomitantly, has generated interest in the utilization of autophagy modulating and senolytic therapies to target autophagy and senescence, respectively. This chapter summarizes the current evidence for the promotion of autophagy and senescence as fundamental responses to cancer therapy and discusses the complexity of their functional contributions to cell survival and disease outcomes. We also highlight current modalities designed to exploit autophagy and senescence in efforts to improve the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Nipa H Patel
- Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA, United States; Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA, United States
| | - Sarah Bloukh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Enas Alwohosh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ahmad Alhesa
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - David A Gewirtz
- Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA, United States; Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
24
|
Xiao M, Benoit A, Hasmim M, Duhem C, Vogin G, Berchem G, Noman MZ, Janji B. Targeting Cytoprotective Autophagy to Enhance Anticancer Therapies. Front Oncol 2021; 11:626309. [PMID: 33718194 PMCID: PMC7951055 DOI: 10.3389/fonc.2021.626309] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a highly regulated multi-step process that occurs at the basal level in almost all cells. Although the deregulation of the autophagy process has been described in several pathologies, the role of autophagy in cancer as a cytoprotective mechanism is currently well established and supported by experimental and clinical evidence. Our understanding of the molecular mechanism of the autophagy process has largely contributed to defining how we can harness this process to improve the benefit of cancer therapies. While the role of autophagy in tumor resistance to chemotherapy is extensively documented, emerging data point toward autophagy as a mechanism of cancer resistance to radiotherapy, targeted therapy, and immunotherapy. Therefore, manipulating autophagy has emerged as a promising strategy to overcome tumor resistance to various anti-cancer therapies, and autophagy modulators are currently evaluated in combination therapies in several clinical trials. In this review, we will summarize our current knowledge of the impact of genetically and pharmacologically modulating autophagy genes and proteins, involved in the different steps of the autophagy process, on the therapeutic benefit of various cancer therapies. We will also briefly discuss the challenges and limitations to developing potent and selective autophagy inhibitors that could be used in ongoing clinical trials.
Collapse
Affiliation(s)
- Malina Xiao
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Alice Benoit
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Meriem Hasmim
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Caroline Duhem
- Department of Hemato-oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Guillaume Vogin
- Université de Lorraine - UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandoeuvre-lès-Nancy, France.,Centre François Baclesse, Esch-sur-Alzette, Luxembourg
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg.,Department of Hemato-oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Muhammad Zaeem Noman
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| |
Collapse
|
25
|
Shan C, Chen X, Cai H, Hao X, Li J, Zhang Y, Gao J, Zhou Z, Li X, Liu C, Li P, Wang K. The Emerging Roles of Autophagy-Related MicroRNAs in Cancer. Int J Biol Sci 2021; 17:134-150. [PMID: 33390839 PMCID: PMC7757044 DOI: 10.7150/ijbs.50773] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a conserved catabolic process involving the degradation and recycling of damaged biomacromolecules or organelles through lysosomal-dependent pathways and plays a crucial role in maintaining cell homeostasis. Consequently, abnormal autophagy is associated with multiple diseases, such as infectious diseases, neurodegenerative diseases and cancer. Currently, autophagy is considered to be a dual regulator in cancer, functioning as a suppressor in the early stage while supporting the growth and metastasis of cancer cells in the later stage and may also produce therapeutic resistance. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level by silencing targeted mRNA. MiRNAs have great regulatory potential for several fundamental biological processes, including autophagy. In recent years, an increasing number of studies have linked miRNA dysfunction to the growth, metabolism, migration, metastasis, and responses of cancer cells to therapy. Therefore, the study of autophagy-related miRNAs in cancer will provide insights into cancer biology and lead to the development of novel anti-cancer strategies. In the present review, we summarise the current knowledge of miRNA dysregulation during autophagy in cancer, focusing on the relationship between autophagy and miRNAs, and discuss their involvement in cancer biology and cancer treatment.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinzhe Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hongjing Cai
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiaodan Hao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jing Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yinfeng Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jinning Gao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Zhixia Zhou
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinmin Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cuiyun Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
26
|
Chern YJ, Tai IT. Adaptive response of resistant cancer cells to chemotherapy. Cancer Biol Med 2020; 17:842-863. [PMID: 33299639 PMCID: PMC7721100 DOI: 10.20892/j.issn.2095-3941.2020.0005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Despite advances in cancer therapeutics and the integration of personalized medicine, the development of chemoresistance in many patients remains a significant contributing factor to cancer mortality. Upon treatment with chemotherapeutics, the disruption of homeostasis in cancer cells triggers the adaptive response which has emerged as a key resistance mechanism. In this review, we summarize the mechanistic studies investigating the three major components of the adaptive response, autophagy, endoplasmic reticulum (ER) stress signaling, and senescence, in response to cancer chemotherapy. We will discuss the development of potential cancer therapeutic strategies in the context of these adaptive resistance mechanisms, with the goal of stimulating research that may facilitate the development of effective cancer therapy.
Collapse
Affiliation(s)
- Yi-Jye Chern
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z1L3, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
| | - Isabella T Tai
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z1L3, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
| |
Collapse
|
27
|
Mowla M, Hashemi A. Functional roles of exosomal miRNAs in multi-drug resistance in cancer chemotherapeutics. Exp Mol Pathol 2020; 118:104592. [PMID: 33296693 DOI: 10.1016/j.yexmp.2020.104592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
Recent understanding of different molecular aspects of tumor initiation and progression has led to the discovery of a growing list of drugs. While these drugs have shown promising effects on tumor cells, their widespread usage has been hampered by the acquisition of drug resistance in a subpopulation of tumor cells. A differential pattern in the secretion of specialized vesicles named "exosomes" in drug-resistant cancer cells have recently received much attention. In addition, microRNAs (miRNAs) have been shown to be enriched in exosomes. Exosomal miRNAs (also known as exo-miRs) could be shuttled to recipient cells and play a role in the regulation of post-transcriptional gene expression, which may exert certain effects on cancer drug resistance. Here, we have reviewed the role of exo-miRs in chemotherapeutic resistance in different cancer types. Besides, studies which have focused on predictive role of circulating exo-miRs in cancer drug resistance are reviewed.
Collapse
Affiliation(s)
- Mahshid Mowla
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Cheng G, Li M, Ma X, Nan F, Zhang L, Yan Z, Li H, Zhang G, Han Y, Xie L, Guo X. Systematic Analysis of microRNA Biomarkers for Diagnosis, Prognosis, and Therapy in Patients With Clear Cell Renal Cell Carcinoma. Front Oncol 2020; 10:543817. [PMID: 33344224 PMCID: PMC7746831 DOI: 10.3389/fonc.2020.543817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
The ever-increasing morbidity and mortality of clear cell renal cell carcinoma (ccRCC) urgently demands updated biomarkers. MicroRNAs (miRNAs) are involved in diverse biological processes such as cell proliferation, differentiation, apoptosis by regulating their target genes' expression. In kidney cancers, miRNAs have been reported to be involved in tumorigenesis and to be the diagnostic, prognostic, and therapeutic response biomarkers. Here, we performed a systematic analysis for ccRCC-related miRNAs as biomarkers by searching keywords in the NCBI PubMed database and found 118 miRNAs as diagnostic biomarkers, 28 miRNAs as prognostic biomarkers, and 80 miRNAs as therapeutic biomarkers in ccRCC. miRNA-21, miRNA-155, miRNA-141, miRNA-126, and miRNA-221, as significantly differentially expressed miRNAs between cancer and normal tissues, play extensive roles in the cell proliferation, differentiation, apoptosis of ccRCC. GO and KEGG enrichment analysis of these miRNAs' target genes through Metascape showed these target genes are enriched in Protein Domain Specific Binding (GO:0019904). In this paper, we identified highly specific miRNAs in the pathogenesis of ccRCC and explored their potential applications for diagnosis, prognosis, and treatment of ccRCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Longxiang Xie
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Department of Preventive Medicine, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Xiangqian Guo
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Department of Preventive Medicine, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| |
Collapse
|
29
|
Liu PF, Farooqi AA, Peng SY, Yu TJ, Dahms HU, Lee CH, Tang JY, Wang SC, Shu CW, Chang HW. Regulatory effects of noncoding RNAs on the interplay of oxidative stress and autophagy in cancer malignancy and therapy. Semin Cancer Biol 2020; 83:269-282. [PMID: 33127466 DOI: 10.1016/j.semcancer.2020.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022]
Abstract
Noncoding RNAs (ncRNAs) regulation of various diseases including cancer has been extensively studied. Reactive oxidative species (ROS) elevated by oxidative stress are associated with cancer progression and drug resistance, while autophagy serves as an ROS scavenger in cancer cells. However, the regulatory effects of ncRNAs on autophagy and ROS in various cancer cells remains complex. Here, we explore how currently investigated ncRNAs, mainly miRNAs and lncRNAs, are involved in ROS production through modulating antioxidant genes. The regulatory effects of miRNAs and lncRNAs on autophagy-related (ATG) proteins to control autophagy activity in cancer cells are discussed. Moreover, differential expression of ncRNAs in tumor and normal tissues of cancer patients are further analyzed using The Cancer Genome Atlas (TCGA) database. This review hypothesizes links between ATG genes- or antioxidant genes-modulated ncRNAs and ROS production, which might result in tumorigenesis, malignancy, and cancer recurrence. A better understanding of the regulation of ROS and autophagy by ncRNAs might advance the use of ncRNAs as diagnostic and prognostic markers as well as therapeutic targets in cancer therapy.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Sheng-Yao Peng
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chih-Wen Shu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
30
|
Wei X, Wang W, Wang H, Wang Y, Wang Y, Li G, Ji C, Ren X, Song N, Qin C. Identification of an independent autophagy-gene prognostic index for papillary renal cell carcinoma. Transl Androl Urol 2020; 9:1945-1956. [PMID: 33209659 PMCID: PMC7658136 DOI: 10.21037/tau-20-906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Autophagy was a significant catabolic process which played a critical role in the maintenance of cellular homeostasis and viability in a stressed state. The dysregulation of autophagy was correlated with various diseases. The aim of our study was to develop a prognostic signature for papillary renal cell carcinoma (RCC). Methods First, 40 differently expressed genes related with autophagy (ARGs) were examined via high-throughput sequencing and large-scale databases. Then, functional enrichment analysis was performed to explore the biological attributes of these ARGs. The Cox proportional hazard regression hinted that four ARGs (P4HB, BIRC5, NGR1 and PRKN) were significantly correlated with overall survival (OS). Thus, we got genes with prognostic value. Finally, a prognostic index (PI) was constructed. Results After identifying the 4 ARGs, we profiled our risk signature. Based on the PI we developed, papillary RCC patients were stratified into high-risk and low-risk groups. High-risk patients had significant shorter OS than low-risk patients (P<0.001) and the mortality of high scoring patients was higher than low scoring patients. Additionally, we explored the relationship between the 4 ARGs and clinical parameters and found that the expression of P4HB, BIRC5 and NGR1 was correlated with clinicopathological features. Conclusions Our study suggested that the four-gene signature was an independent prognostic factor which could act as a novel indicator for the prognosis of papillary RCC.
Collapse
Affiliation(s)
- Xiyi Wei
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongye Wang
- First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yamin Wang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yichun Wang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangyao Li
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chengjian Ji
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaohan Ren
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ninghong Song
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, China
| | - Chao Qin
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Du W, Xu A, Huang Y, Cao J, Zhu H, Yang B, Shao X, He Q, Ying M. The role of autophagy in targeted therapy for acute myeloid leukemia. Autophagy 2020; 17:2665-2679. [PMID: 32917124 DOI: 10.1080/15548627.2020.1822628] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although molecular targeted therapies have recently displayed therapeutic effects in acute myeloid leukemia (AML), limited response and acquired resistance remain common problems. Numerous studies have associated autophagy, an essential degradation process involved in the cellular response to stress, with the development and therapeutic response of cancers including AML. Thus, we review studies on the role of autophagy in AML development and summarize the linkage between autophagy and several recurrent genetic abnormalities in AML, highlighting the potential of capitalizing on autophagy modulation in targeted therapy for AML.Abbreviations: AML: acute myeloid leukemia; AMPK: AMP-activated protein kinase; APL: acute promyelocytic leukemia; ATG: autophagy related; ATM: ATM serine/threonine kinase; ATO: arsenic trioxide; ATRA: all trans retinoic acid; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; BET proteins, bromodomain and extra-terminal domain family; CMA: chaperone-mediated autophagy; CQ: chloroquine; DNMT, DNA methyltransferase; DOT1L: DOT1 like histone lysine methyltransferase; FLT3: fms related receptor tyrosine kinase 3; FIS1: fission, mitochondrial 1; HCQ: hydroxychloroquine; HSC: hematopoietic stem cell; IDH: isocitrate dehydrogenase; ITD: internal tandem duplication; KMT2A/MLL: lysine methyltransferase 2A; LSC: leukemia stem cell; MDS: myelodysplastic syndromes; MTORC1: mechanistic target of rapamycin kinase complex 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NPM1: nucleophosmin 1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PML: PML nuclear body scaffold; ROS: reactive oxygen species; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SAHA: vorinostat; SQSTM1: sequestosome 1; TET2: tet methylcytosine dioxygenase 2; TKD: tyrosine kinase domain; TKI: tyrosine kinase inhibitor; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VPA: valproic acid; WDFY3/ALFY: WD repeat and FYVE domain containing 3.
Collapse
Affiliation(s)
- Wenxin Du
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Aixiao Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yunpeng Huang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
LC3C-Mediated Autophagy Selectively Regulates the Met RTK and HGF-Stimulated Migration and Invasion. Cell Rep 2020; 29:4053-4068.e6. [PMID: 31851933 DOI: 10.1016/j.celrep.2019.11.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/18/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
The Met/hepatocyte growth factor (HGF) receptor tyrosine kinase (RTK) is deregulated in many cancers and is a recognized target for cancer therapies. Following HGF stimulation, the signaling output of Met is tightly controlled by receptor internalization and sorting for degradation or recycling. Here, we uncover a role for autophagy in selective degradation of Met and regulation of Met-dependent cell migration and invasion. Met engagement with the autophagic pathway is dependent on complex formation with the mammalian ATG8 family member MAP1LC3C. LC3C deletion abrogates Met entry into the autophagy-dependent degradative pathway, allowing identification of LC3C domains required for rescue. Cancer cells with low LC3C levels show enhanced Met stability, signaling, and cell invasion. These findings provide mechanistic insight into RTK recruitment to autophagosomes and establish distinct roles for ATG8 proteins in this process, supporting that differential expression of ATG8 proteins can shape the functional consequences of autophagy in cancer development and progression.
Collapse
|
33
|
Autophagy-mediating microRNAs in cancer chemoresistance. Cell Biol Toxicol 2020; 36:517-536. [PMID: 32875398 DOI: 10.1007/s10565-020-09553-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
Abstract
Chemoresistance is a complex phenomenon responsible for failure in response to chemotherapy agents and more than 90% of deaths in cancer patients. MicroRNAs (miRNAs), as a subgroup of non-coding RNAs with lengths between 21 and 25 nucleotides, are involved in various cancer processes like chemoresistance via interacting with their target mRNAs and suppressing their expression. Autophagy is a greatly conserved procedure involving the lysosomal degradation of cytoplasmic contents and organelles to deal with environmental stresses like hypoxia and starvation. Autophagy contributes to response to chemotherapy agents: autophagy can act as a protective mechanism for mediating the resistance in response to chemotherapy or can induce autophagic cell death and mediate the sensitivity to chemotherapy. On the other hand, one of the processes targeted by microRNAs in the regulation of chemoresistance is autophagy. Hence, we studied the literatures on chemoresistance mechanisms, the miRNAs' role in cancer, and the miRNAs' role in chemoresistance by modulating autophagy. Graphical Abstract.
Collapse
|
34
|
Outeiro-Pinho G, Barros-Silva D, Correia MP, Henrique R, Jerónimo C. Renal Cell Tumors: Uncovering the Biomarker Potential of ncRNAs. Cancers (Basel) 2020; 12:cancers12082214. [PMID: 32784737 PMCID: PMC7465320 DOI: 10.3390/cancers12082214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell tumors (RCT) remain as one of the most common and lethal urological tumors worldwide. Discrimination between (1) benign and malignant disease, (2) indolent and aggressive tumors, and (3) patient responsiveness to a specific therapy is of major clinical importance, allowing for a more efficient patient management. Nonetheless, currently available tools provide limited information and novel strategies are needed. Over the years, a putative role of non-coding RNAs (ncRNAs) as disease biomarkers has gained relevance and is now one of the most prolific fields in biological sciences. Herein, we extensively sought the most significant reports on ncRNAs as potential RCTs' diagnostic, prognostic, predictive, and monitoring biomarkers. We could conclude that ncRNAs, either alone or in combination with currently used clinical and pathological parameters, might represent key elements to improve patient management, potentiating the implementation of precision medicine. Nevertheless, most ncRNA biomarkers require large-scale validation studies, prior to clinical implementation.
Collapse
Affiliation(s)
- Gonçalo Outeiro-Pinho
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-225084000; Fax: +351-225084199
| |
Collapse
|
35
|
Outeiro-Pinho G, Barros-Silva D, Aznar E, Sousa AI, Vieira-Coimbra M, Oliveira J, Gonçalves CS, Costa BM, Junker K, Henrique R, Jerónimo C. MicroRNA-30a-5p me: a novel diagnostic and prognostic biomarker for clear cell renal cell carcinoma in tissue and urine samples. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:98. [PMID: 32487203 PMCID: PMC7323611 DOI: 10.1186/s13046-020-01600-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Background The rising incidence of renal cell carcinomas (RCC) constitutes a significant challenge owing to risk of overtreatment. Because aberrant microRNA (miR) promoter methylation contributes to cancer development, we investigated whether altered miR-30a-5p expression associates with DNA promoter methylation and evaluated the usefulness as clear cell RCC (ccRCC) diagnostic and prognostic markers. Methods Genome-wide methylome and RNA sequencing data from a set of ccRCC and normal tissue samples from The Cancer Genome Atlas (TCGA) database were integrated to identify candidate CpG loci involved in cancer onset. MiR-30a-5p expression and promoter methylation were quantitatively assessed by PCR in a tissue set (Cohort #1) and urine sets (Cohorts #2 and 3) from IPOPorto and Homburg University Hospital. Non-parametric tests were used for comparing continuous variables. MiR-30a-5p promoter methylation (miR-30a-5pme) performance as diagnostic (receiver operator characteristics [ROC] - validity estimates) and prognostic [metastasis-free (MFS) and disease-specific survival (DSS)] biomarker was further validated in urine samples from ccRCC patients by Kaplan Meier curves (with log rank) and both univariable and multivariable analysis. Results Two significant hypermethylated CpG loci in TCGA ccRCC samples, correlating with miR-30a-5p transcriptional downregulation, were disclosed. MiR-30a-5pme in ccRCC tissues was confirmed in an independent patient’s cohort of IPOPorto and associated with shorter time to relapse. In urine samples, miR-30a-5pme levels identified cancer both in testing and validation cohorts, with 83% sensitivity/53% specificity and 63% sensitivity/67% specificity, respectively. Moreover, higher miR-30a-5pme levels independently predicted metastatic dissemination and survival. Conclusion To the best of our knowledge, this is the first study validating the diagnostic and prognostic potential of miR-30a-5pme for ccRCC in urine samples, providing new insights for its clinical usefulness as non-invasive cancer biomarker.
Collapse
Affiliation(s)
- Gonçalo Outeiro-Pinho
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Master in Molecular Medicine and Oncology, Faculty of Medicine-University of Porto (FMUP), Porto, Portugal
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Elena Aznar
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València, CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Camino de Vera s/n, 46022, Valencia, Spain
| | - Ana-Isabel Sousa
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Márcia Vieira-Coimbra
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Jorge Oliveira
- Department of Urology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Saar, Germany
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal.
| |
Collapse
|
36
|
Rodríguez-Hernández MA, de la Cruz-Ojeda P, Gallego P, Navarro-Villarán E, Staňková P, Del Campo JA, Kučera O, Elkalaf M, Maseko TE, Červinková Z, Muntané J. Dose-dependent regulation of mitochondrial function and cell death pathway by sorafenib in liver cancer cells. Biochem Pharmacol 2020; 176:113902. [PMID: 32156660 DOI: 10.1016/j.bcp.2020.113902] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/03/2020] [Indexed: 01/14/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the fourth most frequent cause of cancer-related death worldwide. Sorafenib is the first line recommended therapy for patients with locally advanced/metastatic HCC. The low response rate is attributed to intrinsic resistance of HCC cells to Sorafenib. The potential resistance to Sorafenib-induced cell death is multifactorial and involves all hallmarks of cancer. However, the presence of sub-therapeutic dose can negatively influence the antitumoral properties of the drug. In this sense, the present study showed that the sub-optimal Sorafenib concentration (10 nM) was associated with activation of caspase-9, AMP-activated protein kinase (AMPK), sustained autophagy, peroxisome proliferator-activated receptor-coactivator 1α (PGC-1α) and mitochondrial function in HepG2 cells. The increased mitochondrial respiration by Sorafenib (10 nM) was also observed in permeabilized HepG2 cells, but not in isolated rat mitochondria, which suggests the involvement of an upstream component in this regulatory mechanism. The basal glycolysis was dose dependently increased at early time point studied (6 h). Interestingly, Sorafenib increased nitric oxide (NO) generation that played an inhibitory role in mitochondrial respiration in sub-therapeutic dose of Sorafenib. The administration of sustained therapeutic dose of Sorafenib (10 µM, 24 h) induced mitochondrial dysfunction and dropped basal glycolysis derived acidification, as well as increased oxidative stress and apoptosis in HepG2. In conclusion, the accurate control of the administered dose of Sorafenib is relevant for the potential prosurvival or proapoptotic properties induced by the drug in liver cancer cells.
Collapse
Affiliation(s)
- María A Rodríguez-Hernández
- Institute of Biomedicine of Seville (IBIS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBIS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Paloma Gallego
- Institute of Biomedicine of Seville (IBIS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBIS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Pavla Staňková
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic; COST-European Cooperation in Science & Technology, Mitoeagle Action number: CA15203, Brussels, Belgium
| | - José A Del Campo
- Institute of Biomedicine of Seville (IBIS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Otto Kučera
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic; COST-European Cooperation in Science & Technology, Mitoeagle Action number: CA15203, Brussels, Belgium
| | - Moustafa Elkalaf
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Tumisang E Maseko
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Zuzana Červinková
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic; COST-European Cooperation in Science & Technology, Mitoeagle Action number: CA15203, Brussels, Belgium
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBIS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; COST-European Cooperation in Science & Technology, Mitoeagle Action number: CA15203, Brussels, Belgium; Department of General Surgery, "Virgen del Rocío" University Hospital/IBiS/CSIC/University of Seville, Seville, Spain.
| |
Collapse
|
37
|
The therapeutic value of SC66 in human renal cell carcinoma cells. Cell Death Dis 2020; 11:353. [PMID: 32393791 PMCID: PMC7214466 DOI: 10.1038/s41419-020-2566-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/08/2023]
Abstract
The PI3K-AKT-mTOR cascade is required for renal cell carcinoma (RCC) progression. SC66 is novel AKT inhibitor. We found that SC66 inhibited viability, proliferation, migration and invasion of RCC cell lines (786-O and A498) and patient-derived primary RCC cells. Although SC66blocked AKT-mTORC1/2 activation in RCC cells, it remained cytotoxic in AKT-inhibited/-silenced RCC cells. In RCC cells, SC66 cytotoxicity appears to occur via reactive oxygen species (ROS) production, sphingosine kinase 1inhibition, ceramide accumulation and JNK activation, independent of AKT inhibition. The ROS scavenger N-acetylcysteine, the JNK inhibitor (JNKi) and the anti-ceramide sphingolipid sphingosine-1-phosphate all attenuated SC66-induced cytotoxicity in 786-O cells. In vivo, oral administration of SC66 potently inhibited subcutaneous 786-O xenograft growth in SCID mice. AKT-mTOR inhibition, SphK1 inhibition, ceramide accumulation and JNK activation were detected in SC66-treated 786-O xenograft tumors, indicating that SC66 inhibits RCC cell progression through AKT-dependent and AKT-independent mechanisms.
Collapse
|
38
|
Jones TM, Carew JS, Nawrocki ST. Therapeutic Targeting of Autophagy for Renal Cell Carcinoma Therapy. Cancers (Basel) 2020; 12:E1185. [PMID: 32392870 PMCID: PMC7281213 DOI: 10.3390/cancers12051185] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/15/2022] Open
Abstract
Kidney cancer is the 7th most prevalent form of cancer in the United States with the vast majority of cases being classified as renal cell carcinoma (RCC). Multiple targeted therapies have been developed to treat RCC, but efficacy and resistance remain a challenge. In recent years, the modulation of autophagy has been shown to augment the cytotoxicity of approved RCC therapeutics and overcome drug resistance. Inhibition of autophagy blocks a key nutrient recycling process that cancer cells utilize for cell survival following periods of stress including chemotherapeutic treatment. Classic autophagy inhibitors such as chloroquine and hydroxychloroquine have been introduced into phase I/II clinical trials, while more experimental compounds are moving forward in preclinical development. Here we examine the current state and future directions of targeting autophagy to improve the efficacy of RCC therapeutics.
Collapse
Affiliation(s)
| | | | - Steffan T. Nawrocki
- Division of Translational and Regenerative Medicine, Department of Medicine and The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (T.M.J.); (J.S.C.)
| |
Collapse
|
39
|
Jamali Z, Taheri-Anganeh M, Shabaninejad Z, Keshavarzi A, Taghizadeh H, Razavi ZS, Mottaghi R, Abolhassan M, Movahedpour A, Mirzaei H. Autophagy regulation by microRNAs: Novel insights into osteosarcoma therapy. IUBMB Life 2020; 72:1306-1321. [PMID: 32233112 DOI: 10.1002/iub.2277] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/04/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
Osteosarcoma (OS) is a kind of primary bone cancer that is considered as the leading cause of children death. Surgery and chemotherapy are considered as common treatment approaches for OS; the rate of survival for patients is almost 60-70%. Besides the used therapeutic approaches, it seems that there is a crucial need to launch new treatments for OS. In this regard, more understanding about cellular and molecular pathways involved in OS can contribute to recovery and develop new therapeutic platforms. Autophagy is a cellular machinery that digests and degrades dysfunctional proteins and organelles, so it can regulate the cell proliferation and survival. Most of the time, OS cells use autophagy to increase their survival and proliferation and to gain the ability to resist chemotherapy. Although, there are several controversial evidences on how OS cells use autophagy. A variety of cellular and molecular pathways, that is, microRNAs (miRNAs) can modulate autophagy. MiRNAs are some endogenous, approximately 22 nucleotide RNAs that have an important role in posttranscriptional regulation of mRNAs by targeting them. There are many evidences that the various miRNA expressions in OS cells are dysregulated, so it can propel a normal cell to cancerous one by influencing the cell survival, apoptosis, and autophagy, and eventually increased chemoresitance. Hence, miRNAs can be considered as new biomarkers for OS diagnosis, and according to the role of autophagy in OS progression, miRNAs can use inhibiting or promoting autophagy agents. The present review summarizes the effects of aberrant expression of miRNAs in OS diagnosis and treatment with focus on their roles in autophagy.
Collapse
Affiliation(s)
- Zeinab Jamali
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Biological Sciences, Faculty of Nanotechnology, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkhalegh Keshavarzi
- Burn and Wound Healing Research Center, Surgical Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Taghizadeh
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Mottaghi
- Department of Oral and Maxillofacial Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadreza Abolhassan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
40
|
Feng Q, Cheng SY, Yang R, Zeng XW, Zhao FM, Zhan XQ. Puerarin promotes the viability and differentiation of MC3T3-E1 cells by enhancing LC3B-mediated autophagy through downregulation of miR-204. Exp Ther Med 2019; 19:883-890. [PMID: 32010248 PMCID: PMC6966130 DOI: 10.3892/etm.2019.8291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Puerarin is a bioactive substance extracted from Pueraria lobata. It is known to promote the viability, differentiation and mineralization of osteoblasts. However, the molecular mechanisms involved in these activities are not well understood. The present study was conducted with the aim of elucidating the effect of puerarin on osteoblasts and to explore the underlying mechanism. CCK-8 analysis showed that puerarin (0.1, 1 and 10 µM) promoted the viability of osteoblastic MC3T3-E1 cells, with 1 µM of puerarin exhibiting the strongest effect. Moreover, 1 µM puerarin significantly increased the activity of alkaline phosphatase (ALP) and the formation of mineralized nodules in the MC3T3-E1 cells. Treatment with 1 µM puerarin for 72 h led to a significant upregulation in the expression level of microtubule-associated light chain 3 (LC3)B and Beclin1 proteins. This treatment was more effective in promoting LC3B expression than what was observed following treatment with rapamycin (overexpression for autophagy). The bilayer membrane structure of autophagosomes was observed by electron microscopy. Conversely, 3-methyladenine (3-MA, inhibitor of autophagy) reduced the cell viability as well as the activity of alkaline phosphatase (ALP) in MC3T3-E1 cells, although, there was no significant influence on mineralization. Prediction results of the biological information showed that LC3B could be a direct target of microRNA-204 (miR-204). In the present study, the expression level of miR-204 was decreased by puerarin. miR-204 mimics significantly decreased LC3B expression and inhibited auotophagosome formation, while the miR-204 inhibitor had the opposite effects. To conclude, the results of the present study suggest that puerarin promotes the viability and differentiation of MC3T3-E1 cells through autophagy, which is possibly associated with miR-204-regulated LC3B upregulation.
Collapse
Affiliation(s)
- Qian Feng
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Song-Yi Cheng
- Department of Cardiology, Nanjing Hospital of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Rui Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xiang-Wei Zeng
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Feng-Ming Zhao
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xiu-Qin Zhan
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
41
|
Ho CJ, Gorski SM. Molecular Mechanisms Underlying Autophagy-Mediated Treatment Resistance in Cancer. Cancers (Basel) 2019; 11:E1775. [PMID: 31717997 PMCID: PMC6896088 DOI: 10.3390/cancers11111775] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Despite advances in diagnostic tools and therapeutic options, treatment resistance remains a challenge for many cancer patients. Recent studies have found evidence that autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation and recycling, contributes to treatment resistance in different cancer types. A role for autophagy in resistance to chemotherapies and targeted therapies has been described based largely on associations with various signaling pathways, including MAPK and PI3K/AKT signaling. However, our current understanding of the molecular mechanisms underlying the role of autophagy in facilitating treatment resistance remains limited. Here we provide a comprehensive summary of the evidence linking autophagy to major signaling pathways in the context of treatment resistance and tumor progression, and then highlight recently emerged molecular mechanisms underlying autophagy and the p62/KEAP1/NRF2 and FOXO3A/PUMA axes in chemoresistance.
Collapse
Affiliation(s)
- Cally J. Ho
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
42
|
Bahreyni-Toossi MT, Dolat E, Khanbabaei H, Zafari N, Azimian H. microRNAs: Potential glioblastoma radiosensitizer by targeting radiation-related molecular pathways. Mutat Res 2019; 816-818:111679. [DOI: https:/doi.org/10.1016/j.mrfmmm.2019.111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
43
|
Bahreyni-Toossi MT, Dolat E, Khanbabaei H, Zafari N, Azimian H. microRNAs: Potential glioblastoma radiosensitizer by targeting radiation-related molecular pathways. Mutat Res 2019; 816-818:111679. [PMID: 31715522 DOI: 10.1016/j.mrfmmm.2019.111679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Glioblastoma (GBM) is the most lethal type of primary brain tumor. Currently, even with optimal and multimodal cancer therapies, the survival rate of GBM patients remains poor. One reason for inadequate response of GBM tumors to radiotherapy is radioresistance (RR). Thus, there is a critical need for new insights about GBM treatment to increase the chance of treatment. microRNAs (miRNAs) are important regulatory molecules that can effectively control GBM radiosensitivity (RS) by affecting radiation-related signal transduction pathways such as apoptosis, proliferation, DNA repair and cell cycle regulation. miRNAs provide new clinical perspectives for developing effective GBM treatments. A growing body of literature has demonstrated that GBM RS can be modified by modulating the expression of miRNAs such as miR-7, miR-10b, miR-124, miR-128, miR-320, miR-21, miR-203, and miR-153. This paper highlights the miRNAs and the underlying molecular mechanisms that are involved in the RS of GBM. Besides highlighting the role of miRNAs in different signaling pathways, we explain the mechanisms that affect RS of GBM for modulating radiation response at the clinical level.
Collapse
Affiliation(s)
| | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Navid Zafari
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Sun X, Zhang X, Zhai H, Zhang D, Ma S. Chicoric acid (CA) induces autophagy in gastric cancer through promoting endoplasmic reticulum (ER) stress regulated by AMPK. Biomed Pharmacother 2019; 118:109144. [PMID: 31545234 DOI: 10.1016/j.biopha.2019.109144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is one of the most common cancers leading to tumor-related deaths worldwide. Chicoric acid (CA) exhibits a variety of protective effects in different diseases. However, its role in regulating tumor progression has not been reported. Autophagy, as a conserved catabolic process, sustains cellular homoeostasis responding to stress to modulate cell fate. In the study, the effects of CA on gastric cancer were investigated. The results indicated that CA treatment markedly reduced the cell viability and induced apoptosis in gastric cancer cells, and prevented tumor growth in an established xenograft gastric cancer model. Furthermore, CA exposure significantly induced autophagy both in gastric cancer cells and tumor samples, as evidenced by the up-regulated expression of LC3II. Moreover, phosphorylated AMP-activated protein kinase (AMPK) and p70S6 kinase (p70s6k) expression were obviously promoted by CA in vitro and in vivo. Importantly, blocking AMPK activation abrogated CA-induced expression of LC3II in gastric cancer cells. In addition, endoplasmic reticulum (ER) stress in tumor samples or cells was markedly induced by CA treatment through promoting the expression of associated signals such as Parkin, protein kinase RNA-like ER kinase (PERK), activating transcription factors 4 (ATF4) and ATF6. Importantly, these effects were abolished by the inhibition of AMPK signaling. Collectively, our findings indicated that CA prevents human gastric cancer progression by inducing autophagy partly through the activation of AMPK, and represents an effective therapeutic strategy against gastric cancer development.
Collapse
Affiliation(s)
- Xiaoli Sun
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xinwu Zhang
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hongjun Zhai
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Di Zhang
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shuangyu Ma
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
45
|
He J, He J, Min L, He Y, Guan H, Wang J, Peng X. Extracellular vesicles transmitted miR-31-5p promotes sorafenib resistance by targeting MLH1 in renal cell carcinoma. Int J Cancer 2019; 146:1052-1063. [PMID: 31259424 DOI: 10.1002/ijc.32543] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 06/18/2019] [Indexed: 02/05/2023]
Abstract
Sorafenib provides survival benefits in patients with advanced renal cell carcinoma (RCC), but its use is hampered by acquired drug resistance. It is important to fully clarify the molecular mechanisms of sorafenib resistance, which can help to avoid, delay or reverse drug resistance. Extracellular vesicles (EVs) can mediate intercellular communication by delivering effector molecules between cells. Here, we studied whether EVs are involved in sorafenib resistance of RCC and its possible molecular mechanisms. Using differential centrifugation, EVs were isolated from established sorafenib-resistant RCC cells (786-0 and ACHN), and EVs derived from sorafenib-resistant cells were uptaken by sensitive parental RCC cells and thus promoted drug resistance. Elevated exogenous miR-31-5p within EVs effectively downregulated MutL homolog 1 (MLH1) expression and thus promoted sorafenib resistance in vitro. Mice experiments also confirmed that miR-31-5p could mediate drug sensitivity in vivo. In addition, low expression of MLH1 was observed in sorafenib-resistant RCC cells and upregulation of MLH1 expression restored the sensitivity of resistant cell lines to sorafenib. Finally, miR-31-5p level in circulating EVs of RCC patients with progressive disease (PD) during sorafenib therapy was higher when compared to that in the pretherapy status. In conclusion, EVs shuttled miR-31-5p can transfer resistance information from sorafenib-resistant cells to sensitive cells by directly targeting MLH1, and thus magnify the drug resistance information to the whole tumor. Furthermore, miR-31-5p and MLH1 could be promising predictive biomarkers and therapeutic targets to prevent sorafenib resistance.
Collapse
Affiliation(s)
- Jinlan He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Head and Neck Cancer, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianxiong He
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Min
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Guan
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingjing Wang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
46
|
p38gamma overexpression promotes renal cell carcinoma cell growth, proliferation and migration. Biochem Biophys Res Commun 2019; 516:466-473. [PMID: 31229268 DOI: 10.1016/j.bbrc.2019.06.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 01/08/2023]
Abstract
Recent studies have proposed that p38gamma (p38γ) might be critically involved in tumorigenesis and cancer progression. Its expression and potential functions in human renal cell carcinoma (RCC) are studied here. We show that p38γ mRNA and protein levels are upregulated in human RCC tissues, as compared to its levels in the surrounding normal renal tissues. p38γ upregulation was also detected in established (786-O line) and primary human RCC cells. Functional studies in 786-O cells and primary human RCC cells demonstrated that p38γ silencing (by targeted shRNAs) or CRISPR/Cas9-mediated p38γ knockout (KO) potently inhibited cell growth, viability, proliferation and migration. Furthermore, p38γ shRNA or KO in RCC cells decreased retinoblastoma (Rb) phosphorylation and downregulated cyclin E1/A expression. Additionally, significant apoptosis activation was detected in p38γ-silenced and p38γ-KO RCC cells. Contrarily, ectopic overexpression of p38γ facilitated cell growth, viability, proliferation and migration in RCC cells. Taken together, we show that p38γ overexpression promotes RCC cell growth, proliferation and migration. p38γ could be a novel therapeutic target for human RCC.
Collapse
|
47
|
Ye XT, Huang H, Huang WP, Hu WL. LncRNA THOR promotes human renal cell carcinoma cell growth. Biochem Biophys Res Commun 2019; 501:661-667. [PMID: 29752937 DOI: 10.1016/j.bbrc.2018.05.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent studies have characterized a novel but extremely conserved long non-coding RNA (LncRNA) THOR. THOR directly associates with insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) to promote mRNA stabilization of key pro-cancerous genes. RESULTS Here, we show that THOR is expressed in human renal cell carcinoma (RCC) tissues and established/primary human RCC cells. It was not detected in normal renal tissues nor in HK-2 and primary human renal epithelial cells. THOR silencing (by targeted siRNAs) or CRISPR/Cas9 knockout inhibited RCC cell growth, viability and proliferation in vitro. Reversely, forced over-expression of THOR promoted RCC cell survival and proliferation. IGF2BP1-regulated genes, including IGF2, GLI1 and Myc, were downregulated by THOR silencing or knockout, but they were upregulated after THOR over-expression. In vivo, THOR-knockout 786-O tumors grew significantly slower than the control tumors in nude mice. CONCLUSION THOR expression promotes RCC cell growth in vitro and in vivo. THOR could be a novel and important therapeutic target for human RCC.
Collapse
Affiliation(s)
- Xue-Ting Ye
- Graduate School, Southern Medical University, Guangzhou, China; Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hang Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei-Ping Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei-Lie Hu
- Graduate School, Southern Medical University, Guangzhou, China; Department of Urology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China.
| |
Collapse
|
48
|
Zhang R, Wang Z, Yu Q, Shen J, He W, Zhou D, Yu Q, Fan J, Gao S, Duan L. Atractylenolide II reverses the influence of lncRNA XIST/miR-30a-5p/ROR1 axis on chemo-resistance of colorectal cancer cells. J Cell Mol Med 2019; 23:3151-3165. [PMID: 30907503 PMCID: PMC6484310 DOI: 10.1111/jcmm.14148] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 01/04/2023] Open
Abstract
This investigation was conducted to elucidate whether atractylenolide II could reverse the role of lncRNA XIST/miR-30a-5p/ROR1 axis in modulating chemosensitivity of colorectal cancer cells. We totally collected 294 pairs of colorectal cancer tissues and adjacent normal tissues and also purchased colorectal cancer cell lines and human embryonic kidney cell line. 5-fluorouracil, cisplatin, mitomycin and adriamycin were designated as the chemotherapies for colorectal cell lines, and atractylenolides were arranged as the Chinese drug. The expressions of XIST, miR-30a-5p and ROR1 were quantified with aid of qRT-PCR or Western blot, and luciferase reporter gene assay was implemented to determine the relationships among XIST, miR-30a-5p and ROR1. Our results demonstrated that XIST and ROR1 expressions were dramatically up-regulated, yet miR-30a-5p expression was down-regulated within colorectal cancer tissues (P < 0.05). The overexpressed XIST and ROR1, as well as under-expressed miR-30a-5p, were inclined to promote viability and proliferation of colorectal cells under the influence of chemo drugs (P < 0.05). In addition, XIST could directly target miR-30a-5p, and ROR1 acted as the targeted molecule of miR-30a-5p. Interestingly, atractylenolides not only switched the expressions of XIST, miR-30a-5p and ROR1 within colorectal cancer cells but also significantly intensified the chemosensitivity of colorectal cancer cells (P < 0.05). Finally, atractylenolide II was discovered to slow down the viability and proliferation of colorectal cancer cells (P < 0.05). In conclusion, the XIST/miR-30a-5p/ROR1 axis could be deemed as pivotal markers underlying colorectal cancer, and administration of atractylenolide II might improve the chemotherapeutic efficacy for colorectal cancer.
Collapse
Affiliation(s)
- Ruijuan Zhang
- Department of Traditional Chinese Medicine, Putuo People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Zhijun Wang
- Department of Traditional Chinese Medicine, Putuo People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Qianyun Yu
- Department of Traditional Chinese Medicine, Wuliqiao Community Health Center of Huangpu District, Shanghai, China
| | - Jun Shen
- Department of Traditional Chinese Medicine, Putuo People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Wenji He
- Department of Traditional Chinese Medicine, Putuo People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Dongqing Zhou
- Department of Traditional Chinese Medicine, Putuo People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Qingqing Yu
- Department of Traditional Chinese Medicine, Putuo People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Jiawei Fan
- Department of Traditional Chinese Medicine, Putuo People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Shurong Gao
- Department of Traditional Chinese Medicine, Putuo People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Lihong Duan
- Department of Rheumatology, Putuo People's Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
49
|
Ji S, Xiong Y, Zhao X, Liu Y, Yu LQ. Effect of the Nrf2-ARE signaling pathway on biological characteristics and sensitivity to sunitinib in renal cell carcinoma. Oncol Lett 2019; 17:5175-5186. [PMID: 31186733 DOI: 10.3892/ol.2019.10156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 01/17/2019] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to examine the effects of the nuclear factor erythroid-2 related factor 2-antioxidant-responsive element (Nrf2-ARE) signaling pathway on the biological characteristics and sensitivity to targeted therapy in human renal cell carcinoma (RCC) cells. RCC tissues and adjacent tissues were collected and assessed by immunohistochemistry to determine the expression of Nrf2, NAD(P)H dehydrogenase [quinone] 1 (NQO1) and heme oxygenase-1 (HO-1) to analyze the clinicopathological features of RCC. A series of in vitro experiments were conducted to analyze the biological characteristics of Nrf2-ARE signaling in RCC. The renal cancer cell line, 786-0 was used, and cells was divided into a mock group, negative control group and small hairpin (sh)RNA-Nrf2 group. A Cell Counting Kit-8 assay was performed alongside flow cytometry to detect cell viability, cell cycle stage and apoptosis following treatment with sunitinib. The results demonstrated that Nrf2, NQO1 and HO-1 were significantly upregulated in RCC tissues compared with adjacent tissues and were associated with tumor node metastasis stage, Fuhrman classification and lymph node metastasis. Following shRNA-Nrf2 transfection, the 786-0 cells demonstrated a significant decrease in viability, cell invasion and scratch healing rate, and the mRNA and protein expression levels of Nrf2, NQO1, HO-1 and glutathione transferase were significantly decreased, which enhanced the sensitivity to sunitinib, arrested cells in the G0/G1 phase and increased apoptosis. In conclusion, Nrf2-ARE signaling is important for RCC progression, and its inhibition may increase sensitivity to targeted drugs to provide novel developments for RCC treatment.
Collapse
Affiliation(s)
- Shiliang Ji
- Department of Pharmacy, Suzhou Science and Technology Town Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Yufeng Xiong
- Department of Clinical Laboratory, Guangdong Women and Children Health Hospital, Guangzhou, Guangdong 510000, P.R. China
| | - Xingxing Zhao
- Department of Neonatology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Yanli Liu
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Li Qiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
50
|
Li Z, Ma J, Bi J, Guo H, Chan MTV, Wu WKK, Wu Z, Shen J. MicroRNA signature of air pollution exposure‐induced congenital defects. J Cell Physiol 2019; 234:17896-17904. [PMID: 30883755 DOI: 10.1002/jcp.28422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jianqing Ma
- Department of Orthopedic Surgery The General Hospital of Xingtai Mining Industry Bloc., Orthopaedic Hospital of Xingtai, Xingtai Hebei China
| | - Jiaqi Bi
- Department of Orthopaedic Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Haiwei Guo
- Department of Orthopaedic Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Matthew T. V. Chan
- Department of Anaesthesia and Intensive Care The Chinese University of Hong Kong Hong Kong China
| | - William K. K. Wu
- Department of Anaesthesia and Intensive Care The Chinese University of Hong Kong Hong Kong China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong Hong Kong China
| | - Zhanyong Wu
- Department of Orthopedic Surgery The General Hospital of Xingtai Mining Industry Bloc., Orthopaedic Hospital of Xingtai, Xingtai Hebei China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|