1
|
Beltrán FA, Torres-Díaz L L, Troncoso-Escudero P, Villalobos-González J, Mayorga-Weber G, Lara M, Covarrubias-Pinto A, Valdivia S, Vicencio I, Papic E, Paredes-Martínez C, Silva-Januàrio ME, Rojas A, daSilva LLP, Court F, Rosas-Arellano A, Bátiz LF, Rojas P, Rivera FJ, Castro MA. Distinct roles of ascorbic acid in extracellular vesicles and free form: Implications for metabolism and oxidative stress in presymptomatic Huntington's disease. Free Radic Biol Med 2025; 227:521-535. [PMID: 39662690 DOI: 10.1016/j.freeradbiomed.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the first exon of the huntingtin gene. The huntingtin protein (Htt) is ubiquitously expressed and localized in several organelles, including endosomes, where it plays an essential role in intracellular trafficking. Presymptomatic HD is associated with a failure in energy metabolism and oxidative stress. Ascorbic acid is a potent antioxidant that plays a key role in modulating neuronal metabolism and is highly concentrated in the brain. During synaptic activity, neurons take up ascorbic acid released by glial cells; however, this process is disrupted in HD. In this study, we aim to elucidate the molecular and cellular mechanisms underlying this dysfunction. Using an electrophysiological approach in presymptomatic YAC128 HD slices, we observed decreased ascorbic acid flux from astrocytes to neurons, which altered neuronal metabolic substrate preferences. Ascorbic acid efflux and recycling were also decreased in cultured astrocytes from YAC128 HD mice. We confirmed our findings using GFAP-HD160Q, an HD mice model expressing mutant N-terminal Htt mainly in astrocytes. For the first time, we demonstrated that ascorbic acid is released from astrocytes via extracellular vesicles (EVs). Decreased number of particles and exosomal markers were observed in EV fractions from cultured YAC128 HD astrocytes and Htt-KD cells. We observed reduced number of multivesicular bodies (MVBs) in YAC128 HD striatum via electron microscopy, suggesting mutant Htt alters MVB biogenesis. EVs containing ascorbic acid effectively reduced reactive oxygen species, whereas "free" ascorbic acid played a role in modulating neuronal metabolic substrate preferences. These findings suggest that the early redox imbalance observed in HD arises from a reduced release of ascorbic acid-containing EVs by astrocytes. Meanwhile, a decrease in "free" ascorbic acid likely contributes to presymptomatic metabolic impairment.
Collapse
Affiliation(s)
- Felipe A Beltrán
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Leandro Torres-Díaz L
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| | - Paulina Troncoso-Escudero
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Juan Villalobos-González
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Gonzalo Mayorga-Weber
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Marcelo Lara
- Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile; Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus las Tres Pascualas, Concepción, Chile
| | - Adriana Covarrubias-Pinto
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sharin Valdivia
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Department of Biological and Chemical Sciences, Faculty of Medicine and Sciences, San Sebastián University, Tres Pascualas Campus, Concepción, Chile
| | - Isidora Vicencio
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Eduardo Papic
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Carolina Paredes-Martínez
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Mara E Silva-Januàrio
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alejandro Rojas
- Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Instituto de Medicina, UACh, Valdivia, Chile
| | - Luis L P daSilva
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Felipe Court
- Center for Aging Research and Healthy Longevity, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Luis Federico Bátiz
- Centro de Investigación e Innovación Biomédica (CIIB), Universidad de Los Andes, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Patricio Rojas
- Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco J Rivera
- Translational Regenerative Neurobiology Group (TReN), Molecular and Integrative Biosciences Research Program (MIBS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Janelia Research Campus HHMI, Ashburn, VA, USA.
| |
Collapse
|
2
|
Pérot JB, Brouillet E, Flament J. The contribution of preclinical magnetic resonance imaging and spectroscopy to Huntington's disease. Front Aging Neurosci 2024; 16:1306312. [PMID: 38414634 PMCID: PMC10896846 DOI: 10.3389/fnagi.2024.1306312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Huntington's disease is an inherited disorder characterized by psychiatric, cognitive, and motor symptoms due to degeneration of medium spiny neurons in the striatum. A prodromal phase precedes the onset, lasting decades. Current biomarkers include clinical score and striatal atrophy using Magnetic Resonance Imaging (MRI). These markers lack sensitivity for subtle cellular changes during the prodromal phase. MRI and MR spectroscopy offer different contrasts for assessing metabolic, microstructural, functional, or vascular alterations in the disease. They have been used in patients and mouse models. Mouse models can be of great interest to study a specific mechanism of the degenerative process, allow better understanding of the pathogenesis from the prodromal to the symptomatic phase, and to evaluate therapeutic efficacy. Mouse models can be divided into three different constructions: transgenic mice expressing exon-1 of human huntingtin (HTT), mice with an artificial chromosome expressing full-length human HTT, and knock-in mouse models with CAG expansion inserted in the murine htt gene. Several studies have used MRI/S to characterized these models. However, the multiplicity of modalities and mouse models available complicates the understanding of this rich corpus. The present review aims at giving an overview of results obtained using MRI/S for each mouse model of HD, to provide a useful resource for the conception of neuroimaging studies using mouse models of HD. Finally, despite difficulties in translating preclinical protocols to clinical applications, many biomarkers identified in preclinical models have already been evaluated in patients. This review also aims to cover this aspect to demonstrate the importance of MRI/S for studying HD.
Collapse
Affiliation(s)
- Jean-Baptiste Pérot
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
- Institut du Cerveau – Paris Brain Institute – ICM, Sorbonne Université, Paris, France
| | - Emmanuel Brouillet
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Flament
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
3
|
Sharma G, Biswas SS, Mishra J, Navik U, Kandimalla R, Reddy PH, Bhatti GK, Bhatti JS. Gut microbiota dysbiosis and Huntington's disease: Exploring the gut-brain axis and novel microbiota-based interventions. Life Sci 2023; 328:121882. [PMID: 37356750 DOI: 10.1016/j.lfs.2023.121882] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Huntington's disease (HD) is a complex progressive neurodegenerative disorder affected by genetic, environmental, and metabolic factors contributing to its pathogenesis. Gut dysbiosis is termed as the alterations of intestinal microbial profile. Emerging research has highlighted the pivotal role of gut dysbiosis in HD, focusing on the gut-brain axis as a novel research parameter in science. This review article provides a comprehensive overview of gut microbiota dysbiosis and its relationship with HD and its pathogenesis along with the future challenges and opportunities. The focuses on the essential mechanisms which link gut dysbiosis to HD pathophysiology including neuroinflammation, immune system dysregulation, altered metabolites composition, and neurotransmitter imbalances. We also explored the impacts of gut dysbiosis on HD onset, severity, and symptoms such as cognitive decline, motor dysfunction, and psychiatric symptoms. Furthermore, we highlight recent advances in therapeutics including microbiota-based therapeutic approaches, including dietary interventions, prebiotics, probiotics, fecal microbiota transplantation, and combination therapies with conventional HD treatments and their applications in managing HD. The future challenges are also highlighted as the heterogeneity of gut microbiota, interindividual variability, establishing causality between gut dysbiosis and HD, identifying optimal therapeutic targets and strategies, and ensuring the long-term safety and efficacy of microbiota-based interventions. This review provides a better understanding of the potential role of gut microbiota in HD pathogenesis and guides the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Garvita Sharma
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Shristi Saroj Biswas
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Umashanker Navik
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
4
|
Liu X, Cui C, Sun W, Meng J, Guo J, Wu L, Chen B, Liao D, Jiang P. Paclitaxel Induces Neurotoxicity by Disrupting Tricarboxylic Acid Cycle Metabolic Balance in the Mouse Hippocampus. J Toxicol 2023; 2023:5660481. [PMID: 37575636 PMCID: PMC10423086 DOI: 10.1155/2023/5660481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
Objective It is well known that paclitaxel (PTX)-induced neurotoxicity seriously affects the quality of life of patients and is the main reason for reducing the dose of chemotherapy or even stopping chemotherapy. The current data are limited, and further information is required for practice and verification. The aims of this study were to clarify the molecular mechanism underlying PTX-induced neurotoxicity by combining in vivo and in vitro metabolomics studies and provide new targets for the prevention and treatment of PTX-induced neurotoxicity. Methods In the in vivo study, a PTX-induced neurotoxicity mouse model was established by intraperitoneal injection of PTX (6 mg/kg every three days) for two consecutive weeks. After verification by water maze tests and HE staining of pathological sections, hippocampal metabolites were measured and the differential metabolites and related metabolic pathways were identified by multivariate statistical analysis. In the in vitro study, we investigated the effects of PTX on mouse hippocampal neuron cells, assessing the concentration and time of administration by MTT assays. After modeling, the relevant metabolites in the TCA cycle were quantified by targeted metabolomics using stable isotope labeling. Finally, the key enzymes of the TCA cycle in tissues and cells were verified by RT-PCR. Results Administration of PTX to model mice resulted in neurological damage, shown by both water-maze tests and hippocampal tissue sections. Twenty-four metabolites and five associated metabolic pathways were found to differ significantly between the hippocampal tissues of the model and control groups. These included metabolites and pathways related to the TCA cycle and pyruvate metabolism. Metabolomics analysis using stable isotope labeling showed significant changes in metabolites associated with the TCA cycle compared with the control group (P < 0.05). Finally, RT-PCR verified that the expression of key enzymes in the TCA cycle was changed to different degrees in both hippocampal tissues and cells. Conclusion Our results showed that PTX neurotoxicity in hippocampal tissue and neuron cells was associated with inhibition of the TCA cycle. This inhibition leads to brain insufficiency and impaired metabolism, resulting in various neurotoxic symptoms.
Collapse
Affiliation(s)
- Xi Liu
- Department of Pharmacy, Linfen People's Hospital, Linfen, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Wenxue Sun
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Junjun Meng
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Jinxiu Guo
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Linlin Wu
- Department of Oncology, Tengzhou Central People's Hospital, Affiliated to Jining Medical College, Tengzhou, China
| | - Beibei Chen
- ADFA School of Science, University of New South Wales, Canberra, Australia
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
| |
Collapse
|
5
|
Dai Y, Wang H, Lian A, Li J, Zhao G, Hu S, Li B. A comprehensive perspective of Huntington's disease and mitochondrial dysfunction. Mitochondrion 2023; 70:8-19. [PMID: 36906250 DOI: 10.1016/j.mito.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/04/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease. It is caused by the expansion of the CAG trinucleotide repeat sequence in the HTT gene. HD mainly manifests as involuntary dance-like movements and severe mental disorders. As it progresses, patients lose the ability to speak, think, and even swallow. Although the pathogenesis is unclear, studies have found that mitochondrial dysfunctions occupy an important position in the pathogenesis of HD. Based on the latest research advances, this review sorts out and discusses the role of mitochondrial dysfunction on HD in terms of bioenergetics, abnormal autophagy, and abnormal mitochondrial membranes. This review provides researchers with a more complete perspective on the mechanisms underlying the relationship between mitochondrial dysregulation and HD.
Collapse
Affiliation(s)
- Yinghong Dai
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Haonan Wang
- Department of Physical Education and Research, Central South University, 932 Lushan South Rd., Changsha, China
| | - Aojie Lian
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shenghui Hu
- The Second Xiangya Hospital of Central South University, China
| | - Bin Li
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
6
|
What the Gut Tells the Brain-Is There a Link between Microbiota and Huntington's Disease? Int J Mol Sci 2023; 24:ijms24054477. [PMID: 36901907 PMCID: PMC10003333 DOI: 10.3390/ijms24054477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
The human intestinal microbiota is a diverse and dynamic microenvironment that forms a complex, bi-directional relationship with the host. The microbiome takes part in the digestion of food and the generation of crucial nutrients such as short chain fatty acids (SCFA), but is also impacts the host's metabolism, immune system, and even brain functions. Due to its indispensable role, microbiota has been implicated in both the maintenance of health and the pathogenesis of many diseases. Dysbiosis in the gut microbiota has already been implicated in many neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). However, not much is known about the microbiome composition and its interactions in Huntington's disease (HD). This dominantly heritable, incurable neurodegenerative disease is caused by the expansion of CAG trinucleotide repeats in the huntingtin gene (HTT). As a result, toxic RNA and mutant protein (mHTT), rich in polyglutamine (polyQ), accumulate particularly in the brain, leading to its impaired functions. Interestingly, recent studies indicated that mHTT is also widely expressed in the intestines and could possibly interact with the microbiota, affecting the progression of HD. Several studies have aimed so far to screen the microbiota composition in mouse models of HD and find out whether observed microbiome dysbiosis could affect the functions of the HD brain. This review summarizes ongoing research in the HD field and highlights the essential role of the intestine-brain axis in HD pathogenesis and progression. The review also puts a strong emphasis on indicating microbiome composition as a future target in the urgently needed therapy for this still incurable disease.
Collapse
|
7
|
Spick M, Hancox TPM, Chowdhury NR, Middleton B, Skene DJ, Morton AJ. Metabolomic Analysis of Plasma in Huntington's Disease Transgenic Sheep (Ovis aries) Reveals Progressive Circadian Rhythm Dysregulation. J Huntingtons Dis 2023; 12:31-42. [PMID: 36617787 DOI: 10.3233/jhd-220552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Metabolic abnormalities have long been predicted in Huntington's disease (HD) but remain poorly characterized. Chronobiological dysregulation has been described in HD and may include abnormalities in circadian-driven metabolism. OBJECTIVE Here we investigated metabolite profiles in the transgenic sheep model of HD (OVT73) at presymptomatic ages. Our goal was to understand changes to the metabolome as well as potential metabolite rhythm changes associated with HD. METHODS We used targeted liquid chromatography mass spectrometry (LC-MS) metabolomics to analyze metabolites in plasma samples taken from female HD transgenic and normal (control) sheep aged 5 and 7 years. Samples were taken hourly across a 27-h period. The resulting dataset was investigated by machine learning and chronobiological analysis. RESULTS The metabolic profiles of HD and control sheep were separable by machine learning at both ages. We found both absolute and rhythmic differences in metabolites in HD compared to control sheep at 5 years of age. An increase in both the number of disturbed metabolites and the magnitude of change of acrophase (the time at which the rhythms peak) was seen in samples from 7-year-old HD compared to control sheep. There were striking similarities between the dysregulated metabolites identified in HD sheep and human patients (notably of phosphatidylcholines, amino acids, urea, and threonine). CONCLUSION This work provides the first integrated analysis of changes in metabolism and circadian rhythmicity of metabolites in a large animal model of presymptomatic HD.
Collapse
Affiliation(s)
- Matt Spick
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | - Thomas P M Hancox
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Namrata R Chowdhury
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Benita Middleton
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
8
|
Pérot JB, Célestine M, Palombo M, Dhenain M, Humbert S, Brouillet E, Flament J. Longitudinal multimodal MRI characterization of a knock-in mouse model of Huntington's disease reveals early gray and white matter alterations. Hum Mol Genet 2022; 31:3581-3596. [PMID: 35147158 PMCID: PMC9616570 DOI: 10.1093/hmg/ddac036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Pathogenesis of the inherited neurodegenerative disorder Huntington's disease (HD) is progressive with a long presymptomatic phase in which subtle changes occur up to 15 years before the onset of symptoms. Thus, there is a need for early, functional biomarker to better understand disease progression and to evaluate treatment efficacy far from onset. Recent studies have shown that white matter may be affected early in mutant HTT gene carriers. A previous study performed on 12 months old Ki140CAG mice showed reduced glutamate level measured by Chemical Exchange Saturation Transfer of glutamate (gluCEST), especially in the corpus callosum. In this study, we scanned longitudinally Ki140CAG mice with structural MRI, diffusion tensor imaging, gluCEST and magnetization transfer imaging, in order to assess white matter integrity over the life of this mouse model characterized by slow progression of symptoms. Our results show early defects of diffusion properties in the anterior part of the corpus callosum at 5 months of age, preceding gluCEST defects in the same region at 8 and 12 months that spread to adjacent regions. At 12 months, frontal and piriform cortices showed reduced gluCEST, as well as the pallidum. MT imaging showed reduced signal in the septum at 12 months. Cortical and striatal atrophy then appear at 18 months. Vulnerability of the striatum and motor cortex, combined with alterations of anterior corpus callosum, seems to point out the potential role of white matter in the brain dysfunction that characterizes HD and the pertinence of gluCEST and DTI as biomarkers in HD.
Collapse
Affiliation(s)
- Jean-Baptiste Pérot
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| | - Marina Célestine
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| | - Marco Palombo
- Department of Computer Science, Centre for Medical Image Computing, University College London, London WC1E 6BT, UK
| | - Marc Dhenain
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| | - Sandrine Humbert
- Université Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble 38000 , France
| | - Emmanuel Brouillet
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| | - Julien Flament
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay -aux-Roses 92260, France
| |
Collapse
|
9
|
Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A, Ahmadi A, Bungau S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol 2022; 13:1015835. [PMID: 36299900 PMCID: PMC9589363 DOI: 10.3389/fphar.2022.1015835] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) disrupts the chemical integrity of macromolecules and increases the risk of neurodegenerative diseases. Fisetin is a flavonoid that exhibits potent antioxidant properties and protects the cells against OS. We have viewed the NCBI database, PubMed, Science Direct (Elsevier), Springer-Nature, ResearchGate, and Google Scholar databases to search and collect relevant articles during the preparation of this review. The search keywords are OS, neurodegenerative diseases, fisetin, etc. High level of ROS in the brain tissue decreases ATP levels, and mitochondrial membrane potential and induces lipid peroxidation, chronic inflammation, DNA damage, and apoptosis. The subsequent results are various neuronal diseases. Fisetin is a polyphenolic compound, commonly present in dietary ingredients. The antioxidant properties of this flavonoid diminish oxidative stress, ROS production, neurotoxicity, neuro-inflammation, and neurological disorders. Moreover, it maintains the redox profiles, and mitochondrial functions and inhibits NO production. At the molecular level, fisetin regulates the activity of PI3K/Akt, Nrf2, NF-κB, protein kinase C, and MAPK pathways to prevent OS, inflammatory response, and cytotoxicity. The antioxidant properties of fisetin protect the neural cells from inflammation and apoptotic degeneration. Thus, it can be used in the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Emran Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
10
|
Molecular Pathophysiological Mechanisms in Huntington's Disease. Biomedicines 2022; 10:biomedicines10061432. [PMID: 35740453 PMCID: PMC9219859 DOI: 10.3390/biomedicines10061432] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease is an inherited neurodegenerative disease described 150 years ago by George Huntington. The genetic defect was identified in 1993 to be an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 4. In the following almost 30 years, a considerable amount of research, using mainly animal models or in vitro experiments, has tried to unravel the complex molecular cascades through which the transcription of the mutant protein leads to neuronal loss, especially in the medium spiny neurons of the striatum, and identified excitotoxicity, transcriptional dysregulation, mitochondrial dysfunction, oxidative stress, impaired proteostasis, altered axonal trafficking and reduced availability of trophic factors to be crucial contributors. This review discusses the pathogenic cascades described in the literature through which mutant huntingtin leads to neuronal demise. However, due to the ubiquitous presence of huntingtin, astrocytes are also dysfunctional, and neuroinflammation may additionally contribute to Huntington’s disease pathology. The quest for therapies to delay the onset and reduce the rate of Huntington’s disease progression is ongoing, but is based on findings from basic research.
Collapse
|
11
|
The Reversible Carnitine Palmitoyltransferase 1 Inhibitor (Teglicar) Ameliorates the Neurodegenerative Phenotype in a Drosophila Huntington’s Disease Model by Acting on the Expression of Carnitine-Related Genes. Molecules 2022; 27:molecules27103125. [PMID: 35630602 PMCID: PMC9146098 DOI: 10.3390/molecules27103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
Huntington’s disease (HD) is a dramatic neurodegenerative disorder caused by the abnormal expansion of a CAG triplet in the huntingtin gene, producing an abnormal protein. As it leads to the death of neurons in the cerebral cortex, the patients primarily present with neurological symptoms, but recently metabolic changes resulting from mitochondrial dysfunction have been identified as novel pathological features. The carnitine shuttle is a complex consisting of three enzymes whose function is to transport the long-chain fatty acids into the mitochondria. Here, its pharmacological modification was used to test the hypothesis that shifting metabolism to lipid oxidation exacerbates the HD symptoms. Behavioural and transcriptional analyses were carried out on HD Drosophila model, to evaluate the involvement of the carnitine cycle in this pathogenesis. Pharmacological inhibition of CPT1, the rate-limiting enzyme of the carnitine cycle, ameliorates the HD symptoms in Drosophila, likely acting on the expression of carnitine-related genes.
Collapse
|
12
|
Gene-environment-gut interactions in Huntington's disease mice are associated with environmental modulation of the gut microbiome. iScience 2022; 25:103687. [PMID: 35059604 PMCID: PMC8760441 DOI: 10.1016/j.isci.2021.103687] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/14/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Gut dysbiosis in Huntington's disease (HD) has recently been reported using microbiome profiling in R6/1 HD mice and replicated in clinical HD. In HD mice, environmental enrichment (EE) and exercise (EX) were shown to have therapeutic impacts on the brain and associated symptoms. We hypothesize that these housing interventions modulate the gut microbiome, configuring one of the mechanisms that mediate their therapeutic effects observed in HD. We exposed R6/1 mice to a protocol of either EE or EX, relative to standard-housed control conditions, before the onset of gut dysbiosis and motor deficits. We characterized gut structure and function, as well as gut microbiome profiling using 16S rRNA sequencing. Multivariate analysis identified specific orders, namely Bacteroidales, Lachnospirales and Oscillospirales, as the main bacterial signatures that discriminate between housing conditions. Our findings suggest a promising role for the gut microbiome in mediating the effects of EE and EX exposures, and possibly other environmental interventions, in HD mice. Gastrointestinal structure and motility are intact at an early stage in a HD mouse model There is sexual dimorphism in the presentation of the HD gut dysbiosis phenotype Bacteroidales, Lachnospirales and Oscillospirales bacteria are affected by experience Environmental enrichment and exercise may modulate HD via the microbiota-gut-brain axis
Collapse
|
13
|
Love CJ, Masson BA, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:141-184. [DOI: 10.1016/bs.irn.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Interweaving of Reactive Oxygen Species and Major Neurological and Psychiatric Disorders. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 80:409-425. [PMID: 34896378 DOI: 10.1016/j.pharma.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species are found to be having a wide range of biological effects ranging from regulating functions in normal physiology to alteration and damaging various processes and cell components causing a number of diseases. Mitochondria is an important organelle responsible for energy production and in many signalling mechanisms. The electron transport chain in mitochondria where oxidative phosphorylation takes place is also coupled with the generation of reactive oxygen species (ROS). Changes in normal homeostasis and overproduction of reactive oxygen species by various sources are found to be involved in multiple neurological and major neurodegenerative diseases. This review summarises the role of reactive oxygen species and the mechanism of neuronal loss in major neuronal disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Depression, and Schizophrenia.
Collapse
|
15
|
Sönmez A, Mustafa R, Ryll ST, Tuorto F, Wacheul L, Ponti D, Litke C, Hering T, Kojer K, Koch J, Pitzer C, Kirsch J, Neueder A, Kreiner G, Lafontaine DLJ, Orth M, Liss B, Parlato R. Nucleolar stress controls mutant Huntington toxicity and monitors Huntington's disease progression. Cell Death Dis 2021; 12:1139. [PMID: 34880223 PMCID: PMC8655027 DOI: 10.1038/s41419-021-04432-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022]
Abstract
Transcriptional and cellular-stress surveillance deficits are hallmarks of Huntington's disease (HD), a fatal autosomal-dominant neurodegenerative disorder caused by a pathological expansion of CAG repeats in the Huntingtin (HTT) gene. The nucleolus, a dynamic nuclear biomolecular condensate and the site of ribosomal RNA (rRNA) transcription, is implicated in the cellular stress response and in protein quality control. While the exact pathomechanisms of HD are still unclear, the impact of nucleolar dysfunction on HD pathophysiology in vivo remains elusive. Here we identified aberrant maturation of rRNA and decreased translational rate in association with human mutant Huntingtin (mHTT) expression. The protein nucleophosmin 1 (NPM1), important for nucleolar integrity and rRNA maturation, loses its prominent nucleolar localization. Genetic disruption of nucleolar integrity in vulnerable striatal neurons of the R6/2 HD mouse model decreases the distribution of mHTT in a disperse state in the nucleus, exacerbating motor deficits. We confirmed NPM1 delocalization in the gradually progressing zQ175 knock-in HD mouse model: in the striatum at a presymptomatic stage and in the skeletal muscle at an early symptomatic stage. In Huntington's patient skeletal muscle biopsies, we found a selective redistribution of NPM1, similar to that in the zQ175 model. Taken together, our study demonstrates that nucleolar integrity regulates the formation of mHTT inclusions in vivo, and identifies NPM1 as a novel, readily detectable peripheral histopathological marker of HD progression.
Collapse
Affiliation(s)
- Aynur Sönmez
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Rasem Mustafa
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Salome T Ryll
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim and Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Donatella Ponti
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Rome, Italy
| | - Christian Litke
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Tanja Hering
- Department of Neurology, Ulm University, Ulm, Germany
| | - Kerstin Kojer
- Department of Neurology, Ulm University, Ulm, Germany
| | - Jenniver Koch
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core (INBC), Heidelberg University, Heidelberg, Germany
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | - Grzegorz Kreiner
- Maj Institute of Pharmacology, Department of Brain Biochemistry, Polish Academy of Sciences, Krakow, Poland
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Michael Orth
- Department of Neurology, Ulm University, Ulm, Germany
| | - Birgit Liss
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Linacre & New College, University of Oxford, Oxford, UK
| | - Rosanna Parlato
- Institute of Applied Physiology, Ulm University, Ulm, Germany.
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
- Division for Neurodegenerative Diseases, Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
16
|
González LF, Bevilacqua LE, Naves R. Nanotechnology-Based Drug Delivery Strategies to Repair the Mitochondrial Function in Neuroinflammatory and Neurodegenerative Diseases. Pharmaceutics 2021; 13:2055. [PMID: 34959337 PMCID: PMC8707316 DOI: 10.3390/pharmaceutics13122055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are vital organelles in eukaryotic cells that control diverse physiological processes related to energy production, calcium homeostasis, the generation of reactive oxygen species, and cell death. Several studies have demonstrated that structural and functional mitochondrial disturbances are involved in the development of different neuroinflammatory (NI) and neurodegenerative (ND) diseases (NI&NDDs) such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Remarkably, counteracting mitochondrial impairment by genetic or pharmacologic treatment ameliorates neurodegeneration and clinical disability in animal models of these diseases. Therefore, the development of nanosystems enabling the sustained and selective delivery of mitochondria-targeted drugs is a novel and effective strategy to tackle NI&NDDs. In this review, we outline the impact of mitochondrial dysfunction associated with unbalanced mitochondrial dynamics, altered mitophagy, oxidative stress, energy deficit, and proteinopathies in NI&NDDs. In addition, we review different strategies for selective mitochondria-specific ligand targeting and discuss novel nanomaterials, nanozymes, and drug-loaded nanosystems developed to repair mitochondrial function and their therapeutic benefits protecting against oxidative stress, restoring cell energy production, preventing cell death, inhibiting protein aggregates, and improving motor and cognitive disability in cellular and animal models of different NI&NDDs.
Collapse
Affiliation(s)
| | | | - Rodrigo Naves
- Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Av. Independencia 1027, Santiago 8380453, Chile; (L.F.G.); (L.E.B.)
| |
Collapse
|
17
|
Emerging roles of dysregulated adenosine homeostasis in brain disorders with a specific focus on neurodegenerative diseases. J Biomed Sci 2021; 28:70. [PMID: 34635103 PMCID: PMC8507231 DOI: 10.1186/s12929-021-00766-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
In modern societies, with an increase in the older population, age-related neurodegenerative diseases have progressively become greater socioeconomic burdens. To date, despite the tremendous effort devoted to understanding neurodegenerative diseases in recent decades, treatment to delay disease progression is largely ineffective and is in urgent demand. The development of new strategies targeting these pathological features is a timely topic. It is important to note that most degenerative diseases are associated with the accumulation of specific misfolded proteins, which is facilitated by several common features of neurodegenerative diseases (including poor energy homeostasis and mitochondrial dysfunction). Adenosine is a purine nucleoside and neuromodulator in the brain. It is also an essential component of energy production pathways, cellular metabolism, and gene regulation in brain cells. The levels of intracellular and extracellular adenosine are thus tightly controlled by a handful of proteins (including adenosine metabolic enzymes and transporters) to maintain proper adenosine homeostasis. Notably, disruption of adenosine homeostasis in the brain under various pathophysiological conditions has been documented. In the past two decades, adenosine receptors (particularly A1 and A2A adenosine receptors) have been actively investigated as important drug targets in major degenerative diseases. Unfortunately, except for an A2A antagonist (istradefylline) administered as an adjuvant treatment with levodopa for Parkinson's disease, no effective drug based on adenosine receptors has been developed for neurodegenerative diseases. In this review, we summarize the emerging findings on proteins involved in the control of adenosine homeostasis in the brain and discuss the challenges and future prospects for the development of new therapeutic treatments for neurodegenerative diseases and their associated disorders based on the understanding of adenosine homeostasis.
Collapse
|
18
|
Manochkumar J, Doss CGP, El-Seedi HR, Efferth T, Ramamoorthy S. The neuroprotective potential of carotenoids in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153676. [PMID: 34339943 DOI: 10.1016/j.phymed.2021.153676] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/26/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Despite advances in research on neurodegenerative diseases, the pathogenesis and treatment response of neurodegenerative diseases remain unclear. Recent studies revealed a significant role of carotenoids to treat neurodegenerative diseases. The aim of this study was to systematically review the neuroprotective potential of carotenoids in vivo and in vitro and the molecular mechanisms and pathological factors contributing to major neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and stroke). HYPOTHESIS Carotenoids as therapeutic molecules to target neurodegenerative diseases. RESULTS Aggregation of toxic proteins, mitochondrial dysfunction, oxidative stress, the excitotoxic pathway, and neuroinflammation were the major pathological factors contributing to the progression of neurodegenerative diseases. Furthermore, in vitro and in vivo studies supported the beneficiary role of carotenoids, namely lycopene, β-carotene, crocin, crocetin, lutein, fucoxanthin and astaxanthin in alleviating disease progression. These carotenoids provide neuroprotection by inhibition of neuro-inflammation, microglial activation, excitotoxic pathway, modulation of autophagy, attenuation of oxidative damage and activation of defensive antioxidant enzymes. Additionally, studies conducted on humans also demonstrated that dietary intake of carotenoids lowers the risk of neurodegenerative diseases. CONCLUSION Carotenoids may be used as drugs to prevent and treat neurodegenerative diseases. Although, the in vitro and in vivo results are encouraging, further well conducted clinical studies on humans are required to conclude about the full potential of neurodegenerative diseases.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Hesham R El-Seedi
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden; Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Koom, Egypt
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
19
|
Wiprich MT, Bonan CD. Purinergic Signaling in the Pathophysiology and Treatment of Huntington's Disease. Front Neurosci 2021; 15:657338. [PMID: 34276284 PMCID: PMC8281137 DOI: 10.3389/fnins.2021.657338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is a devastating, progressive, and fatal neurodegenerative disorder inherited in an autosomal dominant manner. This condition is characterized by motor dysfunction (chorea in the early stage, followed by bradykinesia, dystonia, and motor incoordination in the late stage), psychiatric disturbance, and cognitive decline. The neuropathological hallmark of HD is the pronounced neuronal loss in the striatum (caudate nucleus and putamen). The striatum is related to the movement control, flexibility, motivation, and learning and the purinergic signaling has an important role in the control of these events. Purinergic signaling involves the actions of purine nucleotides and nucleosides through the activation of P2 and P1 receptors, respectively. Extracellular nucleotide and nucleoside-metabolizing enzymes control the levels of these messengers, modulating the purinergic signaling. The striatum has a high expression of adenosine A2A receptors, which are involved in the neurodegeneration observed in HD. The P2X7 and P2Y2 receptors may also play a role in the pathophysiology of HD. Interestingly, nucleotide and nucleoside levels may be altered in HD animal models and humans with HD. This review presents several studies describing the relationship between purinergic signaling and HD, as well as the use of purinoceptors as pharmacological targets and biomarkers for this neurodegenerative disorder.
Collapse
Affiliation(s)
- Melissa Talita Wiprich
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, Brazil
| |
Collapse
|
20
|
Finsterwald C, Dias S, Magistretti PJ, Lengacher S. Ganglioside GM1 Targets Astrocytes to Stimulate Cerebral Energy Metabolism. Front Pharmacol 2021; 12:653842. [PMID: 33995070 PMCID: PMC8115125 DOI: 10.3389/fphar.2021.653842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/13/2021] [Indexed: 02/01/2023] Open
Abstract
Gangliosides are major constituents of the plasma membrane and are known to promote a number of physiological actions in the brain, including synaptic plasticity and neuroprotection. In particular, the ganglioside GM1 was found to have a wide range of preclinical and clinical benefits in brain diseases such as spinal cord injury, Huntington’s disease and Parkinson’s disease. However, little is known about the underlying cellular and molecular mechanisms of GM1 in the brain. In the present study, we show that GM1 exerts its actions through the promotion of glycolysis in astrocytes, which leads to glucose uptake and lactate release by these cells. In astrocytes, GM1 stimulates the expression of several genes involved in the regulation of glucose metabolism. GM1 also enhances neuronal mitochondrial activity and triggers the expression of neuroprotection genes when neurons are cultured in the presence of astrocytes. Finally, GM1 leads to a neuroprotective effect in astrocyte-neuron co-culture. Together, these data identify a previously unrecognized mechanism mediated by astrocytes by which GM1 exerts its metabolic and neuroprotective effects.
Collapse
|
21
|
Bergonzoni G, Döring J, Biagioli M. D1R- and D2R-Medium-Sized Spiny Neurons Diversity: Insights Into Striatal Vulnerability to Huntington's Disease Mutation. Front Cell Neurosci 2021; 15:628010. [PMID: 33642998 PMCID: PMC7902492 DOI: 10.3389/fncel.2021.628010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder caused by an aberrant expansion of the CAG tract within the exon 1 of the HD gene, HTT. HD progressively impairs motor and cognitive capabilities, leading to a total loss of autonomy and ultimate death. Currently, no cure or effective treatment is available to halt the disease. Although the HTT gene is ubiquitously expressed, the striatum appears to be the most susceptible district to the HD mutation with Medium-sized Spiny Neurons (MSNs) (D1R and D2R) representing 95% of the striatal neuronal population. Why are striatal MSNs so vulnerable to the HD mutation? Particularly, why do D1R- and D2R-MSNs display different susceptibility to HD? Here, we highlight significant differences between D1R- and D2R-MSNs subpopulations, such as morphology, electrophysiology, transcriptomic, functionality, and localization in the striatum. We discuss possible reasons for their selective degeneration in the context of HD. Our review suggests that a better understanding of cell type-specific gene expression dysregulation within the striatum might reveal new paths to therapeutic intervention or prevention to ameliorate HD patients' life expectancy.
Collapse
Affiliation(s)
| | | | - Marta Biagioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
22
|
An integrated metagenomics and metabolomics approach implicates the microbiota-gut-brain axis in the pathogenesis of Huntington's disease. Neurobiol Dis 2020; 148:105199. [PMID: 33249136 DOI: 10.1016/j.nbd.2020.105199] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder with onset and severity of symptoms influenced by various environmental factors. Recent discoveries have highlighted the importance of the gastrointestinal microbiome in mediating the gut-brain-axis bidirectional communication via circulating factors. Using shotgun sequencing, we investigated the gut microbiome composition in the R6/1 transgenic mouse model of HD from 4 to 12 weeks of age (early adolescent through to adult stages). Targeted metabolomics was also performed on the blood plasma of these mice (n = 9 per group) at 12 weeks of age to investigate potential effects of gut dysbiosis on the plasma metabolome profile. RESULTS Modelled time profiles of each species, KEGG Orthologs and bacterial genes, revealed heightened volatility in the R6/1 mice, indicating potential early effects of the HD mutation in the gut. In addition to gut dysbiosis in R6/1 mice at 12 weeks of age, gut microbiome function was perturbed. In particular, the butanoate metabolism pathway was elevated, suggesting increased production of the protective SCFA, butyrate, in the gut. No significant alterations were found in the plasma butyrate and propionate levels in the R6/1 mice at 12 weeks of age. The statistical integration of the metagenomics and metabolomics unraveled several Bacteroides species that were negatively correlated with ATP and pipecolic acid in the plasma. CONCLUSIONS The present study revealed the instability of the HD gut microbiome during the pre-motor symptomatic stage of the disease which may have dire consequences on the host's health. Perturbation of the HD gut microbiome function prior to significant cognitive and motor dysfunction suggest the potential role of the gut in modulating the pathogenesis of HD, potentially via specific altered plasma metabolites which mediate gut-brain signaling.
Collapse
|
23
|
Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020; 19:609-633. [PMID: 32709961 PMCID: PMC7948516 DOI: 10.1038/s41573-020-0072-x] [Citation(s) in RCA: 504] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner - a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.
Collapse
Affiliation(s)
- Stephen C Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Research Center on Aging, Sherbrooke, QC, Canada.
| | | | - Cecilie Morland
- Department of Pharmaceutical Biosciences, Institute of Pharmacy, University of Oslo, Oslo, Norway
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University of Dusseldorf, Dusseldorf, Germany
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - M Flint Beal
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Linda H Bergersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | - Jenni Harvey
- Ninewells Hospital, University of Dundee, Dundee, UK
- Medical School, University of Dundee, Dundee, UK
| | - Ross Jeggo
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - Jack H Jhamandas
- Department of Medicine, University of Albeta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Albeta, Edmonton, AB, Canada
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Clothide Mannoury la Cour
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - William F Martin
- Institute of Molecular Evolution, University of Dusseldorf, Dusseldorf, Germany
| | | | - Paula I Moreira
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Klaus-Armin Nave
- Department of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Tal Nuriel
- Columbia University Medical Center, New York, NY, USA
| | - Stéphane H R Oliet
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Frédéric Saudou
- University of Grenoble Alpes, Grenoble, France
- INSERM U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, Grenoble, France
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France.
| |
Collapse
|
24
|
Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F, Biamonte F. Ferroptosis and Cancer: Mitochondria Meet the "Iron Maiden" Cell Death. Cells 2020; 9:cells9061505. [PMID: 32575749 PMCID: PMC7349567 DOI: 10.3390/cells9061505] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis is a new type of oxidative regulated cell death (RCD) driven by iron-dependent lipid peroxidation. As major sites of iron utilization and master regulators of oxidative metabolism, mitochondria are the main source of reactive oxygen species (ROS) and, thus, play a role in this type of RCD. Ferroptosis is, indeed, associated with severe damage in mitochondrial morphology, bioenergetics, and metabolism. Furthermore, dysregulation of mitochondrial metabolism is considered a biochemical feature of neurodegenerative diseases linked to ferroptosis. Whether mitochondrial dysfunction can, per se, initiate ferroptosis and whether mitochondrial function in ferroptosis is context-dependent are still under debate. Cancer cells accumulate high levels of iron and ROS to promote their metabolic activity and growth. Of note, cancer cell metabolic rewiring is often associated with acquired sensitivity to ferroptosis. This strongly suggests that ferroptosis may act as an adaptive response to metabolic imbalance and, thus, may constitute a new promising way to eradicate malignant cells. Here, we review the current literature on the role of mitochondria in ferroptosis, and we discuss opportunities to potentially use mitochondria-mediated ferroptosis as a new strategy for cancer therapy.
Collapse
Affiliation(s)
- Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
| | - Roberta Chirillo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
| | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
| | - Alessandro Sacco
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
- Center of Interdepartmental Services (CIS), “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
- Research Centre of Biochemistry and advanced Molecular Biology, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-369-4105
| |
Collapse
|
25
|
Subramaniam S. Exaggerated mitophagy: a weapon of striatal destruction in the brain? Biochem Soc Trans 2020; 48:709-717. [PMID: 32129826 PMCID: PMC7200642 DOI: 10.1042/bst20191283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022]
Abstract
Mechanisms responsible for neuronal vulnerability in the brain remain unclear. Striatal neurons are preferentially damaged by 3-nitropropionic acid (3-NP), a mitochondrial complex-II inhibitor, causing striatal damage reminiscent of Huntington's disease (HD), but the mechanisms of the selectivity are not as well understood. We have discovered that Rhes, a protein enriched in the striatum, removes mitochondria via the mitophagy process. The process becomes intensified in the presence of 3-NP, thereby eliminating most of the mitochondria from the striatum. We put forward the hypothesis that Rhes acts as a 'mitophagy ligand' in the brain and promotes mitophagy via NIX, a mitophagy receptor. Since Rhes interacts and promotes toxicity in association with mutant huntingtin (mHTT), the genetic cause of HD, it is tempting to speculate on whether the exaggerated mitophagy may be a contributing factor to the striatal lesion found in HD. Thus, Rhes-mediated exaggerated mitophagy may act as a weapon of striatal destruction in the brain.
Collapse
Affiliation(s)
- Srinivasa Subramaniam
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, U.S.A
| |
Collapse
|
26
|
Chowen JA, Garcia-Segura LM. Microglia, neurodegeneration and loss of neuroendocrine control. Prog Neurobiol 2020; 184:101720. [PMID: 31715222 DOI: 10.1016/j.pneurobio.2019.101720] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/19/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
|
27
|
Brouillet E, Merienne K. What is gained or 'lost in translation' in Huntington's disease. Brain 2019; 142:2900-2902. [PMID: 31560061 DOI: 10.1093/brain/awz274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This scientific commentary refers to ‘Increased translation as a novel pathogenic mechanism in Huntington’s disease’, by Jordi Creus-Muncunill et al. (doi:10.1093/brain/awz230).
Collapse
Affiliation(s)
- Emmanuel Brouillet
- CEA, DRF, Institut de Biology François Jacob, Molecular Imaging Research Center (MIRCen), F Fontenay-aux-Roses, France.,CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F, Fontenay-aux-Roses, France
| | - Karine Merienne
- CNRS/Strasbourg University UMR 7364, Laboratory of Adaptive and Cognitive Neuroscience (LNCA), Strasbourg F, France
| |
Collapse
|
28
|
Mutant huntingtin disrupts mitochondrial proteostasis by interacting with TIM23. Proc Natl Acad Sci U S A 2019; 116:16593-16602. [PMID: 31346086 DOI: 10.1073/pnas.1904101116] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutant huntingtin (mHTT), the causative protein in Huntington's disease (HD), associates with the translocase of mitochondrial inner membrane 23 (TIM23) complex, resulting in inhibition of synaptic mitochondrial protein import first detected in presymptomatic HD mice. The early timing of this event suggests that it is a relevant and direct pathophysiologic consequence of mHTT expression. We show that, of the 4 TIM23 complex proteins, mHTT specifically binds to the TIM23 subunit and that full-length wild-type huntingtin (wtHTT) and mHTT reside in the mitochondrial intermembrane space. We investigated differences in mitochondrial proteome between wtHTT and mHTT cells and found numerous proteomic disparities between mHTT and wtHTT mitochondria. We validated these data by quantitative immunoblotting in striatal cell lines and human HD brain tissue. The level of soluble matrix mitochondrial proteins imported through the TIM23 complex is lower in mHTT-expressing cell lines and brain tissues of HD patients compared with controls. In mHTT-expressing cell lines, membrane-bound TIM23-imported proteins have lower intramitochondrial levels, whereas inner membrane multispan proteins that are imported via the TIM22 pathway and proteins integrated into the outer membrane generally remain unchanged. In summary, we show that, in mitochondria, huntingtin is located in the intermembrane space, that mHTT binds with high-affinity to TIM23, and that mitochondria from mHTT-expressing cells and brain tissues of HD patients have reduced levels of nuclearly encoded proteins imported through TIM23. These data demonstrate the mechanism and biological significance of mHTT-mediated inhibition of mitochondrial protein import, a mechanism likely broadly relevant to other neurodegenerative diseases.
Collapse
|
29
|
Polyzos AA, Lee DY, Datta R, Hauser M, Budworth H, Holt A, Mihalik S, Goldschmidt P, Frankel K, Trego K, Bennett MJ, Vockley J, Xu K, Gratton E, McMurray CT. Metabolic Reprogramming in Astrocytes Distinguishes Region-Specific Neuronal Susceptibility in Huntington Mice. Cell Metab 2019; 29:1258-1273.e11. [PMID: 30930170 PMCID: PMC6583797 DOI: 10.1016/j.cmet.2019.03.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/25/2018] [Accepted: 03/05/2019] [Indexed: 12/23/2022]
Abstract
The basis for region-specific neuronal toxicity in Huntington disease is unknown. Here, we show that region-specific neuronal vulnerability is a substrate-driven response in astrocytes. Glucose is low in HdhQ(150/150) animals, and astrocytes in each brain region adapt by metabolically reprogramming their mitochondria to use endogenous, non-glycolytic metabolites as an alternative fuel. Each region is characterized by distinct metabolic pools, and astrocytes adapt accordingly. The vulnerable striatum is enriched in fatty acids, and mitochondria reprogram by oxidizing them as an energy source but at the cost of escalating reactive oxygen species (ROS)-induced damage. The cerebellum is replete with amino acids, which are precursors for glucose regeneration through the pentose phosphate shunt or gluconeogenesis pathways. ROS is not elevated, and this region sustains little damage. While mhtt expression imposes disease stress throughout the brain, sensitivity or resistance arises from an adaptive stress response, which is inherently region specific. Metabolic reprogramming may have relevance to other diseases.
Collapse
Affiliation(s)
- Aris A Polyzos
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Do Yup Lee
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rupsa Datta
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Meghan Hauser
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Helen Budworth
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Amy Holt
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stephanie Mihalik
- Department of Pediatrics at Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Pike Goldschmidt
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ken Frankel
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kelly Trego
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael J Bennett
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jerry Vockley
- Department of Pediatrics at Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ke Xu
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Cynthia T McMurray
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
30
|
Petrella LI, Castelhano JM, Ribeiro M, Sereno JV, Gonçalves SI, Laço MN, Hayden MR, Rego AC, Castelo-Branco M. A whole brain longitudinal study in the YAC128 mouse model of Huntington's disease shows distinct trajectories of neurochemical, structural connectivity and volumetric changes. Hum Mol Genet 2019; 27:2125-2137. [PMID: 29668904 DOI: 10.1093/hmg/ddy119] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder causing cognitive and motor impairments, evolving to death within 15-20 years after symptom onset. We previously established a mouse model with the entire human HD gene containing 128 CAG repeats (YAC128) which accurately recapitulates the natural history of the human disease. Defined time points in this natural history enable the understanding of longitudinal trajectories from the neurochemical and structural points of view using non-invasive high-resolution multi-modal imaging. Accordingly, we designed a longitudinal structural imaging (MRI and DTI) and spectroscopy (1H-MRS) study in YAC128, at 3, 6, 9 and 12 months of age, at 9.4 T. Structural analysis (MRI/DTI), confirmed that the striatum is the earliest affected brain region, but other regions were also identified through connectivity analysis (pre-frontal cortex, hippocampus, globus pallidus and thalamus), suggesting a striking homology with the human disease. Importantly, we found for the first time, a negative correlation between striatal and hippocampal changes only in YAC128. In fact, the striatum showed accelerated volumetric decay in HD, as opposed to the hippocampus. Neurochemical analysis of the HD striatum suggested early neurometabolic alterations in neurotransmission and metabolism, with a significant increase in striatal GABA levels, and specifically anticorrelated levels of N-acetyl aspartate and taurine, suggesting that the later is homeostatically adjusted for neuroprotection, as neural loss, indicated by the former, is progressing. These results provide novel insights into the natural history of HD and prove a valuable role for longitudinal multi-modal panels of structural and metabolite/neurotransmission in the YAC128 model.
Collapse
Affiliation(s)
- Lorena I Petrella
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João M Castelhano
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mario Ribeiro
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal
| | - José V Sereno
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sónia I Gonçalves
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal.,Neuroplasticity and Neural Activity Laboratory, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Mário N Laço
- Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Michael R Hayden
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - A Cristina Rego
- Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
31
|
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by expanded polyglutamine (polyQ)-encoding repeats in the Huntingtin (HTT) gene. Traditionally, HD cellular models consisted of either patient cells not affected by disease or rodent neurons expressing expanded polyQ repeats in HTT. As these models can be limited in their disease manifestation or proper genetic context, respectively, human HD pluripotent stem cells (PSCs) are currently under investigation as a way to model disease in patient-derived neurons and other neural cell types. This chapter reviews embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) models of disease, including published differentiation paradigms for neurons and their associated phenotypes, as well as current challenges to the field such as validation of the PSCs and PSC-derived cells. Highlighted are potential future technical advances to HD PSC modeling, including transdifferentiation, complex in vitro multiorgan/system reconstruction, and personalized medicine. Using a human HD patient model of the central nervous system, hopefully one day researchers can tease out the consequences of mutant HTT (mHTT) expression on specific cell types within the brain in order to identify and test novel therapies for disease.
Collapse
|
32
|
Smatlikova P, Juhas S, Juhasova J, Suchy T, Hubalek Kalbacova M, Ellederova Z, Motlik J, Klima J. Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells in Pig Transgenic Model Expressing Human Mutant Huntingtin. J Huntingtons Dis 2018; 8:33-51. [PMID: 30584151 DOI: 10.3233/jhd-180303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although the highest expression of mutant huntingtin (mtHtt) was observed in the brain, its negative effects were also apparent in other tissues. Specifically, mtHtt impairs metabolic homeostasis and causes transcriptional dysregulation in adipose tissue. Adipogenic differentiation can be induced by the activation of two transcription factors: CCAAT/enhancer-binding protein alpha (CEBPα) and peroxisome proliferator-activated receptor gamma (PPARγ). These same transcription factors were found to be compromised in some tissues of Huntington's disease (HD) mouse models and in lymphocytes of HD patients. OBJECTIVE This study investigated the adipogenic potential of mesenchymal stem cells (MSCs) derived from transgenic Huntington's disease (TgHD) minipigs expressing human mtHtt (1-548aa) containing 124 glutamines. Two differentiation conditions were used, employing PPARγ agonist rosiglitazone or indomethacin. METHODS Bone marrow MSCs were isolated from TgHD and WT minipig siblings and compared by their cluster of differentiation using flow cytometry. Their adipogenic potential in vitro was analyzed using quantitative immunofluorescence and western blot analysis of transcription factors and adipogenic markers. RESULTS Flow cytometry analysis did not reveal any significant difference between WT and TgHD MSCs. Nevertheless, following differentiation into adipocytes, the expression of CEBPα nuclear, PPARγ and adipogenic marker FABP4/AP2 were significantly lower in TgHD cells compared to WT cells. In addition, we proved both rosiglitazone and indomethacin to be efficient for adipogenic differentiation of porcine MSCs, with rosiglitazone showing a better adipogenic profile. CONCLUSIONS We demonstrated a negative influence of mtHtt on adipogenic differentiation of porcine MSCs in vitro associated with compromised expression of adipogenic transcription factors.
Collapse
Affiliation(s)
- Petra Smatlikova
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Stefan Juhas
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Jana Juhasova
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Tomas Suchy
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Marie Hubalek Kalbacova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic; Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Zdenka Ellederova
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Jan Motlik
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Jiri Klima
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
33
|
Aganzo M, Montojo MT, López de Las Hazas MC, Martínez-Descals A, Ricote-Vila M, Sanz R, González-Peralta I, Martín-Hernández R, de Dios O, Garcés C, Galdón A, Lorenzo Ó, Tomás-Zapico C, Dávalos A, Vázquez C, González N. Customized Dietary Intervention Avoids Unintentional Weight Loss and Modulates Circulating miRNAs Footprint in Huntington's Disease. Mol Nutr Food Res 2018; 62:e1800619. [PMID: 30359470 DOI: 10.1002/mnfr.201800619] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/02/2018] [Indexed: 12/25/2022]
Abstract
SCOPE Huntington's disease (HD) is a rare progressive neurodegenerative disorder of genetic origin, with no definitive treatment. Unintentional weight loss (UWL) is a clinical feature of symptomatic HD subjects. To prevent UWL, a customized HD diet is designed and its impact on plasma miRNA HD footprint and neurological parameters is examined. METHODS AND RESULTS Eleven participants are included, BMI ≤ 18 kg m-2 or UWL of 5% in 6 months or 10% in a year. Diet design is based on nutritional surveys and interviews of participants and caregivers and on published literature review. Twelve-month dietary intervention, with follow-up every 3 months, induces high diet adherence, which manages to curb UWL in all participants (73% gained weight). Noticeable increases in fat mass and leptin levels are obtained. The results also show significant decrease in the expression of 19 miRNAs, which are previously reported to be upregulated in HD-patients versus healthy controls: revealing hsa-miR-338-3p, hsa-miR-128-3p, hsa-miR-23a-3p, and hsa-miR-24-3p as potential HD-biomarkers. The diminished expression of hsa-miR-100-5p reflects the general maintenance of the functional status. Cognitive status is improved in six of 11 participants, while only three present better motor-score values. CONCLUSION A customized HD-diet prevents UWL and modified miRNAs HD-footprint. The normalization of miRNA values suggests its potentially use as HD-biomarkers.
Collapse
Affiliation(s)
- Miguel Aganzo
- Division of Endocrinology, Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - María-Teresa Montojo
- Department of Neurology, Movement Disorders Unit, Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | | | - Marta Ricote-Vila
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), UAM, Madrid, Spain
| | - Raúl Sanz
- Centros de Estudios Genéticcos ATG Medical, Madrid, Spain
| | - Irene González-Peralta
- Centros de Estudios Genéticcos ATG Medical, Madrid, Spain.,Escuela Superior de Ciencias Experimentales y Tecnología. URJC, Madrid, Spain
| | - Roberto Martín-Hernández
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | | | | | - Alba Galdón
- Division of Endocrinology, Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - Óscar Lorenzo
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), UAM, Madrid, Spain
| | - Cristina Tomás-Zapico
- Department of Functional Biology, Physiology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Clotilde Vázquez
- Division of Endocrinology, Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - Nieves González
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), UAM, Madrid, Spain.,Centros de Estudios Genéticcos ATG Medical, Madrid, Spain.,Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
34
|
Sassone J, Papadimitriou E, Thomaidou D. Regenerative Approaches in Huntington's Disease: From Mechanistic Insights to Therapeutic Protocols. Front Neurosci 2018; 12:800. [PMID: 30450032 PMCID: PMC6224350 DOI: 10.3389/fnins.2018.00800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023] Open
Abstract
Huntington’s Disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the exon-1 of the IT15 gene encoding the protein Huntingtin. Expression of mutated Huntingtin in humans leads to dysfunction and ultimately degeneration of selected neuronal populations of the striatum and cerebral cortex. Current available HD therapy relies on drugs to treat chorea and control psychiatric symptoms, however, no therapy has been proven to slow down disease progression or prevent disease onset. Thus, although 24 years have passed since HD gene identification, HD remains a relentless progressive disease characterized by cognitive dysfunction and motor disability that leads to death of the majority of patients, on average 10–20 years after its onset. Up to now several molecular pathways have been implicated in the process of neurodegeneration involved in HD and have provided potential therapeutic targets. Based on these data, approaches currently under investigation for HD therapy aim on the one hand at getting insight into the mechanisms of disease progression in a human-based context and on the other hand at silencing mHTT expression by using antisense oligonucleotides. An innovative and still poorly investigated approach is to identify new factors that increase neurogenesis and/or induce reprogramming of endogenous neuroblasts and parenchymal astrocytes to generate new healthy neurons to replace lost ones and/or enforce neuroprotection of pre-existent striatal and cortical neurons. Here, we review studies that use human disease-in-a-dish models to recapitulate HD pathogenesis or are focused on promoting in vivo neurogenesis of endogenous striatal neuroblasts and direct neuronal reprogramming of parenchymal astrocytes, which combined with neuroprotective protocols bear the potential to re-establish brain homeostasis lost in HD.
Collapse
Affiliation(s)
- Jenny Sassone
- Vita-Salute University and San Raffaele Scientific Institute, Milan, Italy
| | | | - Dimitra Thomaidou
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
35
|
Abstract
This review systematically examines the evidence for shifts in flux through energy generating biochemical pathways in Huntington’s disease (HD) brains from humans and model systems. Compromise of the electron transport chain (ETC) appears not to be the primary or earliest metabolic change in HD pathogenesis. Rather, compromise of glucose uptake facilitates glucose flux through glycolysis and may possibly decrease flux through the pentose phosphate pathway (PPP), limiting subsequent NADPH and GSH production needed for antioxidant protection. As a result, oxidative damage to key glycolytic and tricarboxylic acid (TCA) cycle enzymes further restricts energy production so that while basal needs may be met through oxidative phosphorylation, those of excessive stimulation cannot. Energy production may also be compromised by deficits in mitochondrial biogenesis, dynamics or trafficking. Restrictions on energy production may be compensated for by glutamate oxidation and/or stimulation of fatty acid oxidation. Transcriptional dysregulation generated by mutant huntingtin also contributes to energetic disruption at specific enzymatic steps. Many of the alterations in metabolic substrates and enzymes may derive from normal regulatory feedback mechanisms and appear oscillatory. Fine temporal sequencing of the shifts in metabolic flux and transcriptional and expression changes associated with mutant huntingtin expression remain largely unexplored and may be model dependent. Differences in disease progression among HD model systems at the time of experimentation and their varying states of metabolic compensation may explain conflicting reports in the literature. Progressive shifts in metabolic flux represent homeostatic compensatory mechanisms that maintain the model organism through presymptomatic and symptomatic stages.
Collapse
Affiliation(s)
- Janet M Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
36
|
Abdalkader M, Lampinen R, Kanninen KM, Malm TM, Liddell JR. Targeting Nrf2 to Suppress Ferroptosis and Mitochondrial Dysfunction in Neurodegeneration. Front Neurosci 2018; 12:466. [PMID: 30042655 PMCID: PMC6048292 DOI: 10.3389/fnins.2018.00466] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is a newly described form of regulated cell death, distinct from apoptosis, necroptosis and other forms of cell death. Ferroptosis is induced by disruption of glutathione synthesis or inhibition of glutathione peroxidase 4, exacerbated by iron, and prevented by radical scavengers such as ferrostatin-1, liproxstatin-1, and endogenous vitamin E. Ferroptosis terminates with mitochondrial dysfunction and toxic lipid peroxidation. Although conclusive identification of ferroptosis in vivo is challenging, several salient and very well established features of neurodegenerative diseases are consistent with ferroptosis, including lipid peroxidation, mitochondrial disruption and iron dysregulation. Accordingly, interest in the role of ferroptosis in neurodegeneration is escalating and specific evidence is rapidly emerging. One aspect that has thus far received little attention is the antioxidant transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). This transcription factor regulates hundreds of genes, of which many are either directly or indirectly involved in modulating ferroptosis, including metabolism of glutathione, iron and lipids, and mitochondrial function. This potentially positions Nrf2 as a key deterministic component modulating the onset and outcomes of ferroptotic stress. The minimal direct evidence currently available is consistent with this and indicates that Nrf2 may be critical for protection against ferroptosis. In contrast, abundant evidence demonstrates that enhancing Nrf2 signaling is potently neuroprotective in models of neurodegeneration, although the exact mechanism by which this is achieved is unclear. Further studies are required to determine to extent to which the neuroprotective effects of Nrf2 activation involve the prevention of ferroptosis.
Collapse
Affiliation(s)
- Moataz Abdalkader
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riikka Lampinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja M Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jeffrey R Liddell
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
37
|
Faber I, Martinez ARM, de Rezende TJR, Martins CR, Martins MP, Lourenço CM, Marques W, Montecchiani C, Orlacchio A, Pedroso JL, Barsottini OGP, Lopes-Cendes Í, França MC. SPG11 mutations cause widespread white matter and basal ganglia abnormalities, but restricted cortical damage. Neuroimage Clin 2018; 19:848-857. [PMID: 29946510 PMCID: PMC6008284 DOI: 10.1016/j.nicl.2018.05.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
SPG11 mutations are the major cause of autosomal recessive Hereditary Spastic Paraplegia. The disease has a wide phenotypic variability indicating many regions of the nervous system besides the corticospinal tract are affected. Despite this, anatomical and phenotypic characterization is restricted. In the present study, we investigate the anatomical abnormalities related to SPG11 mutations and how they relate to clinical and cognitive measures. Moreover, we aim to depict how the disease course influences the regions affected, unraveling different susceptibility of specific neuronal populations. We performed clinical and paraclinical studies encompassing neuropsychological, neuroimaging, and neurophysiological tools in a cohort of twenty-five patients and age matched controls. We assessed cortical thickness (FreeSurfer software), deep grey matter volumes (T1-MultiAtlas tool), white matter microstructural damage (DTI-MultiAtlas) and spinal cord morphometry (Spineseg software) on a 3 T MRI scan. Mean age and disease duration were 29 and 13.2 years respectively. Sixty-four percent of the patients were wheelchair bound while 84% were demented. We were able to unfold a diffuse pattern of white matter integrity loss as well as basal ganglia and spinal cord atrophy. Such findings contrasted with a restricted pattern of cortical thinning (motor, limbic and parietal cortices). Electromyography revealed motor neuronopathy affecting 96% of the probands. Correlations with disease duration pointed towards a progressive degeneration of multiple grey matter structures and spinal cord, but not of the white matter. SPG11-related hereditary spastic paraplegia is characterized by selective neuronal vulnerability, in which a precocious and widespread white matter involvement is later followed by a restricted but clearly progressive grey matter degeneration.
Collapse
Key Words
- ACE-R, Addenbrooke's Cognitive Examination Revised
- ALS, amyotrophic lateral sclerosis
- CA, cord area
- CE, cord eccentricity
- CMAP, compound muscle action potential
- CST, corticospinal tract
- Complicated hereditary spastic paraplegia
- DTI, diffusion tensor imaging
- FA, fractional anisotropy
- GM, grey matter
- Grey matter
- HSP, hereditary spastic paraplegia
- LH, left hemisphere
- MD, mean diffusivity
- MOCA, Montreal cognitive assessment
- Motor neuron disorder
- NPI, neuropsychiatric inventory
- PNP, sensory-motor polyneuropathy
- PNS, peripheral nervous system
- RH, right hemisphere
- ROI, region of interest
- SC, spinal cord
- SNAP, sensory nerve action potential
- SPG11
- SPRS, Spastic Paraplegia Rating Scale
- STS, cortex adjacent to the superior temporal sulcus
- Spinal cord
- Thinning of the corpus callosum
- WES, whole exome sequencing
- WM, white matter
- White matter
Collapse
Affiliation(s)
- Ingrid Faber
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | | | | | | | - Wilson Marques
- Department of Neurology, University of São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Celeste Montecchiani
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Scienze Chirurgiche e Biomediche, Università di Perugia, Perugia, Italy
| | - Jose Luiz Pedroso
- Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Íscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
38
|
Blum D, Chern Y, Domenici MR, Buée L, Lin CY, Rea W, Ferré S, Popoli P. The Role of Adenosine Tone and Adenosine Receptors in Huntington's Disease. J Caffeine Adenosine Res 2018; 8:43-58. [PMID: 30023989 PMCID: PMC6049521 DOI: 10.1089/caff.2018.0006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by a mutation in the IT15 gene that encodes for the huntingtin protein. Mutated hungtingtin, although widely expressed in the brain, predominantly affects striato-pallidal neurons, particularly enriched with adenosine A2A receptors (A2AR), suggesting a possible involvement of adenosine and A2AR is the pathogenesis of HD. In fact, polymorphic variation in the ADORA2A gene influences the age at onset in HD, and A2AR dynamics is altered by mutated huntingtin. Basal levels of adenosine and adenosine receptors are involved in many processes critical for neuronal function and homeostasis, including modulation of synaptic activity and excitotoxicity, the control of neurotrophin levels and functions, and the regulation of protein degradation mechanisms. In the present review, we critically analyze the current literature involving the effect of altered adenosine tone and adenosine receptors in HD and discuss why therapeutics that modulate the adenosine system may represent a novel approach for the treatment of HD.
Collapse
Affiliation(s)
- David Blum
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, Lille, France
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Maria Rosaria Domenici
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, Lille, France
| | - Chien-Yu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Patrizia Popoli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
39
|
Bachs O, Gallastegui E, Orlando S, Bigas A, Morante-Redolat JM, Serratosa J, Fariñas I, Aligué R, Pujol MJ. Role of p27 Kip1 as a transcriptional regulator. Oncotarget 2018; 9:26259-26278. [PMID: 29899857 PMCID: PMC5995243 DOI: 10.18632/oncotarget.25447] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
The protein p27Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors. It interacts with both the catalytic and the regulatory subunit (cyclin) and introduces a region into the catalytic cleave of the Cdk inducing its inactivation. Its inhibitory capacity can be modulated by specific tyrosine phosphorylations. p27Kip1 also behaves as a transcriptional regulator. It associates with specific chromatin domains through different transcription factors. ChIP on chip, ChIP-seq and expression microarray analysis allowed the identification of the transcriptional programs regulated by p27Kip1. Thus, important cellular functions as cell division cycle, respiration, RNA processing, translation and cell adhesion, are under p27Kip1 regulation. Moreover, genes involved in pathologies as cancer and neurodegeneration are also regulated by p27Kip1, suggesting its implication in these pathologies. The carboxyl moiety of p27Kip1 can associate with different proteins, including transcriptional regulators. In contrast, its NH2-terminal region specifically interacts with cyclin-Cdk complexes. The general mechanistic model of how p27Kip1 regulates transcription is that it associates by its COOH region to the transcriptional regulators on the chromatin and by the NH2-domain to cyclin-Cdk complexes. After Cdk activation it would phosphorylate the specific targets on the chromatin leading to gene expression. This model has been demonstrated to apply in the transcriptional regulation of p130/E2F4 repressed genes involved in cell cycle progression. We summarize in this review our current knowledge on the role of p27Kip1 in the regulation of transcription, on the transcriptional programs under its regulation and on its relevance in pathologies as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Oriol Bachs
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Edurne Gallastegui
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Serena Orlando
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
| | - José Manuel Morante-Redolat
- Departamento de Biología Celular, Biología Funcional y Antropología Física and ERI de Biotecnología y Biomedicina, CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Joan Serratosa
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Barcelona, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física and ERI de Biotecnología y Biomedicina, CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Rosa Aligué
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Maria Jesús Pujol
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| |
Collapse
|
40
|
Adanyeguh IM, Monin ML, Rinaldi D, Freeman L, Durr A, Lehéricy S, Henry PG, Mochel F. Expanded neurochemical profile in the early stage of Huntington disease using proton magnetic resonance spectroscopy. NMR IN BIOMEDICINE 2018; 31:10.1002/nbm.3880. [PMID: 29315899 PMCID: PMC5841244 DOI: 10.1002/nbm.3880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
The striatum is a well-known region affected in Huntington disease (HD). However, other regions, including the visual cortex, are implicated. We have identified previously an abnormal energy response in the visual cortex of patients at an early stage of HD using 31 P magnetic resonance spectroscopy (31 P MRS). We therefore sought to further characterize these metabolic alterations with 1 H MRS using a well-validated semi-localized by adiabatic selective refocusing (semi-LASER) sequence that allows the measurement of an expanded number of neurometabolites. Ten early affected patients [Unified Huntington Disease Rating Scale (UHDRS), total motor score = 13.6 ± 10.8] and 10 healthy volunteers of similar age and body mass index (BMI) were recruited for the study. We performed 1 H MRS in the striatum - the region that is primarily affected in HD - and the visual cortex. The protocol allowed a reliable quantification of 10 metabolites in the visual cortex and eight in the striatum, compared with three to five metabolites in previous 1 H MRS studies performed in HD. We identified higher total creatine (p < 0.05) in the visual cortex and lower glutamate (p < 0.001) and total creatine (p < 0.05) in the striatum of patients with HD compared with controls. Less abundant neurometabolites [glutamine, γ-aminobutyric acid (GABA), glutathione, aspartate] showed similar concentrations in both groups. The protocol allowed the measurement of several additional metabolites compared with standard vendor protocols. Our study points to early changes in metabolites involved in energy metabolism in the visual cortex and striatum of patients with HD. Decreased striatal glutamate could reflect early neuronal dysfunction or impaired glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Isaac M. Adanyeguh
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Marie-Lorraine Monin
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
- AP-HP, Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France
| | - Daisy Rinaldi
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Léorah Freeman
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, Unites States
| | - Alexandra Durr
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
- AP-HP, Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France
| | - Stéphane Lehéricy
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
- Center for NeuroImaging Research (CENIR), Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Fanny Mochel
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
- AP-HP, Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France
- University Pierre and Marie Curie, Neurometabolic Research Group, Paris, France
| |
Collapse
|
41
|
Huang M, Verbeek DS. Why do so many genetic insults lead to Purkinje Cell degeneration and spinocerebellar ataxia? Neurosci Lett 2018; 688:49-57. [PMID: 29421540 DOI: 10.1016/j.neulet.2018.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
The genetically heterozygous spinocerebellar ataxias are all characterized by cerebellar atrophy and pervasive Purkinje Cell degeneration. Up to date, more than 35 functionally diverse spinocerebellar ataxia genes have been identified. The main question that remains yet unsolved is why do some many genetic insults lead to Purkinje Cell degeneration and spinocerebellar ataxia? To address this question it is important to identify intrinsic pathways important for Purkinje Cell function and survival. In this review, we discuss the current consensus on shared mechanisms underlying the pervasive Purkinje Cell loss in spinocerebellar ataxia. Additionally, using recently published cell type specific expression data, we identified several Purkinje Cell-specific genes and discuss how the corresponding pathways might underlie the vulnerability of Purkinje Cells in response to the diverse genetic insults causing spinocerebellar ataxia.
Collapse
Affiliation(s)
- Miaozhen Huang
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Dineke S Verbeek
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
| |
Collapse
|
42
|
Zhang X, Wan JQ, Tong XP. Potassium channel dysfunction in neurons and astrocytes in Huntington's disease. CNS Neurosci Ther 2018; 24:311-318. [PMID: 29377621 DOI: 10.1111/cns.12804] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/24/2017] [Accepted: 12/25/2017] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease (HD) is a late-onset fatal neurodegenerative disease, characterized by progressive movement disorders, psychiatric symptoms, and cognitive impairment. The cytosine-adenine-guanine (CAG) triplet expansion encoding glutamine present in the protein huntingtin (Htt), produces widespread neuronal and glial pathology. Mutant huntingtin (mHtt) nuclear aggregates are the primary cause of cortical and striatal neuron degeneration, neuronal inflammation, apoptosis and eventual cell loss. The precise mechanisms underlying the pathogenesis of neurodegeneration in HD remain poorly understood and HD patients have no current cure. Potassium channels are widely expressed in most cell types. In neurons, they play a crucial role in setting the resting membrane potential, mediating the rapid repolarization phase of the action potential and controlling sub-threshold oscillations of membrane potentials. In glial cells, their major contributions are maintaining the resting membrane potential and buffering extracellular K+ . Thus, potassium channels have an essential function in both physiological and pathological brain conditions. This review summarizes recent progress on potassium channels involved in the pathology of HD by using different HD mouse models. Exploring the dysfunction of potassium channels in the brain illustrates new approaches for targeting this channel for the treatment of HD.
Collapse
Affiliation(s)
- Xiao Zhang
- Discipline of Neuroscience and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Qing Wan
- Department of Neurological Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Tong
- Discipline of Neuroscience and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B. Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas. Cell Mol Life Sci 2017; 74:3863-3881. [PMID: 28864909 PMCID: PMC11107735 DOI: 10.1007/s00018-017-2609-7] [Citation(s) in RCA: 357] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 01/27/2023]
Abstract
Melatonin is an ancient antioxidant. After its initial development in bacteria, it has been retained throughout evolution such that it may be or may have been present in every species that have existed. Even though it has been maintained throughout evolution during the diversification of species, melatonin's chemical structure has never changed; thus, the melatonin present in currently living humans is identical to that present in cyanobacteria that have existed on Earth for billions of years. Melatonin in the systemic circulation of mammals quickly disappears from the blood presumably due to its uptake by cells, particularly when they are under high oxidative stress conditions. The measurement of the subcellular distribution of melatonin has shown that the concentration of this indole in the mitochondria greatly exceeds that in the blood. Melatonin presumably enters mitochondria through oligopeptide transporters, PEPT1, and PEPT2. Thus, melatonin is specifically targeted to the mitochondria where it seems to function as an apex antioxidant. In addition to being taken up from the circulation, melatonin may be produced in the mitochondria as well. During evolution, mitochondria likely originated when melatonin-forming bacteria were engulfed as food by ancestral prokaryotes. Over time, engulfed bacteria evolved into mitochondria; this is known as the endosymbiotic theory of the origin of mitochondria. When they did so, the mitochondria retained the ability to synthesize melatonin. Thus, melatonin is not only taken up by mitochondria but these organelles, in addition to many other functions, also probably produce melatonin as well. Melatonin's high concentrations and multiple actions as an antioxidant provide potent antioxidant protection to these organelles which are exposed to abundant free radicals.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Del Instituto Mexicana del Seguro Social, 44340, Guadalajara, Mexico
| | - Dun Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Mei Jie Jou
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyüan, Taiwan
- Department of Neurology, Kee-Lung Medical Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Annia Galano
- Departemento de Quimica, Uninversidad Autonoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Bing Xu
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
44
|
Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2525967. [PMID: 28785371 PMCID: PMC5529664 DOI: 10.1155/2017/2525967] [Citation(s) in RCA: 470] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023]
Abstract
Increasing numbers of individuals, particularly the elderly, suffer from neurodegenerative disorders. These diseases are normally characterized by progressive loss of neuron cells and compromised motor or cognitive function. Previous studies have proposed that the overproduction of reactive oxygen species (ROS) may have complex roles in promoting the disease development. Research has shown that neuron cells are particularly vulnerable to oxidative damage due to their high polyunsaturated fatty acid content in membranes, high oxygen consumption, and weak antioxidant defense. However, the exact molecular pathogenesis of neurodegeneration related to the disturbance of redox balance remains unclear. Novel antioxidants have shown great potential in mediating disease phenotypes and could be an area of interest for further research. In this review, we provide an updated discussion on the roles of ROS in the pathological mechanisms of Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia, as well as a highlight on the antioxidant-based therapies for alleviating disease severity.
Collapse
|
45
|
Salvatori I, Valle C, Ferri A, Carrì MT. SIRT3 and mitochondrial metabolism in neurodegenerative diseases. Neurochem Int 2017; 109:184-192. [PMID: 28449871 DOI: 10.1016/j.neuint.2017.04.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/12/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023]
Abstract
The NAD+-dependent deacetylase protein Sirtuin 3 (SIRT3) is emerging among the factors playing a key role in the regulation of mitochondrial function and in the prevention of oxidative stress. This deacetylase activates protein substrates directly involved in the production and detoxification of ROS, such as superoxide dismutase 2 and catalase, but also enzymes in the lipid beta-oxidation pathway. In this paper we review existing evidence on the role of SIRT3 in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington disease, including data from new experiments in a model for amyotrophic lateral sclerosis linked to mutations in superoxide dismutase 1. Specifically, we report that expression of the mitochondrial isoform of SIRT3 is altered in muscle from the G93A-SOD1 mice during progression of disease; this alteration influences mitochondrial metabolism, which may be relevant for the well known energetic alterations taking place in ALS patients. These data reinforce the concept that SIRT3 may be a relevant therapeutic target is ALS as well as in other neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Cristiana Valle
- Fondazione Santa Lucia IRCCS, Rome, Italy; Institute for Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Alberto Ferri
- Fondazione Santa Lucia IRCCS, Rome, Italy; Institute for Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Maria Teresa Carrì
- Fondazione Santa Lucia IRCCS, Rome, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
46
|
Aldana BI, Waagepetersen HS, Schousboe A, White HS, Bulaj G, Walls AB. The novel anticonvulsant neuropeptide and galanin analogue, NAX-5055, does not alter energy and amino acid metabolism in cultured brain cells. J Neurosci Res 2017; 95:2286-2296. [PMID: 28397993 DOI: 10.1002/jnr.24057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/08/2017] [Accepted: 03/05/2017] [Indexed: 11/09/2022]
Abstract
A large body of evidence suggests that the neuropeptide galanin plays an important role in seizure control. In line with this, it was demonstrated that the galanin analogue, NAX-5055, exerts a potent anticonvulsant activity in animal seizure models. We recently found that the NAX-5055-mediated anticonvulsant action involves modulation of both excitatory and inhibitory neurotransmission. Since homeostasis of neurotransmitters and cerebral energy metabolism are intimately linked, it was investigated whether the effects of NAX-5055 on neurotransmission involve changes in energy metabolism and in particular glucose- and amino acid metabolism. With this aim, cultured neurons from mouse brain were incubated with [U-13 C]glucose in absence or presence of NAX-5055. Since effects of NAX-5055 on neurotransmission were detected during repetitive stimulation, we tested potential metabolic effects while mimicking repetitive bursts of neurotransmitter release as occurring in the intact brain. The metabolic pathways were mapped using gas-chromatography coupled to mass-spectrometry. We found that NAX-5055 does not modify glucose metabolism in glutamatergic and GABAergic neurons. Furthermore, the effect of NAX-5055 on astrocyte-neuron metabolic interactions was investigated by incubating co-cultures of astrocytes and either glutamatergic or GABAergic neurons with [U-13 C]glucose or the glial-selective substrate [1,2-13 C]acetate, with or without NAX-5055. In the presence of NAX-5055, no changes in the metabolic landscape were traced. The findings suggest that the anticonvulsant action of NAX-5055 and the accompanying changes in neurotransmission do not involve alterations in energy and amino acid metabolism. Hence, NAX-5055 appears to be an anti-seizure drug candidate displaying no unwanted side effects concerning brain energy and amino acid homeostasis. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - H Steve White
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA.,Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Grzegorz Bulaj
- University of Utah, Department of Medicinal Chemistry, College of Pharmacy, Salt Lake City, Utah, USA
| | - Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Dupont AC, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Tronel C, Arlicot N. Translocator Protein-18 kDa (TSPO) Positron Emission Tomography (PET) Imaging and Its Clinical Impact in Neurodegenerative Diseases. Int J Mol Sci 2017; 18:ijms18040785. [PMID: 28387722 PMCID: PMC5412369 DOI: 10.3390/ijms18040785] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
In vivo exploration of activated microglia in neurodegenerative diseases is achievable by Positron Emission Tomography (PET) imaging, using dedicated radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO). In this review, we emphasized the major advances made over the last 20 years, thanks to TSPO PET imaging, to define the pathophysiological implication of microglia activation and neuroinflammation in neurodegenerative diseases, including Parkinson’s disease, Huntington’s disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. The extent and upregulation of TSPO as a molecular biomarker of activated microglia in the human brain is now widely documented in these pathologies, but its significance, and especially its protective or deleterious action regarding the disease’s stage, remains under debate. Thus, we exposed new and plausible suggestions to enhance the contribution of TSPO PET imaging for biomedical research by exploring microglia’s role and interactions with other cells in brain parenchyma. Multiplex approaches, associating TSPO PET radiopharmaceuticals with other biomarkers (PET imaging of cellular metabolism, neurotransmission or abnormal protein aggregates, but also other imaging modalities, and peripheral cytokine levels measurement and/or metabolomics analysis) was considered. Finally, the actual clinical impact of TSPO PET imaging as a routine biomarker of neuroinflammation was put into perspective regarding the current development of diagnostic and therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne-Claire Dupont
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | | | - Maria Joao Santiago Ribeiro
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Denis Guilloteau
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Claire Tronel
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Nicolas Arlicot
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| |
Collapse
|
48
|
Misery loves company - shared features of neurodegenerative disorders. Biochem Biophys Res Commun 2017; 483:979-980. [PMID: 28189152 DOI: 10.1016/j.bbrc.2017.01.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|