1
|
Lin K, Xu K, Chen Y, Lu Y, Zhou M, Cao F. Homocysteine S-Methyltransferase 3 Positively Regulates Cadmium Tolerance in Maize. PLANT, CELL & ENVIRONMENT 2025; 48:1705-1716. [PMID: 39483059 DOI: 10.1111/pce.15244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The increasing contamination of agricultural soils with cadmium (Cd) poses a significant threat to human health and global food security. Plants initiate a series of mechanisms to reduce Cd toxicity. However, the response of maize to Cd toxicity remains poorly understood. In this study, we identified that ZmHMT3, which encodes a homocysteine S-methyltransferases family protein, acted as a regulator of Cd tolerance in maize. Subcellular localization and in situ PCR exhibited that ZmHMT3 was localized in the cytoplasm and predominantly expressed in the phloem. Overexpression of ZmHMT3 enhanced Cd tolerance and reduced Cd concentration in both shoots and roots. In contrast, ZmHMT3 mutants attenuated Cd tolerance but did not change shoot Cd concentration. Heterologous overexpression of ZmHMT3 in rice enhanced Cd tolerance and reduced grain Cd concentration. Transcriptome analysis revealed that ZmHMT3 upregulated the expression of stress-responsive genes, especially glutathione S-transferases (GSTs) and transcription factors, including MYBs, NACs and WRKYs, and modulates the expression of different ATP-binding cassette (ABC) transporters, thereby enhancing Cd tolerance. Collectively, these findings highlight the pivotal role of ZmHMT3 in Cd tolerance and as a candidate gene for improving Cd tolerance in elite maize varieties.
Collapse
Affiliation(s)
- Kaina Lin
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Kewen Xu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yiqing Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yifan Lu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, Australia
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Huang Y, Sun Z, Zhou X. WRKY Transcription Factors in Response to Metal Stress in Plants: A Review. Int J Mol Sci 2024; 25:10952. [PMID: 39456735 PMCID: PMC11506853 DOI: 10.3390/ijms252010952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Heavy metals in soil can inflict direct damage on plants growing within it, adversely affecting their growth height, root development, leaf area, and other physiological traits. To counteract the toxic impacts of heavy metals on plant growth and development, plants mitigate heavy metal stress through mechanisms such as metal chelation, vacuolar compartmentalization, regulation of transporters, and enhancement of antioxidant functions. WRKY transcription factors (TFs) play a crucial role in plant growth and development as well as in responses to both biotic and abiotic stresses; notably, heavy metal stress is classified as an abiotic stressor. An increasing number of studies have highlighted the significant role of WRKY proteins in regulating heavy metal stress across various levels. Upon the entry of heavy metal ions into plant root cells, the production of reactive oxygen species (ROS) is triggered, leading to the phosphorylation and activation of WRKY TFs through MAPK cascade signaling. Activated WRKY TFs then modulate various physiological processes by upregulating or downregulating the expression of downstream genes to confer heavy metal tolerance to plants. This review provides an overview of the research advancements regarding WRKY TFs in regulating heavy metal ion stress-including cadmium (Cd), arsenic (As), copper (Cu)-and aluminum (Al) toxicity.
Collapse
Affiliation(s)
| | | | - Xiangui Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Y.H.); (Z.S.)
| |
Collapse
|
3
|
Ndlovu N, Gowda M, Beyene Y, Das B, Mahabaleswara SL, Makumbi D, Ogugo V, Burgueno J, Crossa J, Spillane C, McKeown PC, Brychkova G, Prasanna BM. A combination of joint linkage and genome-wide association study reveals putative candidate genes associated with resistance to northern corn leaf blight in tropical maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1448961. [PMID: 39421144 PMCID: PMC11484028 DOI: 10.3389/fpls.2024.1448961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
Northern corn leaf blight (NCLB), caused by Setosphaeria turcica, is a major fungal disease affecting maize production in sub-Saharan Africa. Utilizing host plant resistance to mitigate yield losses associated with NCLB can serve as a cost-effective strategy. In this study, we conducted a high-resolution genome-wide association study (GWAS) in an association mapping panel and linkage mapping with three doubled haploid (DH) and three F3 populations of tropical maize. These populations were phenotyped for NCLB resistance across six hotspot environments in Kenya. Across environments and genotypes, NCLB scores ranged from 2.12 to 5.17 (on a scale of 1-9). NCLB disease severity scores exhibited significant genotypic variance and moderate-to-high heritability. From the six biparental populations, 23 quantitative trait loci (QTLs) were identified, each explaining between 2.7% and 15.8% of the observed phenotypic variance. Collectively, the detected QTLs explained 34.28%, 51.37%, 41.12%, 12.46%, 12.11%, and 14.66% of the total phenotypic variance in DH populations 1, 2, and 3 and F3 populations 4, 5, and 6, respectively. GWAS, using 337,110 high-quality single nucleotide polymorphisms (SNPs), identified 15 marker-trait associations and several putative candidate genes linked to NCLB resistance in maize. Joint linkage association mapping (JLAM) identified 37 QTLs for NCLB resistance. Using linkage mapping, JLAM, and GWAS, several QTLs were identified within the genomic region spanning 4 to 15 Mbp on chromosome 2. This genomic region represents a promising target for enhancing NCLB resistance via marker-assisted breeding. Genome-wide predictions revealed moderate correlations with mean values of 0.45, 0.44, 0.55, and 0.42 for within GWAS panel, DH pop1, DH pop2, and DH pop3, respectively. Prediction by incorporating marker-by-environment interactions did not show much improvement. Overall, our findings indicate that NCLB resistance is quantitative in nature and is controlled by few major-effect and many minor-effect QTLs. We conclude that genomic regions consistently detected across mapping approaches and populations should be prioritized for improving NCLB resistance, while genome-wide prediction results can help incorporate both major- and minor-effect genes. This study contributes to a deeper understanding of the genetic and molecular mechanisms driving maize resistance to NCLB.
Collapse
Affiliation(s)
- Noel Ndlovu
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
- Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | - Manje Gowda
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Yoseph Beyene
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Biswanath Das
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Suresh L. Mahabaleswara
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Dan Makumbi
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Veronica Ogugo
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Juan Burgueno
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado. de México, Mexico
| | - Jose Crossa
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado. de México, Mexico
| | - Charles Spillane
- Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | - Peter C. McKeown
- Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | - Galina Brychkova
- Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | - Boddupalli M. Prasanna
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| |
Collapse
|
4
|
Luo P, Wu J, Li TT, Shi P, Ma Q, Di DW. An Overview of the Mechanisms through Which Plants Regulate ROS Homeostasis under Cadmium Stress. Antioxidants (Basel) 2024; 13:1174. [PMID: 39456428 PMCID: PMC11505430 DOI: 10.3390/antiox13101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Cadmium (Cd2+) is a non-essential and highly toxic element to all organic life forms, including plants and humans. In response to Cd stress, plants have evolved multiple protective mechanisms, such as Cd2+ chelation, vesicle sequestration, the regulation of Cd2+ uptake, and enhanced antioxidant defenses. When Cd2+ accumulates in plants to a certain level, it triggers a burst of reactive oxygen species (ROS), leading to chlorosis, growth retardation, and potentially death. To counteract this, plants utilize a complex network of enzymatic and non-enzymatic antioxidant systems to manage ROS and protect cells from oxidative damage. This review systematically summarizes how various elements, including nitrogen, phosphorus, calcium, iron, and zinc, as well as phytohormones such as abscisic acid, auxin, brassinosteroids, and ethylene, and signaling molecules like nitric oxide, hydrogen peroxide, and hydrogen sulfide, regulate the antioxidant system under Cd stress. Furthermore, it explores the mechanisms by which exogenous regulators can enhance the antioxidant capacity and mitigate Cd toxicity.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jingjing Wu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Peihua Shi
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| |
Collapse
|
5
|
Wu X, Yan J, Qin M, Li R, Jia T, Liu Z, Ahmad P, El-Sheikh MA, Yadav KK, Rodríguez-Díaz JM, Zhang L, Liu P. Comprehensive transcriptome, physiological and biochemical analyses reveal that key role of transcription factor WRKY and plant hormone in responding cadmium stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121979. [PMID: 39088904 DOI: 10.1016/j.jenvman.2024.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
Cadmium (Cd) is readily absorbed by tobacco and accumulates in the human body through smoke inhalation, posing threat to human health. While there have been many studies on the negative impact of cadmium in tobacco on human health, the specific adaptive mechanism of tobacco roots to cadmium stress is not well understood. In order to comprehensively investigate the effects of Cd stress on the root system of tobacco, the combination of transcriptomic, biochemical, and physiological methods was utilized. In this study, tobacco growth was significantly inhibited by 50 μM of Cd, which was mainly attributed to the destruction of root cellular structure. By comparing the transcriptome between CK and Cd treatment, there were 3232 up-regulated deferentially expressed genes (DEGs) and 3278 down-regulated DEGs. The obvious differential expression of genes related to the nitrogen metabolism, metal transporters and the transcription factors families. In order to mitigate the harmful effects of Cd, the root system enhances Cd accumulation in the cell wall, thereby reducing the Cd content in the cytoplasm. This result may be mediated by plant hormones and transcription factor (TF). Correlational statistical analysis revealed significant negative correlations between IAA and GA with cadmium accumulation, indicated by correlation coefficients of -0.91 and -0.93, respectively. Conversely, ABA exhibited a positive correlation with a coefficient of 0.96. In addition, it was anticipated that 3 WRKY TFs would lead to a reduction in Cd accumulation. Our research provides a theoretical basis for the systematic study of the specific physiological processes of plant roots under Cd stress.
Collapse
Affiliation(s)
- Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Tao Jia
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama-192301, Jammu and Kashmir, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China.
| |
Collapse
|
6
|
Kaushik S, Ranjan A, Sidhu A, Singh AK, Sirhindi G. Cadmium toxicity: its' uptake and retaliation by plant defence system and ja signaling. Biometals 2024; 37:755-772. [PMID: 38206521 DOI: 10.1007/s10534-023-00569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Cadmium (Cd+2) renders multifarious environmental stresses and highly toxic to nearly all living organisms including plants. Cd causes toxicity by unnecessary augmentation of ROS that targets essential molecules and fundamental processes in plants. In response, plants outfitted a repertory of mechanisms to offset Cd toxicity. The main elements of these are Cd chelation, sequestration into vacuoles, and adjustment of Cd uptake by transporters and escalation of antioxidative mechanism. Signal molecules like phytohormones and reactive oxygen species (ROS) activate the MAPK cascade, the activation of the antioxidant system andsynergistic crosstalk between different signal molecules in order to regulate plant responses to Cd toxicity. Transcription factors like WRKY, MYB, bHLH, bZIP, ERF, NAC etc., located downstream of MAPK, and are key factors in regulating Cd toxicity responses in plants. Apart from this, MAPK and Ca2+signaling also have a salient involvement in rectifying Cd stress in plants. This review highlighted the mechanism of Cd uptake, translocation, detoxification and the key role of defense system, MAPKs, Ca2+ signals and jasmonic acid in retaliating Cd toxicity via synchronous management of various other regulators and signaling components involved under stress condition.
Collapse
Affiliation(s)
- Shruti Kaushik
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Alok Ranjan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biotechnology, Patna Women's College, Bihar, 800001, India
| | - Anmol Sidhu
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
7
|
Zhang X, Yang M, Yang H, Pian R, Wang J, Wu AM. The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects. Cells 2024; 13:907. [PMID: 38891039 PMCID: PMC11172145 DOI: 10.3390/cells13110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Man Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| |
Collapse
|
8
|
Jia W, Guo Z, Lv S, Lin K, Li Y. SbYS1 and SbWRKY72 regulate Cd tolerance and accumulation in sweet sorghum. PLANTA 2024; 259:100. [PMID: 38536457 DOI: 10.1007/s00425-024-04388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 04/24/2024]
Abstract
MAIN CONCLUSION SbYS1 and its upstream transcription factor SbWRKY72 were involved in Cd tolerance and accumulation and are valuable for developing sweet sorghum germplasm with high-Cd tolerance or accumulation ability through genetic manipulation. Cadmium (Cd) is highly toxic and can severely affect human health. Sweet sorghum, as an energy crop, shows great potential in extracting cadmium from Cd-contaminated soils. However, its molecular mechanisms of Cd-tolerance and -accumulation remain largely unknown. Here, we isolated a YSL family gene SbYS1 from the sweet sorghum genotype with high Cd accumulation ability and the expression of SbYS1 in roots was induced by cadmium. GUS staining experiment exhibited that SbYS1 was expressed in the epidermis and parenchyma tissues of roots. Further subcellular localization analysis suggested that SbYS1 was localized in the endoplasmic reticulum and plasma membrane. Yeast transformed with SbYS1 exhibited a sensitive phenotype compared to the control when exposed to Cd-NA (chelates of cadmium and nicotianamine), indicating that SbYS1 may absorb cadmium in the form of Cd-NA. Arabidopsis overexpressing SbYS1 had a longer root length and accumulated less Cd in roots and shoots. SbWRKY72 bound to the promoter of SbYS1 and negatively regulated the expression of SbYS1. Transgenic Arabidopsis of SbWRKY72 showed higher sensitivity to cadmium and increased cadmium accumulation in roots. Our results provide references for improving the phytoremediation efficiency of sweet sorghum by genetic manipulation in the future.
Collapse
Affiliation(s)
- Weitao Jia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 401122, China
| | - Zijing Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, China
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
9
|
Li F, Deng Y, Liu Y, Mai C, Xu Y, Wu J, Zheng X, Liang C, Wang J. Arabidopsis transcription factor WRKY45 confers cadmium tolerance via activating PCS1 and PCS2 expression. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132496. [PMID: 37703737 DOI: 10.1016/j.jhazmat.2023.132496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Cadmium (Cd) has long been recognized as toxic pollutant to crops worldwide. The biosynthesis of glutathione-dependent phytochelatin (PC) plays crucial roles in the detoxification of Cd in plants. However, its regulatory mechanism remains elusive. Here, we revealed that Arabidopsis transcription factor WRKY45 confers Cd tolerance via promoting the expression of PC synthesis-related genes PCS1 and PCS2, respectively. Firstly, we found that Cd stress induces the transcript levels of WRKY45 and its protein abundance. Accordingly, in contrast to wild type Col-0, the increased sensitivity to Cd is observed in wrky45 mutant, while overexpressing WRKY45 plants are more tolerant to Cd. Secondly, quantitative real-time PCR revealed that the expression of AtPCS1 and AtPCS2 is stimulated in overexpressing WRKY45 plants, but decreased in wrky45 mutant. Thirdly, WRKY45 promotes the expression of PCS1 and PCS2, electrophoresis mobility shift assay analysis uncovered that WRKY45 directly binds to the W-box cis-element of PCS2 promoter. Lastly, the overexpression of WRKY45 in Col-0 leads to more accumulation of PCs in Arabidopsis, and the overexpression of PCS1 or PCS2 in wrky45 mutant plants rescues the phenotypes induced by Cd stress. In conclusion, our results show that AtWRKY45 positively regulates Cd tolerance in Arabidopsis via activating PCS1 and PCS2 expression.
Collapse
Affiliation(s)
- Fangjian Li
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yaru Deng
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan Liu
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Cuishan Mai
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yun Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiarui Wu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xinni Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Cuiyue Liang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agricultural and Rural pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
10
|
Gu L, Chen X, Hou Y, Wang H, Wang H, Zhu B, Du X. ZmWRKY70 activates the expression of hypoxic responsive genes in maize and enhances tolerance to submergence in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107861. [PMID: 37364509 DOI: 10.1016/j.plaphy.2023.107861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/29/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Hypoxic stress due to submergence is a serious threat to the growth and development of maize. WRKY transcription factors are significant regulators of plant responses to various abiotic and biotic stresses. Nevertheless, their function and regulatory mechanisms in the resistance of maize to submergence stress remain unclear. Here we report the cloning of a maize WRKY transcription factor gene, ZmWRKY70, transcripts of which accumulate under submergence stress in maize seedlings. Subcellular localization analysis and yeast transcriptional activation assay indicated that ZmWRKY70 was localized in the nucleus and had transcriptional activation activity. Heterologous overexpression of ZmWRKY70 in Arabidopsis increased the tolerance of seeds and seedlings to submergence stress by upregulating the transcripts of several key genes involved in anaerobic respiration, such as group VII ethylene-responsive factor (ERFVII) (AtRAP2.2), alcohol dehydrogenase (AtADH1), pyruvate decarboxylase (AtPDC1/2), and sucrose synthase (AtSUS4), under submergence conditions. Moreover, the overexpression of ZmWRKY70 in maize mesophyll protoplasts enhanced the expression of ZmERFVII members (ZmERF148, ZmERF179, and ZmERF193), ZmADH1, ZmPDC2/3, and ZmSUS1. Yeast one-hybrid and dual-luciferase activity assays further confirmed that ZmWRKY70 enhanced the expression of ZmERF148 by binding to the W box motif located in the promoter region of ZmERF148. Together, these results indicate that ZmWRKY70 plays a significant role in tolerance of submergence stress. This work provides a theoretical basis, and suggests excellent genes, for biotechnological breeding to improve the tolerance of maize to submergence through the regulation of ZmWRKY genes.
Collapse
Affiliation(s)
- Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Xuanxuan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Yunyan Hou
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Heyan Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
| |
Collapse
|
11
|
Wang H, Liu J, Huang J, Xiao Q, Hayward A, Li F, Gong Y, Liu Q, Ma M, Fu D, Xiao M. Mapping and Identifying Candidate Genes Enabling Cadmium Accumulation in Brassica napus Revealed by Combined BSA-Seq and RNA-Seq Analysis. Int J Mol Sci 2023; 24:10163. [PMID: 37373312 DOI: 10.3390/ijms241210163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Rapeseed has the ability to absorb cadmium in the roots and transfer it to aboveground organs, making it a potential species for remediating soil cadmium (Cd) pollution. However, the genetic and molecular mechanisms underlying this phenomenon in rapeseed are still unclear. In this study, a 'cadmium-enriched' parent, 'P1', with high cadmium transport and accumulation in the shoot (cadmium root: shoot transfer ratio of 153.75%), and a low-cadmium-accumulation parent, 'P2', (with a cadmium transfer ratio of 48.72%) were assessed for Cd concentration using inductively coupled plasma mass spectrometry (ICP-MS). An F2 genetic population was constructed by crossing 'P1' with 'P2' to map QTL intervals and underlying genes associated with cadmium enrichment. Fifty extremely cadmium-enriched F2 individuals and fifty extremely low-accumulation F2 individuals were selected based on cadmium content and cadmium transfer ratio and used for bulk segregant analysis (BSA) in combination with whole genome resequencing. This generated a total of 3,660,999 SNPs and 787,034 InDels between these two segregated phenotypic groups. Based on the delta SNP index (the difference in SNP frequency between the two bulked pools), nine candidate Quantitative trait loci (QTLs) from five chromosomes were identified, and four intervals were validated. RNA sequencing of 'P1' and 'P2' in response to cadmium was also performed and identified 3502 differentially expressed genes (DEGs) between 'P1' and 'P2' under Cd treatment. Finally, 32 candidate DEGs were identified within 9 significant mapping intervals, including genes encoding a glutathione S-transferase (GST), a molecular chaperone (DnaJ), and a phosphoglycerate kinase (PGK), among others. These genes are strong candidates for playing an active role in helping rapeseed cope with cadmium stress. Therefore, this study not only sheds new light on the molecular mechanisms of Cd accumulation in rapeseed but could also be useful for rapeseed breeding programs targeting this trait.
Collapse
Affiliation(s)
- Huadong Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiajia Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Juan Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qing Xiao
- Graduate School of Jiangxi Normal University, Jiangxi Normal University, Nanchang 330045, China
| | - Alice Hayward
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4072, Australia
| | - Fuyan Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingying Gong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qian Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Miao Ma
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meili Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
12
|
Gu T, Lu Y, Li F, Zeng W, Shen L, Yu R, Li J. Microbial extracellular polymeric substances alleviate cadmium toxicity in rice (Oryza sativa L.) by regulating cadmium uptake, subcellular distribution and triggering the expression of stress-related genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114958. [PMID: 37116453 DOI: 10.1016/j.ecoenv.2023.114958] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) accumulation in crops causes potential risks to human health. Microbial extracellular polymeric substances (EPS) are a complex mixture of biopolymers that can bind various heavy metals. The present work examined the alleviating effects of EPS on Cd toxicity in rice and its detoxification mechanism. The 100 μM Cd stress hampered the overall plant growth and development, damaged the ultrastructures of both leaf and root cells, and caused severe lipid peroxidation in rice plants. However, applying EPS at a concentration of 100 mg/L during Cd stress resulted in increased biomass, reduced Cd accumulation and transport, and minimized the oxidative damage. EPS application also enhanced Cd retention in the shoot cell walls and root vacuoles, and actively altered the expression of genes involved in cell wall formation, antioxidant defense systems, transcription factors, and hormone metabolism. These findings provide new insights into EPS-mediated mitigation of Cd stress in plants and help us to develop strategies to improve crop yield in Cd-contaminated soils in the future.
Collapse
Affiliation(s)
- Tianyuan Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongqing Lu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Fang Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
13
|
Wu X, Chen L, Lin X, Chen X, Han C, Tian F, Wan X, Liu Q, He F, Chen L, Zhong Y, Yang H, Zhang F. Integrating physiological and transcriptome analyses clarified the molecular regulation mechanism of PyWRKY48 in poplar under cadmium stress. Int J Biol Macromol 2023; 238:124072. [PMID: 36934813 DOI: 10.1016/j.ijbiomac.2023.124072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
WRKY transcription factors (TFs) play an important role in regulating plant growth and responses to environmental stress. However, the molecular mechanism of WRKY to cadmium (Cd) stress is unclear, which prevents phytoremediation of Cd-contaminated soil from widely application. To determine the underlying mechanism, PyWRKY48-overexpressing poplars were obtained (OE-32 and OE-67) to study the Cd tolerance and accumulation in poplars. Results showed that the Cd content in the aboveground part of the two transgenic poplar lines were 1.57 and 1.99 times higher than that of wild type (WT), and lateral roots, GSH, PCs content and GST activity increased significantly. RNA-seq. data about transgenic and WT poplars revealed that 2074 differentially expressed genes (DEGs) in roots, 4325 in leaves, and 499 in both tissues. And these DEGs were mainly concentrated in ABC transport protein (PaABC), heavy-metal binding protein (PaHIPP), and transportation and loading of xylem (PaNPF, PaBSP) proteins, and they enhanced Cd accumulation. Meanwhile, PyWRKY48 increased the Cd tolerance of transgenic poplars by up-regulating the expression of PaGRP, PaPER and PaPHOS, which encode cell wall proteins, antioxidant enzyme, and heavy metal-associated proteins, respectively. In addition, overexpression PyWRKY48 promoted poplar growth by increasing the chlorophyll and carotenoid content. ENVIRONMENTAL IMPLICATION: This study generated PyWRKY48-overexpressing poplars and functionally verified them in Cd-contaminated soil, to analyze the effects of the gene on poplar growth, Cd tolerance and Cd accumulation. RNA seq. data revealed that several genes are involved in Cd exposure. This may provide a strong molecular basis and new ideas for improving the phytoremediation efficiency of Cd-contaminated soils. Importantly, the transgenic poplars grew better and accumulated more Cd than the wild-type. Therefore, PyWRKY48-overexpressing poplars could be considered useful for mitigating environmental pollution.
Collapse
Affiliation(s)
- Xiaolu Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lulu Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xinyi Lin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoxi Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chengyu Han
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Feifei Tian
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xueqin Wan
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fang He
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianghua Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yu Zhong
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hanbo Yang
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fan Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
14
|
Gao Y, Chen H, Chen D, Hao G. Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. J Pineal Res 2023; 74:e12850. [PMID: 36585354 DOI: 10.1111/jpi.12850] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
The expansion of gene families during evolution could generate functional diversity among their members to regulate plant growth and development. Melatonin, a phylogenetically ancient molecule, is vital for many aspects of a plant's life. Understanding the functional diversity of the molecular players involved in melatonin biosynthesis, signaling, and metabolism will facilitate the regulation of plant phenotypes. However, the molecular mechanism of melatonin response signaling elements in regulating this network still has many challenges. Here, we provide an in-depth analysis of the functional diversity and evolution of molecular components in melatonin signaling pathway. Genetic analysis of multiple mutants in plant species will shed light on the role of gene families in melatonin regulatory pathways. Phylogenetic analysis of these genes was performed, which will facilitate the identification of melatonin-related genes for future study. Based on the abovementioned signal networks, the mechanism of these genes was summarized to provide reference for studying the regulatory mechanism of melatonin in plant phenotypes. We hope that this work will facilitate melatonin research in higher plants and finely tuned spatio-temporal regulation of melatonin signaling.
Collapse
Affiliation(s)
- Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Huimin Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Dongyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
15
|
Shen C, Yang YM, Sun YF, Zhang M, Chen XJ, Huang YY. The regulatory role of abscisic acid on cadmium uptake, accumulation and translocation in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:953717. [PMID: 36176683 PMCID: PMC9513065 DOI: 10.3389/fpls.2022.953717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
To date, Cd contamination of cropland and crops is receiving more and more attention around the world. As a plant hormone, abscisic acid (ABA) plays an important role in Cd stress response, but its effect on plant Cd uptake and translocation varies among plant species. In some species, such as Arabidopsis thaliana, Oryza sativa, Brassica chinensis, Populus euphratica, Lactuca sativa, and Solanum lycopersicum, ABA inhibits Cd uptake and translocation, while in other species, such as Solanum photeinocarpum and Boehmeria nivea, ABA severs the opposite effect. Interestingly, differences in the methods and concentrations of ABA addition also triggered the opposite result of Cd uptake and translocation in Sedum alfredii. The regulatory mechanism of ABA involved in Cd uptake and accumulation in plants is still not well-established. Therefore, we summarized the latest studies on the ABA synthesis pathway and comparatively analyzed the physiological and molecular mechanisms related to ABA uptake, translocation, and detoxification of Cd in plants at different ABA concentrations or among different species. We believe that the control of Cd uptake and accumulation in plant tissues can be achieved by the appropriate ABA application methods and concentrations in plants.
Collapse
|
16
|
Zhou Q, Cai Z, Xian P, Yang Y, Cheng Y, Lian T, Ma Q, Nian H. Silicon-enhanced tolerance to cadmium toxicity in soybean by enhancing antioxidant defense capacity and changing cadmium distribution and transport. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113766. [PMID: 35709671 DOI: 10.1016/j.ecoenv.2022.113766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is a widely distributed heavy metal that is toxic to plants and humans. Although silicon (Si) has been reported to reduce Cd accumulation and toxicity in plants, evidence on the functions of Si and its mechanisms in the possible alleviation of soybean are limited. Therefore, a controlled experiment was conducted to investigate the impacts and mechanisms of Si on Cd retention in soybean. Here, we determined the growth index, Cd distribution, and antioxidant activity systems of Si, as well as expression levels of differentially expressed genes (DEGs) in Si under Cd stress, and conducted RNA-seq analysis. We not only found that Si can significantly promote soybean plant growth, increase plant antioxidant activities, and reduce the Cd translocation factor, but also revealed that a total of 636 DEGs were shared between CK and Cd, CK and Cd + Si, and Cd and Cd + Si. Moreover, several genes were significantly enriched in antioxidant systems and Cd distribution and transport systems. Therefore, the expression status of Si-mediated Cd stress response genes is likely involved in improving oxidative stress and changing Cd uptake and transport, as well as improving plant growth that contributes to Si alleviating Cd toxicity in plants. Moreover, numerous potential target genes were identified for the engineering of Cd-tolerant cultivars in soybean breeding programs.
Collapse
Affiliation(s)
- Qianghua Zhou
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, PR China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, PR China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Peiqi Xian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, PR China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yuan Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, PR China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, PR China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, PR China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, PR China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, PR China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
17
|
Wu X, Chen Q, Chen L, Tian F, Chen X, Han C, Mi J, Lin X, Wan X, Jiang B, Liu Q, He F, Chen L, Zhang F. A WRKY transcription factor, PyWRKY75, enhanced cadmium accumulation and tolerance in poplar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113630. [PMID: 35569299 DOI: 10.1016/j.ecoenv.2022.113630] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) pollution has detrimental effects on the ecological environment and human health. Currently, phytoremediation is considered an environmentally friendly way to remediate Cd pollution. The application of transgenic plants to remediate soil pollution is a new technology that has emerged in recent years. In this study, PyWRKY75 was isolated and cloned from Populus yunnanensis, and the functionality of PyWRKY75 in woody plants (poplar) under Cd stress was verified. The increase in plant height of the OE-41 line (overexpression poplar) was 33.2% higher than that of the wild type (WT). Moreover, PyWRKY75 significantly promoted the absorption and accumulation of Cd in poplar, which increased by 51.32% in the OE-41 line when compared with the WT. The chlorophyll content of transgenic poplar leaves was higher than that of the WT, which reflected a protective mechanism of PyWRKY75. Other antioxidants, such as POD, SOD, CAT, APX, AsA, GSH and PCs, also made the transgenic poplars more tolerant to Cd, and they behaved differently in roots, stems and leaves. In general, PyWRKY75 played a potential role in regulating plant tolerance to Cd stress. This study provides a scientific basis and a new type of modified poplar for Cd pollution remediation.
Collapse
Affiliation(s)
- Xiaolu Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qi Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lulu Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Feifei Tian
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoxi Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chengyu Han
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiaxuan Mi
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xinyi Lin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xueqin Wan
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fang He
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianghua Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fan Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
18
|
Ma L, An R, Jiang L, Zhang C, Li Z, Zou C, Yang C, Pan G, Lübberstedt T, Shen Y. Effects of ZmHIPP on lead tolerance in maize seedlings: Novel ideas for soil bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128457. [PMID: 35180524 DOI: 10.1016/j.jhazmat.2022.128457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 05/19/2023]
Abstract
Extensive lead (Pb) absorption by plants affects their growth and development and causes damage to the human body by entering the food chain. In this study, we cloned ZmHIPP, a gene associated with Pb tolerance and accumulation in maize, using combined linkage mapping and weighted gene co-expression network analysis. We show that ZmHIPP, which encodes a heavy metal-associated isoprenylated plant protein, positively modulated Pb tolerance and accumulation in maize seedlings, Arabidopsis, and yeast. The genetic variation locus (A/G) in the promoter of ZmHIPP contributed to the phenotypic disparity in Pb tolerance among different maize inbred lines by altering the expression abundance of ZmHIPP. Knockdown of ZmHIPP significantly inhibited growth and decreased Pb accumulation in maize seedlings under Pb stress. ZmHIPP facilitated Pb deposition in the cell wall and prevented it from entering the intracellular organelles, thereby alleviating Pb toxicity in maize seedlings. Compared to that in the mutant zmhipp, the accumulated Pb in the wild-type line mainly consisted of the low-toxicity forms of Pb. Our study increases the understanding of the mechanism underlying Pb tolerance in maize and provides new insights into the bioremediation of Pb-polluted soil.
Collapse
Affiliation(s)
- Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong An
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chen Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhaoling Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cong Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
19
|
Wu ZX, Xu NW, Yang M, Li XL, Han JL, Lin XH, Yang Q, Lv GH, Wang J. Responses of photosynthesis, antioxidant enzymes, and related gene expression to nicosulfuron stress in sweet maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37248-37265. [PMID: 35032265 DOI: 10.1007/s11356-022-18641-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Weed control in maize (Zea mays L.) crops is usually undertaken using the postemergence herbicide nicosulfuron. The toxicity of nicosulfuron on maize, especially sweet maize, has been widely reported. In order to examine the effect of nicosulfuron on seedling photosynthetic characteristics, chlorophyll fluorescence, reactive oxygen species production, antioxidant enzyme activities, and gene expressions on sweet maize, nicosulfuron-tolerant "HK310" and nicosulfuron-sensitive "HK320" were studied. All experiment samples were subjected to a water or 80 mg kg-1 of nicosulfuron treatment when sweet maize seedlings grow to the stage of four leaves. After treatment with nicosulfuron, results for HK301 were significantly higher than those for HK320 for net photosynthetic rate, transpiration rate, stomatal conductance, leaf maximum photochemical efficiency of PSII, photochemical quenching of chlorophyll fluorescence, and the electron transport rate. These results were contrary to nonphotochemical quenching and intercellular CO2 concentration. As exposure time increased, associated effects also increased. Both O2·- and H2O2 detoxification is modulated by antioxidant enzymes. Compared to HK301, SOD, POD, and CAT activities of HK320 were significantly reduced as exposure time increase. Compared to HK320, the gene expression for the majority of SOD genes, except for SOD2, increased due to inducement by nicosulfuron, and it significantly upregulated the gene expression of CAT in HK301. Results from this study indicate that plants can improve photosynthesis, scavenging capabilities of ROS, and protective mechanisms to alleviate phytotoxic effect of nicosulfuron. Future research is needed to further elucidate the important role antioxidant systems and gene regulation play in herbicide detoxification in sweet maize.
Collapse
Affiliation(s)
- Zhen-Xing Wu
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China
| | - Ning-Wei Xu
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Min Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Xiang-Ling Li
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Jin-Ling Han
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Xiao-Hu Lin
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Qing Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Gui-Hua Lv
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China.
| | - Jian Wang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China.
| |
Collapse
|
20
|
Su T, Fu L, Kuang L, Chen D, Zhang G, Shen Q, Wu D. Transcriptome-wide m6A methylation profile reveals regulatory networks in roots of barley under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127140. [PMID: 34523471 DOI: 10.1016/j.jhazmat.2021.127140] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/13/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) pollutants restrict crop yield and food security in long-term agricultural activities. Crops have evolved adaptive strategies under Cd condition, however, the transcriptional regulatory mechanism of Cd-tolerant genes remains to be largely illustrated. In this study, barley roots were exposed to 5 µM CdCl2 for physiological response and transcriptome-wide m6A methylation profile. Cd stress inhibited root growth after 7 d Cd treatment, which is mainly associated with inhibited absorption of Mn. After Cd treatment, 8151 significantly modified m6A sites and 3920 differentially expressed genes were identified. Transcriptome-wide m6A hypermethylation was widely induced by Cd stress and enriched near the stop codon and 3' UTR regions. Among 435 m6A modified DEGs, 319 hypermethylated genes were up-regulated and 84 hypomethylated genes were down-regulated, respectively, indicating a positive correlation of m6A methylation and expression. But well-known Cd transporter genes (HvNramp5, HvIRT1, HvHMA3, etc.) were not modified by m6A methylation, except for ABC transporters. We further found key Cd-responding regulatory genes were positively modulated with m6A methylation, including MAPK, WRKY and MYB members. This study proposed a transcriptional regulatory network of Cd stress response in barley roots, which may provide new insight into gene manipulation of controlling low Cd accumulation for crops.
Collapse
Affiliation(s)
- Tingting Su
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Liuhui Kuang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Danyi Chen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Wu D, Saleem M, He T, He G. The Mechanism of Metal Homeostasis in Plants: A New View on the Synergistic Regulation Pathway of Membrane Proteins, Lipids and Metal Ions. MEMBRANES 2021; 11:membranes11120984. [PMID: 34940485 PMCID: PMC8706360 DOI: 10.3390/membranes11120984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 12/15/2022]
Abstract
Heavy metal stress (HMS) is one of the most destructive abiotic stresses which seriously affects the growth and development of plants. Recent studies have shown significant progress in understanding the molecular mechanisms underlying plant tolerance to HMS. In general, three core signals are involved in plants' responses to HMS; these are mitogen-activated protein kinase (MAPK), calcium, and hormonal (abscisic acid) signals. In addition to these signal components, other regulatory factors, such as microRNAs and membrane proteins, also play an important role in regulating HMS responses in plants. Membrane proteins interact with the highly complex and heterogeneous lipids in the plant cell environment. The function of membrane proteins is affected by the interactions between lipids and lipid-membrane proteins. Our review findings also indicate the possibility of membrane protein-lipid-metal ion interactions in regulating metal homeostasis in plant cells. In this review, we investigated the role of membrane proteins with specific substrate recognition in regulating cell metal homeostasis. The understanding of the possible interaction networks and upstream and downstream pathways is developed. In addition, possible interactions between membrane proteins, metal ions, and lipids are discussed to provide new ideas for studying metal homeostasis in plant cells.
Collapse
Affiliation(s)
- Danxia Wu
- College of Agricultural, Guizhou University, Guiyang 550025, China;
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Institute of New Rural Development, West Campus, Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (G.H.)
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Correspondence: (T.H.); (G.H.)
| |
Collapse
|
22
|
He Q, Zhou T, Sun J, Wang P, Yang C, Bai L, Liu Z. Transcriptome Profiles of Leaves and Roots of Goldenrain Tree ( Koelreuteria paniculata Laxm.) in Response to Cadmium Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12046. [PMID: 34831798 PMCID: PMC8621797 DOI: 10.3390/ijerph182212046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022]
Abstract
Cadmium (Cd) pollution is a widespread environmental problem. In this study, we explored the transcriptome and biochemical responses of goldenrain tree (Koelreuteria paniculata Laxm.) leaves and roots to Cd stress. Leaf and root growth decreased substantially under Cd stress (50 mg/L CdCl2), but leaf and root antioxidant mechanisms were significantly activated. In RNA-seq analysis, roots treated with 25 mg/L CdCl2 featured enriched GO terms in cellular components related to intracellular ribonucleoprotein complex, ribonucleoprotein complex, and macromolecular complex. In leaves under Cd stress, most differentially expressed genes were enriched in the cellular component terms intrinsic component of membrane and membrane part. Weighted gene co-expression network analysis and analysis of module-trait relations revealed candidate genes associated with superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and malondialdehyde (MDA). Ten transcription factors responded to Cd stress expression, including those in C2H2, MYB, WRKY, and bZIP families. Transcriptomic analysis of goldenrain tree revealed that Cd stress rapidly induced the intracellular ribonucleoprotein complex in the roots and the intrinsic component of membrane in the leaves. The results also indicate directions for further analyses of molecular mechanisms of Cd tolerance and accumulation in goldenrain tree.
Collapse
Affiliation(s)
- Qihao He
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Tao Zhou
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (T.Z.); (J.S.); (L.B.)
| | - Jikang Sun
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (T.Z.); (J.S.); (L.B.)
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemcial Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Lei Bai
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (T.Z.); (J.S.); (L.B.)
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA;
| |
Collapse
|
23
|
Shan D, Wang C, Song H, Bai Y, Zhang H, Hu Z, Wang L, Shi K, Zheng X, Yan T, Sun Y, Zhu Y, Zhang T, Zhou Z, Guo Y, Kong J. The MdMEK2-MdMPK6-MdWRKY17 pathway stabilizes chlorophyll levels by directly regulating MdSUFB in apple under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:814-828. [PMID: 34469599 DOI: 10.1111/tpj.15480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Drought stress severely limits plant growth and production in apple (Malus domestica Borkh.). To breed water-deficit-tolerant apple cultivars that maintain high yields under slight or moderate drought stress, it is important to uncover the mechanisms underlying the transcriptional regulation of chlorophyll metabolism in apple. To explore this mechanism, we generated transgenic 'Gala3' apple plants with overexpression or knockdown of MdWRKY17, which encodes a transcription factor whose expression is significantly induced by water deficit. Under moderate drought stress, we observed significantly higher chlorophyll contents and photosynthesis rates in overexpression transgenic plants than in controls, whereas these were dramatically lower in the knockdown lines. MdWRKY17 directly regulates MdSUFB expression, as demonstrated by in vitro and in vivo experiments. MdSUFB, a key component of the sulfur mobilization (SUF) system that assembles Fe-S clusters, is essential for inhibiting chlorophyll degradation and stabilizing electron transport during photosynthesis, leading to higher chlorophyll levels in transgenic apple plants overexpressing MdWRKY17. The activated MdMEK2-MdMPK6 cascade by water-deficit stress fine-tunes the MdWRKY17-MdSUFB pathway by phosphorylating MdWRKY17 under water-deficit stress. This fine-tuning of the MdWRKY17-MdSUFB regulatory pathway is important for balancing plant survival and yield losses (chlorophyll degradation and reduced photosynthesis) under slight or moderate drought stress. The phosphorylation by MdMEK2-MdMPK6 activates the MdWRKY17-MdSUFB pathway at S66 (identified by LC-MS), as demonstrated by in vitro and in vivo experiments. Our findings reveal that the MdMEK2-MdMPK6-MdWRKY17-MdSUFB pathway stabilizes chlorophyll levels under moderate drought stress, which could facilitate the breeding of apple varieties that maintain high yields under drought stress.
Collapse
Affiliation(s)
- Dongqian Shan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chanyu Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Handong Song
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yixue Bai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Haixia Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zehui Hu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lin Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kun Shi
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianci Yan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanzhao Sun
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yunpeng Zhu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhaoyang Zhou
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
24
|
Li GZ, Zheng YX, Chen SJ, Liu J, Wang PF, Wang YH, Guo TC, Kang GZ. TaWRKY74 participates copper tolerance through regulation of TaGST1 expression and GSH content in wheat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112469. [PMID: 34198190 DOI: 10.1016/j.ecoenv.2021.112469] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Glutathione S-transferase (GST) is the key enzyme in glutathione (GSH) synthesis, and plays a crucial role in copper (Cu) detoxification. Nonetheless, its regulatory mechanisms remain largely unclear. In this study, we identified a Cu-induced glutathione S-transferase 1 (TaGST1) gene in wheat. Yeast one-hybrid (Y1H) screened out TaWRKY74, which was one member from the WRKY transcription factor family. The bindings between TaGST1 promoter and TaWRKY74 were further verified by using another Y1H and luciferase assays. Expression of TaWRKY74 was induced more than 30-folds by Cu stress. Functions of TaWRKY74 were tested by using transiently silence methods. In transiently TaWRKY74-silenced wheat plants, TaWRKY74 and TaGST1 expression, GST activity, and GSH content was significantly inhibited by 25.68%, 19.88%, 27.66%, and 12.68% in shoots, and 53.81%, 52.11%, 23.47%, and 17.11% in roots, respectively. However, contents of hydrogen peroxide, malondialdehyde, or Cu were significantly increased by 2.58%, 12.45%, or 37.74% in shoots, and 25.24%, 53.84%, and 103.99% in roots, respectively. Notably, exogenous application of GSH reversed the adverse effects of transiently TaWRKY74-silenced wheat plants during Cu stress. Taken together, our results suggesting that TaWRKY74 regulated TaGST1 expression and affected GSH accumulation under Cu stress, and could be useful to ameliorate Cu toxicity for crop food safety.
Collapse
Affiliation(s)
- Ge-Zi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Yong-Xing Zheng
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Shi-Juan Chen
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Jin Liu
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Peng-Fei Wang
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Yong-Hua Wang
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Tian-Cai Guo
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Guo-Zhang Kang
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
25
|
Shahzad R, Jamil S, Ahmad S, Nisar A, Amina Z, Saleem S, Zaffar Iqbal M, Muhammad Atif R, Wang X. Harnessing the potential of plant transcription factors in developing climate resilient crops to improve global food security: Current and future perspectives. Saudi J Biol Sci 2021; 28:2323-2341. [PMID: 33911947 PMCID: PMC8071895 DOI: 10.1016/j.sjbs.2021.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Crop plants should be resilient to climatic factors in order to feed ever-increasing populations. Plants have developed stress-responsive mechanisms by changing their metabolic pathways and switching the stress-responsive genes. The discovery of plant transcriptional factors (TFs), as key regulators of different biotic and abiotic stresses, has opened up new horizons for plant scientists. TFs perceive the signal and switch certain stress-responsive genes on and off by binding to different cis-regulatory elements. More than 50 families of plant TFs have been reported in nature. Among them, DREB, bZIP, MYB, NAC, Zinc-finger, HSF, Dof, WRKY, and NF-Y are important with respect to biotic and abiotic stresses, but the potential of many TFs in the improvement of crops is untapped. In this review, we summarize the role of different stress-responsive TFs with respect to biotic and abiotic stresses. Further, challenges and future opportunities linked with TFs for developing climate-resilient crops are also elaborated.
Collapse
Affiliation(s)
- Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Shakra Jamil
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Shakeel Ahmad
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Amina Nisar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zarmaha Amina
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shazmina Saleem
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Zaffar Iqbal
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, University Road, 38040, Faisalabad, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| |
Collapse
|
26
|
Bai H, Si H, Zang J, Pang X, Yu L, Cao H, Xing J, Zhang K, Dong J. Comparative Proteomic Analysis of the Defense Response to Gibberella Stalk Rot in Maize and Reveals That ZmWRKY83 Is Involved in Plant Disease Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:694973. [PMID: 34489999 PMCID: PMC8417113 DOI: 10.3389/fpls.2021.694973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/21/2021] [Indexed: 05/12/2023]
Abstract
Fusarium graminearum is the causal agent of Gibberella stalk rot in maize stem, resulting in maize lodging, yield, quality, and mechanical harvesting capacity. To date, little is known about the maize stem defense mechanism in response to the invasion of F. graminearum. This study represents a global proteomic approach to document the infection by F. graminearum. A total of 1,894 differentially expressed proteins (DEPs) were identified in maize stem with F. graminearum inoculation. Functional categorization analysis indicated that proteins involved in plant-pathogen interaction were inducible at the early stages of infection. We also found that the expression of proteins involved in phenylpropanoid, flavonoid, and terpenoid biosynthesis were upregulated in response to F. graminearum infection, which may reflect that these secondary metabolism pathways were important in the protection against the fungal attack in maize stem. In continuously upregulated proteins after F. graminearum infection, we identified a WRKY transcription factor, ZmWRKY83, which could improve the resistance to plant pathogens. Together, the results show that the defense response of corn stalks against F. graminearum infection was multifaceted, involving the induction of proteins from various immune-related pathways, which had a directive significance for molecular genetic breeding of maize disease-resistant varieties.
Collapse
Affiliation(s)
- Hua Bai
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Helong Si
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jinping Zang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xi Pang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Lu Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Hongzhe Cao
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jihong Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- *Correspondence: Jihong Xing,
| | - Kang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Kang Zhang,
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Jingao Dong,
| |
Collapse
|
27
|
He M, Tian Z, Liu Q, Guo Y. Trichoderma asperellum promotes cadmium accumulation within maize seedlings. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1997155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Mengting He
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zengyuan Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qianqian Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuqi Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
28
|
Shi K, Liu X, Zhu Y, Bai Y, Shan D, Zheng X, Wang L, Zhang H, Wang C, Yan T, Zhou F, Hu Z, Sun Y, Guo Y, Kong J. MdWRKY11 improves copper tolerance by directly promoting the expression of the copper transporter gene MdHMA5. HORTICULTURE RESEARCH 2020; 7:105. [PMID: 32637133 PMCID: PMC7327004 DOI: 10.1038/s41438-020-0326-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 05/30/2023]
Abstract
Overuse of fungicides and fertilizers has resulted in copper (Cu) contamination of soils and toxic levels of Cu in apple fruits. To breed Cu-resistant apple (Malus domestica) cultivars, the underlying molecular mechanisms and key genes involved in Cu resistance must be identified. Here, we show that MdWRKY11 increases Cu tolerance by directly promoting the transcription of MdHMA5. MdHMA5 is a Cu transporter that may function in the storage of excess Cu in root cell walls and stems for Cu tolerance in apple. The transcription factor MdWRKY11 is highly induced by excess Cu. MdWRKY11 overexpression in transgenic apple enhanced Cu tolerance and decreased Cu accumulation. Apple calli transformed with an MdWRKY11-RNAi construct exhibited the opposite phenotype. Both an in vivo chromatin immunoprecipitation assay and an in vitro electrophoretic mobility shift assay indicated that MdWRKY11 binds to the promoter of MdHMA5. Furthermore, MdWRKY11 promoted MdHMA5 expression in transgenic apple plants, as revealed by quantitative PCR. Moreover, inhibition of MdWRKY11 expression by RNA interference led to a significant decrease in MdHMA5 transcription. Thus, MdWRKY11 directly regulates MdHMA5 transcription. Our work resulted in the identification of a novel MdWRKY11-MdHMA5 pathway that mediates Cu resistance in apple.
Collapse
Affiliation(s)
- Kun Shi
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Xuan Liu
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Yunpeng Zhu
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Yixue Bai
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Dongqian Shan
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Xiaodong Zheng
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Lin Wang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Haixia Zhang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Chanyu Wang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Tianci Yan
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Fangfang Zhou
- College of Horticulture, China Agricultural University, 100193 Beijing, China
- College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Zehui Hu
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Yanzhao Sun
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
29
|
Cai Z, Xian P, Wang H, Lin R, Lian T, Cheng Y, Ma Q, Nian H. Transcription Factor GmWRKY142 Confers Cadmium Resistance by Up-Regulating the Cadmium Tolerance 1-Like Genes. FRONTIERS IN PLANT SCIENCE 2020; 11:724. [PMID: 32582254 PMCID: PMC7283499 DOI: 10.3389/fpls.2020.00724] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 05/23/2023]
Abstract
Cadmium (Cd) is a widespread pollutant that is toxic to living organisms. Previous studies have identified certain WRKY transcription factors, which confer Cd tolerance in different plant species. In the present study, we have identified 29 Cd-responsive WRKY genes in Soybean [Glycine max (L.) Merr.], and confirmed that 26 of those GmWRKY genes were up-regulated, while 3 were down-regulated. We have also cloned the novel, positively regulated GmWRKY142 gene from soybean and investigated its regulatory mechanism in Cd tolerance. GmWRKY142 was highly expressed in the root, drastically up-regulated by Cd, localized in the nucleus, and displayed transcriptional activity. The overexpression of GmWRKY142 in Arabidopsis thaliana and soybean hairy roots significantly enhanced Cd tolerance and lead to extensive transcriptional reprogramming of stress-responsive genes. ATCDT1, GmCDT1-1, and GmCDT1-2 encoding cadmium tolerance 1 were induced in overexpression lines. Further analysis showed that GmWRKY142 activated the transcription of ATCDT1, GmCDT1-1, and GmCDT1-2 by directly binding to the W-box element in their promoters. In addition, the functions of GmCDT1-1 and GmCDT1-2, responsible for decreasing Cd uptake, were validated by heterologous expression in A. thaliana. Our combined results have determined GmWRKYs to be newly discovered participants in response to Cd stress, and have confirmed that GmWRKY142 directly targets ATCDT1, GmCDT1-1, and GmCDT1-2 to decrease Cd uptake and positively regulate Cd tolerance. The GmWRKY142-GmCDT1-1/2 cascade module provides a potential strategy to lower Cd accumulation in soybean.
Collapse
Affiliation(s)
- Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Peiqi Xian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Huan Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Rongbin Lin
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
30
|
Bo C, Chen H, Luo G, Li W, Zhang X, Ma Q, Cheng B, Cai R. Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice. PLANT CELL REPORTS 2020; 39:135-148. [PMID: 31659429 DOI: 10.1007/s00299-019-02481-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/21/2019] [Indexed: 05/20/2023]
Abstract
Overexpression in rice of the isolated salt-responsive WRKY114 gene from maize resulted in decreases in both salt-stress tolerance and abscisic acid sensitivity by regulating stress- and abscisic acid-related gene expression. WRKYs are an important family of transcription factors that widely participate in plant development, defense regulation and stress responses. In this research, WRKY114 encoding a WRKY transcription factor was cloned from maize (Zea mays L.). ZmWRKY114 expression was down-regulated by salt stress but up-regulated by abscisic acid (ABA) treatments. ZmWRKY114 is a nuclear protein with no transcriptional activation ability in yeast. A yeast one-hybrid experiment confirmed that ZmWRKY114 possesses an ability to specifically bind to W-boxes. The heterologous overexpression of ZmWRKY114 in rice enhanced the salt-stress sensitivity as indicated by the transgenic plants having reduced heights, root lengths and survival rates under salt-stress conditions. In addition, transgenic plants also retained lower proline contents, but greater malondialdehyde contents and relative electrical leakage levels. Additionally, ZmWRKY114-overexpressing plants showed less sensitivity to ABA during the early seedling growth stage. Further analyses indicated that transgenic rice accumulated higher levels of ABA than wild-type plants under salt-stress conditions. Transcriptome and quantitative real-time PCR analyses indicated that a few regulatory genes, which play vital roles in controlling plant stress responses and/or the ABA signaling pathway, were affected by ZmWRKY114 overexpression when rice was treated with NaCl. Thus, ZmWRKY114 may function as a negative factor that participates in salt-stress responses through an ABA-mediated pathway.
Collapse
Affiliation(s)
- Chen Bo
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Haowei Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Guowei Luo
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xingen Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- School of Life Sciences, Engineering Research Center for Maize of Anhui Province, Anhui Agricultural University, Hefei, 230036, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- School of Life Sciences, Engineering Research Center for Maize of Anhui Province, Anhui Agricultural University, Hefei, 230036, China
| | - Ronghao Cai
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
- School of Life Sciences, Engineering Research Center for Maize of Anhui Province, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
31
|
Sharaf A, De Michele R, Sharma A, Fakhari S, Oborník M. Transcriptomic Analysis Reveals the Roles of Detoxification Systems in Response to Mercury in Chromera velia. Biomolecules 2019; 9:E647. [PMID: 31653042 PMCID: PMC6920818 DOI: 10.3390/biom9110647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 01/07/2023] Open
Abstract
Heavy metal pollution is an increasing global concern. Among heavy metals, mercury (Hg) is especially dangerous because of its massive release into the environment and high toxicity, especially for aquatic organisms. The molecular response mechanisms of algae to Hg exposure are mostly unknown. Here, we combine physiological, biochemical, and transcriptomic analysis to provide, for the first time, a comprehensive view on the pathways activated in Chromera velia in response to toxic levels of Hg. Production of hydrogen peroxide and superoxide anion, two reactive oxygen species (ROS), showed opposite patterns in response to Hg2+ while reactive nitrogen species (RNS) levels did not change. A deep RNA sequencing analysis generated a total of 307,738,790 high-quality reads assembled in 122,874 transcripts, representing 89,853 unigenes successfully annotated in databases. Detailed analysis of the differently expressed genes corroborates the biochemical results observed in ROS production and suggests novel putative molecular mechanisms in the algal response to Hg2+. Moreover, we indicated that important transcription factor (TF) families associated with stress responses differentially expressed in C. velia cultures under Hg stress. Our study presents the first in-depth transcriptomic analysis of C. velia, focusing on the expression of genes involved in different detoxification defense systems in response to heavy metal stress.
Collapse
Affiliation(s)
- Abdoallah Sharaf
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt.
| | - Roberto De Michele
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR) of Italy, 90129 Palermo, Italy.
| | - Ayush Sharma
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| | - Safieh Fakhari
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR) of Italy, 90129 Palermo, Italy.
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
32
|
Niu C, Jiang M, Li N, Cao J, Hou M, Ni DA, Chu Z. Integrated bioinformatics analysis of As, Au, Cd, Pb and Cu heavy metal responsive marker genes through Arabidopsis thaliana GEO datasets. PeerJ 2019; 7:e6495. [PMID: 30918749 PMCID: PMC6428040 DOI: 10.7717/peerj.6495] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/19/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Current environmental pollution factors, particularly the distribution and diffusion of heavy metals in soil and water, are a high risk to local environments and humans. Despite striking advances in methods to detect contaminants by a variety of chemical and physical solutions, these methods have inherent limitations such as small dimensions and very low coverage. Therefore, identifying novel contaminant biomarkers are urgently needed. METHODS To better track heavy metal contaminations in soil and water, integrated bioinformatics analysis to identify biomarkers of relevant heavy metal, such as As, Cd, Pb and Cu, is a suitable method for long-term and large-scale surveys of such heavy metal pollutants. Subsequently, the accuracy and stability of the results screened were experimentally validated by quantitative PCR experiment. RESULTS We obtained 168 differentially expressed genes (DEGs) which contained 59 up-regulated genes and 109 down-regulated genes through comparative bioinformatics analyses. Subsequently, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of these DEGs were performed, respectively. GO analyses found that these DEGs were mainly related to responses to chemicals, responses to stimulus, responses to stress, responses to abiotic stimulus, and so on. KEGG pathway analyses of DEGs were mainly involved in the protein degradation process and other biologic process, such as the phenylpropanoid biosynthesis pathways and nitrogen metabolism. Moreover, we also speculated that nine candidate core biomarker genes (namely, NILR1, PGPS1, WRKY33, BCS1, AR781, CYP81D8, NR1, EAP1 and MYB15) might be tightly correlated with the response or transport of heavy metals. Finally, experimental results displayed that these genes had the same expression trend response to different stresses as mentioned above (Cd, Pb and Cu) and no mentioned above (Zn and Cr). CONCLUSION In general, the identified biomarker genes could help us understand the potential molecular mechanisms or signaling pathways responsive to heavy metal stress in plants, and could be applied as marker genes to track heavy metal pollution in soil and water through detecting their expression in plants growing in those environments.
Collapse
Affiliation(s)
- Chao Niu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, Shanghai, China
| | - Min Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, Shanghai, China
| | - Na Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, Shanghai, China
- College of Life Sciences, Shanghai Normal University, Shanghai, Shanghai, China
| | - Jianguo Cao
- College of Life Sciences, Shanghai Normal University, Shanghai, Shanghai, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, Shanghai, China
| | - Di-an Ni
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, Shanghai, China
| | - Zhaoqing Chu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, Shanghai, China
| |
Collapse
|
33
|
Dang F, Lin J, Chen Y, Li GX, Guan D, Zheng SJ, He S. A feedback loop between CaWRKY41 and H2O2 coordinates the response to Ralstonia solanacearum and excess cadmium in pepper. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1581-1595. [PMID: 30649526 PMCID: PMC6416791 DOI: 10.1093/jxb/erz006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/19/2018] [Indexed: 05/22/2023]
Abstract
WRKY transcription factors have been implicated in both plant immunity and plant responses to cadmium (Cd); however, the mechanism underlying the crosstalk between these processes is unclear. Here, we characterized the roles of CaWRKY41, a group III WRKY transcription factor, in immunity against the pathogenic bacterium Ralstonia solanacearum and Cd stress responses in pepper (Capsicum annuum). CaWRKY41 was transcriptionally up-regulated in response to Cd exposure, R. solanacearum inoculation, and H2O2 treatment. Virus-induced silencing of CaWRKY41 increased Cd tolerance and R. solanacearum susceptibility, while heterologous overexpression of CaWRKY41 in Arabidopsis impaired Cd tolerance, and enhanced Cd and zinc (Zn) uptake and H2O2 accumulation. Genes encoding reactive oxygen species-scavenging enzymes were down-regulated in CaWRKY41-overexpressing Arabidopsis plants, whereas genes encoding Zn transporters and enzymes involved in H2O2 production were up-regulated. Consistent with these findings, the ocp3 (overexpressor of cationic peroxidase 3) mutant, which has elevated H2O2 levels, displayed enhanced sensitivity to Cd stress. These results suggest that a positive feedback loop between H2O2 accumulation and CaWRKY41 up-regulation coordinates the responses of pepper to R. solanacearum inoculation and Cd exposure. This mechanism might reduce Cd tolerance by increasing Cd uptake via Zn transporters, while enhancing resistance to R. solanacearum.
Collapse
Affiliation(s)
- Fengfeng Dang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization of the Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jinhui Lin
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization of the Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongping Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, China
| | - Deyi Guan
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization of the Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Correspondence: or
| | - Shuilin He
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization of the Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Correspondence: or
| |
Collapse
|
34
|
Han Y, Fan T, Zhu X, Wu X, Ouyang J, Jiang L, Cao S. WRKY12 represses GSH1 expression to negatively regulate cadmium tolerance in Arabidopsis. PLANT MOLECULAR BIOLOGY 2019; 99:149-159. [PMID: 30617455 DOI: 10.1007/s11103-018-0809-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/06/2018] [Indexed: 05/18/2023]
Abstract
The WRKY transcription factor WRKY12 negatively regulates Cd tolerance in Arabidopsis via the glutathione-dependent phytochelatin synthesis pathway by directly targeting GSH1 and indirectly repressing phytochelatin synthesis-related gene expression. Cadmium (Cd) is a widespread pollutant toxic to plants. The glutathione (GSH)-dependent phytochelatin (PC) synthesis pathway plays key roles in Cd detoxification. However, its regulatory mechanism remains largely unknown. Here, we showed a previously unknown function of the WRKY transcription factor WRKY12 in the regulation of Cd tolerance by repressing the expression of PC synthesis-related genes. The expression of WRKY12 was inhibited by Cd stress. Enhanced Cd tolerance was observed in the WRKY12 loss-of-function mutants, whereas increased Cd sensitivity was found in the WRKY12-overexpressing plants. Overexpression and loss-of-function of WRKY12 were associated respectively with increased and decreased Cd accumulation by repressing or releasing the expression of the genes involved in the PC synthesis pathway. Transient expression assay showed that WRKY12 repressed the expression of GSH1, GSH2, PCS1, and PCS2. Further analysis indicated that WRKY12 could directly bind to the W-box of the promoter in GSH1 but not in GSH2, PCS1, and PCS2 in vivo. Together, our results suggest that WRKY12 directly targets GSH1 and indirectly represses PC synthesis-related gene expression to negatively regulate Cd accumulation and tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Yangyang Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tingting Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiangyu Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xi Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jian Ouyang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
35
|
Shi WY, Du YT, Ma J, Min DH, Jin LG, Chen J, Chen M, Zhou YB, Ma YZ, Xu ZS, Zhang XH. The WRKY Transcription Factor GmWRKY12 Confers Drought and Salt Tolerance in Soybean. Int J Mol Sci 2018; 19:E4087. [PMID: 30562982 PMCID: PMC6320995 DOI: 10.3390/ijms19124087] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/17/2022] Open
Abstract
WRKYs are important regulators in plant development and stress responses. However, knowledge of this superfamily in soybean is limited. In this study, we characterized the drought- and salt-induced gene GmWRKY12 based on RNA-Seq and qRT-PCR. GmWRKY12, which is 714 bp in length, encoded 237 amino acids and grouped into WRKY II. The promoter region of GmWRKY12 included ABER4, MYB, MYC, GT-1, W-box and DPBF cis-elements, which possibly participate in abscisic acid (ABA), drought and salt stress responses. GmWRKY12 was minimally expressed in different tissues under normal conditions but highly expressed under drought and salt treatments. As a nucleus protein, GmWRKY12 was responsive to drought, salt, ABA and salicylic acid (SA) stresses. Using a transgenic hairy root assay, we further characterized the roles of GmWRKY12 in abiotic stress tolerance. Compared with control (Williams 82), overexpression of GmWRKY12 enhanced drought and salt tolerance, increased proline (Pro) content and decreased malondialdehyde (MDA) content under drought and salt treatment in transgenic soybean seedlings. These results may provide a basis to understand the functions of GmWRKY12 in abiotic stress responses in soybean.
Collapse
Affiliation(s)
- Wen-Yan Shi
- College of Life Sciences, College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China.
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yong-Tao Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China.
| | - Dong-Hong Min
- College of Life Sciences, College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China.
| | - Long-Guo Jin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Xiao-Hong Zhang
- College of Life Sciences, College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China.
| |
Collapse
|
36
|
Ding Y, Jian H, Wang T, Di F, Wang J, Li J, Liu L. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32433-32446. [PMID: 30232771 DOI: 10.1007/s11356-018-3227-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Cadmium (Cd) stress is one of the most serious threats to agriculture in the world. Oilseed rape (Brassica napus L.) is an important oil crop; however, Cd can easily accumulate in rapeseed and thus harm human health through the food chain. In the first experiment, our purpose was to measure the Cd accumulation in mature B. napus plants and its influences on fatty acid composition. The results showed that most Cd was accumulated in the root, and the seed fatty acid content was considerably different at different Cd toxicity levels. In the second experiment, 7-day-old B. napus seedlings stressed by Cd (1 mM) for 0 h (CK-0h), 24 h (T-24h), or 72 h (T-72h) were submitted to physiological and biological analyses, RNA-Seq and qRT-PCR. In total, 5469 and 6769 differentially expressed genes (DEGs) were identified in the comparisons of "CK-0h vs T-24h" and "CK-0h vs T-72h", respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that the photosynthetic and glutathione (GSH) pathways were significantly enriched in response to Cd stress. Key factors in the response to Cd stress included BnPCS1, BnGSTU12, BnGSTU5, and BnHMAs. The transcription factors BnWRKY11 (BnaA03g51590D), BnWRKY28 (BnaA03g43640D), BnWRKY33 (BnaA03g17820D), and BnWRKY75 (BnaA03g04160D) were upregulated after Cd exposure. The present study revealed that upregulation of the genes encoding GST and PCS under Cd stress promoted the formation of low-molecular weight complexes (PC-Cd), and upregulation of heavy metal ATPase genes induced PC-Cd transfer to vacuoles. These findings may provide the basis for the molecular mechanism of the response of B. napus to Cd.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adenosine Triphosphatases/genetics
- Aminoacyltransferases/genetics
- Aminoacyltransferases/metabolism
- Biological Transport
- Brassica napus/drug effects
- Brassica napus/genetics
- Brassica napus/metabolism
- Cadmium/metabolism
- Cadmium/pharmacology
- Crops, Agricultural/drug effects
- Crops, Agricultural/genetics
- Crops, Agricultural/metabolism
- Fatty Acids/metabolism
- Gene Expression Regulation, Plant
- Genes, Plant
- Glutathione/genetics
- Glutathione/metabolism
- Humans
- Metals, Heavy/metabolism
- Metals, Heavy/pharmacology
- Photosynthesis
- Plant Development
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Roots/metabolism
- RNA, Plant/analysis
- Seedlings/metabolism
- Seeds/metabolism
- Sequence Analysis, RNA
- Stress, Physiological
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Yiran Ding
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Hongju Jian
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Tengyue Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Feifei Di
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jia Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
37
|
Finatto T, Viana VE, Woyann LG, Busanello C, da Maia LC, de Oliveira AC. Can WRKY transcription factors help plants to overcome environmental challenges? Genet Mol Biol 2018; 41:533-544. [PMID: 30235398 PMCID: PMC6136380 DOI: 10.1590/1678-4685-gmb-2017-0232] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
WRKY transcription factors (TFs) are responsible for the regulation of genes responsive to many plant growth and developmental cues, as well as to biotic and abiotic stresses. The modulation of gene expression by WRKY proteins primarily occurs by DNA binding at specific cis-regulatory elements, the W-box elements, which are short sequences located in the promoter region of certain genes. In addition, their action can occur through interaction with other TFs and the cellular transcription machinery. The current genome sequences available reveal a relatively large number of WRKY genes, reaching hundreds of copies. Recently, functional genomics studies in model plants have enabled the identification of function and mechanism of action of several WRKY TFs in plants. This review addresses the more recent studies in plants regarding the function of WRKY TFs in both model and crop plants for coping with environmental challenges, including a wide variety of abiotic and biotic stresses.
Collapse
Affiliation(s)
- Taciane Finatto
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vívian Ebeling Viana
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnologico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Leomar Guilherme Woyann
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Carlos Busanello
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luciano Carlos da Maia
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Antonio Costa de Oliveira
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnologico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
38
|
Li K, Chen Y, Luo Y, Huang F, Zhao C, Cheng F, Xiang X, Pan G. A 22-bp deletion in OsPLS3 gene encoding a DUF266-containing protein is implicated in rice leaf senescence. PLANT MOLECULAR BIOLOGY 2018; 98:19-32. [PMID: 30117035 DOI: 10.1007/s11103-018-0758-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/18/2018] [Indexed: 05/04/2023]
Abstract
Key message The OsPLS3 locus was isolated by map-based cloning that encodes a DUF266-containing protein. OsPLS3 regulates the onset of leaf senescence in rice. Glycosyltransferases (GTs) are one of the most important enzyme groups required for the modification of plant secondary metabolites and play a crucial role in plant growth and development, however the biological functions of most GTs remain elusive. We reported here the identification and characterization of a novel Oryza sativa premature leaf senescence mutant (ospls3). Through map-based cloning strategy, we determined that 22-bp deletion in the OsPLS3 gene encoding a domain of unknown function 266 (DUF266)-containing protein, a member of GT14-like, underlies the premature leaf senescence phenotype in the ospls3 mutant. The OsPLS3 mRNA levels progressively declined with the age-dependent leaf senescence in wild-type rice, implying a negative role of OsPLS3 in regulating leaf senescence. Physiological analysis, and histochemical staining and transmission electron microscopy assays indicated that the ospls3 mutant accumulated higher levels of ethylene and reactive oxygen species than its wild type. Furthermore, the ospls3 mutant showed hypersensitivity to exogenous 1-aminocyclopropane-1-carboxylic acid, H2O2 and high level of cytokinins. Our results indicated that the DUF266-containing gene OsPLS3 plays an important role in the onset of leaf senescence, in part through cytokinin and ethylene signaling in rice.
Collapse
Affiliation(s)
- Kunyu Li
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yaodong Chen
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yanmin Luo
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Fudeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Chaoyue Zhao
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Fangmin Cheng
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xun Xiang
- Experimental Teaching Center, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Gang Pan
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
39
|
Khan SA, Li MZ, Wang SM, Yin HJ. Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress. Int J Mol Sci 2018; 19:ijms19061634. [PMID: 29857524 PMCID: PMC6032162 DOI: 10.3390/ijms19061634] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/10/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023] Open
Abstract
Owing to diverse abiotic stresses and global climate deterioration, the agricultural production worldwide is suffering serious losses. Breeding stress-resilient crops with higher quality and yield against multiple environmental stresses via application of transgenic technologies is currently the most promising approach. Deciphering molecular principles and mining stress-associate genes that govern plant responses against abiotic stresses is one of the prerequisites to develop stress-resistant crop varieties. As molecular switches in controlling stress-responsive genes expression, transcription factors (TFs) play crucial roles in regulating various abiotic stress responses. Hence, functional analysis of TFs and their interaction partners during abiotic stresses is crucial to perceive their role in diverse signaling cascades that many researchers have continued to undertake. Here, we review current developments in understanding TFs, with particular emphasis on their functions in orchestrating plant abiotic stress responses. Further, we discuss novel molecular mechanisms of their action under abiotic stress conditions. This will provide valuable information for understanding regulatory mechanisms to engineer stress-tolerant crops.
Collapse
Affiliation(s)
- Sardar-Ali Khan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Meng-Zhan Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Hong-Ju Yin
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
40
|
Cai R, Dai W, Zhang C, Wang Y, Wu M, Zhao Y, Ma Q, Xiang Y, Cheng B. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. PLANTA 2017; 246:1215-1231. [PMID: 28861611 DOI: 10.1007/s00425-017-2766-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/22/2017] [Indexed: 05/20/2023]
Abstract
We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes. The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.
Collapse
Affiliation(s)
- Ronghao Cai
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Dai
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Congsheng Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Min Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yang Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
41
|
Zhong M, Li S, Huang F, Qiu J, Zhang J, Sheng Z, Tang S, Wei X, Hu P. The Phosphoproteomic Response of Rice Seedlings to Cadmium Stress. Int J Mol Sci 2017; 18:ijms18102055. [PMID: 28953215 PMCID: PMC5666737 DOI: 10.3390/ijms18102055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 01/16/2023] Open
Abstract
The environmental damage caused by cadmium (Cd) pollution is of increasing concern in China. While the overall plant response to Cd has been investigated in some depth, the contribution (if any) of protein phosphorylation to the detoxification of Cd and the expression of tolerance is uncertain. Here, the molecular basis of the plant response has been explored in hydroponically raised rice seedlings exposed to 10 μΜ and 100 μΜ Cd2+ stress. An analysis of the seedlings’ quantitative phosphoproteome identified 2454 phosphosites, associated with 1244 proteins. A total of 482 of these proteins became differentially phosphorylated as a result of exposure to Cd stress; the number of proteins affected in this way was six times greater in the 100 μΜ Cd2+ treatment than in the 10 μΜ treatment. A functional analysis of the differentially phosphorylated proteins implied that a significant number was involved in signaling, in stress tolerance and in the neutralization of reactive oxygen species, while there was also a marked representation of transcription factors.
Collapse
Affiliation(s)
- Min Zhong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Sanfeng Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Fenglin Huang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China.
| | - Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Zhonghua Sheng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Shaoqing Tang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Xiangjin Wei
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Peisong Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
42
|
Comparative transcriptomic analysis reveals the roles of ROS scavenging genes in response to cadmium in two pak choi cultivars. Sci Rep 2017; 7:9217. [PMID: 28835647 PMCID: PMC5569009 DOI: 10.1038/s41598-017-09838-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/31/2017] [Indexed: 11/29/2022] Open
Abstract
To identify key regulatory genes involved in ROS scavenging in response to cadmium (Cd) exposure in pak choi, eight cDNA libraries from Cd-treated and Cd-free roots of two cultivars, Baiyewuyueman (high Cd accumulator) and Kuishan’aijiaoheiye (low Cd accumulator), were firstly performed by RNA-sequencing. Totally 0.443 billion clean reads and 244,190 unigenes were obtained from eight transcriptome. About 797 and 1167 unigenes encoding ROS related proteins and transcription factors were identified. Of them, 11 and 16 ROS scavenging system related DEGs, and 29 and 15 transcription factors related DEGs were found in Baiyewuyueman and Kuishan’aijiaoheiye, respectively. Ten ROS-scavenging genes (Cu/Zn-SOD, GST1, PODs, TrxR2, PrxR, FER3 and NDPK) showed higher expression levels in Cd-exposed seedings of Baiyewuyueman than those of Kuishan’aijiaoheiye. Four genes (GPX, APX, GRX and GST3) specifically expressed in Cd-free roots of Kuishan’aijiaoheiye. For transcription factors, ERF12/13/22 and WRKY31 was up-regulated by Cd in Baiyewuyueman, while in Kuishan’aijiaoheiye, Cd induced down-regulations of bZIP, NAC and ZFP families. The results indicate that the two cultivars differed in the mechanism of ROS scavenging in response to Cd stress. Fe SOD1, POD A2/44/54/62 and GST1 may be responsible for the difference of Cd tolerance between Baiyewuyueman and Kuishan’aijiaoheiye.
Collapse
|