1
|
Patel C, Patel R, Kesharwani A, Rao L, Jain NS. Central cholinergic transmission modulates endocannabinoid-induced marble-burying behavior in mice. Behav Brain Res 2025; 476:115252. [PMID: 39278464 DOI: 10.1016/j.bbr.2024.115252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Central cholinergic system and endocannabinoid, anandamide exhibits anti-compulsive-like behavior in mice. However, the role of the central cholinergic system in the anandamide-induced anti-compulsive-like behavior is still unexplored. Therefore, the present study assessed the role of central cholinergic transmission in the anandamide-induced anti-compulsive activity using a marble-burying behavior (MBB) model in mice. The modulation in the anandamide-induced effect on MBB was evaluated using mice with altered central cholinergic transmission achieved by pretreatment (i.c.v.) with various cholinergic agents like acetylcholine (ACh), acetylcholinesterase inhibitor (AChEI), neostigmine, nicotine, mAChR antagonist, atropine, and nAChR antagonist, mecamylamine. The influence of anandamide treatment on the brain AChE activity was also evaluated. The results revealed that i.c.v. injection of anandamide (10, 20 µg/mouse, i.c.v.) dose-dependently reduced MBB in mice. Moreover, anandamide in all the tested doses inhibited the brain AChE activity indicating the role of an enhanced central cholinergic transmission in its anti-compulsive-like effect . Furthermore, the anti-compulsive-like effect of anandamide (20 µg/mouse, i.c.v.) was found to be enhanced in mice centrally pre-treated with, ACh (0.1 µg/mouse, i.c.v.) or AChEI, neostigmine (0.3 µg/mouse, i.c.v.). In addition, the anandamide-induced anti-compulsive-like effect was significantly increased in mice pre-treated with a low dose of nicotine (0.1 µg/mouse, i.c.v.) while, it was attenuated by the higher dose of nicotine (2 µg/mouse, i.c.v.). On the other hand, the anandamide (20 µg/mouse, i.c.v.) induced anti-compulsive-like effect was found to be diminished in mice pre-treated with mAChR antagonist, atropine (0.1, 0.5 µg/mouse, i.c.v.) and pre-injection of nAChR antagonist, mecamylamine (0.1, 0.5 µg/mouse, i.c.v.) potentiated the anandamide induced anti-compulsive-like response in mice. Thus, the present investigation delineates the modulatory role of an enhanced central cholinergic transmission in the anandamide-induced anti-compulsive-like behavior in mice by inhibition of brain AChE or via muscarinic and nicotinic receptors mediated mechanism.
Collapse
Affiliation(s)
- Chhatrapal Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Anuradha Kesharwani
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Laxmi Rao
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Sudhir Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India.
| |
Collapse
|
2
|
Kazemeini S, Nadeem-Tariq A, Shih R, Rafanan J, Ghani N, Vida TA. From Plaques to Pathways in Alzheimer's Disease: The Mitochondrial-Neurovascular-Metabolic Hypothesis. Int J Mol Sci 2024; 25:11720. [PMID: 39519272 PMCID: PMC11546801 DOI: 10.3390/ijms252111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) presents a public health challenge due to its progressive neurodegeneration, cognitive decline, and memory loss. The amyloid cascade hypothesis, which postulates that the accumulation of amyloid-beta (Aβ) peptides initiates a cascade leading to AD, has dominated research and therapeutic strategies. The failure of recent Aβ-targeted therapies to yield conclusive benefits necessitates further exploration of AD pathology. This review proposes the Mitochondrial-Neurovascular-Metabolic (MNM) hypothesis, which integrates mitochondrial dysfunction, impaired neurovascular regulation, and systemic metabolic disturbances as interrelated contributors to AD pathogenesis. Mitochondrial dysfunction, a hallmark of AD, leads to oxidative stress and bioenergetic failure. Concurrently, the breakdown of the blood-brain barrier (BBB) and impaired cerebral blood flow, which characterize neurovascular dysregulation, accelerate neurodegeneration. Metabolic disturbances such as glucose hypometabolism and insulin resistance further impair neuronal function and survival. This hypothesis highlights the interconnectedness of these pathways and suggests that therapeutic strategies targeting mitochondrial health, neurovascular integrity, and metabolic regulation may offer more effective interventions. The MNM hypothesis addresses these multifaceted aspects of AD, providing a comprehensive framework for understanding disease progression and developing novel therapeutic approaches. This approach paves the way for developing innovative therapeutic strategies that could significantly improve outcomes for millions affected worldwide.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (S.K.); (A.N.-T.); (R.S.); (J.R.); (N.G.)
| |
Collapse
|
3
|
Patel C, Patel R, Maturkar V, Jain NS. Central cholinergic transmission affects the compulsive-like behavior of mice in marble-burying test. Brain Res 2024; 1825:148713. [PMID: 38097126 DOI: 10.1016/j.brainres.2023.148713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The presence of the cholinergic system in the brain areas implicated in the precipitation of obsessive-compulsive behavior (OCB) has been reported but the exact role of the central cholinergic system therein is still unexplored. Therefore, the current study assessed the effect of cholinergic analogs on central administration on the marble-burying behavior (MBB) of mice, a behavior correlated with OCB. The result reveals that the enhancement of central cholinergic transmission in mice achieved by intracerebroventricular (i.c.v.) injection of acetylcholine (0.01 µg) (Subeffective: 0.1 and 0.5 µg), cholinesterase inhibitor, neostigmine (0.1, 0.3, 0.5 µg/mouse) and neuronal nicotinic acetylcholine receptor agonist, nicotine (0.1, 2 µg/mouse) significantly attenuated the number of marbles buried by mice in MBB test without affecting basal locomotor activity. Similarly, central injection of mAChR antagonist, atropine (0.1, 0.5, 5 µg/mouse), nAChR antagonist, mecamylamine (0.1, 0.5, 3 µg/mouse) per se also reduced the MBB in mice, indicative of anti-OCB like effect of all the tested cholinergic mAChR or nAChR agonist and antagonist. Surprisingly, i.c.v. injection of acetylcholine (0.01 µg), and neostigmine (0.1 µg) failed to elicit an anti-OCB-like effect in mice pre-treated (i.c.v.) with atropine (0.1 µg), or mecamylamine (0.1 µg). Thus, the findings of the present investigationdelineate the role of central cholinergic transmission in the compulsive-like behavior of mice probably via mAChR or nAChR stimulation.
Collapse
Affiliation(s)
- Chhatrapal Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Vaibhav Maturkar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Sudhir Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India.
| |
Collapse
|
4
|
Xie T, Qin Y, Zhao J, Dong J, Qi P, Zhang P, Zhangsun D, Zhu X, Yu J, Luo S. Molecular Determinants of Species Specificity of α-Conotoxin TxIB towards Rat and Human α6/α3β4 Nicotinic Acetylcholine Receptors. Int J Mol Sci 2023; 24:ijms24108618. [PMID: 37239959 DOI: 10.3390/ijms24108618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Conotoxins are widely distributed and important for studying ligand-gated ion channels. TxIB, a conotoxin consisting of 16 amino acids derived from Conus textile, is a unique selective ligand that blocks rat α6/α3β2β3 nAChR (IC50 = 28 nM) without affecting other rat subtypes. However, when the activity of TxIB against human nAChRs was examined, it was unexpectedly found that TxIB had a significant blocking effect on not only human α6/α3β2β3 nAChR but also human α6/α3β4 nAChR, with an IC50 of 537 nM. To investigate the molecular mechanism of this species specificity and to establish a theoretical basis for drug development studies of TxIB and its analogs, different amino acid residues between human and rat α6/α3 and β4 nAChR subunits were identified. Each residue of the human species was then substituted with the corresponding residue of the rat species via PCR-directed mutagenesis. The potencies of TxIB towards the native α6/α3β4 nAChRs and their mutants were evaluated through electrophysiological experiments. The results showed that the IC50 of TxIB against h[α6V32L, K61R/α3]β4L107V, V115I was 22.5 μM, a 42-fold decrease in potency compared to the native hα6/α3β4 nAChR. Val-32 and Lys-61 in the human α6/α3 subunit and Leu-107 and Val-115 in the human β4 subunit, together, were found to determine the species differences in the α6/α3β4 nAChR. These results also demonstrate that the effects of species differences between humans and rats should be fully considered when evaluating the efficacy of drug candidates targeting nAChRs in rodent models.
Collapse
Affiliation(s)
- Ting Xie
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Yuan Qin
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jinyuan Zhao
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jianying Dong
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Panpan Qi
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Panpan Zhang
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jinpeng Yu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Sulan Luo
- School of Medicine, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Sangwan S, Yadav N, Kumar R, Chauhan S, Dhanda V, Walia P, Duhan A. A score years’ update in the synthesis and biological evaluation of medicinally important 2-pyridones. Eur J Med Chem 2022; 232:114199. [DOI: 10.1016/j.ejmech.2022.114199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
|
6
|
Iarkov A, Mendoza C, Echeverria V. Cholinergic Receptor Modulation as a Target for Preventing Dementia in Parkinson's Disease. Front Neurosci 2021; 15:665820. [PMID: 34616271 PMCID: PMC8488354 DOI: 10.3389/fnins.2021.665820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Cristhian Mendoza
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
7
|
Lovejoy PC, Foley KE, Conti MM, Meadows SM, Bishop C, Fiumera AC. Genetic basis of susceptibility to low-dose paraquat and variation between the sexes in Drosophila melanogaster. Mol Ecol 2021; 30:2040-2053. [PMID: 33710693 DOI: 10.1111/mec.15878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 02/23/2021] [Indexed: 12/18/2022]
Abstract
Toxicant resistance is a complex trait, affected both by genetics and the environment. Like most complex traits, it can exhibit sexual dimorphism, yet sex is often overlooked as a factor in studies of toxicant resistance. Paraquat, one such toxicant, is a commonly used herbicide and is known to produce mitochondrial oxidative stress, decrease dopaminergic neurons and dopamine (DA) levels, and decrease motor ability. While the main effects of paraquat are well-characterized, less is known about the naturally occurring variation in paraquat susceptibility. The purpose of this study was to map the genes contributing to low-dose paraquat susceptibility in Drosophila melanogaster, and to determine if susceptibility differs between the sexes. One hundred of the Drosophila Genetic Reference Panel (DGRP) lines were scored for susceptibility via climbing ability and used in a genome-wide association study (GWAS). Variation in seventeen genes in females and thirty-five genes in males associated with paraquat susceptibility. Only two candidate genes overlapped between the sexes despite a significant positive correlation between male and female susceptibilities. Many associated polymorphisms had significant interactions with sex, with most having conditionally neutral effects. Conditional neutrality between the sexes probably stems from sex-biased expression which may result from partial resolution of sexual conflict. Candidate genes were verified with RNAi knockdowns, gene expression analyses, and DA quantification. Several of these genes are novel associations with paraquat susceptibility. This research highlights the importance of assessing both sexes when studying toxicant susceptibility.
Collapse
Affiliation(s)
- Pamela C Lovejoy
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.,Department of Biology, St. Joseph's College, Brooklyn, NY, USA
| | - Kate E Foley
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Melissa M Conti
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | | | | | - Anthony C Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
8
|
Do Nicotinic Receptors Modulate High-Order Cognitive Processing? Trends Neurosci 2020; 43:550-564. [DOI: 10.1016/j.tins.2020.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
|
9
|
Nolan SO, Zachry JE, Johnson AR, Brady LJ, Siciliano CA, Calipari ES. Direct dopamine terminal regulation by local striatal microcircuitry. J Neurochem 2020; 155:475-493. [PMID: 32356315 DOI: 10.1111/jnc.15034] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Regulation of axonal dopamine release by local microcircuitry is at the hub of several biological processes that govern the timing and magnitude of signaling events in reward-related brain regions. An important characteristic of dopamine release from axon terminals in the striatum is that it is rapidly modulated by local regulatory mechanisms. These processes can occur via homosynaptic mechanisms-such as presynaptic dopamine autoreceptors and dopamine transporters - as well heterosynaptic mechanisms such as retrograde signaling from postsynaptic cholinergic and dynorphin systems, among others. Additionally, modulation of dopamine release via diffusible messengers, such as nitric oxide and hydrogen peroxide, allows for various metabolic factors to quickly and efficiently regulate dopamine release and subsequent signaling. Here we review how these mechanisms work in concert to influence the timing and magnitude of striatal dopamine signaling, independent of action potential activity at the level of dopaminergic cell bodies in the midbrain, thereby providing a parallel pathway by which dopamine can be modulated. Understanding the complexities of local regulation of dopamine signaling is required for building comprehensive frameworks of how activity throughout the dopamine system is integrated to drive signaling and control behavior.
Collapse
Affiliation(s)
- Suzanne O Nolan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jennifer E Zachry
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Amy R Johnson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Lillian J Brady
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN TN, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
10
|
Mussina K, Toktarkhanova D, Filchakova O. Nicotinic Acetylcholine Receptors of PC12 Cells. Cell Mol Neurobiol 2020; 41:17-29. [PMID: 32335772 DOI: 10.1007/s10571-020-00846-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have gained much attention in the scientific community since they play a significant role in multiple physiological and pathophysiological processes. Multiple approaches to study the receptors exist, with characterization of the receptors' functionality at a single cellular level using cell culturing being one of them. Derived from an adrenal medulla tumor, PC12 cells express nicotinic receptor subunits and form functional nicotinic receptors. Thus, the cells offer a convenient environment to address questions related to the functionality of the receptors. The review summarizes the findings on nicotinic receptors' expression and functions which were conducted using PC12 cells. Specific focus is given to α3-containing receptors as well as α7 receptor. Critical evaluation of findings is provided alongside insights into what can still be learned about nAChRs, using PC12 cells.
Collapse
Affiliation(s)
- Kamilla Mussina
- Biology Department, School of Sciences and Humanities, Nazarbayev University, NurSultan, Republic of Kazakhstan
| | - Dana Toktarkhanova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, NurSultan, Republic of Kazakhstan
| | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, NurSultan, Republic of Kazakhstan.
| |
Collapse
|
11
|
Azam S, Haque ME, Jakaria M, Jo SH, Kim IS, Choi DK. G-Protein-Coupled Receptors in CNS: A Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits. Cells 2020; 9:cells9020506. [PMID: 32102186 PMCID: PMC7072884 DOI: 10.3390/cells9020506] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases are a large group of neurological disorders with diverse etiological and pathological phenomena. However, current therapeutics rely mostly on symptomatic relief while failing to target the underlying disease pathobiology. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system (CNS) disorders. Many currently available antipsychotic therapeutics also act as either antagonists or agonists of different GPCRs. Therefore, GPCR-based drug development is spreading widely to regulate neurodegeneration and associated cognitive deficits through the modulation of canonical and noncanonical signals. Here, GPCRs’ role in the pathophysiology of different neurodegenerative disease progressions and cognitive deficits has been highlighted, and an emphasis has been placed on the current pharmacological developments with GPCRs to provide an insight into a potential therapeutic target in the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Shofiul Azam
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - Md. Ezazul Haque
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - Md. Jakaria
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Song-Hee Jo
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - In-Su Kim
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: (I.-S.K.); (D.-K.C.); Tel.: +82-010-3876-4773 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.)
| | - Dong-Kug Choi
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: (I.-S.K.); (D.-K.C.); Tel.: +82-010-3876-4773 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.)
| |
Collapse
|
12
|
Cansler HL, Wright KN, Stetzik LA, Wesson DW. Neurochemical organization of the ventral striatum's olfactory tubercle. J Neurochem 2020; 152:425-448. [PMID: 31755104 PMCID: PMC7042089 DOI: 10.1111/jnc.14919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
The ventral striatum is a collection of brain structures, including the nucleus accumbens, ventral pallidum and the olfactory tubercle (OT). While much attention has been devoted to the nucleus accumbens, a comprehensive understanding of the ventral striatum and its contributions to neurological diseases requires an appreciation for the complex neurochemical makeup of the ventral striatum's other components. This review summarizes the rich neurochemical composition of the OT, including the neurotransmitters, neuromodulators and hormones present. We also address the receptors and transporters involved in each system as well as their putative functional roles. Finally, we end with briefly reviewing select literature regarding neurochemical changes in the OT in the context of neurological disorders, specifically neurodegenerative disorders. By overviewing the vast literature on the neurochemical composition of the OT, this review will serve to aid future research into the neurobiology of the ventral striatum.
Collapse
Affiliation(s)
- Hillary L Cansler
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Katherine N Wright
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Lucas A Stetzik
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the Treatment of Parkinson's Disease: Beyond Dopamine. Front Aging Neurosci 2020; 12:4. [PMID: 32076403 PMCID: PMC7006457 DOI: 10.3389/fnagi.2020.00004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second-leading cause of dementia and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra alongside the presence of intraneuronal α-synuclein-positive inclusions. Therapies to date have been directed to the restoration of the dopaminergic system, and the prevention of dopaminergic neuronal cell death in the midbrain. This review discusses the physiological mechanisms involved in PD as well as new and prospective therapies for the disease. The current data suggest that prevention or early treatment of PD may be the most effective therapeutic strategy. New advances in the understanding of the underlying mechanisms of PD predict the development of more personalized and integral therapies in the years to come. Thus, the development of more reliable biomarkers at asymptomatic stages of the disease, and the use of genetic profiling of patients will surely permit a more effective treatment of PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - J Alex Grizzell
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
14
|
Marquart LA, Turner MW, Warner LR, King MD, Groome JR, McDougal OM. Ribbon α-Conotoxin KTM Exhibits Potent Inhibition of Nicotinic Acetylcholine Receptors. Mar Drugs 2019; 17:E669. [PMID: 31795126 PMCID: PMC6950571 DOI: 10.3390/md17120669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 01/26/2023] Open
Abstract
KTM is a 16 amino acid peptide with the sequence WCCSYPGCYWSSSKWC. Here, we present the nuclear magnetic resonance (NMR) structure and bioactivity of this rationally designed α-conotoxin (α-CTx) that demonstrates potent inhibition of rat α3β2-nicotinic acetylcholine receptors (rα3β2-nAChRs). Two bioassays were used to test the efficacy of KTM. First, a qualitative PC12 cell-based assay confirmed that KTM acts as a nAChR antagonist. Second, bioactivity evaluation by two-electrode voltage clamp electrophysiology was used to measure the inhibition of rα3β2-nAChRs by KTM (IC50 = 0.19 ± 0.02 nM), and inhibition of the same nAChR isoform by α-CTx MII (IC50 = 0.35 ± 0.8 nM). The three-dimensional structure of KTM was determined by NMR spectroscopy, and the final set of 20 structures derived from 32 distance restraints, four dihedral angle constraints, and two disulfide bond constraints overlapped with a mean global backbone root-mean-square deviation (RMSD) of 1.7 ± 0.5 Å. The structure of KTM did not adopt the disulfide fold of α-CTx MII for which it was designed, but instead adopted a flexible ribbon backbone and disulfide connectivity of C2-C16 and C3-C8 with an estimated 12.5% α-helical content. In contrast, α-CTx MII, which has a native fold of C2-C8 and C3-C16, has an estimated 38.1% α-helical secondary structure. KTM is the first reported instance of a Framework I (CC-C-C) α-CTx with ribbon connectivity to display sub-nanomolar inhibitory potency of rα3β2-nAChR subtypes.
Collapse
Affiliation(s)
- Leanna A. Marquart
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (L.A.M.); (L.R.W.); (M.D.K.)
| | - Matthew W. Turner
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA;
| | - Lisa R. Warner
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (L.A.M.); (L.R.W.); (M.D.K.)
| | - Matthew D. King
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (L.A.M.); (L.R.W.); (M.D.K.)
| | - James R. Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA;
| | - Owen M. McDougal
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (L.A.M.); (L.R.W.); (M.D.K.)
| |
Collapse
|
15
|
Silva AR, Grosso C, Delerue-Matos C, Rocha JM. Comprehensive review on the interaction between natural compounds and brain receptors: Benefits and toxicity. Eur J Med Chem 2019; 174:87-115. [PMID: 31029947 DOI: 10.1016/j.ejmech.2019.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Given their therapeutic activity, natural products have been used in traditional medicines throughout the centuries. The growing interest of the scientific community in phytopharmaceuticals, and more recently in marine products, has resulted in a significant number of research efforts towards understanding their effect in the treatment of neurodegenerative diseases, such as Alzheimer's (AD), Parkinson (PD) and Huntington (HD). Several studies have shown that many of the primary and secondary metabolites of plants, marine organisms and others, have high affinities for various brain receptors and may play a crucial role in the treatment of diseases affecting the central nervous system (CNS) in mammalians. Actually, such compounds may act on the brain receptors either by agonism, antagonism, allosteric modulation or other type of activity aimed at enhancing a certain effect. The current manuscript comprehensively reviews the state of the art on the interactions between natural compounds and brain receptors. This information is of foremost importance when it is intended to investigate and develop cutting-edge drugs, more effective and with alternative mechanisms of action to the conventional drugs presently used for the treatment of neurodegenerative diseases. Thus, we reviewed the effect of 173 natural products on neurotransmitter receptors, diabetes related receptors, neurotrophic factor related receptors, immune system related receptors, oxidative stress related receptors, transcription factors regulating gene expression related receptors and blood-brain barrier receptors.
Collapse
Affiliation(s)
- Ana R Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, P-4249-015, Porto, Portugal.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, P-4249-015, Porto, Portugal
| | - João M Rocha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal; REQUIMTE/LAQV, Grupo de investigação de Química Orgânica Aplicada (QUINOA), Laboratório de polifenóis alimentares, Departamento de Química e Bioquímica (DQB), Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n, P-4169-007, Porto, Portugal
| |
Collapse
|
16
|
Affiliation(s)
- Olena Filchakova
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Republic of Kazakhstan
| |
Collapse
|
17
|
Ztaou S, Amalric M. Contribution of cholinergic interneurons to striatal pathophysiology in Parkinson's disease. Neurochem Int 2019; 126:1-10. [PMID: 30825602 DOI: 10.1016/j.neuint.2019.02.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 02/24/2019] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of nigral dopaminergic neurons innervating the striatum, the main input structure of the basal ganglia. This creates an imbalance between dopaminergic inputs and cholinergic interneurons (ChIs) within the striatum. The efficacy of anticholinergic drugs, one of the earliest therapy for PD before the discovery of L-3,4-dihydroxyphenylalanine (L-DOPA) suggests an increased cholinergic tone in this disease. The dopamine (DA)-acetylcholine (ACh) balance hypothesis is now revisited with the use of novel cutting-edge techniques (optogenetics, pharmacogenetics, new electrophysiological recordings). This review will provide the background of the specific contribution of ChIs to striatal microcircuit organization in physiological and pathological conditions. The second goal of this review is to delve into the respective contributions of nicotinic and muscarinic receptor cholinergic subunits to the control of striatal afferent and efferent neuronal systems. Special attention will be given to the role played by muscarinic acetylcholine receptors (mAChRs) in the regulation of striatal network which may have important implications in the development of novel therapeutic strategies for motor and cognitive impairment in PD.
Collapse
Affiliation(s)
- Samira Ztaou
- Aix Marseille Univ, CNRS, LNC, FR3C, Marseille, France; Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY, 10032, USA
| | | |
Collapse
|
18
|
Turner MW, Marquart LA, Phillips PD, McDougal OM. Mutagenesis of α-Conotoxins for Enhancing Activity and Selectivity for Nicotinic Acetylcholine Receptors. Toxins (Basel) 2019; 11:E113. [PMID: 30781866 PMCID: PMC6409848 DOI: 10.3390/toxins11020113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 02/04/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are found throughout the mammalian body and have been studied extensively because of their implication in a myriad of diseases. α-Conotoxins (α-CTxs) are peptide neurotoxins found in the venom of marine snails of genus Conus. α-CTxs are potent and selective antagonists for a variety of nAChR isoforms. Over the past 40 years, α-CTxs have proven to be valuable molecular probes capable of differentiating between closely related nAChR subtypes and have contributed greatly to understanding the physiological role of nAChRs in the mammalian nervous system. Here, we review the amino acid composition and structure of several α-CTxs that selectively target nAChR isoforms and explore strategies and outcomes for introducing mutations in native α-CTxs to direct selectivity and enhance binding affinity for specific nAChRs. This review will focus on structure-activity relationship studies involving native α-CTxs that have been rationally mutated and molecular interactions that underlie binding between ligand and nAChR isoform.
Collapse
Affiliation(s)
- Matthew W Turner
- Biomolecular Sciences Graduate Programs, Boise State University; Boise, ID 83725, USA.
| | - Leanna A Marquart
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| | - Paul D Phillips
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| | - Owen M McDougal
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| |
Collapse
|
19
|
Jurado-Coronel JC, Loaiza AE, Díaz JE, Cabezas R, Ashraf GM, Sahebkar A, Echeverria V, González J, Barreto GE. (E)-Nicotinaldehyde O-Cinnamyloxime, a Nicotine Analog, Attenuates Neuronal Cells Death Against Rotenone-Induced Neurotoxicity. Mol Neurobiol 2018; 56:1221-1232. [DOI: 10.1007/s12035-018-1163-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/30/2018] [Indexed: 12/21/2022]
|
20
|
Dutertre S, Nicke A, Tsetlin VI. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017. [PMID: 28623170 DOI: 10.1016/j.neuropharm.2017.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) represents the prototype of ligand-gated ion channels. It is vital for neuromuscular transmission and an important regulator of neurotransmission. A variety of toxic compounds derived from diverse species target this receptor and have been of elemental importance in basic and applied research. They enabled milestone discoveries in pharmacology and biochemistry ranging from the original formulation of the receptor concept, the first isolation and structural analysis of a receptor protein (the nAChR) to the identification, localization, and differentiation of its diverse subtypes and their validation as a target for therapeutic intervention. Among the venom-derived compounds, α-neurotoxins and α-conotoxins provide the largest families and still represent indispensable pharmacological tools. Application of modified α-neurotoxins provided substantial structural and functional details of the nAChR long before high resolution structures were available. α-bungarotoxin represents not only a standard pharmacological tool and label in nAChR research but also for unrelated proteins tagged with a minimal α-bungarotoxin binding motif. A major advantage of α-conotoxins is their smaller size, as well as superior selectivity for diverse nAChR subtypes that allows their development into ligands with optimized pharmacological and chemical properties and potentially novel drugs. In the following, these two groups of nAChR antagonists will be described focusing on their respective roles in the structural and functional characterization of nAChRs and their development into research tools. In addition, we provide a comparative overview of the diverse α-conotoxin selectivities that can serve as a practical guide for both structure activity studies and subtype classification. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Nußbaumstr. 26, 80336 Munich, Germany.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str.16/10, Moscow 117999, Russian Federation
| |
Collapse
|
21
|
Leung J, McPhee DM, Renda A, Penty N, Farhoomand F, Nashmi R, Delaney KR. MeCP2-deficient mice have reduced α4 and α6 nicotinic receptor mRNA and altered behavioral response to nicotinic agonists. Behav Brain Res 2017; 330:118-126. [PMID: 28506623 DOI: 10.1016/j.bbr.2017.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/10/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022]
Affiliation(s)
- J Leung
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada
| | - D M McPhee
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada
| | - A Renda
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada
| | - N Penty
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada
| | - F Farhoomand
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada
| | - R Nashmi
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada.
| | - K R Delaney
- Dept. of Biology and Centre for Biomedical Reserarch, University of Victoria, Victoria BC, V8W2Y2, Canada.
| |
Collapse
|
22
|
Mitra S, Mucha M, Khatri SN, Glenon R, Schulte MK, Bult-Ito A. Attenuation of Compulsive-Like Behavior Through Positive Allosteric Modulation of α4β2 Nicotinic Acetylcholine Receptors in Non-Induced Compulsive-Like Mice. Front Behav Neurosci 2017; 10:244. [PMID: 28105008 PMCID: PMC5214813 DOI: 10.3389/fnbeh.2016.00244] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/14/2016] [Indexed: 11/23/2022] Open
Abstract
Nicotinic α4β2 receptors are the most abundant subtypes of nicotinic acetylcholine receptors (nAChRs) expressed in brain regions implicated in obsessive compulsive disorder (OCD). These receptors are known to modify normal and addictive behaviors by modulating neuronal excitability. Desformylflustrabromine (dFBr) is a novel, positive allosteric modulator (PAM) of high acetylcholine sensitivity (HS) and low acetylcholine sensitivity (LS) α4β2 nAChRs. The present study tested the hypothesis that positive allosteric modulation of α4β2 receptors by dFBr will attenuate compulsive-like behavior in a non-induced compulsive-like mouse model. Male mice (Mus musculus) selected for compulsive-like nesting behavior (NB; 48 animals; 12 per group) received acute (once) and chronic (every day for 32 days) subcutaneous injection of dFBr at 2, 4 and 6 mg/kg doses. Saline was used as a control (0 mg/kg). Compulsive-like NB was assessed after 1, 2, 3, 4, 5 and 24 h, while compulsive-like marble burying (MB) and anxiety-like open field (OF) behaviors were performed 2 h after dFBr administration. In the acute administration protocol, dFBr dose dependently attenuated NB and MB. Rapid effects (1–2 h after drug administration) of dFBr on MB and NB were observed for the chronic administration which was in congruence with the acute study. Chronic administration also revealed sustained suppression of NB by dFBr following 5 weeks of treatment. In both the acute and chronic regimen dFBr did not modulate OF behaviors. This research demonstrates the novel role of positive allosteric modulation of α4β2 nicotinic receptors by dFBr as a translational potential for OCD.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Chemistry and Biochemistry, University of Alaska FairbanksFairbanks, AK, USA; IDeA Network of Biomedical Research Excellence (INBRE), University of Alaska FairbanksFairbanks, AK, USA
| | - Mckenzie Mucha
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks Fairbanks, AK, USA
| | - Shailesh N Khatri
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences Philadelphia, PA, USA
| | - Richard Glenon
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond, VA, USA
| | - Marvin K Schulte
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences Philadelphia, PA, USA
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska Fairbanks Fairbanks, AK, USA
| |
Collapse
|
23
|
Kryukova E, Shelukhina I, Kolacheva A, Alieva A, Shadrina M, Slominsky P, Kasheverov I, Utkin Y, Ugrumov M, Tsetlin V. Possible involvement of neuronal nicotinic acetylcholine receptors in compensatory brain mechanisms at early stages of Parkinson's disease. ACTA ACUST UNITED AC 2017; 63:241-247. [DOI: 10.18097/pbmc20176303241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A role of nicotinic acetylcholine receptors (nAChR) in the development of Parkinson's disease (PD) has been investigated using two mouse models corresponding to the presymptomatic stage and the early symptomatic stage of PD. Quantitative determination of nAChR in the striatum and substantia nigra (SN) was performed using the radioactive derivatives of epibatidine, -conotoxin MII, and -bungarotoxin as ligands. The number of ligand-binding sites changed differently depending on their location in the brain, the stage of the disease and the receptor subtype. Epibatidine binding decreased in the striatum to 66% and 70% at the presymptomatic and early symptomatic stages, respectively, whereas in SN a 160% increase was registered at the presymptomatic stage. The -conotoxin MII binding on striatal dopaminergic axonal terminals at the presymptomatic stage decreased by 20% and at the symptomatic stage it demonstrated a further decrease. The increase in -bungarotoxin binding at the presymptomatic stage and a decrease at the early symptomatic stage was observed in the striatum. In SN, the level of -bungarotoxin binding decreased at the presymptomatic stage and kept constant at the symptomatic stage. The significant decrease in the expression of Chrna4 and Chrna6 genes encoding 4 and 6 nAChR subunits was observed in SN at the early symptomatic stage, while a 13-fold increase in expression of the Chrna7 gene encoding the 7 nAChR subunit was detected at the presymptomatic stage. The data obtained suggest possible involvement of nAChR in compensatory mechanisms at early PD stages.
Collapse
Affiliation(s)
- E.V. Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - I.V. Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - A.A. Kolacheva
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - A.Kh. Alieva
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - M.I. Shadrina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - P.A. Slominsky
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - I.E. Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - Y.N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - M.V. Ugrumov
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - V.I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| |
Collapse
|
24
|
Zhao J, Zheng Y, Xue F, Chang Y, Yang H, Zhang J. Molecular basis of reactive oxygen species-induced inactivation of α4β2 nicotinic acetylcholine receptors. Free Radic Biol Med 2016; 97:520-530. [PMID: 27445102 DOI: 10.1016/j.freeradbiomed.2016.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/03/2016] [Accepted: 07/16/2016] [Indexed: 01/11/2023]
Abstract
The α4β2 neuronal nicotinic acetylcholine receptors (nAChRs) are the most widespread heteromeric nAChR subtype in the brain, mediating fast synaptic transmission. Previous studies showed that α4β2 nAChRs could be inactivated by reactive oxygen species (ROS), but the underlying mechanism is still obscure. We found that H2O2 induced the rundown of ACh-evoked currents in human α4β2 nAChRs and the replacement of the conserved cysteine in the M1-M2 linker of either α4 Cys245 or β2 Cys237 with an alanine residue could prevent the current rundown. Structurally, α4 Cys245 and β2 Cys237 are hypothesized to be in close proximity when the receptor is activated. Western blotting results showed that α4 and β2 subunits were cross-linked when the agonist-bound receptor encountered H2O2, which could be prevented by the substitution of the conserved cysteine in the M1-M2 linker to an alanine. Thus, when agonist bound to the receptor, α4 Cys245 and β2 Cys237 came close to each other and ROS oxidized these conserved cysteines, leading subunits to be cross-linked and trapping α4β2 nAChRs into the inactivation state. In addition, we mimicked an experimental Parkinson's disease (PD) model in PC12 cells and found that ROS, generated by 6-hydroxydopamine (6-OHDA), could cause the current rundown in α4β2 nAChRs, which may play a role in PD.
Collapse
Affiliation(s)
- Junjun Zhao
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing 100069, China
| | - Yan Zheng
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing 100069, China
| | - Fenqin Xue
- Medical Experiment and Test Center, Capital Medical University, Beijing 100069, China
| | - Yongchang Chang
- Division of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Hui Yang
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing 100069, China.
| | - Jianliang Zhang
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing 100069, China.
| |
Collapse
|
25
|
Mursaleen LR, Stamford JA. Drugs of abuse and Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:209-17. [PMID: 25816790 DOI: 10.1016/j.pnpbp.2015.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 11/15/2022]
Abstract
The term "drug of abuse" is highly contextual. What constitutes a drug of abuse for one population of patients does not for another. It is therefore important to examine the needs of the patient population to properly assess the status of drugs of abuse. The focus of this article is on the bidirectional relationship between patients and drug abuse. In this paper we will introduce the dopaminergic systems of the brain in Parkinson's and the influence of antiparkinsonian drugs upon them before discussing this synergy of condition and medication as fertile ground for drug abuse. We will then examine the relationship between drugs of abuse and Parkinson's, both beneficial and deleterious. In summary we will draw the different strands together and speculate on the future merit of current drugs of abuse as treatments for Parkinson's disease.
Collapse
Affiliation(s)
- Leah R Mursaleen
- The Cure Parkinson's Trust, 120 Baker Street, London W1U 6TU, United Kingdom; Parkinson's Movement, 120 Baker Street, London W1U 6TU, United Kingdom; The University of Sussex, Life Sciences, Brighton BN1 9RH, United Kingdom
| | - Jonathan A Stamford
- The Cure Parkinson's Trust, 120 Baker Street, London W1U 6TU, United Kingdom; Parkinson's Movement, 120 Baker Street, London W1U 6TU, United Kingdom.
| |
Collapse
|
26
|
Song G, Nesil T, Cao J, Yang Z, Chang SL, Li MD. Nicotine mediates expression of genes related to antioxidant capacity and oxidative stress response in HIV-1 transgenic rat brain. J Neurovirol 2015; 22:114-24. [PMID: 26306689 DOI: 10.1007/s13365-015-0375-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/18/2015] [Accepted: 08/10/2015] [Indexed: 12/25/2022]
Abstract
Oxidative stress plays an important role in the progression of HIV-1 infection. Nicotine can either protect neurons from neurodegeneration or induce oxidative stress, depending on its dose and degree of oxidative stress impairment. However, the relationship between nicotine and oxidative stress in the HIV-1-infected individuals remains largely unknown. The purpose of this study was to determine the effect of nicotine on expression of genes related to the glutathione (GSH)-centered antioxidant system and oxidative stress in the nucleus accumbens (NAc) and ventral tegmental area (VTA) of HIV-1 transgenic (HIV-1Tg) and F344 control rats. Adult HIV-1Tg and F344 rats received nicotine (0.4 mg/kg, base, s.c.) or saline injections once per day for 27 days. At the end of treatment, various brain regions including the NAc and VTA were collected from each rat. Following total RNA extraction and complementary DNA (cDNA) synthesis of each sample, quantitative reverse transcription PCR (RT-PCR) analysis was performed for 43 oxidative-stress-related genes. Compared with F344 control rats, HIV-1Tg rats showed a significant downregulation of genes involved in ATPase and cyctochrome oxidase at the messenger RNA (mRNA) level in both regions. Further, we found a significant downregulation of Gstm5 in the NAc and upregulation of Cox1, Cox3, and Gsta6 in the VTA of HIV-1Tg rats. HIV-1Tg rats showed brain-region-specific responses to chronic nicotine treatment. This response resulted in a change in the expression of genes involved in antioxidant mechanisms including the downregulation of genes such as Atp5h, Calml1, Gpx7, Gstm5, Gsr, and Gsta6 and upregulation of Sod1 in the NAc, as well as downregulation of genes like Cox5a, Gpx4, Gpx6, Gpx7, Gstm5, and Sod1 in the VTA of HIV-1Tg rats. Together, we conclude that chronic nicotine treatment has a dual effect on the antioxidant defense system and oxidative-stress-induced apoptosis signaling in HIV-1Tg rats. These findings suggest that nicotine has a negative effect on response to oxidative stress and antioxidant processes in HIV-1 Tg rat brain, especially in the VTA.
Collapse
Affiliation(s)
- Guohua Song
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 450 Ray C Hunt Drive, Suite G-170, Charlottesville, VA, 22903, USA.,Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, China
| | - Tanseli Nesil
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 450 Ray C Hunt Drive, Suite G-170, Charlottesville, VA, 22903, USA
| | - Junran Cao
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 450 Ray C Hunt Drive, Suite G-170, Charlottesville, VA, 22903, USA
| | - Zhongli Yang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA.,Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 450 Ray C Hunt Drive, Suite G-170, Charlottesville, VA, 22903, USA.
| |
Collapse
|
27
|
Lim SAO, Kang UJ, McGehee DS. Striatal cholinergic interneuron regulation and circuit effects. Front Synaptic Neurosci 2014; 6:22. [PMID: 25374536 PMCID: PMC4204445 DOI: 10.3389/fnsyn.2014.00022] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/05/2014] [Indexed: 01/11/2023] Open
Abstract
The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh). Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI), which comprises only about 1-2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction.
Collapse
Affiliation(s)
| | - Un Jung Kang
- Department of Neurology, Columbia University New York, NY, USA
| | - Daniel S McGehee
- Committee on Neurobiology, University of Chicago Chicago, IL, USA ; Department of Anesthesia and Critical Care, University of Chicago Chicago, IL, USA
| |
Collapse
|
28
|
Teradal NL, Narayan PS, Seetharamappa J, Satpati AK. Electrosensing Platform for Varenicline Based on Reduced Graphene Oxide. ELECTROANAL 2014. [DOI: 10.1002/elan.201400226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Bois F, Gallezot JD, Zheng MQ, Lin SF, Esterlis I, Cosgrove KP, Carson RE, Huang Y. Evaluation of [(18)F]-(-)-norchlorofluorohomoepibatidine ([(18)F]-(-)-NCFHEB) as a PET radioligand to image the nicotinic acetylcholine receptors in non-human primates. Nucl Med Biol 2014; 42:570-7. [PMID: 25858513 DOI: 10.1016/j.nucmedbio.2014.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 07/28/2014] [Accepted: 08/05/2014] [Indexed: 01/27/2023]
Abstract
INTRODUCTION The aims of the present study were to develop an optimized microfluidic method for the production of the selective nicotinic acetylcholine α4β2 receptor radiotracer [(18)F]-(-)-NCFHEB ([(18)F]-Flubatine) and to investigate its receptor binding profile and pharmacokinetic properties in rhesus monkeys in vivo. METHODS [(18)F]-(-)-NCFHEB was prepared in two steps, a nucleophilic fluorination followed by N-Boc deprotection. PET measurements were performed in rhesus monkeys including baseline and preblocking experiments with nicotine (0.24 mg/kg). Radiometabolites in plasma were measured using HPLC. RESULTS [(18)F]-(-)-NCFHEB was prepared in a total synthesis time of 140 min. The radiochemical purity in its final formulation was >98% and the mean specific radioactivity was 97.3 ± 16.1 GBq/μmol (n = 6) at end of synthesis (EOS). In the monkey brain, radioactivity concentration was high in the thalamus, moderate in the putamen, hippocampus, frontal cortex, and lower in the cerebellum. Nicotine blocked 98-100% of [(18)F]-(-)-NCFHEB specific binding, and the non-displaceable distribution volume (VND) was estimated at 5.9 ± 1.0 mL/cm(3) (n = 2), or 6.6 ± 1.1 mL/cm(3) after normalization by the plasma free fraction fP. Imaging data are amenable to kinetic modeling analysis using the multilinear analysis (MA1) method, and model-derived binding parameters display good test-retest reproducibility. In rhesus monkeys, [(18)F]-(-)-NCFHEB can yield robust regional binding potential (BPND) values (thalamus = 4.1 ± 1.5, frontal cortex = 1.2 ± 0.2, putamen = 0.96 ± 0.45, and cerebellum = 0.10 ± 0.29). CONCLUSION An efficient microfluidic synthetic method was developed for preparation of [(18)F]-(-)-NCFHEB. PET examination in rhesus monkeys showed that [(18)F]-(-)-NCFHEB entered the brain readily and its regional radioactivity uptake pattern was in accordance with the known distribution of α4β2 receptors. Estimated non-displaceable binding potential (BPND) values in brain regions were better than those of [(18)F]2-FA and comparable to [(18)F]AZAN. These results confirm previous findings and support further examination of [(18)F]-(-)-NCFHEB in humans.
Collapse
Affiliation(s)
- Frederic Bois
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Jean-Dominique Gallezot
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ming-Qiang Zheng
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Shu-Fei Lin
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly P Cosgrove
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
30
|
Grizzell JA, Echeverria V. New Insights into the Mechanisms of Action of Cotinine and its Distinctive Effects from Nicotine. Neurochem Res 2014; 40:2032-46. [PMID: 24970109 DOI: 10.1007/s11064-014-1359-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/10/2014] [Indexed: 12/20/2022]
Abstract
Tobacco consumption is far higher among a number of psychiatric and neurological diseases, supporting the notion that some component(s) of tobacco may underlie the oft-reported reduction in associated symptoms during tobacco use. Popular dogma holds that this component is nicotine. However, increasing evidence support theories that cotinine, the main metabolite of nicotine, may underlie at least some of nicotine's actions in the nervous system, apart from its adverse cardiovascular and habit forming effects. Though similarities exist, disparate and even antagonizing actions between cotinine and nicotine have been described both in terms of behavior and physiology, underscoring the need to further characterize this potentially therapeutic compound. Cotinine has been shown to be psychoactive in humans and animals, facilitating memory, cognition, executive function, and emotional responding. Furthermore, recent research shows that cotinine acts as an antidepressant and reduces cognitive-impairment associated with disease and stress-induced dysfunction. Despite these promising findings, continued focus on this potentially safe alternative to tobacco and nicotine use is lacking. Here, we review the effects of cotinine, including comparisons with nicotine, and discuss potential mechanisms of cotinine-specific actions in the central nervous system which are, to date, still being elucidated.
Collapse
Affiliation(s)
- J Alex Grizzell
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, 33611, USA.,Department of Research and Development, Bay Pines VA Healthcare System, 10,000 Bay Pines Blvd., Bldg. 23, Rm. 123, Bay Pines, FL, 33744, USA
| | - Valentina Echeverria
- Department of Research and Development, Bay Pines VA Healthcare System, 10,000 Bay Pines Blvd., Bldg. 23, Rm. 123, Bay Pines, FL, 33744, USA. .,Universidad Autónoma de Chile, Carlos Antúnez 1920, Providencia, Santiago, Chile. .,Department of Molecular Medicine, University of South Florida, Tampa, FL, 33647, USA.
| |
Collapse
|
31
|
Brunzell DH, McIntosh JM, Papke RL. Diverse strategies targeting α7 homomeric and α6β2* heteromeric nicotinic acetylcholine receptors for smoking cessation. Ann N Y Acad Sci 2014; 1327:27-45. [PMID: 24730978 DOI: 10.1111/nyas.12421] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Preclinical studies suggest that a diversity of nicotinic acetylcholine receptors (nAChRs) with different sensitivities to nicotine may contribute to tobacco addiction. Using rodent intravenous nicotine self-administration as a preclinical model with good predictive validity for therapeutic efficacy for tobacco cessation, investigators have identified heteromeric α6β2* and homomeric α7 nAChRs as promising novel therapeutic targets to promote smoking abstinence (*denotes possible assembly with other subunits). The data suggest that diverse strategies that target these subclasses of nAChRs, namely inhibition of α6β2* nAChRs and stimulation of α7 nAChRs, will support tobacco cessation. α6β2* nAChRs, members of the high-affinity family of β2* nAChRs, function similarly to α4β2* nAChRs, the primary target of the FDA-approved drug varenicline, but have a much more selective neuroanatomical pattern of expression in catecholaminergic nuclei. Although activation of β2* nAChRs facilitates nicotine self-administration, stimulation of α7 nAChRs appears to negatively modulate both nicotine reinforcement and β2* nAChR function in the mesolimbic dopamine system. Although challenges and caveats must be considered in the development of therapeutics that target these nAChR subpopulations, an accumulation of data suggests that α7 nAChR agonists, partial agonists, or positive allosteric modulators and α6β2* nAChR antagonists, partial agonists, or negative allosteric modulators may prove to be effective therapeutics for tobacco cessation.
Collapse
Affiliation(s)
- Darlene H Brunzell
- Department of Pharmacology and Toxicology, Interdisciplinary Neuroscience Program and Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | | | | |
Collapse
|
32
|
Plata V, Duhne M, Pérez-Ortega J, Hernández-Martinez R, Rueda-Orozco P, Galarraga E, Drucker-Colín R, Bargas J. Global actions of nicotine on the striatal microcircuit. Front Syst Neurosci 2013; 7:78. [PMID: 24223538 PMCID: PMC3818482 DOI: 10.3389/fnsys.2013.00078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/17/2013] [Indexed: 11/13/2022] Open
Abstract
The question to solve in the present work is: what is the predominant action induced by the activation of cholinergic-nicotinic receptors (nAChrs) in the striatal network given that nAChrs are expressed by several elements of the circuit: cortical terminals, dopamine terminals, and various striatal GABAergic interneurons. To answer this question some type of multicellular recording has to be used without losing single cell resolution. Here, we used calcium imaging and nicotine. It is known that in the presence of low micromolar N-Methyl-D-aspartate (NMDA), the striatal microcircuit exhibits neuronal activity consisting in the spontaneous synchronization of different neuron pools that interchange their activity following determined sequences. The striatal circuit also exhibits profuse spontaneous activity in pathological states (without NMDA) such as dopamine depletion. However, in this case, most pathological activity is mostly generated by the same neuron pool. Here, we show that both types of activity are inhibited during the application of nicotine. Nicotine actions were blocked by mecamylamine, a non-specific antagonist of nAChrs. Interestingly, inhibitory actions of nicotine were also blocked by the GABAA-receptor antagonist bicuculline, in which case, the actions of nicotine on the circuit became excitatory and facilitated neuronal synchronization. We conclude that the predominant action of nicotine in the striatal microcircuit is indirect, via the activation of networks of inhibitory interneurons. This action inhibits striatal pathological activity in early Parkinsonian animals almost as potently as L-DOPA.
Collapse
Affiliation(s)
- Víctor Plata
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Baca M, Allan AM, Partridge LD, Wilson MC. Gene-environment interactions affect long-term depression (LTD) through changes in dopamine receptor affinity in Snap25 deficient mice. Brain Res 2013; 1532:85-98. [PMID: 23939223 DOI: 10.1016/j.brainres.2013.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/25/2013] [Accepted: 08/02/2013] [Indexed: 01/15/2023]
Abstract
Genes and environmental conditions interact in the development of cognitive capacities and each plays an important role in neuropsychiatric disorders such as attention deficit/hyperactivity disorder (ADHD) and schizophrenia. Multiple studies have indicated that the gene for the SNARE protein SNAP-25 is a candidate susceptibility gene for ADHD, as well as schizophrenia, while maternal smoking is a candidate environmental risk factor for ADHD. We utilized mice heterozygous for a Snap25 null allele and deficient in SNAP-25 expression to model genetic effects in combination with prenatal exposure to nicotine to explore genetic and environmental interactions in synaptic plasticity and behavior. We show that SNAP-25 deficient mice exposed to prenatal nicotine exhibit hyperactivity and deficits in social interaction. Using a high frequency stimulus electrophysiological paradigm for long-term depression (LTD) induction, we examined the roles of dopaminergic D2 receptors (D2Rs) and cannabinoid CB1 receptors (CB1Rs), both critical for LTD induction in the striatum. We found that prenatal exposure to nicotine in Snap25 heterozygote null mice produced a deficit in the D2R-dependent induction of LTD, although CB1R regulation of plasticity was not impaired. We also show that prenatal nicotine exposure altered the affinity and/or receptor coupling of D2Rs, but not the number of these receptors in heterozygote null Snap25 mutants. These results refine the observations made in the coloboma mouse mutant, a proposed mouse model of ADHD, and illustrate how gene×environmental influences can interact to perturb neural functions that regulate behavior.
Collapse
Affiliation(s)
- Michael Baca
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA; Sandia National Laboratories, Albuquerque, New Mexico, 87185, USA
| | | | | | | |
Collapse
|
34
|
Kryukova EV, Shelukhina IV, Kozina EA, Ugryumov MV, Tsetlin VI. Expression of acetylcholine receptors in the brain of mice at the presymptomatic stage of Parkinson’s disease. DOKL BIOCHEM BIOPHYS 2013; 449:69-71. [DOI: 10.1134/s1607672913020038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Indexed: 11/23/2022]
|
35
|
Greenbaum L, Lorberboym M, Melamed E, Rigbi A, Barhum Y, Kohn Y, Khlebtovsky A, Lerer B, Djaldetti R. Perspective: Identification of genetic variants associated with dopaminergic compensatory mechanisms in early Parkinson's disease. Front Neurosci 2013; 7:52. [PMID: 23596382 PMCID: PMC3625833 DOI: 10.3389/fnins.2013.00052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/19/2013] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is slowly progressive, and heterogeneity of its severity among individuals may be due to endogenous mechanisms that counterbalance the striatal dopamine loss. In this perspective paper, we introduce a neuroimaging-genetic approach to identify genetic variants, which may contribute to this compensation. First, we briefly review current known potential compensatory mechanisms for premotor and early disease PD, located in the striatum and other brain regions. Then, we claim that a mismatch between mild symptomatic disease, manifested by low motor score on the Unified PD Rating Scale (UPDRS), and extensive Nigro-Striatal (NS) degeneration, manifested by reduced uptake of [123I]FP-CIT, is indicative of compensatory processes. If genetic variants are associated with the severity of motor symptoms, while the level of striatal terminals degeneration measured by ligand uptake is taken into account and controlled in the analysis, then these variants may be involved in functional compensatory mechanisms for striatal dopamine deficit. To demonstrate feasibility of this approach, we performed a small “proof of concept” study (candidate gene design) in a sample of 28 Jewish PD patients, and preliminary results are presented.
Collapse
Affiliation(s)
- Lior Greenbaum
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah - Hebrew University Medical Center Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Association of nicotine dependence susceptibility gene, CHRNA5, with Parkinson's disease age at onset: Gene and smoking status interaction. Parkinsonism Relat Disord 2013; 19:72-6. [DOI: 10.1016/j.parkreldis.2012.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/23/2012] [Accepted: 07/19/2012] [Indexed: 12/12/2022]
|
37
|
Abstract
Conopeptides from the venoms of marine snails have attracted much interest as leads in drug design. Currently, one drug, Prialt(®), is on the market as a treatment for chronic neuropathic pain. Conopeptides target a range of ion channels, receptors and transporters, and are typically small, relatively stable peptides that are generally amenable to production using solid-phase peptide synthesis. With only a small fraction of the predicted diversity of conopeptides examined so far, these peptides represent an exciting and largely untapped resource for drug discovery. Recent efforts at chemically re-engineering conopeptides to improve their biopharmaceutical properties promise to accelerate the translation of these fascinating marine peptides to the clinic.
Collapse
|
38
|
Liu Y, Hu J, Wu J, Zhu C, Hui Y, Han Y, Huang Z, Ellsworth K, Fan W. α7 nicotinic acetylcholine receptor-mediated neuroprotection against dopaminergic neuron loss in an MPTP mouse model via inhibition of astrocyte activation. J Neuroinflammation 2012; 9:98. [PMID: 22624500 PMCID: PMC3416733 DOI: 10.1186/1742-2094-9-98] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 05/24/2012] [Indexed: 12/20/2022] Open
Abstract
Background Although evidence suggests that the prevalence of Parkinson’s disease (PD) is lower in smokers than in non-smokers, the mechanisms of nicotine-induced neuroprotection remain unclear. Stimulation of the α7 nicotinic acetylcholine receptor (α7-nAChR) seems to be a crucial mechanism underlying the anti-inflammatory potential of cholinergic agonists in immune cells, including astrocytes, and inhibition of astrocyte activation has been proposed as a novel strategy for the treatment of neurodegenerative disorders such as PD. The objective of the present study was to determine whether nicotine-induced neuroprotection in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model occurs via α7-nAChR-mediated inhibition of astrocytes. Methods Both in vivo (MPTP) and in vitro (1-methyl-4-phenylpyridinium ion (MPP+) and lipopolysaccharide (LPS)) models of PD were used to investigate the role(s) of and possible mechanism(s) by which α7-nAChRs protect against dopaminergic neuron loss. Multiple experimental approaches, including behavioral tests, immunochemistry, and stereology experiments, astrocyte cell cultures, reverse transcriptase PCR, laser scanning confocal microscopy, tumor necrosis factor (TNF)-α assays, and western blotting, were used to elucidate the mechanisms of the α7-nAChR-mediated neuroprotection. Results Systemic administration of nicotine alleviated MPTP-induced behavioral symptoms, improved motor coordination, and protected against dopaminergic neuron loss and the activation of astrocytes and microglia in the substantia nigra. The protective effects of nicotine were abolished by administration of the α7-nAChR-selective antagonist methyllycaconitine (MLA). In primary cultured mouse astrocytes, pretreatment with nicotine suppressed MPP+-induced or LPS-induced astrocyte activation, as evidenced by both decreased production of TNF-α and inhibition of extracellular regulated kinase1/2 (Erk1/2) and p38 activation in astrocytes, and these effects were also reversed by MLA. Conclusion Taken together, our results suggest that α7-nAChR-mediated inhibition of astrocyte activation is an important mechanism underlying the protective effects of nicotine.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Guang Zhou Road 300, Nanjing 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yakel JL. Nicotinic ACh receptors in the hippocampus: role in excitability and plasticity. Nicotine Tob Res 2012; 14:1249-57. [PMID: 22472168 DOI: 10.1093/ntr/nts091] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION The nicotinic ACh receptors (nAChRs) are in the cys-loop family of ligand-gated ion channels. They are widely expressed throughout the brain, including in the hippocampus where they are thought to be involved in regulating excitability, plasticity, and cognitive function. In addition, dysfunction in hippocampal nAChRs has been linked to a variety of neurological disorders and diseases, including Alzheimer's disease, schizophrenia, and epilepsy. In order to understand how to treat nAChR-related disorders and diseases, it is critical to understand how these receptors participate in normal brain function; this entails not only understanding the biophysical properties of ion channel function and their pattern of expression but also how these receptors are regulating excitability and circuit behavior. DISCUSSION The primary cholinergic input to the hippocampus comes from the medial septum and diagonal band of Broca; however, the mechanistic details are unknown of how activation of cholinergic receptors, either through exogenous nAChR ligands or the activation of endogenous acetylcholine release, regulates hippocampal network activity. This entails direct study of the excitatory and inhibitory neuronal networks, as well as the role of nonneuronal cells, in regulating hippocampal function. CONCLUSIONS Here, I will review the latest work from my laboratory in which we have attempted to do just that, with the overall goal of learning more about the role of the hippocampal nAChR in synaptic plasticity.
Collapse
Affiliation(s)
- Jerrel L Yakel
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, P.O. Box 12233, Mail Drop F2-08, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
40
|
Pujeri SS, Khader AMA, Seetharamappa J. Stress degradation studies on varenicline tartrate and development of a validated stability-indicating HPLC method. Sci Pharm 2012; 80:115-26. [PMID: 22396908 PMCID: PMC3293356 DOI: 10.3797/scipharm.1109-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 12/05/2011] [Indexed: 11/22/2022] Open
Abstract
A simple, rapid and stability-indicating reversed-phase liquid chromatographic method was developed for the assay of varenicline tartrate (VRT) in the presence of its degradation products generated from forced decomposition studies. The HPLC separation was achieved on a C18 Inertsil column (250 mm × 4.6 mm i.d. particle size is 5 μm) employing a mobile phase consisting of ammonium acetate buffer containing trifluoroacetic acid (0.02M; pH 4) and acetonitrile in gradient program mode with a flow rate of 1.0 mL min(-1). The UV detector was operated at 237 nm while column temperature was maintained at 40 °C. The developed method was validated as per ICH guidelines with respect to specificity, linearity, precision, accuracy, robustness and limit of quantification. The method was found to be simple, specific, precise and accurate. Selectivity of the proposed method was validated by subjecting the stock solution of VRT to acidic, basic, photolysis, oxidative and thermal degradation. The calibration curve was found to be linear in the concentration range of 0.1-192 μg mL(-1) (R(2) = 0.9994). The peaks of degradation products did not interfere with that of pure VRT. The utility of the developed method was examined by analyzing the tablets containing VRT. The results of analysis were subjected to statistical analysis.
Collapse
Affiliation(s)
- Sudhakar S Pujeri
- Department of Chemistry, Mangalore University, Mangalagangotri, India
| | | | | |
Collapse
|
41
|
Transdermal nicotine replacement therapy in cigarette smokers with acute subarachnoid hemorrhage. Neurocrit Care 2011; 14:77-83. [PMID: 20949331 DOI: 10.1007/s12028-010-9456-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND We evaluated the safety of nicotine replacement therapy (NRT) in active smokers with acute (aneurysmal) subarachnoid hemorrhage (SAH). METHODS A retrospective observational cohort study was conducted in a prospectively collected database including all SAH patients admitted to an 18-bed neuro-ICU between January 1, 2001 and October 1, 2007. Univariate and multivariable models were constructed, employing stepwise logistic regression. The primary endpoint was 3-month mortality. Delayed cerebral ischemia (DCI) due to vasospasm, angiographic and TCD evidence of vasospasm, and delirium were secondary endpoints. RESULTS Active cigarette smokers admitted with SAH included 128 that received NRT and 106 that did not. Patients were well-matched for age, admission Hunt-Hess Grade, radiographic findings, and APACHE II scores, but those who received NRT were more likely to be heavy smokers (>10 cigarettes daily), diabetic, heavy alcohol users, and to have cerebral edema on admission. NRT was associated in multivariate analysis with a lower risk of death at 3 months (OR 0.12, 95% CI 0.04-0.37, P < 0.001). There were no differences in the frequency of DCI and most other medical complications, but delirium (19 vs. 9%, P = 0.006) and seizures (9 vs. 2%, P = 0.024) were more common in patients who received NRT. CONCLUSIONS Despite vasoactive properties, administration of NRT among active smokers with acute SAH appeared to be safe, with similar rates of vasospasm and DCI, and a slightly higher rate of seizures. The association of NRT with lower mortality could be due to chance, to uncontrolled factors, or to a neuroprotective effect of nicotine in active smokers hospitalized with SAH, and should be tested prospectively.
Collapse
|
42
|
Hu J, Zhu C, Liu Y, Wang F, Huang Z, Fan W, Wu J. Dynamic alterations of gene expression of nicotinic acetylcholine receptor α7, α4 and β2 subunits in an acute MPTP-lesioned mouse model. Neurosci Lett 2011; 494:232-6. [PMID: 21406211 DOI: 10.1016/j.neulet.2011.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/25/2011] [Accepted: 03/08/2011] [Indexed: 01/07/2023]
Abstract
Epidemiologic studies show that the prevalence of Parkinson's disease (PD) is lower in smokers than in nonsmokers. Nicotine, a potent agonist of nicotinic acetylcholine receptors (nAChRs), excites midbrain dopaminergic neurons and this may contribute to the anti-parkinsonian effects. However, the alterations in gene expression of nAChR subunits using an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse PD model remain unclear. In the present study, we profile the time course of nAChR α7, α4 and β2 subunit expression levels using a comparative RT-PCR approach after acute MPTP injection. The results fall into four categories. (1) MPTP treatment transiently increased nAChR α7 (after last injection of MPTP 3 and 24 h), α4 and β2 (24 h) mRNA expression in the substantia nigra (SN) and striatum. (2) Compared to cortical and hippocampal tissues, this transient increase of nAChR subunit expression specifically occurred in the SN and striatum. (3) In the acute MPTP model, time-courses of altered expression for nAChR α7, α4 and β2 subunits closely mirrored the deficits observed in animal motor activity. (4) Stereological data showed that after administration of MPTP for 24h, there was a robust astrogliosis in the SN associated with significant dopaminergic neurodegeneration. These changes followed or paralleled MPTP-induced elevation in the levels of α7, α4 and β2 mRNAs. Collectively, our results demonstrate that nAChRs are important targets in the MPTP neurotoxic process. These data suggest that therapeutic strategies targeted toward nAChR α7, α4 and β2 subunits may have potential for developing new treatments for PD.
Collapse
Affiliation(s)
- Jun Hu
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Guang Zhou Road 300, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Bonsi P, Cuomo D, Martella G, Madeo G, Schirinzi T, Puglisi F, Ponterio G, Pisani A. Centrality of striatal cholinergic transmission in Basal Ganglia function. Front Neuroanat 2011; 5:6. [PMID: 21344017 PMCID: PMC3036975 DOI: 10.3389/fnana.2011.00006] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/21/2011] [Indexed: 01/24/2023] Open
Abstract
Work over the past two decades revealed a previously unexpected role for striatal cholinergic interneurons in the context of basal ganglia function. The recognition that these interneurons are essential in synaptic plasticity and motor learning represents a significant step ahead in deciphering how the striatum processes cortical inputs, and why pathological circumstances cause motor dysfunction. Loss of the reciprocal modulation between dopaminergic inputs and the intrinsic cholinergic innervation within the striatum appears to be the trigger for pathophysiological changes occurring in basal ganglia disorders. Accordingly, there is now compelling evidence showing profound changes in cholinergic markers in these disorders, in particular Parkinson's disease and dystonia. Based on converging experimental and clinical evidence, we provide an overview of the role of striatal cholinergic transmission in physiological and pathological conditions, in the context of the pathogenesis of movement disorders.
Collapse
Affiliation(s)
- Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia IRCCS Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Gao J, Xu H, Weinberg C, Huang X, Park Y, Hollenbeck A, Blair A, Schatzkin A, Burch L, Chen H. An exploratory study on the CHRNA3-CHRNA5-CHRNB4 cluster, smoking, and Parkinson's disease. NEURODEGENER DIS 2011; 8:296-9. [PMID: 21228559 DOI: 10.1159/000323190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/29/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Smokers have a lower risk of Parkinson's disease (PD). Recent genome-wide association studies (GWAS) have consistently linked several single nucleotide polymorphisms (SNPs) in the CHRNA3-CHRNA5-CHRNB4 cluster on chromosome 15.q25 to smoking behaviors and nicotine dependence. Investigations into these SNPs may help explain the nature and mechanisms of the smoking-PD relationship. OBJECTIVE To examine whether the genetic variations that were consistently associated with smoking or nicotine dependence in recent GWAS also predict the risk of PD. METHODS This is a population-based case-control study of 788 physician-diagnosed PD patients and 911 controls, all non-Hispanic Whites. Seven SNPs were selected based on findings from recent GWAS on smoking and nicotine dependence, all from the nicotinic acetylcholine receptor subunits (CHRN) A3-A5-B4. Odds ratios (ORs) and 95% confidence intervals were derived from logistic regression models under the assumption of logit-additive allelic effects. RESULTS Four SNPs in linkage disequilibrium from the CHRNA3-CHRNA5-CHRNB4 cluster were associated with smoking duration (OR >1.3, p < 0.05). However, none of the SNPs from this cluster was associated with PD risk in the overall analysis or after stratifying on smoking status. CONCLUSION This preliminary analysis does not support a relationship between these smoking-related GWAS SNPs and PD.
Collapse
Affiliation(s)
- Jianjun Gao
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pérez XA, Quik M. Focus on α4β2* and α6β2* nAChRs for Parkinson's Disease Therapeutics. MOLECULAR AND CELLULAR PHARMACOLOGY 2011; 3:1-6. [PMID: 21499569 PMCID: PMC3076673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
L-dopa is one of the best treatments for the motor symptoms of Parkinson's disease. However, its use is limited by the fact that it provides only symptomatic relief and chronic therapy leads to dyskinesias. There is therefore a continual search for novel therapeutic approaches. Nicotine, a drug that acts at nicotinic acetylcholine receptors (nAChRs), has been shown to protect against nigrostriatal damage and reduce L-dopa-induced dyskinesias. NAChRs may therefore represent novel targets for Parkinson's disease management. Since there are multiple nAChRs throughout the body, it is important to understand the subtypes involved in striatal function to allow for the development of drugs with optimal beneficial effects. Here we discuss recent work from our laboratory which indicates that α6β2* and α4β2* nAChRs are key in regulating striatal dopaminergic function. Experiments in parkinsonian rats using cyclic voltammetry showed that both α6β2* and α4β2* nAChR-mediated evoked-dopamine release in striatal slices is affected by nigrostriatal damage. These subtypes also appear to be important for neuroprotection against nigrostriatal damage and the nicotine-mediated reduction in L-dopa-induced dyskinesias in parkinsonian animal models. Our combined findings indicate that α4β2* and α6β2* nAChRs may represent useful therapeutic targets for Parkinson's disease.
Collapse
Affiliation(s)
- Xiomara A Pérez
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, California
| | | |
Collapse
|
46
|
Liu J, Eaton JB, Caldarone B, Lukas RJ, Kozikowski AP. Chemistry and pharmacological characterization of novel nitrogen analogues of AMOP-H-OH (Sazetidine-A, 6-[5-(azetidin-2-ylmethoxy)pyridin-3-yl]hex-5-yn-1-ol) as α4β2-nicotinic acetylcholine receptor-selective partial agonists. J Med Chem 2010; 53:6973-85. [PMID: 20822184 DOI: 10.1021/jm100765u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to advance therapeutic applications of nicotinic ligands, continuing research efforts are being directed toward the identification and characterization of novel nicotinic acetylcholine receptor (nAChR) ligands that are both potent and subtype selective. Herein we report the synthesis and pharmacological evaluation of members of a new series of 3-alkoxy-5-aminopyridine derivatives that display good selectivity for the α4β2-nAChR subtype based on ligand binding and functional evaluations. The most potent ligand in this series, compound 64, showed high radioligand binding affinity and selectivity for rat α4β2-nAChR with a K(i) value of 1.2 nM and 4700-fold selectivity for α4β2- over α3β4-nAChR, and ∼100-fold selectivity for functional, high-sensitivity, human α4β2-nAChR over α3β4*-nAChR. In the mouse forced swim test, compound 64 exhibited antidepressant-like effects. Structure-activity relationship (SAR) analyses suggest that the introduction of additional substituents to the amino group present on the pyridine ring of the N-demethylated analogue of compound 17 can provide potent α4β2-nAChR-selective ligands for possible use in treatment of neurological and psychiatric disorders including depression.
Collapse
Affiliation(s)
- Jianhua Liu
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
47
|
Skeie G, Muller B, Haugarvoll K, Larsen J, Tysnes O. Differential effect of environmental risk factors on postural instability gait difficulties and tremor dominant Parkinson's disease. Mov Disord 2010; 25:1847-52. [DOI: 10.1002/mds.23178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
48
|
Improgo MRD, Scofield MD, Tapper AR, Gardner PD. The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: dual role in nicotine addiction and lung cancer. Prog Neurobiol 2010; 92:212-26. [PMID: 20685379 DOI: 10.1016/j.pneurobio.2010.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/15/2010] [Accepted: 05/27/2010] [Indexed: 01/19/2023]
Abstract
More than 1 billion people around the world smoke, with 10 million cigarettes sold every minute. Cigarettes contain thousands of harmful chemicals including the psychoactive compound, nicotine. Nicotine addiction is initiated by the binding of nicotine to nicotinic acetylcholine receptors, ligand-gated cation channels activated by the endogenous neurotransmitter, acetylcholine. These receptors serve as prototypes for all ligand-gated ion channels and have been extensively studied in an attempt to elucidate their role in nicotine addiction. Many of these studies have focused on heteromeric nicotinic acetylcholine receptors containing α4 and β2 subunits and homomeric nicotinic acetylcholine receptors containing the α7 subunit, two of the most abundant subtypes expressed in the brain. Recently however, a series of linkage analyses, candidate-gene analyses and genome-wide association studies have brought attention to three other members of the nicotinic acetylcholine receptor family: the α5, α3 and β4 subunits. The genes encoding these subunits lie in a genomic cluster that contains variants associated with increased risk for several diseases including nicotine dependence and lung cancer. The underlying mechanisms for these associations have not yet been elucidated but decades of research on the nicotinic receptor gene family as well as emerging data provide insight on how these receptors may function in pathological states. Here, we review this body of work, focusing on the clustered nicotinic acetylcholine receptor genes and evaluating their role in nicotine addiction and lung cancer.
Collapse
Affiliation(s)
- Ma Reina D Improgo
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont Street, Worcester, MA 01604, United States
| | | | | | | |
Collapse
|
49
|
Lester DB, Rogers TD, Blaha CD. Acetylcholine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 2010; 16:137-62. [PMID: 20370804 PMCID: PMC6493877 DOI: 10.1111/j.1755-5949.2010.00142.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dopaminergic neurons in the substantia nigra pars compacta and ventral tegmental area of the midbrain form the nigrostriatal and mesocorticolimbic dopaminergic pathways that, respectively, project to dorsal and ventral striatum (including prefrontal cortex). These midbrain dopaminergic nuclei and their respective forebrain and cortical target areas are well established as serving a critical role in mediating voluntary motor control, as evidenced in Parkinson's disease, and incentive-motivated behaviors and cognitive functions, as exhibited in drug addiction and schizophrenia, respectively. Although it cannot be disputed that excitatory and inhibitory amino acid-based neurotransmitters, such as glutamate and GABA, play a vital role in modulating activity of midbrain dopaminergic neurons, recent evidence suggests that acetylcholine may be as important in regulating dopaminergic transmission. Midbrain dopaminergic cell tonic and phasic activity is closely dependent upon projections from hindbrain pedunculopontine and the laterodorsal tegmental nuclei, which comprises the only known cholinergic inputs to these neurons. In close coordination with glutamatergic and GABAergic activity, these excitatory cholinergic projections activate nicotinic and muscarinic acetylcholine receptors within the substantia nigra and ventral tegmental area to modulate dopamine transmission in the dorsal/ventral striatum and prefrontal cortex. Additionally, acetylcholine-containing interneurons in the striatum also constitute an important neural substrate to provide further cholinergic modulation of forebrain striatal dopaminergic transmission. In this review, we examine neurological and psychopathological conditions associated with dysfunctions in the interaction of acetylcholine and dopamine and conventional and new pharmacological approaches to treat these disorders.
Collapse
Affiliation(s)
- Deranda B Lester
- Department of Psychology, The University of Memphis, Memphis, TN, USA
| | - Tiffany D. Rogers
- Department of Psychology, The University of Memphis, Memphis, TN, USA
| | - Charles D. Blaha
- Department of Psychology, The University of Memphis, Memphis, TN, USA
| |
Collapse
|
50
|
Simunovic F, Yi M, Wang Y, Stephens R, Sonntag KC. Evidence for gender-specific transcriptional profiles of nigral dopamine neurons in Parkinson disease. PLoS One 2010; 5:e8856. [PMID: 20111594 PMCID: PMC2810324 DOI: 10.1371/journal.pone.0008856] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 12/22/2009] [Indexed: 12/21/2022] Open
Abstract
Background Epidemiological data suggest that the male gender is one of the risks factors for the development of Parkinson Disease (PD). Also, differences in the clinical manifestation and the course of PD have been observed between males and females. However, little is known about the molecular aspects underlying gender-specificity in PD. To address this issue, we determined the gene expression profiles of male and female dopamine (DA) neurons in sporadic PD. Methodology/Principal Findings We analyzed Affymetrix-based microarrays on laser microdissected DA neurons from postmortem brains of sporadic PD patients and age-matched controls across genders. Pathway enrichment demonstrated that major cellular pathways involved in PD pathogenesis showed different patterns of deregulation between males and females with more prominent downregulation of genes related to oxidative phosporylation, apoptosis, synaptic transmission and transmission of nerve impulse in the male population. In addition, we found upregulation of gene products for metabolic processes and mitochondrial energy consumption in the age-matched male control neurons. On the single cell level, selected data validation using quantitative Real-Time (qRT)-PCR was consistent with microarray raw data and supported some of the observations from data analysis. Conclusions/Significance On the molecular level, our results provide evidence that the expression profiles of aged normal and PD midbrain DA neurons are gender-specific. The observed differences in the expression profiles suggest a disease bias of the male gender, which could be in concordance with clinical observations that the male gender represents a risk factor for sporadic PD. Validation of gene expression by qRT-PCR supported the microarray results, but also pointed to several caveats involved in data interpretation.
Collapse
Affiliation(s)
- Filip Simunovic
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, United States of America
| | - Ming Yi
- Bioinformatics Support Group, Advanced Biomedical Computing Center, NCI-Frederick, Frederick, Maryland, United States of America
| | - Yulei Wang
- Applied Biosystems, Foster City, California, United States of America
| | - Robert Stephens
- Bioinformatics Support Group, Advanced Biomedical Computing Center, NCI-Frederick, Frederick, Maryland, United States of America
| | - Kai C. Sonntag
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|