1
|
Inague A, Nakahata DH, Viviani LG, Alegria TGP, Lima RS, Iijima TS, Netto LES, Angeli JPF, Miyamoto S, de Paiva REF. On the binding of auranofin to Prdx6 and its potential role in cancer cell sensitivity to treatment. Free Radic Biol Med 2024; 224:346-351. [PMID: 39218122 DOI: 10.1016/j.freeradbiomed.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/01/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
In this study, we demonstrate that ferroptosis is a component of the cell death mechanism induced by auranofin in HT-1080 cells, in contrast to the gold(III) compounds [Au(phen)Cl2]PF6 and [Au(bnpy)Cl2]. Additionally, we identify a potential role of Prdx6 in modulating the sensitivity of A-375 cells to auranofin treatment, whereas the gold(III) compounds evaluated here exhibit Prdx6-independent cytotoxicity. Finally, using mass spectrometry, we show that auranofin binds selectively to the catalytic Cys47 residue of Prdx6 in vitro under acidic conditions. No binding was observed with the C47S mutant or at neutral pH.
Collapse
Affiliation(s)
- Alex Inague
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| | - Douglas H Nakahata
- Donostia International Physics Center, 20018, Donostia, Euskadi, Gipuzkoa, Spain
| | - Lucas G Viviani
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Thiago G P Alegria
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Rodrigo S Lima
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Thais S Iijima
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Luís Eduardo S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - José Pedro F Angeli
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| | - Raphael E F de Paiva
- Donostia International Physics Center, 20018, Donostia, Euskadi, Gipuzkoa, Spain.
| |
Collapse
|
2
|
De Franco M, Biancalana L, Zappelli C, Zacchini S, Gandin V, Marchetti F. 1,3,5-Triaza-7-phosphaadamantane and Cyclohexyl Groups Impart to Di-Iron(I) Complex Aqueous Solubility and Stability, and Prominent Anticancer Activity in Cellular and Animal Models. J Med Chem 2024; 67:11138-11151. [PMID: 38951717 DOI: 10.1021/acs.jmedchem.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Using a multigram-scalable synthesis, we obtained nine dinuclear complexes based on nonendogenous iron(I) centers and featuring variable aminocarbyne and P-ligands. One compound from the series (FEACYP) emerged for its strong cytotoxicity in vitro against four human cancer cell lines, surpassing the activity of cisplatin by 3-6 times in three cell lines, with an average selectivity index of 6.2 compared to noncancerous HEK293 cells. FEACYP demonstrated outstanding water solubility (15 g/L) and stability in physiological-like solutions. It confirmed its superior antiproliferative activity when tested in 3D spheroids of human pancreatic cancer cells and showed a capacity to inhibit thioredoxin reductase (TrxR) similar to auranofin. In vivo treatment of murine LLC carcinoma with FEACYP (8 mg kg-1 dose) led to excellent tumor growth suppression (88%) on day 15, with no signs of systemic toxicity and only limited body weight loss.
Collapse
Affiliation(s)
- Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, I-35131 Padova, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Chiara Zappelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via P. Gobetti 85, I-40129 Bologna, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, I-35131 Padova, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
3
|
Featherston T, Paumann-Page M, Hampton MB. Melanoma redox biology and the emergence of drug resistance. Adv Cancer Res 2024; 162:145-171. [PMID: 39069368 DOI: 10.1016/bs.acr.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Melanoma is the deadliest form of skin cancer, with the loss of approximately 60,000 lives world-wide each year. Despite the development of targeted therapeutics, including compounds that have selectivity for mutant oncoproteins expressed only in cancer cells, many patients are either unresponsive to initial therapy or their tumors acquire resistance. This results in five-year survival rates of below 25%. New strategies that either kill drug-resistant melanoma cells or prevent their emergence would be extremely valuable. Melanoma, like other cancers, has long been described as being under increased oxidative stress, resulting in an increased reliance on antioxidant defense systems. Changes in redox homeostasis are most apparent during metastasis and during the metabolic reprogramming associated with the development of treatment resistance. This review discusses oxidative stress in melanoma, with a particular focus on targeting antioxidant pathways to limit the emergence of drug resistant cells.
Collapse
Affiliation(s)
- Therese Featherston
- Mātai Hāora-Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Martina Paumann-Page
- Mātai Hāora-Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Mark B Hampton
- Mātai Hāora-Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
4
|
O’Connor C, Keele GR, Martin W, Stodola T, Gatti D, Hoffman BR, Korstanje R, Churchill GA, Reinholdt LG. Unraveling the genetics of arsenic toxicity with cellular morphology QTL. PLoS Genet 2024; 20:e1011248. [PMID: 38662777 PMCID: PMC11075906 DOI: 10.1371/journal.pgen.1011248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/07/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
The health risks that arise from environmental exposures vary widely within and across human populations, and these differences are largely determined by genetic variation and gene-by-environment (gene-environment) interactions. However, risk assessment in laboratory mice typically involves isogenic strains and therefore, does not account for these known genetic effects. In this context, genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening because they provide a way to introduce genetic variation in risk assessment without increasing animal use. Cell lines from genetic reference populations of laboratory mice offer genetic diversity, power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.
Collapse
Affiliation(s)
- Callan O’Connor
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Gregory R. Keele
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- RTI International, Research Triangle Park, Durham, North Carolina, United States of America
| | - Whitney Martin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Timothy Stodola
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Daniel Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Brian R. Hoffman
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Gary A. Churchill
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Laura G. Reinholdt
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
5
|
Yu G, Song X, Chen Q, Zhou Y. Silencing of peroxiredoxin III inhibits formaldehyde-induced oxidative damage of bone marrow cells in BALB/c mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2836-2844. [PMID: 37584494 DOI: 10.1002/tox.23915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Formaldehyde (FA) is associated with the occurrence of leukemia, and oxidative stress is considered to be a major reason. As an endogenous biomarker of oxidative stress, few studies focus on the relationship between peroxiredoxin III (PrxIII) and FA toxicity. Our previous research observed high expression of PrxIII occurred in the process of apoptosis of bone marrow cells (BMCs) induced by FA, however the exact mechanism is unclear. Therefore, this paper aimed to explore the possible association between FA toxicity and PrxIII gene. METHODS We first, used a Cell Counting Kit-8 (CCK-8) to detect the viability of BMCs after they were exposed to different doses of FA (50, 100, 200 μmol/L) for different exposure time (12, 24, 48 h), then chose 24 h as an exposure time to detect the expression of PrxIII for exposing different doses of FA by Quantitative reverse transcription-PCR (qRT-PCR) and Western blot analysis. Based on our preliminary experimental results, we chose 100 μmol/L FA as an exposure dose to expose for 24 h, and used a small interfering RNA (siRNA) to silenced PrxIII to examine the cell viability by CCK-8, reactive oxygen species (ROS) level by DCFH-DA, apoptosis by Annexin V/PI double staining and cell cycle by flow cytometry (FCM) so as to explore the possible regulatory effect of PrxIII silencing on FA-induced bone marrow toxicity. RESULTS High expression of PrxIII occurred in the process of FA-induced oxidative stress. Silencing of PrxIII prevented FA from inducing oxidative stress, thus increasing cell viability, decreasing ROS level, rescuing G0 -G1 and G2 -M arrest, and reducing cell apoptosis. CONCLUSION PrxIII silencing might be a potential target for alleviating FA-induced oxidative damage.
Collapse
Affiliation(s)
- Guangyan Yu
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Xiangfu Song
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Qiang Chen
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Yutong Zhou
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
6
|
O'Connor C, Keele GR, Martin W, Stodola T, Gatti D, Hoffman BR, Korstanje R, Churchill GA, Reinholdt LG. Cell morphology QTL reveal gene by environment interactions in a genetically diverse cell population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.18.567597. [PMID: 38014303 PMCID: PMC10680806 DOI: 10.1101/2023.11.18.567597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening as they offer power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.
Collapse
Affiliation(s)
- Callan O'Connor
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Gregory R Keele
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- RTI International, RTP, NC 27709, USA
| | | | | | - Daniel Gatti
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | - Laura G Reinholdt
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
7
|
Zhao JH, Ma S, Li CY, Zhang HC, Zhao LJ, Zhang ZY. Clinically approved small-molecule drugs for the treatment of rheumatoid arthritis. Eur J Med Chem 2023; 256:115434. [PMID: 37148849 DOI: 10.1016/j.ejmech.2023.115434] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune ailment that is typified by the development of pannus, proliferation of synovial lining cells, microvascular neogenesis, infiltration of interstitial inflammatory cells, and destruction of cartilage and bone tissue. The disease not only imposes physical pain and economic burden on patients, but also results in a significant decline in their quality of life, rendering it a leading cause of disability. General treatment and drugs are commonly employed to alleviate the condition and symptoms of RA. Cyclooxygenase (COX), janus kinase (JAK), glucocorticoid receptor (GR) et al. have been identified as the main therapeutic targets for RA. This article provides a comprehensive review of the clinical applications and synthetic routes of 26 representative drugs for the treatment of RA, with the aim of facilitating the discovery of more effective new drugs for the treatment of this debilitating disease.
Collapse
Affiliation(s)
- Jian-Hui Zhao
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Shuai Ma
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Chao-Yuan Li
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Hong-Chao Zhang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Li-Jie Zhao
- The Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Zi-Yan Zhang
- Department of Orthopedics, The second Hospital, Jilin University, Changchun, 130021, China.
| |
Collapse
|
8
|
Seo MJ, Kim IY, Lee DM, Park YJ, Cho MY, Jin HJ, Choi KS. Dual inhibition of thioredoxin reductase and proteasome is required for auranofin-induced paraptosis in breast cancer cells. Cell Death Dis 2023; 14:42. [PMID: 36658130 PMCID: PMC9852458 DOI: 10.1038/s41419-023-05586-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Auranofin (AF), a gold (I)-containing phosphine compound, is being investigated for oncological application as a repurposed drug. We show here that 4~5 µM AF induces paraptosis, a non-apoptotic cell death mode characterized by dilation of the endoplasmic reticulum (ER) and mitochondria, in breast cancer cells. Although the covalent inhibition of thioredoxin reductase (TrxR), an enzyme that critically controls intracellular redox homeostasis, is considered the primary mechanism of AF's anticancer activity, knockdown of TrxR1 did not induce paraptosis. Instead, both TrxR1 knockdown plus the proteasome inhibitor (PI), bortezomib (Bz), and 2 μM AF plus Bz induced paraptosis, thereby mimicking the effect of 5 μM AF. These results suggest that the paraptosis induced by 5 μM AF requires the inhibition of both TrxR1 and proteasome. We found that TrxR1 knockdown/Bz or subtoxic doses of AF and Bz induced paraptosis selectively in breast cancer cells, sparing non-transformed MCF10A cells, whereas 4~5 μM AF killed both cancer and MCF10A cells. GSH depletion was found to be more critical than ROS generation for the paraptosis induced by dual TrxR1/proteasome inhibition. In this process, the ATF4/CHAC1 (glutathione-specific gamma-glutamylcyclotransferase 1) axis leads to GSH degradation, contributing to proteotoxic stress possibly due to the accumulation of misfolded thiol-containing proteins. These results suggest that the paraptosis-inducing strategy of AF plus a PI may provide an effective therapeutic strategy against pro-apoptotic therapy-resistant cancers and reduce the potential side effects associated with high-dose AF.
Collapse
Affiliation(s)
- Min Ji Seo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - In Young Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
- Nano-safety Team, Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Korea
| | - Dong Min Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - Yeon Jung Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - Mi-Young Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Hyo Joon Jin
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Ajou University School of Medicine, Suwon, 16499, Korea
| | - Kyeong Sook Choi
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea.
| |
Collapse
|
9
|
Auranofin and Pharmacologic Ascorbate as Radiomodulators in the Treatment of Pancreatic Cancer. Antioxidants (Basel) 2022; 11:antiox11050971. [PMID: 35624835 PMCID: PMC9137675 DOI: 10.3390/antiox11050971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer accounts for nearly one fourth of all new cancers worldwide. Little progress in the development of novel or adjuvant therapies has been made over the past few decades and new approaches to the treatment of pancreatic cancer are desperately needed. Pharmacologic ascorbate (P-AscH−, high-dose, intravenous vitamin C) is being investigated in clinical trials as an adjunct to standard-of-care chemoradiation treatments. In vitro, P-AscH− has been shown to sensitize cancer cells to ionizing radiation in a manner that is dependent on the generation of H2O2 while simultaneously protecting normal tissue from radiation damage. There is renewed interest in Auranofin (Au), an FDA-approved medication utilized in the treatment of rheumatoid arthritis, as an anti-cancer agent. Au inhibits the thioredoxin antioxidant system, thus increasing the overall peroxide burden on cancer cells. In support of current literature demonstrating Au’s effectiveness in breast, colon, lung, and ovarian cancer, we offer additional data that demonstrate the effectiveness of Au alone and in combination with P-AscH− and ionizing radiation in pancreatic cancer treatment. Combining P-AscH− and Au in the treatment of pancreatic cancer may confer multiple mechanisms to increase H2O2-dependent toxicity amongst cancer cells and provide a promising translatable avenue by which to enhance radiation effectiveness and improve patient outcomes.
Collapse
|
10
|
Gamberi T, Chiappetta G, Fiaschi T, Modesti A, Sorbi F, Magherini F. Upgrade of an old drug: Auranofin in innovative cancer therapies to overcome drug resistance and to increase drug effectiveness. Med Res Rev 2022; 42:1111-1146. [PMID: 34850406 PMCID: PMC9299597 DOI: 10.1002/med.21872] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
Auranofin is an oral gold(I) compound, initially developed for the treatment of rheumatoid arthritis. Currently, Auranofin is under investigation for oncological application within a drug repurposing plan due to the relevant antineoplastic activity observed both in vitro and in vivo tumor models. In this review, we analysed studies in which Auranofin was used as a single drug or in combination with other molecules to enhance their anticancer activity or to overcome chemoresistance. The analysis of different targets/pathways affected by this drug in different cancer types has allowed us to highlight several interesting targets and effects of Auranofin besides the already well-known inhibition of thioredoxin reductase. Among these targets, inhibitory-κB kinase, deubiquitinates, protein kinase C iota have been frequently suggested. To rationalize the effects of Auranofin by a system biology-like approach, we exploited transcriptomic data obtained from a wide range of cell models, extrapolating the data deposited in the Connectivity Maps website and we attempted to provide a general conclusion and discussed the major points that need further investigation.
Collapse
Affiliation(s)
- Tania Gamberi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Giovanni Chiappetta
- Biological Mass Spectrometry and Proteomics GroupPlasticité du Cerveau UMR 8249 CNRSParisESPCI Paris‐PSLFrance
| | - Tania Fiaschi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Flavia Sorbi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Francesca Magherini
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| |
Collapse
|
11
|
Gold(III) heteroleptic complexes with SNS-thiosemicarbazonate ligands as cytotoxic agents: experimental and computational insights into the mechanism of action. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Montagna C, Filomeni G. Looking at denitrosylation to understand the myogenesis gone awry theory of rhabdomyosarcoma. Nitric Oxide 2022; 122-123:1-5. [PMID: 35182743 DOI: 10.1016/j.niox.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
S-nitrosylation of proteins is a nitric oxide (NO)-based post-translational modification of cysteine residues. By removing the NO moiety from S-nitrosothiol adducts, denitrosylases restore sulfhydryl protein pool and act as downstream tuners of S-nitrosylation signaling. Alterations in the S-nitrosylation/denitrosylation dynamics are implicated in many pathological states, including cancer ontogenesis and progression, skeletal muscle myogenesis and function. Here, we aim to provide and link different lines of evidence, and elaborate on the possible role of S-nitrosylation/denitrosylation signaling in rhabdomyosarcoma, one of the most common pediatric mesenchymal malignancy.
Collapse
Affiliation(s)
- Costanza Montagna
- Department of Biology, Tor Vergata University, Rome, Italy; Unicamillus-Saint Camillus University of Health Sciences, Rome, Italy.
| | - Giuseppe Filomeni
- Department of Biology, Tor Vergata University, Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
13
|
Potent, p53-independent induction of NOXA sensitizes MLL-rearranged B-cell acute lymphoblastic leukemia cells to venetoclax. Oncogene 2022; 41:1600-1609. [PMID: 35091682 PMCID: PMC8913358 DOI: 10.1038/s41388-022-02196-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 01/02/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
The prognosis for B-cell precursor acute lymphoblastic leukemia patients with Mixed-Lineage Leukemia (MLL) gene rearrangements (MLLr BCP-ALL) is still extremely poor. Inhibition of anti-apoptotic protein BCL-2 with venetoclax emerged as a promising strategy for this subtype of BCP-ALL, however, lack of sufficient responses in preclinical models and the possibility of developing resistance exclude using venetoclax as monotherapy. Herein, we aimed to uncover potential mechanisms responsible for limited venetoclax activity in MLLr BCP-ALL and to identify drugs that could be used in combination therapy. Using RNA-seq, we observed that long-term exposure to venetoclax in vivo in a patient-derived xenograft model leads to downregulation of several tumor protein 53 (TP53)-related genes. Interestingly, auranofin, a thioredoxin reductase inhibitor, sensitized MLLr BCP-ALL to venetoclax in various in vitro and in vivo models, independently of the p53 pathway functionality. Synergistic activity of these drugs resulted from auranofin-mediated upregulation of NOXA pro-apoptotic protein and potent induction of apoptotic cell death. More specifically, we observed that auranofin orchestrates upregulation of the NOXA-encoding gene Phorbol-12-Myristate-13-Acetate-Induced Protein 1 (PMAIP1) associated with chromatin remodeling and increased transcriptional accessibility. Altogether, these results present an efficacious drug combination that could be considered for the treatment of MLLr BCP-ALL patients, including those with TP53 mutations.
Collapse
|
14
|
Lamarche J, Alcoceba Álvarez E, Cordeau E, Enjalbal C, Massai L, Messori L, Lobinski R, Ronga L. Comparative reactivity of medicinal gold(I) compounds with the cyclic peptide vasopressin and its diselenide analogue. Dalton Trans 2021; 50:17487-17490. [PMID: 34796892 DOI: 10.1039/d1dt03470g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of the medicinal gold(I) compound auranofin and its close analogues with vasopressin and the diselenide analogue were comparatively investigated by LC-electrospray MS/MS. Evidence is gained of the possible cleavage of the S-S and Se-Se bridges induced by Au(I). Notably, we found that, in the absence of reducing agents, the sulfur and selenium atoms are metallated only at high temperature (70 °C) with the preferential binding of gold to selenium. The reaction with the S-S bridge can take place at physiological temperature (37 °C) under reducing conditions. The implications of these results are discussed in the general frame of the reactivity of biologically relevant soft Lewis acids with peptides and proteins.
Collapse
Affiliation(s)
- Jeremy Lamarche
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| | | | | | | | - Lara Massai
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Luigi Messori
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Ryszard Lobinski
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France. .,IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Luisa Ronga
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
15
|
Sabatier P, Beusch CM, Gencheva R, Cheng Q, Zubarev R, Arnér ESJ. Comprehensive chemical proteomics analyses reveal that the new TRi-1 and TRi-2 compounds are more specific thioredoxin reductase 1 inhibitors than auranofin. Redox Biol 2021; 48:102184. [PMID: 34788728 PMCID: PMC8591550 DOI: 10.1016/j.redox.2021.102184] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
Anticancer drugs that target cellular antioxidant systems have recently attracted much attention. Auranofin (AF) is currently evaluated in several clinical trials as an anticancer agent that targets the cytosolic and mitochondrial forms of the selenoprotein thioredoxin reductase, TXNRD1 and TXNRD2. Recently, two novel TXNRD1 inhibitors (TRi-1 and TRi-2) have been developed that showed anticancer efficacy comparable to AF, but with lower mitochondrial toxicity. However, the cellular action mechanisms of these drugs have not yet been thoroughly studied. Here we used several proteomics approaches to determine the effects of AF, TRi-1 and TRi-2 when used at IC50 concentrations with the mouse B16 melanoma and LLC lung adenocarcinoma cells, as these are often used for preclinical mouse models in evaluation of anticancer drugs. The results demonstrate that TRi-1 and TRi-2 are more specific TXNRD1 inhibitors than AF and reveal additional AF-specific effects on the cellular proteome. Interestingly, AF triggered stronger Nrf2-driven antioxidant responses than the other two compounds. Furthermore, AF affected several additional proteins, including GSK3A, GSK3B, MCMBP and EEFSEC, implicating additional effects on glycogen metabolism, cellular differentiation, inflammatory pathways, DNA replication and selenoprotein synthesis processes. Our proteomics data provide a resource for researchers interested in the multidimensional analysis of proteome changes associated with oxidative stress in general, and the effects of TXNRD1 inhibitors and AF protein targets in particular.
Collapse
Affiliation(s)
- Pierre Sabatier
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Christian M Beusch
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Roman Zubarev
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia; The National Medical Research Center for Endocrinology, 115478, Moscow, Russia.
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Selenoprotein Research, National Institute of Oncology, 1122, Budapest, Hungary.
| |
Collapse
|
16
|
Repurposing auranofin for treatment of Experimental Cerebral Toxoplasmosis. Acta Parasitol 2021; 66:827-836. [PMID: 33555553 DOI: 10.1007/s11686-021-00337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
PURPOSES Evaluate the effect of auranofin on the early and late stages of chronic infection with Toxoplasma gondii avirulent ME49 strain. METHODS Swiss albino mice were orally inoculated with 10 cysts of Toxoplasma gondii, and orally treated with auranofin or septazole in daily doses of 20 mg/kg or 100 mg /kg, respectively, for 30 days. Treatment began either on the same day of infection and mice were sacrificed at the 60th day postinfection or the treatment started after 60 days of infection and mice were sacrificed at the 90th day postinfection. RESULTS Auranofin significantly reduced the brain cyst burden and inflammatory reaction at both stages of infection compared to the infected non-treated control. More remarkably, auranofin significant reduced the brain cyst burden in the late stage, while septazole failed. Hydrogen peroxide level was significantly increased in the brain homogenate of mice treated with auranofin only at the early stage of infection. Ultrastructral studies revealed that the anti-Toxoplasma effect of auranofin is achieved by changing the membrane permeability and inducing apoptosis. CONCLUSIONS Thus, auranofin could be an alternative for the standard treatment regimen of toxoplasmosis and these results are considered another achievement for the drug against parasitic infection. Being a FDA-approved drug, it can be rapidly evaluated in clinical trials.
Collapse
|
17
|
Abstract
The cytosolic selenoprotein thioredoxin reductase 1 (TrxR1, TXNRD1), and to some extent mitochondrial TrxR2 (TXNRD2), can be inhibited by a wide range of electrophilic compounds. Many such compounds also yield cytotoxicity toward cancer cells in culture or in mouse models, and most compounds are likely to irreversibly modify the easily accessible selenocysteine residue in TrxR1, thereby inhibiting its normal activity to reduce cytosolic thioredoxin (Trx1, TXN) and other substrates of the enzyme. This leads to an oxidative challenge. In some cases, the inhibited forms of TrxR1 are not catalytically inert and are instead converted to prooxidant NADPH oxidases, named SecTRAPs, thus further aggravating the oxidative stress, particularly in cells expressing higher levels of the enzyme. In this review, the possible molecular and cellular consequences of these effects are discussed in relation to cancer therapy, with a focus on outstanding questions that should be addressed if targeted TrxR1 inhibition is to be further developed for therapeutic use. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden; .,Department of Selenoprotein Research, National Institute of Oncology, Budapest 1122, Hungary
| |
Collapse
|
18
|
Bär SI, Gold M, Schleser SW, Rehm T, Bär A, Köhler L, Carnell LR, Biersack B, Schobert R. Guided Antitumoural Drugs: (Imidazol-2-ylidene)(L)gold(I) Complexes Seeking Cellular Targets Controlled by the Nature of Ligand L. Chemistry 2021; 27:5003-5010. [PMID: 33369765 PMCID: PMC7986617 DOI: 10.1002/chem.202005451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 01/21/2023]
Abstract
Three [1,3-diethyl-4-(p-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)imidazol-2-ylidene](L)gold(I) complexes, 4 a (L=Cl), 5 a (L=PPh3 ), and 6 a (L=same N-heterocyclic carbene (NHC)), and their fluorescent [4-(anthracen-9-yl)-1,3-diethyl-5-phenylimidazol-2-ylidene](L)gold(I) analogues, 4 b, 5 b, and 6 b, respectively, were studied for their localisation and effects in cancer cells. Despite their identical NHC ligands, the last three accumulated in different compartments of melanoma cells, namely, the nucleus (4 b), mitochondria (5 b), or lysosomes (6 b). Ligand L was also more decisive for the site of accumulation than the NHC ligand because the couples 4 a/4 b, 5 a/5 b, and 6 a/6 b, carrying different NHC ligands, afforded similar results in cytotoxicity tests, and tests on targets typically found at their sites of accumulation, such as DNA in nuclei, reactive oxygen species and thioredoxin reductase in mitochondria, and lysosomal membranes. Regardless of the site of accumulation, cancer cell apoptosis was eventually induced. The concept of guiding a bioactive complex fragment to a particular subcellular target by secondary ligand L could reduce unwanted side effects.
Collapse
Affiliation(s)
- Sofia I. Bär
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Madeleine Gold
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Sebastian W. Schleser
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Tobias Rehm
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Alexander Bär
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Leonhard Köhler
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Lucas R. Carnell
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Bernhard Biersack
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Rainer Schobert
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| |
Collapse
|
19
|
Zhou R, Xiang C, Cao G, Xu H, Zhang Y, Yang H, Zhang J. Berberine accelerated wound healing by restoring TrxR1/JNK in diabetes. Clin Sci (Lond) 2021; 135:613-627. [PMID: 33491733 DOI: 10.1042/cs20201145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
The high disability, mortality and morbidity of diabetic ulcers make it urgent to explore effective strategies for diabetic wound repair. TrxR1 plays a vital role in regulating redox homeostasis in various pathologies. In the present study, the effect of berberine (BBR) on diabetic wounds was investigated in streptozotocin (STZ)-induced diabetic rats and a high glucose (HG)-induced cell model, and the mechanism of BBR on TrxR1 was elucidated. BBR treatment remarkably accelerated wound healing and enhanced extracellular matrix (ECM) synthesis and significantly inhibited HG-induced HaCaT cell damage. Further analysis indicated that BBR activated TrxR1, suppressed its downstream JNK signaling, thereby inhibiting oxidative stress and apoptosis, promoted cell proliferation, down-regulated matrix metalloproteinase (MMP) 9 (MMP9) and up-regulated transforming growth factor-β1 (TGF-β1) and tissue inhibitors of MMP 1 (TIMP1), resulting in accelerated wound healing. Importantly, the enhancement of BBR on wound repair was further abolished by TrxR1 inhibitor. Moreover, in diabetic wounds induced by a combination of STZ injection and high-fat diet, BBR significantly increased wound closure rate and TrxR1 expression, and this was reversed by TrxR1 inhibitor. These data indicated that topical BBR treatment accelerated diabetic wound healing by activating TrxR1. Targeting TrxR1 may be a novel, effective strategy for restoring redox homeostasis and promoting diabetic wound healing.
Collapse
Affiliation(s)
- Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changpei Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangzhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
20
|
Sun S, Xu W, Zhou H, Zhang Y, Zhang J, Li X, Li B, Ma K, Xu J. Efficient purification of selenoprotein thioredoxin reductase 1 by using chelating reagents to protect the affinity resins and rescue the enzyme activities. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Investigating the Thioredoxin and Glutathione Systems' Response in Lymphoma Cells after Treatment with [Au(d2pype)2]CL. Antioxidants (Basel) 2021; 10:antiox10010104. [PMID: 33451071 PMCID: PMC7828567 DOI: 10.3390/antiox10010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/19/2023] Open
Abstract
Lymphoma is a blood cancer comprising various subtypes. Although effective therapies are available, some patients fail to respond to treatment and can suffer from side effects. Antioxidant systems, especially the thioredoxin (Trx) and glutathione (GSH) systems, are known to enhance cancer cell survival, with thioredoxin reductase (TrxR) recently reported as a potential anticancer target. Since the GSH system can compensate for some Trx system functions, we investigated its response in three lymphoma cell lines after inhibiting TrxR activity with [Au(d2pype)2]Cl, a known TrxR inhibitor. [Au(d2pype)2]Cl increased intracellular reactive oxygen species (ROS) levels and induced caspase-3 activity leading to cell apoptosis through inhibiting both TrxR and glutathione peroxidase (Gpx) activity. Expression of the tumour suppresser gene TXNIP increased, while GPX1 and GPX4 expression, which are related to poor prognosis of lymphoma patients, decreased. Unlike SUDHL2 and SUDHL4 cells, which exhibited a decreased GSH/GSSG ratio after treatment, in KMH2 cells the ratio remained unchanged, while glutathione reductase and glutaredoxin expression increased. Since KMH2 cells were less sensitive to treatment with [Au(d2pype)2]Cl, the GSH system may play a role in protecting cells from apoptosis after TrxR inhibition. Overall, our study demonstrates that inhibition of TrxR represents a valid therapeutic approach for lymphoma.
Collapse
|
22
|
Guarra F, Terenzi A, Pirker C, Passannante R, Baier D, Zangrando E, Gómez‐Vallejo V, Biver T, Gabbiani C, Berger W, Llop J, Salassa L. 124 I Radiolabeling of a Au III -NHC Complex for In Vivo Biodistribution Studies. Angew Chem Int Ed Engl 2020; 59:17130-17136. [PMID: 32633820 PMCID: PMC7540067 DOI: 10.1002/anie.202008046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/02/2022]
Abstract
AuIII complexes with N-heterocyclic carbene (NHC) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Reported herein is the synthesis of new AuIII -NHC complexes by direct oxidation with radioactive [124 I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET). While in vitro analyses provide direct evidence for the importance of AuIII -to-AuI reduction to achieve full anticancer activity, in vivo studies reveal that a fraction of the AuIII -NHC prodrug is not immediately reduced after administration but able to reach the major organs before metabolic activation.
Collapse
Affiliation(s)
- Federica Guarra
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 1356124PisaItaly
| | - Alessio Terenzi
- Donostia International Physics CenterPaseo M. Lardizabal 420018DonostiaSpain
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of PalermoViale delle Scienze, Ed. 1790128PalermoItaly
| | - Christine Pirker
- Department of Medicine IInstitute of Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8a1090ViennaAustria
| | - Rossana Passannante
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 18220014DonostiaSpain
| | - Dina Baier
- Department of Medicine IInstitute of Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8a1090ViennaAustria
- Institute of Inorganic ChemistryFaculty of Chemistry University of ViennaWaehringerstrasse 421090ViennaAustria
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical SciencesUniversity of Triestevia Giorgieri 134127TriesteItaly
| | - Vanessa Gómez‐Vallejo
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 18220014DonostiaSpain
| | - Tarita Biver
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 1356124PisaItaly
- Department of PharmacyUniversity of Pisavia Bonanno 656126PisaItaly
| | - Chiara Gabbiani
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 1356124PisaItaly
| | - Walter Berger
- Department of Medicine IInstitute of Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8a1090ViennaAustria
| | - Jordi Llop
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 18220014DonostiaSpain
| | - Luca Salassa
- Donostia International Physics CenterPaseo M. Lardizabal 420018DonostiaSpain
- Kimika FakultateaEuskal Herriko UnibertsitateaUPV/EHU20080DonostiaSpain
- IkerbasqueBasque Foundation for Science48013BilbaoSpain
| |
Collapse
|
23
|
Hwangbo H, Kim SY, Lee H, Park SH, Hong SH, Park C, Kim GY, Leem SH, Hyun JW, Cheong J, Choi YH. Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway. Biomol Ther (Seoul) 2020; 28:443-455. [PMID: 32856616 PMCID: PMC7457169 DOI: 10.4062/biomolther.2020.122] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
The thioredoxin (Trx) system plays critical roles in regulating intracellular redox levels and defending organisms against oxidative stress. Recent studies indicated that Trx reductase (TrxR) was overexpressed in various types of human cancer cells indicating that the Trx-TrxR system may be a potential target for anti-cancer drug development. This study investigated the synergistic effect of auranofin, a TrxR-specific inhibitor, on sulforaphane-mediated apoptotic cell death using Hep3B cells. The results showed that sulforaphane significantly enhanced auranofin-induced apoptosis by inhibiting TrxR activity and cell proliferation compared to either single treatment. The synergistic effect of sulforaphane and auranofin on apoptosis was evidenced by an increased annexin-V-positive cells and Sub-G1 cells. The induction of apoptosis by the combined treatment caused the loss of mitochondrial membrane potential (ΔΨm) and upregulation of Bax. In addition, the proteolytic activities of caspases (-3, -8, and -9) and the degradation of poly (ADP-ribose) polymerase, a substrate protein of activated caspase-3, were also higher in the combined treatment. Moreover, combined treatment induced excessive generation of reactive oxygen species (ROS). However, treatment with N-acetyl-L-cysteine, a ROS scavenger, reduced combined treatment-induced ROS production and apoptosis. Thereby, these results deduce that ROS played a pivotal role in apoptosis induced by auranofin and sulforaphane. Furthermore, apoptosis induced by auranofin and sulforaphane was significantly increased through inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Taken together, the present study demonstrated that down-regulation of TrxR activity contributed to the synergistic effect of auranofin and sulforaphane on apoptosis through ROS production and inhibition of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Hyun Hwangbo
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.,Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - So Young Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.,Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Sun-Hee Leem
- Department of Biological Science, College of Natural Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Jin Won Hyun
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Jaehun Cheong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
24
|
Guarra F, Terenzi A, Pirker C, Passannante R, Baier D, Zangrando E, Gómez‐Vallejo V, Biver T, Gabbiani C, Berger W, Llop J, Salassa L. 124
I Radiolabeling of a Au
III
‐NHC Complex for In Vivo Biodistribution Studies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Federica Guarra
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Alessio Terenzi
- Donostia International Physics Center Paseo M. Lardizabal 4 20018 Donostia Spain
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Christine Pirker
- Department of Medicine I Institute of Cancer Research and Comprehensive Cancer Center Medical University Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Rossana Passannante
- CIC biomaGUNE Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia Spain
| | - Dina Baier
- Department of Medicine I Institute of Cancer Research and Comprehensive Cancer Center Medical University Vienna Borschkegasse 8a 1090 Vienna Austria
- Institute of Inorganic Chemistry Faculty of Chemistry University of Vienna Waehringerstrasse 42 1090 Vienna Austria
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences University of Trieste via Giorgieri 1 34127 Trieste Italy
| | - Vanessa Gómez‐Vallejo
- CIC biomaGUNE Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia Spain
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
- Department of Pharmacy University of Pisa via Bonanno 6 56126 Pisa Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Walter Berger
- Department of Medicine I Institute of Cancer Research and Comprehensive Cancer Center Medical University Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Jordi Llop
- CIC biomaGUNE Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia Spain
| | - Luca Salassa
- Donostia International Physics Center Paseo M. Lardizabal 4 20018 Donostia Spain
- Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU 20080 Donostia Spain
- Ikerbasque Basque Foundation for Science 48013 Bilbao Spain
| |
Collapse
|
25
|
Fernandez MC, O'Flaherty C. Peroxiredoxin 6 is the primary antioxidant enzyme for the maintenance of viability and DNA integrity in human spermatozoa. Hum Reprod 2020; 33:1394-1407. [PMID: 29912414 DOI: 10.1093/humrep/dey221] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 01/24/2023] Open
Abstract
STUDY QUESTION Are all components of the peroxiredoxins (PRDXs) system important to control the levels of reactive oxygen species (ROS) to maintain viability and DNA integrity in spermatozoa? SUMMARY ANSWER PRDX6 is the primary player of the PRDXs system for maintaining viability and DNA integrity in human spermatozoa. WHAT IS KNOWN ALREADY Mammalian spermatozoa are sensitive to high levels of ROS and PRDXs are antioxidant enzymes proven to control the levels of ROS generated during sperm capacitation to avoid oxidative damage in the spermatozoon. Low amounts of PRDXs are associated with male infertility. The absence of PRDX6 promotes sperm oxidative damage and infertility in mice. STUDY DESIGN, SIZE, DURATION Semen samples were obtained over a period of one year from a cohort of 20 healthy non-smoking volunteers aged 22-30 years old. PARTICIPANTS/MATERIALS, SETTING, METHODS Sperm from healthy donors was incubated for 2 h in the absence or presence of inhibitors for the 2-Cys PRDXs system (peroxidase, reactivation system and NADPH-enzymes suppliers) or the 1-Cys PRDX system (peroxidase and calcium independent-phospholipase A2 (Ca2+-iPLA2) activity). Sperm viability, DNA oxidation, ROS levels, mitochondrial membrane potential and 4-hydroxynonenal production were determined by flow cytometry. MAIN RESULTS AND THE ROLE OF CHANCE We observed a significant decrease in viable cells due to inhibitors of the 2-Cys PRDXs, PRDX6 Ca2+-iPLA2 activity or the PRDX reactivation system compared to controls (P ≤ 0.05). PRDX6 Ca2+-iPLA2 activity inhibition had the strongest detrimental effect on sperm viability and DNA oxidation compared to controls (P ≤ 0.05). The 2-Cys PRDXs did not compensate for the inhibition of PRDX6 peroxidase and Ca2+-iPLA2 activities. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION Players of the reactivation systems may differ among mammalian species. WIDER IMPLICATIONS OF THE FINDINGS The Ca2+-iPLA2 activity of PRDX6 is the most important and first line of defense against oxidative stress in human spermatozoa. Peroxynitrite is scavenged mainly by the PRDX6 peroxidase activity. These findings can help to design new diagnostic tools and therapies for male infertility. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by The Canadian Institutes of Health Research (MOP 133661 to C.O.), and by RI MUHC-Desjardins Studentship in Child Health Research awarded to M.C.F. The authors have nothing to disclose.
Collapse
Affiliation(s)
- Maria C Fernandez
- The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, QC, Canada
| | - Cristian O'Flaherty
- The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Surgery (Urology Division), McGill University, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| |
Collapse
|
26
|
Clapper E, Wang S, Raninga PV, Di Trapani G, Tonissen KF. Cross-talk between Bcr-abl and the Thioredoxin System in Chronic Myeloid Leukaemia: Implications for CML Treatment. Antioxidants (Basel) 2020; 9:E207. [PMID: 32138149 PMCID: PMC7139888 DOI: 10.3390/antiox9030207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic myeloid leukaemia (CML) is currently treated with inhibitors of the CML specific oncoprotein, bcr-abl. While this strategy is initially successful, drug resistance can become a problem. Therefore, new targets need to be identified to ensure the disease can be appropriately managed. The thioredoxin (Trx) system, comprised of Trx, thioredoxin reductase (TrxR), and NADPH, is an antioxidant system previously identified as a target for therapies aimed at overcoming drug resistance in other cancers. We assessed the effectiveness of TrxR inhibitors on drug resistant CML cells and examined links between TrxR and the bcr-abl cell-signalling pathway. Two TrxR inhibitors, auranofin and [Au(d2pype)2]Cl, increased intracellular ROS levels and elicited apoptosis in both sensitive and imatinib resistant CML cells. Inhibition of TrxR activity by these pharmacological inhibitors, or by specific siRNA, also resulted in decreased bcr-abl mRNA and protein levels, and lower bcr-abl downstream signalling activity, potentially enhancing the effectiveness of TrxR inhibitors as CML therapies. In addition, imatinib resistant CML cell lines showed upregulated expression of the Trx system. Furthermore, analysis of datasets showed that CML patients who did not respond to imatinib had higher Trx mRNA levels than patients who responded to treatment. Our study demonstrates a link between the Trx system and the bcr-abl protein and highlights the therapeutic potential of targeting the Trx system to improve CML patients' outcomes.
Collapse
Affiliation(s)
- Erin Clapper
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (E.C.); (S.W.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Sicong Wang
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (E.C.); (S.W.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Prahlad V. Raninga
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia;
| | - Giovanna Di Trapani
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (E.C.); (S.W.)
| | - Kathryn F. Tonissen
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (E.C.); (S.W.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
27
|
Cyclin-Dependent Kinase and Antioxidant Gene Expression in Cancers with Poor Therapeutic Response. Pharmaceuticals (Basel) 2020; 13:ph13020026. [PMID: 32033319 PMCID: PMC7169466 DOI: 10.3390/ph13020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/26/2020] [Accepted: 01/30/2020] [Indexed: 11/23/2022] Open
Abstract
Pancreatic cancer, hepatocellular carcinoma (HCC), and mesothelioma are treatment-refractory cancers, and patients afflicted with these cancers generally have a very poor prognosis. The genomics of these tumors were analyzed as part of The Cancer Genome Atlas (TCGA) project. However, these analyses are an overview and may miss pathway interactions that could be exploited for therapeutic targeting. In this study, the TCGA Pan-Cancer datasets were queried via cBioPortal for correlations among mRNA expression of key genes in the cell cycle and mitochondrial (mt) antioxidant defense pathways. Here we describe these correlations. The results support further evaluation to develop combination treatment strategies that target these two critical pathways in pancreatic cancer, hepatocellular carcinoma, and mesothelioma.
Collapse
|
28
|
Abstract
The mammalian thioredoxin system is driven by NADPH through the activities of isoforms of the selenoprotein thioredoxin reductase (TXNRD, TrxR), which in turn help to keep thioredoxins (TXN, Trx) and further downstream targets reduced. Due to a wide range of functions in antioxidant defense, cell proliferation, and redox signaling, strong cellular aberrations are seen upon the targeting of TrxR enzymes by inhibitors. However, such inhibition can nonetheless have rather unexpected consequences. Accumulating data suggest that inhibition of TrxR in normal cells typically yields a paradoxical effect of increased antioxidant defense, with metabolic pathway reprogramming, increased cellular proliferation, and altered cellular differentiation patterns. Conversely, inhibition of TrxR in cancer cells can yield excessive levels of reactive oxygen species (ROS) resulting in cell death and thus anticancer efficacy. The observed increases in antioxidant capacity upon inhibition of TrxR in normal cells are in part dependent upon activation of the Nrf2 transcription factor, while exaggerated ROS levels in cancer cells can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically. Importantly, however, a thorough knowledge of the molecular mechanisms underlying effects triggered by TrxR inhibition is crucial for the understanding of therapy outcomes after use of such inhibitors. The mammalian thioredoxin system is driven by thioredoxin reductases (TXNRD, TrxR), which keeps thioredoxins (TXN, Trx) and further downstream targets reduced. In normal cells, inhibition of TrxR yields a paradoxical effect of increased antioxidant defense upon activation of the Nrf2 transcription factor. In cancer cells, however, inhibition of TrxR yields excessive reactive oxygen species (ROS) levels resulting in cell death and thus anticancer efficacy, which can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. .,Department of Selenoprotein Research, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
29
|
Liao J, Wang L, Wu Z, Wang Z, Chen J, Zhong Y, Jiang F, Lu Y. Identification of phenazine analogue as a novel scaffold for thioredoxin reductase I inhibitors against Hep G2 cancer cell lines. J Enzyme Inhib Med Chem 2019; 34:1158-1163. [PMID: 31179772 PMCID: PMC6567043 DOI: 10.1080/14756366.2019.1624541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Even though phenazines have been extensively reported as anticancer molecules, the molecular target of these compounds is severely lagging behind. Our study consequently focuses on the anticancer target of a phenazine analogue (CPUL1) for its potently antitumor activities in initial stage. Along with redox status courses of Hep G2 cells, thioredoxin reductase I (TrxR1) was speculated as anticancer target of CPUL1. By virtue of zymologic, immunological and molecular biological experiments, we demonstrated that TrxR1 could be the anticancer target of CPUL1. The knowledge on phenazine targeting to TrxR1 have not been reported previously. Thus, it can provide valuable information for further development of the TrxR1 inhibitors.
Collapse
Affiliation(s)
- Jianming Liao
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Linlin Wang
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Zhongxi Wu
- b School of Engineering , China Pharmaceutical University , Nanjing , China
| | - Zhixiang Wang
- b School of Engineering , China Pharmaceutical University , Nanjing , China
| | - Jun Chen
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Yucheng Zhong
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Feng Jiang
- b School of Engineering , China Pharmaceutical University , Nanjing , China
| | - Yuanyuan Lu
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
30
|
Bian M, Fan R, Zhao S, Liu W. Targeting the Thioredoxin System as a Strategy for Cancer Therapy. J Med Chem 2019; 62:7309-7321. [PMID: 30963763 DOI: 10.1021/acs.jmedchem.8b01595] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thioredoxin reductase (TrxR) participates in the regulation of redox reactions in organisms. It works mainly via its substrate molecule, thioredoxin, to maintain the redox balance and regulate signal transduction, which controls cell proliferation, differentiation, death, and other important physiological processes. In recent years, increasing evidence has shown that the overactivation of TrxR is related to the development of tumors. The exploration of TrxR-targeted antitumor drugs has attracted wide attention and is expected to provide new therapies for cancer treatment. In this perspective, we highlight the specific relationship between TrxR and apoptotic signaling pathways. The cytoplasm and mitochondria both contain TrxR, resulting in the activation of apoptosis. TrxR activity influences reactive oxygen species (ROS) and further regulates the inflammatory signaling pathway. In addition, we discuss representative TrxR inhibitors with anticancer activity and analyze the challenges in developing TrxR inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Mianli Bian
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Rong Fan
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Sai Zhao
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,Institute of New Medicine Research , Nanjing Hicin Pharmaceutical Co. Ltd. , Nanjing 210046 , P. R. China
| | - Wukun Liu
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| |
Collapse
|
31
|
Abstract
Background:
Since the serendipitous discovery of the antitumor activity of cisplatin
there has been a continuous surge in studies aimed at the development of new cytotoxic
metal complexes. While the majority of these complexes have been designed to interact with
nuclear DNA, other targets for anticancer metallodrugs attract increasing interest. In cancer
cells the mitochondrial metabolism is deregulated. Impaired apoptosis, insensitivity to antigrowth
signals and unlimited proliferation have been linked to mitochondrial dysfunction. It
is therefore not surprising that mitochondria have emerged as a major target for cancer therapy.
Mitochondria-targeting agents are able to bypass resistance mechanisms and to (re-) activate
cell-death programs.
Methods:
Web-based literature searching tools such as SciFinder were used to search for reports
on cytotoxic metal complexes that are taken up by the mitochondria and interact with
mitochondrial DNA or mitochondrial proteins, disrupt the mitochondrial membrane potential,
facilitate mitochondrial membrane permeabilization or activate mitochondria-dependent celldeath
signaling by unbalancing the cellular redox state. Included in the search were publications
investigating strategies to selectively accumulate metallodrugs in the mitochondria.
Results:
This review includes 241 references on antimitochondrial metal complexes, the use
of mitochondria-targeting carrier ligands and the formation of lipophilic cationic complexes.
Conclusion:
Recent developments in the design, cytotoxic potency, and mechanistic understanding
of antimitochondrial metal complexes, in particular of cyclometalated Au, Ru, Ir and
Pt complexes, Ru polypyridine complexes and Au-N-heterocyclic carbene and phosphine
complexes are summarized and discussed.
Collapse
Affiliation(s)
- Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
32
|
Zaki M, Hairat S, Aazam ES. Scope of organometallic compounds based on transition metal-arene systems as anticancer agents: starting from the classical paradigm to targeting multiple strategies. RSC Adv 2019; 9:3239-3278. [PMID: 35518979 PMCID: PMC9060267 DOI: 10.1039/c8ra07926a] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/26/2018] [Indexed: 02/02/2023] Open
Abstract
The advent of the clinically approved drug cisplatin started a new era in the design of metallodrugs for cancer chemotherapy. However, to date, there has not been much success in this field due to the persistence of some side effects and multi-drug resistance of cancer cells. In recent years, there has been increasing interest in the design of metal chemotherapeutics using organometallic complexes due to their good stability and unique properties in comparison to normal coordination complexes. Their intermediate properties between that of traditional inorganic and organic materials provide researchers with a new platform for the development of more promising cancer therapeutics. Classical metal-based drugs exert their therapeutic potential by targeting only DNA, but in the case of organometallic complexes, their molecular target is quite distinct to avoid drug resistance by cancer cells. Some organometallic drugs act by targeting a protein or inhibition of enzymes such as thioredoxin reductase (TrRx), while some target mitochondria and endoplasmic reticulum. In this review, we mainly discuss organometallic complexes of Ru, Ti, Au, Fe and Os and their mechanisms of action and how new approaches improve their therapeutic potential towards various cancer phenotypes. Herein, we discuss the role of structure-reactivity relationships in enhancing the anticancer potential of drugs for the benefit of humans both in vitro and in vivo. Besides, we also include in vivo tumor models that mimic human physiology to accelerate the development of more efficient clinical organometallic chemotherapeutics.
Collapse
Affiliation(s)
- Mehvash Zaki
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| | - Suboot Hairat
- Department of Biotechnology, Wachemo University Hossana Ethiopia
| | - Elham S Aazam
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| |
Collapse
|
33
|
Pace PE, Peskin AV, Konigstorfer A, Jasoni CJ, Winterbourn CC, Hampton MB. Peroxiredoxin interaction with the cytoskeletal-regulatory protein CRMP2: Investigation of a putative redox relay. Free Radic Biol Med 2018; 129:383-393. [PMID: 30315937 DOI: 10.1016/j.freeradbiomed.2018.10.407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/14/2018] [Accepted: 10/03/2018] [Indexed: 12/22/2022]
Abstract
Hydrogen peroxide (H2O2) acts as a signaling molecule in cells by oxidising cysteine residues in regulatory proteins such as phosphatases, kinases and transcription factors. It is unclear exactly how many of these proteins are specifically targeted by H2O2 because they appear too unreactive to be directly oxidised. One proposal is that peroxiredoxins (Prxs) initially react with H2O2 and then oxidise adjacent proteins via a thiol relay mechanism. The aim of this study was to identify constitutive interaction partners of Prx2 in Jurkat T-lymphoma cells, in which thiol protein oxidation occurs at low micromolar concentrations of H2O2. Immunoprecipitation and proximity ligation assays identified a physical interaction between collapsin response mediator protein 2 (CRMP2) and cytoplasmic Prx2. CRMP2 regulates microtubule structure during lymphocyte migration and neuronal development. Exposure of Jurkat cells to low micromolar levels of H2O2 caused rapid and reversible oxidation of CRMP2, in parallel with Prx2 oxidation, despite purified recombinant CRMP2 protein reacting slowly with H2O2 (k~1 M-1s-1). Lowering Prx expression should inhibit oxidation of proteins oxidised by a relay mechanism, however knockout of Prx2 had no effect on CRMP2 oxidation. CRMP2 also interacted with Prx1, suggesting redundancy in single knockout cells. Prx 1 and 2 double knockout Jurkat cells were not viable. An interaction between Prx2 and CRMP2 was also detected in other human and rodent cells, including primary neurons. However, low concentrations of H2O2 did not cause CRMP2 oxidation in these cells. This indicates a cell-type specific mechanism for promoting CRMP2 oxidation in Jurkat cells, with insufficient evidence to attribute oxidation to a Prx-dependent redox relay.
Collapse
Affiliation(s)
- Paul E Pace
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Alexander V Peskin
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Andreas Konigstorfer
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Christine J Jasoni
- Department of Anatomy and Centre for Neuroendocrinology, University of Otago, School of Biomedical Sciences, Dunedin, New Zealand
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
34
|
Feng Q, Zhao N, Xia W, Liang C, Dai G, Yang J, Sun J, Liu L, Luo L, Yang J. Integrative proteomics and immunochemistry analysis of the factors in the necrosis and repair in acetaminophen-induced acute liver injury in mice. J Cell Physiol 2018; 234:6561-6581. [PMID: 30417486 DOI: 10.1002/jcp.27397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022]
Abstract
Acetaminophen (APAP) overdose-induced acute liver injury (AILI) is a significant clinical problem worldwide, the hepatotoxicity mechanisms are well elucidated, but the factors involved in the necrosis and repair still remain to be investigated. APAP was injected intraperitoneally in male Institute of Cancer Research (ICR) mice. Quantitative proteome analysis of liver tissues was performed by 2-nitrobenzenesulfenyl tagging, two-dimensional-nano high-performance liquid chromatography separation, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry analysis. Diffrenetial proteins were verified by the immunochemistry method. 36 and 44 differentially expressed proteins were identified, respectively, at 24 hr after APAP (200 or 300 mg·kg -1 ) administration. The decrease in the mitochondrial protective proteins Prdx6, Prdx3, and Aldh2 accounted for the accumulation of excessive reactive oxygen species (ROS) and aldehydes, impairing mitochondria structure and function. The Gzmf combined with Bax and Apaf-1 jointly contributed to the necrosis. The blockage of Stat3 activation led to the overexpression of unphosphorylated Stat3 and the overproduction of Bax. The overexpression of unphosphorylated Stat3 represented necrosis; the alternation from Stat3 to p-Stat3 in necrotic regions represented hepatocytes from death to renewal. The high expressions of P4hα1, Ncam, α-SMA, and Cygb were involved in the liver repair, they were not only the markers of activated HSC but also represented an intermediate stage of hepatocytes from damage or necrosis to renewal. Our data provided a comprehensive report on the profile and dynamic changes of the liver proteins in AILI; the involvement of Gzmf and the role of Stat3 in necrosis were revealed; and the role of hepatocyte in liver self-repair was well clarified.
Collapse
Affiliation(s)
- Qin Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Shimadzu Biomedical Research Laboratory, Shanghai, China
| | - Wenkai Xia
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - ChengJie Liang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Guoxin Dai
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jian Yang
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jingxia Sun
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Lanying Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
35
|
Ferguson DCJ, Smerdon GR, Harries LW, Dodd NJF, Murphy MP, Curnow A, Winyard PG. Altered cellular redox homeostasis and redox responses under standard oxygen cell culture conditions versus physioxia. Free Radic Biol Med 2018; 126:322-333. [PMID: 30142453 DOI: 10.1016/j.freeradbiomed.2018.08.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/20/2018] [Indexed: 01/16/2023]
Abstract
In vivo, mammalian cells reside in an environment of 0.5-10% O2 (depending on the tissue location within the body), whilst standard in vitro cell culture is carried out under room air. Little is known about the effects of this hyperoxic environment on treatment-induced oxidative stress, relative to a physiological oxygen environment. In the present study we investigated the effects of long-term culture under hyperoxia (air) on photodynamic treatment. Upon photodynamic irradiation, cells which had been cultured long-term under hyperoxia generated higher concentrations of mitochondrial reactive oxygen species, compared with cells in a physioxic (2% O2) environment. However, there was no significant difference in viability between hyperoxic and physioxic cells. The expression of genes encoding key redox homeostasis proteins and the activity of key antioxidant enzymes was significantly higher after the long-term culture of hyperoxic cells compared with physioxic cells. The induction of antioxidant genes and increased antioxidant enzyme activity appear to contribute to the development of a phenotype that is resistant to oxidative stress-induced cellular damage and death when using standard cell culture conditions. The results from experiments using selective inhibitors suggested that the thioredoxin antioxidant system contributes to this phenotype. To avoid artefactual results, in vitro cellular responses should be studied in mammalian cells that have been cultured under physioxia. This investigation provides new insights into the effects of physioxic cell culture on a model of a clinically relevant photodynamic treatment and the associated cellular pathways.
Collapse
Affiliation(s)
| | - Gary R Smerdon
- University of Exeter Medical School, Exeter, Devon EX1 2LU, UK; DDRC Healthcare, Plymouth Science Park, Research Way, Plymouth, Devon PL6 8BU, UK
| | - Lorna W Harries
- University of Exeter Medical School, Exeter, Devon EX1 2LU, UK
| | | | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Alison Curnow
- University of Exeter Medical School, Truro, Cornwall TR1 3HD, UK
| | - Paul G Winyard
- University of Exeter Medical School, Exeter, Devon EX1 2LU, UK.
| |
Collapse
|
36
|
Liu X, Liu K, Li C, Cai J, Huang L, Chen H, Wang H, Zou J, Liu M, Wang K, Tan S, Zhang H. Heat-shock protein B1 upholds the cytoplasm reduced state to inhibit activation of the Hippo pathway in H9c2 cells. J Cell Physiol 2018; 234:5117-5133. [PMID: 30256412 DOI: 10.1002/jcp.27322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022]
Abstract
Heat-shock protein B1 (HSPB1) is a multifunctional protein that protects against oxidative stress; however, its function in antioxidant pathways remains largely unknown. Here, we sought to determine the roles of HSPB1 in H9c2 cells subjected to oxidative stress. Using nonreducing sodium dodecyl sulfate polyacrylamide gel electrophoresis, we found that increased HSPB1 expression promoted the reduced states of glutathione reductase (GR), peroxiredoxin 1 (Prx1), and thioredoxin 1, whereas knockdown of HSPB1 attenuated these responses following oxidative stress. Increased HSPB1 expression promoted the activation of GR and thioredoxin reductase. Conversely, knockdown of HSPB1 attenuated these responses following oxidative stress. Importantly, overexpression of HSPB1 promoted the complex formation between HSPB1 and oxidized Prx1, leading to dephosphorylation of STE-mammalian STE20-like kinase 1 (MST1) in H9c2 cells exposed to H2 O 2 , whereas downregulation of HSPB1 induced the opposite results. Mechanistically, HSPB1 regulated the Hippo pathway by enhancing the dephosphorylation of MST1, resulting in reduced phosphorylation of LATS1 and Yes-associated protein (YAP). Moreover, HSPB1 regulated YAP-dependent gene expression. Thus, HSPB1 promoted the reduced state of endogenous antioxidant pathways following oxidative stress in H9c2 cells and improved the redox state of the cytoplasm via modulation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Xiehong Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Ke Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Caiyan Li
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Jiaodi Cai
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Li Huang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Huan Chen
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Hao Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Jiang Zou
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Meidong Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Kangkai Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Sipin Tan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Huali Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| |
Collapse
|
37
|
Bachmann M, Costa R, Peruzzo R, Prosdocimi E, Checchetto V, Leanza L. Targeting Mitochondrial Ion Channels to Fight Cancer. Int J Mol Sci 2018; 19:ijms19072060. [PMID: 30011966 PMCID: PMC6073807 DOI: 10.3390/ijms19072060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, several experimental evidences have underlined a new role of ion channels in cancer development and progression. In particular, mitochondrial ion channels are arising as new oncological targets, since it has been proved that most of them show an altered expression during tumor development and the pharmacological targeting of some of them have been demonstrated to be able to modulate cancer growth and progression, both in vitro as well as in vivo in pre-clinical mouse models. In this scenario, pharmacology of mitochondrial ion channels would be in the near future a new frontier for the treatment of tumors. In this review, we discuss the new advances in the field, by focusing our attention on the improvements in new drug developments to target mitochondrial ion channels.
Collapse
Affiliation(s)
| | - Roberto Costa
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Roberta Peruzzo
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Elena Prosdocimi
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | | | - Luigi Leanza
- Department of Biology, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
38
|
Rodríguez-Fanjul V, López-Torres E, Mendiola MA, Pizarro AM. Gold(III) bis(thiosemicarbazonate) compounds in breast cancer cells: Cytotoxicity and thioredoxin reductase targeting. Eur J Med Chem 2018; 148:372-383. [DOI: 10.1016/j.ejmech.2018.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 10/18/2022]
|
39
|
In silico and in vitro drug screening identifies new therapeutic approaches for Ewing sarcoma. Oncotarget 2018; 8:4079-4095. [PMID: 27863422 PMCID: PMC5354814 DOI: 10.18632/oncotarget.13385] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/14/2016] [Indexed: 12/29/2022] Open
Abstract
The long-term overall survival of Ewing sarcoma (EWS) patients remains poor; less than 30% of patients with metastatic or recurrent disease survive despite aggressive combinations of chemotherapy, radiation and surgery. To identify new therapeutic options, we employed a multi-pronged approach using in silico predictions of drug activity via an integrated bioinformatics approach in parallel with an in vitro screen of FDA-approved drugs. Twenty-seven drugs and forty-six drugs were identified, respectively, to have anti-proliferative effects for EWS, including several classes of drugs in both screening approaches. Among these drugs, 30 were extensively validated as mono-therapeutic agents and 9 in 14 various combinations in vitro. Two drugs, auranofin, a thioredoxin reductase inhibitor, and ganetespib, an HSP90 inhibitor, were predicted to have anti-cancer activities in silico and were confirmed active across a panel of genetically diverse EWS cells. When given in combination, the survival rate in vivo was superior compared to auranofin or ganetespib alone. Importantly, extensive formulations, dose tolerance, and pharmacokinetics studies demonstrated that auranofin requires alternative delivery routes to achieve therapeutically effective levels of the gold compound. These combined screening approaches provide a rapid means to identify new treatment options for patients with a rare and often-fatal disease.
Collapse
|
40
|
Stafford WC, Peng X, Olofsson MH, Zhang X, Luci DK, Lu L, Cheng Q, Trésaugues L, Dexheimer TS, Coussens NP, Augsten M, Ahlzén HSM, Orwar O, Östman A, Stone-Elander S, Maloney DJ, Jadhav A, Simeonov A, Linder S, Arnér ESJ. Irreversible inhibition of cytosolic thioredoxin reductase 1 as a mechanistic basis for anticancer therapy. Sci Transl Med 2018; 10:eaaf7444. [PMID: 29444979 PMCID: PMC7059553 DOI: 10.1126/scitranslmed.aaf7444] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 02/01/2017] [Accepted: 12/14/2017] [Indexed: 12/25/2022]
Abstract
Cancer cells adapt to their inherently increased oxidative stress through activation of the glutathione (GSH) and thioredoxin (TXN) systems. Inhibition of both of these systems effectively kills cancer cells, but such broad inhibition of antioxidant activity also kills normal cells, which is highly unwanted in a clinical setting. We therefore evaluated targeting of the TXN pathway alone and, more specifically, selective inhibition of the cytosolic selenocysteine-containing enzyme TXN reductase 1 (TXNRD1). TXNRD1 inhibitors were discovered in a large screening effort and displayed increased specificity compared to pan-TXNRD inhibitors, such as auranofin, that also inhibit the mitochondrial enzyme TXNRD2 and additional targets. For our lead compounds, TXNRD1 inhibition correlated with cancer cell cytotoxicity, and inhibitor-triggered conversion of TXNRD1 from an antioxidant to a pro-oxidant enzyme correlated with corresponding increases in cellular production of H2O2 In mice, the most specific TXNRD1 inhibitor, here described as TXNRD1 inhibitor 1 (TRi-1), impaired growth and viability of human tumor xenografts and syngeneic mouse tumors while having little mitochondrial toxicity and being better tolerated than auranofin. These results display the therapeutic anticancer potential of irreversibly targeting cytosolic TXNRD1 using small molecules and present potent and selective TXNRD1 inhibitors. Given the pronounced up-regulation of TXNRD1 in several metastatic malignancies, it seems worthwhile to further explore the potential benefit of specific irreversible TXNRD1 inhibitors for anticancer therapy.
Collapse
Affiliation(s)
- William C Stafford
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
- Oblique Therapeutics AB, SE 413 46 Gothenburg, Sweden
| | - Xiaoxiao Peng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Maria Hägg Olofsson
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Xiaonan Zhang
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Diane K Luci
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Li Lu
- Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, SE 171 76 Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Lionel Trésaugues
- Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Thomas S Dexheimer
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Nathan P Coussens
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Martin Augsten
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Hanna-Stina Martinsson Ahlzén
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Owe Orwar
- Oblique Therapeutics AB, SE 413 46 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
- University of Bergen, Postboks 7804, N-5020 Bergen, Norway
| | - Sharon Stone-Elander
- Department of Neuroradiology, Positron Emission Tomography Radiochemistry, Karolinska University Hospital, SE 171 76 Stockholm, Sweden
- Department of Clinical Neurosciences, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - David J Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
- Division of Drug Research, Department of Medicine and Health, Linköping University, SE 581 83 Linköping, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden.
| |
Collapse
|
41
|
Dagnell M, Schmidt EE, Arnér ESJ. The A to Z of modulated cell patterning by mammalian thioredoxin reductases. Free Radic Biol Med 2018; 115:484-496. [PMID: 29278740 PMCID: PMC5771652 DOI: 10.1016/j.freeradbiomed.2017.12.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022]
Abstract
Mammalian thioredoxin reductases (TrxRs) are selenocysteine-containing proteins (selenoproteins) that propel a large number of functions through reduction of several substrates including the active site disulfide of thioredoxins (Trxs). Well-known enzymatic systems that in turn are supported by Trxs and TrxRs include deoxyribonucleotide synthesis through ribonucleotide reductase, antioxidant defense through peroxiredoxins and methionine sulfoxide reductases, and redox modulation of a number of transcription factors. Although these functions may be essential for cells due to crucial roles in maintenance of cell viability and proliferation, findings during the last decade reveal that mammals have major redundancy in their cellular reductive systems. The synthesis of glutathione (GSH) and reductive functions of GSH-dependent pathways typically act in parallel with Trx-dependent pathways, with only one of these systems often being sufficient to support viability. Importantly, this does not imply that a modulation of the Trx system will remain without consequences, even when GSH-dependent pathways remain functional. As suggested by several recent findings, the Trx system in general and the TrxRs in particular, function as key regulators of signaling pathways. In this review article we will discuss findings that collectively suggest that modulation in mammalian systems of cytosolic TrxR1 (TXNRD1) or mitochondrial TrxR2 (TXNRD2) influence cell patterning and cellular stress responses. Effects of lower activities include increased adipogenesis, insulin responsiveness, glycogen accumulation, hyperproliferation, and distorted embryonic development, while increased activities correlate with decreased proliferation and extended lifespan, as well as worse cancer prognosis. The molecular mechanisms that underlie these diverse effects, involving regulation of protein phosphorylation cascades and of key transcription factors that guide cellular differentiation pathways, will be discussed. We conclude that the selenium-dependent oxidoreductases TrxR1 and TrxR2 should be considered as key components of signaling pathways that control cell differentiation and cellular stress responses.
Collapse
Affiliation(s)
- Markus Dagnell
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Edward E Schmidt
- Microbiology & Immunology, Montana State University, Bozeman, MT 59718, USA
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
42
|
Porchia M, Pellei M, Marinelli M, Tisato F, Del Bello F, Santini C. New insights in Au-NHCs complexes as anticancer agents. Eur J Med Chem 2018; 146:709-746. [PMID: 29407992 DOI: 10.1016/j.ejmech.2018.01.065] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/03/2023]
Abstract
Within the research field of antitumor metal-based agents alternative to platinum drugs, gold(I/III) coordination complexes have always been in the forefront due mainly to the familiarity of medicinal chemists with gold compounds, whose application in medicine goes back in the ancient times, and to the rich chemistry shown by this metal. In the last decade, N-heterocyclic carbene ligands (NHC), a class of ligands that largely resembles the chemical properties of phosphines, became of interest for gold(I) medicinal applications, and since then, the research on NHC-gold(I/III) coordination complexes as potential antiproliferative agents boosted dramatically. Different classes of gold(I/III)-NHC complexes often showed an outstanding in vitro antiproliferative activity, however up to now very few in vivo data have been reported to corroborate the in vitro results. This review summarizes all achievements in the field of gold (I/III) complexes comprising NHC ligands proposed as potential antiproliferative agents in the period 2004-2016, and critically analyses biological data (mainly IC50 values) in relation to the chemical structures of Au compounds. The state of art of the in vivo studies so far described is also reported.
Collapse
Affiliation(s)
| | - Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy.
| | - Marika Marinelli
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | | | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| |
Collapse
|
43
|
Radenkovic F, Holland O, Vanderlelie JJ, Perkins AV. Selective inhibition of endogenous antioxidants with Auranofin causes mitochondrial oxidative stress which can be countered by selenium supplementation. Biochem Pharmacol 2017; 146:42-52. [DOI: 10.1016/j.bcp.2017.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 01/09/2023]
|
44
|
Landini I, Lapucci A, Pratesi A, Massai L, Napoli C, Perrone G, Pinzani P, Messori L, Mini E, Nobili S. Selection and characterization of a human ovarian cancer cell line resistant to auranofin. Oncotarget 2017; 8:96062-96078. [PMID: 29221187 PMCID: PMC5707081 DOI: 10.18632/oncotarget.21708] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022] Open
Abstract
The anti-arthritic drug auranofin exerts also potent antitumour activity in in vitro and in vivo models, whose mechanisms are not yet well defined. From an auranofin-sensitive human ovarian cancer cell line A2780, a highly resistant (>20-fold) subline (A2780/AF-R) was developed and characterized. Marked reduction of gold accumulation occurred in auranofin-resistant A2780 cells. Also, moderately higher thioredoxin reductase activity in A2780/AF-R cells was observed while no changes in intracellular glutathione content occurred. Resistance to auranofin was associated with a low level of cross-resistance to some investigational gold compounds as well as to oxaliplatin and other anticancer drugs with different mode of action (i.e. melphalan, vinblastine, doxorubicin, etoposide, and paclitaxel). Reduced gold accumulation was associated to substantial gene expression changes in various influx (e.g. SLC22A1, SLC47A1, SLCO1B1) and efflux (e.g. ABCB1, ABCC2, ABCC3) transporters. The expression levels of selected proteins (i.e. SLC22A1, SLC47A1, P-gp) were also changed accordingly. These data provide evidence that multiple drug transporters may act as mediators of transport of auranofin and other gold compounds in cancer cells. Further investigation into the molecular mechanisms mediating transport of auranofin and new gold complexes in view of their potential clinical application in the treatment of cancer is warranted.
Collapse
Affiliation(s)
- Ida Landini
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Andrea Lapucci
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Alessandro Pratesi
- Department of Chemistry “Ugo Schiff”, University of Florence, Firenze, Italy
| | - Lara Massai
- Department of Chemistry “Ugo Schiff”, University of Florence, Firenze, Italy
| | - Cristina Napoli
- Department of Health Sciences, University of Florence, Firenze, Italy
| | - Gabriele Perrone
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Pamela Pinzani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Luigi Messori
- Department of Chemistry “Ugo Schiff”, University of Florence, Firenze, Italy
| | - Enrico Mini
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Stefania Nobili
- Department of Health Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
45
|
|
46
|
Han SJ, Zhang Y, Kim I, Chay KO, Yoon HJ, Jang DI, Yang SY, Park J, Woo HA, Park I, Lee SR. Redox regulation of the tumor suppressor PTEN by the thioredoxin system and cumene hydroperoxide. Free Radic Biol Med 2017; 112:277-286. [PMID: 28774816 DOI: 10.1016/j.freeradbiomed.2017.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/06/2017] [Accepted: 07/29/2017] [Indexed: 12/22/2022]
Abstract
Intracellular redox status influences the oxidation and enzyme activity of the tumor suppressor phosphatase and tensin homolog on chromosome 10 (PTEN). Cumene hydroperoxide (CuHP), an organic hydroperoxide, is a known tumor promoter. However, molecular targets and action mechanism of CuHP in tumor promotion have not been well characterized. In this study, we investigated the effect of CuHP on the redox state of PTEN in HeLa cells. In addition, the intracellular reducing system of oxidized PTEN was analyzed using a biochemical approach and the effect of CuHP on this reducing system was also analyzed. While PTEN oxidized by hydrogen peroxide is progressively converted to its reduced form, PTEN was irreversibly oxidized by exposure to CuHP in HeLa cells. A combination of protein fractionation and mass analysis showed that the reducing system of PTEN was comprised of NADPH, thioredoxin reductase (TrxR), and thioredoxin (Trx). Although CuHP-mediated PTEN oxidation was not reversible in cells, CuHP-oxidized PTEN was reactivated by the exogenous Trx system, indicating that the cellular Trx redox system for PTEN is inactivated by CuHP. We present evidence that PTEN oxidation and the concomitant inhibition of thioredoxin by CuHP results in irreversible oxidation of PTEN in HeLa cells. In addition, ablation of peroxiredoxin (Prdx) enhanced CuHP-induced PTEN oxidation in cells. These results provide a new line of evidence that PTEN might be a crucial determinant of cell fate in response to cellular oxidative stress induced by organic hydroperoxides.
Collapse
Affiliation(s)
- Seong-Jeong Han
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea; COTDE Inc., 19-3, Ugakgol-gil, Susin-myeon, Cheonan-si, Chungcheongnam-do 330-882, Republic of Korea
| | - Ying Zhang
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Inyoung Kim
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Kee-Oh Chay
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Dong Il Jang
- COTDE Inc., 19-3, Ugakgol-gil, Susin-myeon, Cheonan-si, Chungcheongnam-do 330-882, Republic of Korea
| | - Sung Yeul Yang
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Jiyoung Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Iha Park
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea.
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea.
| |
Collapse
|
47
|
Blecha J, Novais SM, Rohlenova K, Novotna E, Lettlova S, Schmitt S, Zischka H, Neuzil J, Rohlena J. Antioxidant defense in quiescent cells determines selectivity of electron transport chain inhibition-induced cell death. Free Radic Biol Med 2017; 112:253-266. [PMID: 28774815 DOI: 10.1016/j.freeradbiomed.2017.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 11/23/2022]
Abstract
Mitochondrial electron transport chain (ETC) targeting shows a great promise in cancer therapy. It is particularly effective in tumors with high ETC activity where ETC-derived reactive oxygen species (ROS) are efficiently induced. Why modern ETC-targeted compounds are tolerated on the organismal level remains unclear. As most somatic cells are in non-proliferative state, the features associated with the ETC in quiescence could account for some of the specificity observed. Here we report that quiescent cells, despite increased utilization of the ETC and enhanced supercomplex assembly, are less susceptible to cell death induced by ETC disruption when glucose is not limiting. Mechanistically, this is mediated by the increased detoxification of ETC-derived ROS by mitochondrial antioxidant defense, principally by the superoxide dismutase 2 - thioredoxin axis. In contrast, under conditions of glucose limitation, cell death is induced preferentially in quiescent cells and is correlated with intracellular ATP depletion but not with ROS. This is related to the inability of quiescent cells to compensate for the lost mitochondrial ATP production by the upregulation of glucose uptake. Hence, elevated ROS, not the loss of mitochondrially-generated ATP, are responsible for cell death induction by ETC disruption in ample nutrients condition, e.g. in well perfused healthy tissues, where antioxidant defense imparts specificity. However, in conditions of limited glucose, e.g. in poorly perfused tumors, ETC disruption causes rapid depletion of cellular ATP, optimizing impact towards tumor-associated dormant cells. In summary, we propose that antioxidant defense in quiescent cells is aided by local glucose limitations to ensure selectivity of ETC inhibition-induced cell death.
Collapse
Affiliation(s)
- Jan Blecha
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Silvia Magalhaes Novais
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic
| | - Katerina Rohlenova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic
| | - Eliska Novotna
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic
| | - Sandra Lettlova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic
| | - Sabine Schmitt
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany; Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic; School of Medical Science, Griffith University, Southport, Qld, Australia.
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic.
| |
Collapse
|
48
|
Marzo T, Cirri D, Gabbiani C, Gamberi T, Magherini F, Pratesi A, Guerri A, Biver T, Binacchi F, Stefanini M, Arcangeli A, Messori L. Auranofin, Et 3PAuCl, and Et 3PAuI Are Highly Cytotoxic on Colorectal Cancer Cells: A Chemical and Biological Study. ACS Med Chem Lett 2017; 8:997-1001. [PMID: 29057040 DOI: 10.1021/acsmedchemlett.7b00162] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022] Open
Abstract
The solution behavior of auranofin, Et3PAuCl and Et3PAuI, as well as their interactions with hen egg white lysozyme, single strand oligonucleotide, and ds-DNA were comparatively analyzed through NMR spectroscopy, ESI-MS, ethidium bromide displacement, DNA melting and viscometric tests. The cytotoxic effects toward representative colorectal cancer cell lines were found to be strong and similar in the three cases and a good correlation could be established between the cytotoxicity and the ability to inhibit thioredoxin reductase; remarkably, in vivo acute toxicity experiments for Et3PAuI confirmed that, similarly to auranofin, this drug is well tolerated in a murine model. Overall, a very similar profile emerges for Et3PAuI and Et3PAuCl, which retain the potent cytotoxic effects of auranofin while showing some peculiar features. These results demonstrate that the presence of the thiosugar moiety is not mandatory for the pharmacological action, suggesting that the tuning of some relevant chemical properties such as lipophilicity could be exploited to improve bioavailability, with no loss of the pharmacological effects.
Collapse
Affiliation(s)
- Tiziano Marzo
- Department
of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via Moruzzi, 13, 56124 Pisa, Italy
- Laboratory
of Metals in Medicine (MetMed), Department of Chemistry “U.
Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Damiano Cirri
- Laboratory
of Metals in Medicine (MetMed), Department of Chemistry “U.
Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Chiara Gabbiani
- Department
of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via Moruzzi, 13, 56124 Pisa, Italy
| | - Tania Gamberi
- Department
of Biochemical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Viale GB Morgagni 50, 50134 Firenze, Italy
| | - Francesca Magherini
- Department
of Biochemical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Viale GB Morgagni 50, 50134 Firenze, Italy
| | - Alessandro Pratesi
- Laboratory
of Metals in Medicine (MetMed), Department of Chemistry “U.
Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Annalisa Guerri
- Laboratory
of Metals in Medicine (MetMed), Department of Chemistry “U.
Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Tarita Biver
- Department
of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via Moruzzi, 13, 56124 Pisa, Italy
| | - Francesca Binacchi
- Department
of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via Moruzzi, 13, 56124 Pisa, Italy
| | - Matteo Stefanini
- DI.V.A.L Toscana S.R.L., Via Madonna
del Piano, 6, 50019 Sesto Fiorentino, Italy
| | - Annarosa Arcangeli
- Department
of Experimental and Clinical Medicine, University of Florence, Viale GB
Morgagni 50, 50134 Firenze, Italy
| | - Luigi Messori
- Laboratory
of Metals in Medicine (MetMed), Department of Chemistry “U.
Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
49
|
Yin B, Barrionuevo G, Batinic-Haberle I, Sandberg M, Weber SG. Differences in Reperfusion-Induced Mitochondrial Oxidative Stress and Cell Death Between Hippocampal CA1 and CA3 Subfields Are Due to the Mitochondrial Thioredoxin System. Antioxid Redox Signal 2017; 27:534-549. [PMID: 28129719 PMCID: PMC5567420 DOI: 10.1089/ars.2016.6706] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS The susceptibility of CA1 over CA3 to damage from cerebral ischemia may be related to the differences in reactive oxygen species (ROS) production/removal between the two hippocampal subfields. We aimed to measure CA1/CA3 differences in net ROS production in real time in the first 30 min of reperfusion in pyramidal cells. We aimed to determine the underlying cause of the differential vulnerability of CA1 and CA3. RESULTS Real-time determinations of mitochondrial H2O2 and, independently, glutathione (GSH) redox status from roGFP-based probes in individual pyramidal cells in organotypic hippocampal cultures during oxygen-glucose deprivation (OGD)-reperfusion (RP) demonstrate a significantly more oxidizing environment during RP in CA1 than CA3 mitochondria. Protein levels (immunohistochemistry and Western blots), roGFP2-based probe measurements during controlled mitochondrial production of ROS, and thioredoxin reductase (TrxR) inhibition by auranofin are consistent with a more effective mitochondrial thioredoxin (Trx) system in CA3. Inhibition of TrxR eliminates the differences in redox status and cell death between the regions. Overexpression of cytosolic Trx1 does not influence mitochondrial H2O2 production. INNOVATION Real-time changes of mitochondrial H2O2 and GSH in tissue cultures during early RP, and also during controlled production of superoxide and peroxide, reveal significant differences between CA1 and CA3. The mitochondrial Trx system is responsible for the observed differences during RP as well as for delayed cell death 18 h afterward. CONCLUSION Greater mitochondrial Trx efficacy in CA3 pyramidal cells results in less vulnerability to ischemia/reperfusion because of the less oxidizing environment in CA3 mitochondria during RP. Antioxid. Redox Signal. 27, 534-549.
Collapse
Affiliation(s)
- Bocheng Yin
- 1 Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Germán Barrionuevo
- 2 Department of Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Ines Batinic-Haberle
- 3 Department of Radiation Oncology, Duke University Medical Center , North Carolina
| | - Mats Sandberg
- 4 Department of Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Göteborg, Sweden
| | - Stephen G Weber
- 1 Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
de Souza LF, Schmitz AE, da Silva LCS, de Oliveira KA, Nedel CB, Tasca CI, de Bem AF, Farina M, Dafre AL. Inhibition of reductase systems by 2-AAPA modulates peroxiredoxin oxidation and mitochondrial function in A172 glioblastoma cells. Toxicol In Vitro 2017; 42:273-280. [DOI: 10.1016/j.tiv.2017.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/29/2017] [Accepted: 04/27/2017] [Indexed: 01/13/2023]
|