1
|
Sadeghi S, Nassiri A, Hakemi MS, Hosseini F, Pourrezagholie F, Naeini F, Niri AN, Imani H, Mohammadi H. Effects of melatonin supplementation on oxidative stress, and inflammatory biomarkers in diabetic patients with chronic kidney disease: a double-blind, randomized controlled trial. BMC Nutr 2025; 11:34. [PMID: 39923085 DOI: 10.1186/s40795-025-01026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Chronic kidney disease (CKD) is a progressive illness linked to higher rates of morbidity and death. One of the main causes of CKD is diabetes mellitus (DM), and oxidative stress is essential to the disease's development. It has been demonstrated that the natural antioxidant melatonin reduces inflammation and oxidative damage in renal tissues. Given the lack of robust evidence, this double-blind clinical trial sought to investigate the effects of melatonin supplementation on oxidative stress and inflammatory markers in diabetic CKD patients. MATERIALS AND METHODS This trial included 41 diabetic patients with CKD (stages 3-4) from Shariati Hospital, Tehran, Iran. For ten weeks, participants were randomized to receive either a placebo or 5 mg of melatonin twice a day. Baseline characteristics, dietary intake, physical activity, and anthropometric measurements were recorded. Oxidative stress (TAC, TOS, MDA) and inflammatory markers (IL-6, hs-CRP) were measured before and after the intervention. Statistical analysis was performed using SPSS, with significance set at p < 0.05. RESULTS The 10-week trial was completed by 41 participants in total, and no adverse effects were noted. Dietary intake, physical activity, and anthropometric parameters did not significantly differ between the melatonin and control groups in baseline characteristics. Melatonin supplementation decreased oxidative stress and inflammatory biomarkers, including hs-CRP, MDA, TOS, and IL-6. However, these changes were not statistically significant. CONCLUSION Our study showed that melatonin supplementation did not significantly affect oxidative stress or inflammatory markers, including TAC, TOS, MDA, IL-6, and hs-CRP, in diabetic patients with CKD. Despite a decrement in TOS, MDA, IL-6, and hs-CRP levels after 10 weeks, this was not statistically significant. Further studies with larger sample sizes, greater dosages, and longer follow-up periods are recommended.
Collapse
Affiliation(s)
- Sara Sadeghi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirahmad Nassiri
- Department of Nephrology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Monir Sadat Hakemi
- Department of Nephrology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hosseini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Pourrezagholie
- Department of Nephrology, Labbafinezhad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Aylar Nadiri Niri
- Cell and Molecular Biology Department, University of Tehran, Tehran, Iran
| | - Hossein Imani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Muñoz-Jurado A, Escribano BM. Presence of melatonin in foods of daily consumption: The benefit of this hormone for health. Food Chem 2024; 458:140172. [PMID: 38943958 DOI: 10.1016/j.foodchem.2024.140172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Melatonin (MLT) is a hormone that exists in all living organisms, including bacteria, yeast, fungi, animals, and plants, many of which are ingested daily in the diet. However, the exact concentrations of melatonin in each of the foods and the effect on health of the intake of foods rich in MLT are not known. Therefore, the aim of this review was to gather the available information on the melatonin content of different foods and to evaluate the effect that this hormone has on different pathologies. The amount of MLT may vary depending on the variety, origin, heat treatment, processing, and analysis technique, among other factors. Dietary interventions with foods rich in MLT report health benefits, but there is no evidence that hormone is partially responsible for the clinical improvement. Therefore, it is necessary to evaluate the MLT content in more foods, as well as the effect that cooking/processing has on the amount of MLT, to estimate its total intake in a typical diet and better explore its potential impact on the health.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| |
Collapse
|
3
|
Ye X, Baker PN, Tong C. The updated understanding of advanced maternal age. FUNDAMENTAL RESEARCH 2024; 4:1719-1728. [PMID: 39734537 PMCID: PMC11670706 DOI: 10.1016/j.fmre.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/29/2023] [Accepted: 09/21/2023] [Indexed: 12/31/2024] Open
Abstract
The rising rates of pregnancies associated with advanced maternal age (AMA) have created unique challenges for healthcare systems worldwide. The elevated risk of poor maternal outcomes among AMA pregnancies is only partially understood and hotly debated. Specifically, AMA is associated with reduced fertility and an increased incidence of pregnancy complications. Finding a balance between global fertility policy, socioeconomic development and health care optimization ultimately depends on female fertility. Therefore, there is an urgent need to develop technologies and identify effective interventions. Support strategies should include prepregnancy screening, intervention and postpartum maintenance. Although some reviews have considered the relationship between AMA and adverse pregnancy outcomes, no previous work has comprehensively considered the long-term health effects of AMA on mothers. In this review, we will begin by presenting the current knowledge of global health issues associated with AMA and the effects of advanced age on the female reproductive system, endocrine metabolism, and placental function. We will then discuss physiological alterations, pregnancy complications, and long-term health problems caused by AMA.
Collapse
Affiliation(s)
- Xuan Ye
- National Clinical Research Center for Child Health and Disorder, Children's Hospital of Chongqing Medical University, Chongqing 401122, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Philip N. Baker
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Chao Tong
- National Clinical Research Center for Child Health and Disorder, Children's Hospital of Chongqing Medical University, Chongqing 401122, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
da Silva JGM, de Melo IMF, Alves ÉR, de Oliveira GM, da Silva AA, Pinto FCM, Aguiar JLDA, Araújo DN, Teixeira VW, Teixeira ÁAC. Melatonin associated with bacterial cellulose-based hydrogel improves healing of skin wounds in diabetic rats. Acta Cir Bras 2024; 39:e399024. [PMID: 39476070 PMCID: PMC11506694 DOI: 10.1590/acb399024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/21/2024] [Indexed: 11/02/2024] Open
Abstract
PURPOSE To describe the effects of melatonin associated with bacterial cellulose-based hydrogel on healing of skin wounds in diabetic rats. METHODS Streptozotocin was used to induce diabetes in Wistar rats. After wound induction, animals were randomly divided into groups GC, GDCC, GDCB, and GDMCB. Animals were evaluated in days 3, 7, and 14 for the following variables: glycemic levels, histopathological and histochemical analyses, healing rate, morphometry and C-reactive protein. RESULTS There was no change in glycemic levels in the diabetic animals as a result of the treatments; histopathological analyses showed better healing in GDCB and GDMCB groups, as well as histochemistry; at day 14, the highest healing rate was observed in animals from the GDMCB group, reaching almost 100%; morphometry revealed a significant increase of fibroblasts and reduction of macrophages and blood vessels in lesions treated with bacterial cellulose associated or not with melatonin when compared to the other experimental groups. There was also an increase in C-reactive protein in GDCC group at day 14. CONCLUSION Bacterial cellulose-based dressings associated with systemic melatonin showed beneficial results in experimentally induced wounds in diabetic rats, favoring the healing process.
Collapse
Affiliation(s)
- Jaiurte Gomes Martins da Silva
- Universidade Federal Rural de Pernambuco – Department of Animal Morphology and Physiology – Graduate Program in Animal Bioscience – Recife (PE) – Brazil
- Universidade Federal de Alagoas – Maceió (AL) – Brazil
| | - Ismaela Maria Ferreira de Melo
- Universidade Federal Rural de Pernambuco – Department of Animal Morphology and Physiology – Graduate Program in Animal Bioscience – Recife (PE) – Brazil
| | - Érique Ricardo Alves
- Universidade Federal Rural de Pernambuco – Department of Animal Morphology and Physiology – Graduate Program in Animal Bioscience – Recife (PE) – Brazil
| | - Glícia Maria de Oliveira
- Universidade Federal de Pernambuco – Department of Biochemistry – Graduate Program in Therapeutic Innovation – Recife (PE) – Brazil
| | - Anderson Arnaldo da Silva
- Universidade Federal de Pernambuco – Graduate Program in Biosciences and Biotechnology in Health – Recife (PE) – Brazil
| | | | | | | | - Valéria Wanderley Teixeira
- Universidade Federal Rural de Pernambuco – Department of Animal Morphology and Physiology – Graduate Program in Animal Bioscience – Recife (PE) – Brazil
| | - Álvaro Aguiar Coelho Teixeira
- Universidade Federal Rural de Pernambuco – Department of Animal Morphology and Physiology – Graduate Program in Animal Bioscience – Recife (PE) – Brazil
| |
Collapse
|
5
|
Frungieri MB, Calandra RS, Matzkin ME, Rossi SP. Melatonin as a natural anti-inflammatory and anti-oxidant therapy in the testis: a focus on infertility and aging†. Biol Reprod 2024; 111:543-556. [PMID: 38869910 DOI: 10.1093/biolre/ioae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Melatonin is a pineal hormone that regulates testicular activity (i.e., steroidogenesis and spermatogenesis) through two complementary mechanisms, indirect effects exerted via the hypothalamic-adenohypophyseal axis and direct actions that take place on the different cell populations of the male gonad. The effects of increased age on the testis and the general mechanisms involved in testicular pathology leading to infertility are still only poorly understood. However, there is growing evidence that link testicular aging and idiopathic male infertility to local inflammatory and oxidative stress events. Because literature data strongly indicate that melatonin exhibits anti-inflammatory and anti-oxidant properties, this review focuses on the potential benefits exerted by this indoleamine at testicular level in male reproductive fertility and aging. Taking into account that the effects of melatonin supplementation on testicular function are currently being investigated, the overview covers not only promising prospects but also many questions concerning the future therapeutic value of this indoleamine as an anti-aging drug as well as in the management of cases of male infertility for which there are no medical treatments currently available.
Collapse
Affiliation(s)
- Mónica Beatriz Frungieri
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - Ricardo Saúl Calandra
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - María Eugenia Matzkin
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Cátedra 1, Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Soledad Paola Rossi
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Cátedra 1, Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
6
|
Albaladejo-Riad N, Espinosa-Ruiz C, Esteban MÁ. Effect of silk fibroin microparticles on cellular immunity and liver of gilthead seabream (Sparus aurata L.) with and without experimental skin injuries. J Anim Physiol Anim Nutr (Berl) 2024; 108:1046-1058. [PMID: 38483166 DOI: 10.1111/jpn.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 07/09/2024]
Abstract
Silk fibroin (SF) microparticles were administered in the diet of gilthead seabream with or without experimental skin wounds to study the effects on cellular immunity and liver. A commercially available diet was enriched with varying amount of SF: 0, 50 and 100 mg kg-1 (representing the control, SF50 and SF100 diets respectively). The animals were fed for 30 days and half of them were sampled. Similar experimental wounds were then performed on the rest of fish, and they continued to be fed the same diet. At 7 days post-wounding, samples were taken from the wounded fish. Cellular immunity was studied on head kidney leucocytes (phagocytosis, respiratory and peroxidase content) and liver status (histological study and gene expression) were studied. Our results showed that experimental wounds affect both cellular immunity (by decreasing leucocyte respiratory burst and peroxidase activity) and altered liver histology (by inducing vascularisation and congestion of blood vessels). In addition, it influences the expression of genes that serve as markers of oxidative stress, endoplasmic reticulum stress and apoptosis. The highest dose of SF (SF100) increased the phagocytic capacity of leucocytes the most, as well as the expression of genes related to blood vessel formation in the liver. Furthermore, increased expression of antioxidant genes (cat and gsr) and decreased expression of genes related to reticulum endoplasmic stress (grp94 and grp170) and apoptosis (nos and jnk) were detected in these fish fed with SF100 and wounded. In conclusion, fed fish with SF100 had many beneficial effects as cellular immunostimulant and hepatoprotection in wounded fish. Its use could be of great interest for stress management in farmed fish conditions.
Collapse
Affiliation(s)
- N Albaladejo-Riad
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - C Espinosa-Ruiz
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - M Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| |
Collapse
|
7
|
Zhu H, Yang X, Zhao Y. Recent Advances in Current Uptake Situation, Metabolic and Nutritional Characteristics, Health, and Safety of Dietary Tryptophan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6787-6802. [PMID: 38512048 DOI: 10.1021/acs.jafc.3c06419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tryptophan (Trp) is an essential amino acid which is unable to be synthesized in the body. Main sources of Trp are uptake of foods such as oats and bananas. In this review, we describe the status of current dietary consumption, metabolic pathways and nutritional characteristics of Trp, as well as its ingestion and downstream metabolites for maintaining body health and safety. This review also summarizes the recent advances in Trp metabolism, particularly the 5-HT, KYN, and AhR activation pathways, revealing that its endogenous host metabolites are not only differentially affected in the body but also are closely linked to health. More attention should be paid to targeting its specific metabolic pathways and utilizing food molecules and probiotics for manipulating Trp metabolism. However, the complexity of microbiota-host interactions requires further exploration to precisely refine targets for innovating the gut microbiota-targeted diagnostic approaches and informing subsequent studies and targeted treatments of diseases.
Collapse
Affiliation(s)
- Haoyan Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
8
|
Rogiers A, Dimitriou F, Lobon I, Harvey C, Vergara IA, Pires da Silva I, Lo SN, Scolyer RA, Carlino MS, Menzies AM, Long GV. Seasonal patterns of toxicity in melanoma patients treated with combination anti-PD-1 and anti-CTLA-4 immunotherapy. Eur J Cancer 2024; 198:113506. [PMID: 38184928 DOI: 10.1016/j.ejca.2023.113506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors are frequently associated with the development of immunotherapy-related adverse events (irAEs). The exact etiology, including the role of environmental factors, remains incompletely understood. METHODS We analyzed the records of 394 melanoma patients from three centers (northern and southern hemisphere). Patients had received at least one cycle of anti-PD-1/anti-CTLA-4 with a minimum follow-up of 3 months. We study the distribution and time to irAEs onset throughout the calendar year. RESULTS 764 irAEs were recorded; the most frequent were skin rash (35%), hepatitis (32%) and colitis (30%). The irAEs incidence was the highest in autumn and winter, and the ratio for the 'number of irAEs' per 'therapies commenced' was the highest in winter and lowest in summer (2.4 and 1.7, respectively). Season-specific patterns in the time of irAEs onset were observed for pneumonitis (shorter time to onset in autumn, p = 0.025), hepatitis (shorter time to onset in spring, p = 0.016) and sarcoid-like immune reaction (shorter time to onset in autumn, p = 0.041). Season-specific patterns for early-onset irAEs were observed for hepatitis (spring, p = 0.023) and nephritis (summer, p = 0.017). Early-onset pneumonitis was more frequent in autumn-winter (p = 0.008) and early-onset nephritis in spring-summer (p = 0.004). CONCLUSIONS Environmental factors that are associated with particular seasons may contribute to the development of certain irAEs and suggest the potential effect of environmental triggers. The identification of these factors may enhance preventive and therapeutic strategies to reduce the morbidity of irAEs.
Collapse
Affiliation(s)
- Aljosja Rogiers
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Florentia Dimitriou
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Irene Lobon
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Catriona Harvey
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ismael A Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ines Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Westmead and Blacktown Hospitals, Sydney, New South Wales, Australia
| | - Serigne N Lo
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Westmead and Blacktown Hospitals, Sydney, New South Wales, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Cheng HY, Wang W, Wang W, Yang MY, Zhou YY. Interkingdom Hormonal Regulations between Plants and Animals Provide New Insight into Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4-26. [PMID: 38156955 DOI: 10.1021/acs.jafc.3c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Food safety has become an attractive topic among consumers. Raw material production for food is also a focus of social attention. As hormones are widely used in agriculture and human disease control, consumers' concerns about the safety of hormone agents have never disappeared. The present review focuses on the interkingdom regulations of exogenous animal hormones in plants and phytohormones in animals, including physiology and stress resistance. We summarize these interactions to give the public, researchers, and policymakers some guidance and suggestions. Accumulated evidence demonstrates comprehensive hormonal regulation across plants and animals. Animal hormones, interacting with phytohormones, help regulate plant development and enhance environmental resistance. Correspondingly, phytohormones may also cause damage to the reproductive and urinary systems of animals. Notably, the disease-resistant role of phytohormones is revealed against neurodegenerative diseases, cardiovascular disease, cancer, and diabetes. These resistances derive from the control for abnormal cell cycle, energy balance, and activity of enzymes. Further exploration of these cross-kingdom mechanisms would surely be of greater benefit to human health and agriculture development.
Collapse
Affiliation(s)
- Hang-Yuan Cheng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Human Development Family Studies, Iowa State University, 2330 Palmer Building, Ames, Iowa 50010, United States
| | - Wei Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mu-Yu Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Yu-Yi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| |
Collapse
|
10
|
Feng Y, Jiang X, Liu W, Lu H. The location, physiology, pathology of hippocampus Melatonin MT 2 receptor and MT 2-selective modulators. Eur J Med Chem 2023; 262:115888. [PMID: 37866336 DOI: 10.1016/j.ejmech.2023.115888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Melatonin, a neurohormone secreted by the pineal gland and regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus, is synthesized and directly released into the cerebrospinal fluid (CSF) of the third ventricle (3rdv), where it undergoes rapid absorption by surrounding tissues to exert its physiological function. The hippocampus, a vital structure in the limbic system adjacent to the ventricles, plays a pivotal role in emotional response and memory formation. Melatonin MT1 and MT2 receptors are G protein-coupled receptors (GPCRs) that primarily mediate melatonin's receptor-dependent effects. In comparison to the MT1 receptor, the widely expressed MT2 receptor is crucial for mediating melatonin's biological functions within the hippocampus. Specifically, MT2 receptor is implicated in hippocampal synaptic plasticity and memory processes, as well as neurogenesis and axogenesis. Numerous studies have demonstrated the involvement of MT2 receptors in the pathophysiology and pharmacology of Alzheimer's disease, depression, and epilepsy. This review focuses on the anatomical localization of MT2 receptor in the hippocampus, their physiological function in this region, and their signal transduction and pharmacological roles in neurological disorders. Additionally, we conducted a comprehensive review of MT2 receptor ligands used in psychopharmacology and other MT2-selective ligands over recent years. Ultimately, we provide an outlook on future research for selective MT2 receptor drug candidates.
Collapse
Affiliation(s)
- Yueqin Feng
- Department of Ultrasound, the First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, PR China
| | - Hongyuan Lu
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China.
| |
Collapse
|
11
|
Araújo ADO, Figueira-de-Oliveira ML, Noya AGAFDC, Oliveira E Silva VP, de Carvalho JM, Vieira Filho LD, Guedes RCA. Effect of neonatal melatonin administration on behavioral and brain electrophysiological and redox imbalance in rats. Front Neurosci 2023; 17:1269609. [PMID: 37901423 PMCID: PMC10603194 DOI: 10.3389/fnins.2023.1269609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Melatonin (MLT) reportedly has beneficial effects in neurological disorders involving brain excitability (e.g., Epilepsy and Migraine) and behavioral patterns (e.g., Anxiety and Depression). This study was performed to investigate, in the developing rat brain, the effect of early-in-life administration of two different doses of exogenous MLT on behavioral (anxiety and memory) and electrophysiological (CSD analysis) aspects of brain function. Additionally, brain levels of malondialdehyde (MDA) and superoxide dismutase (SOD), both cellular indicators of redox balance status, were evaluated. We hypothesize that MLT differentially affects the behavioral and CSD parameters as a function of the MLT dose. Materials and methods Male Wistar rats received, from the 7th to the 27th postnatal day (PND), on alternate days, vehicle solution, or 10 mg/kg/or 40 mg/kg MLT (MLT-10 and MLT-40 groups), or no treatment (intact group). To perform behavioral and cognition analysis, from PND30 to PND32, they were tested in the open field apparatus, first for anxiety (PND30) and then for object recognition memory tasks: spatial position recognition (PND31) and shape recognition (PND32). On PND34, they were tested in the elevated plus maze. From PND36 to 42, the excitability-related phenomenon known as cortical spreading depression (CSD) was recorded, and its features were analyzed. Results Treatment with MLT did not change the animals' body weight or blood glucose levels. The MLT-10 treatment, but not the MLT-40 treatment, was associated with behaviors that suggest less anxiety and improved memory. MLT-10 and MLT-40 treatments, respectively, decelerated and accelerated CSD propagation (speed of 2.86 ± 0.14 mm/min and 3.96 ± 0.16 mm/min), compared with the control groups (3.3 ± 0.10 mm/min and 3.25 ± 0.11 mm/min, for the intact and vehicle groups, respectively; p < 0.01). Cerebral cortex levels of malondialdehyde and superoxide dismutase were, respectively, lower and higher in the MLT-10 group but not in the MLT40 group. Conclusion Our findings suggest that MLT intraperitoneal administration during brain development may differentially act as an antioxidant agent when administered at a low dose but not at a high dose, according to behavioral, electrophysiological, and biochemical parameters.
Collapse
Affiliation(s)
- Amanda de Oliveira Araújo
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | | | | - Leucio Duarte Vieira Filho
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | |
Collapse
|
12
|
Taha AM, Mahmoud AM, Ghonaim MM, Kamran A, AlSamhori JF, AlBarakat MM, Shrestha AB, Jaiswal V, Reiter RJ. Melatonin as a potential treatment for septic cardiomyopathy. Biomed Pharmacother 2023; 166:115305. [PMID: 37619482 DOI: 10.1016/j.biopha.2023.115305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Septic cardiomyopathy (SCM) is a common complication of sepsis contributing to high mortality rates. Its pathophysiology involves complex factors, including inflammatory cytokines, mitochondrial dysfunction, oxidative stress, and immune dysregulation. Despite extensive research, no effective pharmacological agent has been established for sepsis-induced cardiomyopathy. Melatonin, a hormone with diverse functions in the body, has emerged as a potential agent for SCM through its anti-oxidant, anti-inflammatory, anti-apoptotic, and cardioprotective roles. Through various molecular levels of its mechanism of action, it counterattacks the adverse event of sepsis. Experimental studies have mentioned that melatonin protects against many cardiovascular diseases and exerts preventive effects on SCM. Moreover, melatonin has been investigated in combination with other drugs such as antibiotics, resveratrol, and anti-oxidants showing synergistic effects in reducing inflammation, anti-oxidant, and improving cardiac function. While preclinical studies have demonstrated positive results, clinical trials are required to establish the optimal dosage, route of administration, and treatment duration for melatonin in SCM. Its safety profile, low toxicity, and natural occurrence in the human body provide a favorable basis for its clinical use. This review aims to provide an overview of the current evidence of the use of melatonin in sepsis-induced cardiomyopathy (SICM). Melatonin appears to be promising as a possible treatment for sepsis-induced cardiomyopathy and demands further investigation.
Collapse
Affiliation(s)
- Amira Mohamed Taha
- Faculty of Medicine, Fayoum University, Fayoum, Egypt; Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, USA
| | | | | | - Ateeba Kamran
- Bachelor of Medicine, Bachelor of Surgery, Karachi Medical and Dental College, Karachi, Pakistan
| | | | - Majd M AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Abhigan Babu Shrestha
- Department of Internal Medicine, M Abdur Rahim Medical College, Dinajpur, Bangladesh.
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
13
|
Song J, Ouyang F, Xiong Y, Luo Q, Jiang H, Fan L, Zhang Z. Reassessment of oxidative stress in idiopathic sudden hearing loss and preliminary exploration of the effect of physiological concentration of melatonin on prognosis. Front Neurol 2023; 14:1249312. [PMID: 37745649 PMCID: PMC10511764 DOI: 10.3389/fneur.2023.1249312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Background and purpose The pathogenesis of idiopathic sudden sensorineural hearing loss (ISSNHL) is still unclear, and there is no targeted treatment. This research aimed to verify the role of oxidative stress in ISSNHL and explore whether melatonin has a protective effect on hearing. Materials and methods A total of 43 patients with ISSNHL and 15 healthy controls were recruited to detect the level of melatonin, reactive oxygen species (ROS), and total antioxidant capacity (TAC) in the blood and compared before and after treatment. Multivariate logistic regression models were performed to assess the factors relevant to the occurrence and improvement of ISSNHL. Results The patients with ISSNHL showed significantly higher ROS levels than controls (4.42 ± 4.40 vs. 2.30 ± 0.59; p = 0.031). The levels of basal melatonin were higher (1400.83 ± 784.89 vs. 1095.97 ± 689.08; p = 0.046) and ROS levels were lower (3.05 ± 1.81 vs. 5.62 ± 5.56; p = 0.042) in the effective group as compared with the ineffective group. Logistic regression analysis showed that melatonin (OR = 0.999, 95% CI 0.997-1.000, p = 0.049), ROS (OR = 1.154, 95% CI 1.025-2.236, p = 0.037), and vertigo (OR = 3.011, 95% CI 1.339-26.983, p = 0.019) were independent factors associated with hearing improvement. Besides, the level of melatonin (OR = 0.999, 95% CI 0.998-1.000, p = 0.023) and ROS (OR = 3.248, 95% CI 1.109-9.516, p = 0.032) were associated with the occurrence of ISSNHL. Conclusion Our findings may suggest oxidative stress involvement in ISSNHL etiopathogenesis. The level of melatonin and ROS, and vertigo appear to be predictive of the effectiveness of hearing improvement following ISSNHL treatment.
Collapse
Affiliation(s)
- Jianxiong Song
- Department of Otolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fang Ouyang
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuanping Xiong
- Department of Otolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Luo
- Department of Otolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongqun Jiang
- Department of Otolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Fan
- Department of Otolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiyuan Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Häusler S, Robertson NJ, Golhen K, van den Anker J, Tucker K, Felder TK. Melatonin as a Therapy for Preterm Brain Injury: What Is the Evidence? Antioxidants (Basel) 2023; 12:1630. [PMID: 37627625 PMCID: PMC10451719 DOI: 10.3390/antiox12081630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Despite significant improvements in survival following preterm birth in recent years, the neurodevelopmental burden of prematurity, with its long-term cognitive and behavioral consequences, remains a significant challenge in neonatology. Neuroprotective treatment options to improve neurodevelopmental outcomes in preterm infants are therefore urgently needed. Alleviating inflammatory and oxidative stress (OS), melatonin might modify important triggers of preterm brain injury, a complex combination of destructive and developmental abnormalities termed encephalopathy of prematurity (EoP). Preliminary data also suggests that melatonin has a direct neurotrophic impact, emphasizing its therapeutic potential with a favorable safety profile in the preterm setting. The current review outlines the most important pathomechanisms underlying preterm brain injury and correlates them with melatonin's neuroprotective potential, while underlining significant pharmacokinetic/pharmacodynamic uncertainties that need to be addressed in future studies.
Collapse
Affiliation(s)
- Silke Häusler
- Division of Neonatology, Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Nicola J. Robertson
- EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (N.J.R.); (K.T.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Klervi Golhen
- Pediatric Pharmacology and Pharmacometrics, University Children’s Hospital Basel (UKBB), University of Basel, 4001 Basel, Switzerland; (K.G.); (J.v.d.A.)
| | - John van den Anker
- Pediatric Pharmacology and Pharmacometrics, University Children’s Hospital Basel (UKBB), University of Basel, 4001 Basel, Switzerland; (K.G.); (J.v.d.A.)
- Division of Clinical Pharmacology, Children’s National Hospital, Washington, DC 20001, USA
| | - Katie Tucker
- EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (N.J.R.); (K.T.)
| | - Thomas K. Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria;
| |
Collapse
|
15
|
El-Mahdy NA, Abou-Saif S, Abd EL hamid MI, Hashem HM, Hammad MA, Abu-Risha SES. Evaluation of the effect of direct-acting antiviral agents on melatonin level and lipid peroxidation in chronic hepatitis C patients. Front Pharmacol 2023; 14:1128016. [PMID: 37614319 PMCID: PMC10442483 DOI: 10.3389/fphar.2023.1128016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/25/2023] [Indexed: 08/25/2023] Open
Abstract
Background: Oxidative stress and its end products, such as malondialdehyde (MDA) play a leading role in the pathogenesis of hepatitis C. Melatonin is a hormone that helps regulate circadian rhythms, which likely play a role in infectious diseases in terms of susceptibility, clinical expression, and outcome. Objective: The present study was conducted to assess serum malondialdehyde and melatonin levels in patients with chronic hepatitis C infection before and after the intake of direct-acting antivirals. Method: Forty hepatitis C patients were the subjects of this study. While ten healthy volunteers who matched in age and socioeconomic status served as the control subjects. Malondialdehyde and melatonin were assayed in the serum of the three groups, and the results were statistically analyzed. Results: Hepatitis C patients had significantly higher malondialdehyde (p < 0.001) but significantly lower melatonin (p < 0.001) as compared to the healthy controls. After 12 weeks of treatment with direct-acting antivirals, the malondialdehyde level decreased significantly (p < 0.001) and the melatonin level increased significantly (p < 0.001). A significant negative correlation between malondialdehyde and melatonin was observed. Conclusion: The present findings suggest that treatment of hepatitis C patients with Direct-acting antivirals improves liver function parameters and antioxidant profiles.
Collapse
Affiliation(s)
- Nageh Ahmed El-Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sabry Abou-Saif
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Heba M. Hashem
- Department of Pharmacy Practice, Faculty of Pharmacy, Sinai University, El-Arish, Egypt
| | - Mohamed Anwar Hammad
- Department of Clinical Pharmacy, Faculty of Clinical Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | | |
Collapse
|
16
|
Huang PY, Wu JY, Liu TH, Tsai YW, Chen PT, Liao CT, Toh HS. The clinical efficacy of melatonin in the treatment of patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials. Front Med (Lausanne) 2023; 10:1171294. [PMID: 37181363 PMCID: PMC10166833 DOI: 10.3389/fmed.2023.1171294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Background The COVID-19 pandemic has resulted in significant morbidity and mortality worldwide, with cytokine storm leading to exaggerating immune response, multi-organ dysfunction and death. Melatonin has been shown to have anti-inflammatory and immunomodulatory effects and its effect on COVID-19 clinical outcomes is controversial. This study aimed to conduct a meta-analysis to evaluate the impact of melatonin on COVID-19 patients. Methods PubMed, Embase, and Cochrane Central Register of Controlled Trials were searched without any language or publication year limitations from inception to 15 Nov 2022. Randomized controlled trials (RCTs) using melatonin as therapy in COVID-19 patients were included. The primary outcome was mortality, and the secondary outcomes included were the recovery rate of clinical symptoms, changes in the inflammatory markers like C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and neutrophil to lymphocyte ratio (NLR). A random-effects model was applied for meta-analyses, and further subgroup and sensitivity analyses were also conducted. Results A total of nine RCTs with 718 subjects were included. Five studies using melatonin with the primary outcome were analyzed, and the pooled results showed no significant difference in mortality between melatonin and control groups with high heterogeneity across studies identified (risk ratio [RR] 0.72, 95% confidence interval [CI] 0.47-1.11, p = 0.14, I2 = 82%). However, subgroup analyses revealed statistically significant effects in patients aged under 55 years (RR 0.71, 95% CI 0.62-0.82, p < 0.01) and in patients treated for more than 10 days (RR 0.07, 95% CI 0.01-0.53, p = 0.01). The recovery rate of clinical symptoms and changes in CRP, ESR, and NLR were not statistically significant. No serious adverse effects were reported from melatonin use. Conclusion In conclusion, based on low certainty of evidence, the study concluded that melatonin therapy does not significantly reduce mortality in COVID-19 patients, but there are possible benefits in patients under 55 years or treated for more than 10 days. With a very low certainty of evidence, we found no significant difference in the recovery rate of COVID-19 related symptoms or inflammatory markers in current studies. Further studies with larger sample sizes are warranted to determine the possible efficacy of melatonin on COVID-19 patients. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022351424.
Collapse
Affiliation(s)
- Po-Yu Huang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Jheng-Yan Wu
- Department of Nutrition, Chi Mei Medical Center, Tainan, Taiwan
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ting-Hui Liu
- Department of General Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Ya-Wen Tsai
- Center of Integrative Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Po-Tsang Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chia-Te Liao
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Han Siong Toh
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
17
|
Wen P, Tan F, Wu M, Cai Q, Xu R, Zhang X, Wang Y, Li S, Lei M, Chen H, Khan MSA, Zou Q, Hu X. Proper use of light environments for mitigating the effects of COVID-19 and other prospective public health emergency lockdowns on sleep quality and fatigue in adolescents. Heliyon 2023; 9:e14627. [PMID: 37064435 PMCID: PMC10027303 DOI: 10.1016/j.heliyon.2023.e14627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) remains a public health emergency of international concern, and some countries still implement strict regional lockdowns. Further, the upcoming 2023 Asian Games and World University Games will implement a closed-loop management system. Quarantine can harm mental and physical health, to which adolescents are more vulnerable compared with adults. Previous studies indicated that light can affect our psychology and physiology, and adolescents were exposed to the artificial light environment in the evening during the lockdown. Thus, this study aimed to establish and assess appropriate residential light environments to mitigate the effects of lockdowns on sleep quality and fatigue in adolescents. The participants were 66 adolescents (12.15 ± 2.45 years of age) in a closed-loop management environment, who participated in a 28-day (7-day baseline, 21-day light intervention) randomized controlled trial of a light-emitting diode (LED) light intervention. The adolescents were exposed to different correlated color temperature (CCT) LED light environments (2000 K or 8000 K) for 1 h each evening. The results for self-reported daily sleep quality indicated that the low CCT LED light environment significantly improved sleep quality (p < 0.05), and the blood test results for serum urea and hemoglobin indicated that this environment also significantly reduced fatigue (p < 0.05) and moderately increased performance, compared to the high CCT LED light environment. These findings can serve as a springboard for further research that aims to develop interventions to reduce the effects of public health emergency lockdowns on mental and physical health in adolescents, and provide a reference for participants in the upcoming Asian Games and World University Games.
Collapse
Affiliation(s)
- Peijun Wen
- School of Physical Education, South China University of Technology, Guangzhou, 510641, China
| | - Fuyun Tan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Meng Wu
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Qijun Cai
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Ruiping Xu
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Xiaowen Zhang
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Yongzhi Wang
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, China
| | - Shukun Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Menglai Lei
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Huanqing Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Muhammad Saddique Akbar Khan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xiaodong Hu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| |
Collapse
|
18
|
Li S, Xu X, Qiu Y, Teng Z, Liu J, Yuan H, Chen J, Tan Y, Yang M, Jin K, Xu B, Tang H, Zhao Z, Wang B, Xiang H, Wu H. Alternations of vitamin D and cognitive function in first-diagnosed and drug-naïve BD patients: Physical activity as a moderator. J Affect Disord 2023; 323:153-161. [PMID: 36436763 DOI: 10.1016/j.jad.2022.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/13/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The pathophysiological mechanism of cognitive impairments of bipolar disorder (BD) has not yet been completely revealed. It is well known that Vitamin D and physical activity (PA) are associated with BD. However, specific links between Vitamin D and cognitive deficits in BD are still unclear. METHOD The serum levels of vitamin D were measured. The cognitive performances of 102 first-diagnosed and drug-naïve BD patients were evaluated for analysis. The repeatable battery for the assessment of neuropsychological status (RBANS) and the Stroop Color-Word test was used in this study. PA was collected by international physical activity questionnaire. RESULT Patients with BD had high levels of serum vitamin D. Furthermore, immediate and delayed memory was negatively associated with vitamin D levels in patients' group. The serum levels of vitamin D in patients with low PA were positively associated with memory. However, increased PA attenuated the protective effect of vitamin D on executive cognition. CONCLUSION It is concluded that the increased levels of vitamin D were observed in the serum of patients with BD. Thus, it is found that more PA is less beneficial to cognition of patients with BD than longer resting.
Collapse
Affiliation(s)
- Sujuan Li
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xuelei Xu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Qiu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziwei Teng
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jieyu Liu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Yuan
- Department of Stomatology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yuxi Tan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Min Yang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Kun Jin
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Baoyan Xu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hebei Provincial Mental Health Center, No.572 Dongfeng East RD., Baoding City 071000, Hebei Province, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Tang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziru Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Xiang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Haishan Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
19
|
Refahee SM, Aboulmagd I, Ragab R, Abdel Aziz O, Ahmed WAEA, Shabaan AA. The Effect of Local Melatonin Application Following the Removal of an Impacted Mandibular Third Molar. J Oral Maxillofac Surg 2023; 81:622-631. [PMID: 36796435 DOI: 10.1016/j.joms.2023.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
PURPOSE Pain, swelling, limitation of the mouth opening, development of intra-bony defects, and bone loss are common side effects of removing the impacted third molar. The purpose of this study was to measure the association of applying melatonin in the socket of an impacted mandibular third molar with osteogenic activity and the anti-inflammatory effects. METHODS This prospective, randomized, blinded trial comprised of patients who required removal of the impacted mandibular third molar. The patients were divided into two groups (n = 19) as follows: melatonin group (3 mg of melatonin into 2 ml of 2% hydroxyethyl cellulose gel was packed into the socket) and placebo group (2 ml of 2% hydroxyethyl cellulose gel was placed in the socket). The primary outcome was bone density, measured using Hounsfield unit immediately after surgery and 6 months later. Secondary outcome variables included serum osteoprotegerin level (Ng/ml) that measured immediately, 4 weeks and 6 months postoperatively. Other clinical outcome measures were pain by visual analog scale, maximum mouth opening (MMO) (millimeter), and swelling (millimeter) that were evaluated immediately, 1, 3, and 7 days postoperatively. The data were analyzed by independent t-test of Wilcoxon's rank-sum, analysis of variance, and generalized estimating equation (P ≤ .05). RESULTS Thirty-eight patients (25 female and 13 males) with a median age of 27 years were enrolled in the study. There was no statistical significance in bone density observed in both groups [melatonin group: 978.5(951.3-1015.8), control group: 965.8 (924.6-998.7), P = .1]. Alternatively, there were statistically significant improvements in osteoprotegerin levels (on week 4), MMO (on day1), and swelling (on day 3) in the melatonin group compared to those in the placebo group [1.9(1.4-2.4), 39.68 ± 1.35, and 14.36 ± 0.80 versus 1.5(1.2-1.4); 38.33 ± 1.20, and 14.88 ± 0.59; P = .02, .003, 0.031, respectively]. The pain values showed statistically significant improvement throughout the follow-up period in the melatonin group compared to the placebo group [5(3-8), 2(1-5), and 0(0-2) versus 7(6-8), 5(4-6), and 2(1-3); P < .001, respectively]. CONCLUSIONS The results support the anti-inflammatory effect of melatonin in reducing the pain scale and swelling. Furthermore, it plays a role in the improvement of MMO. On the other hand, the osteogenic activity of melatonin could not be detected.
Collapse
Affiliation(s)
- Shaimaa Mohsen Refahee
- Lecturer, Oral & Maxillofacial Surgery Department, Faculty of Dentistry, Fayoum University, Fayoum, Egypt.
| | - Inass Aboulmagd
- Associate Professor, Oral & Maxillofacial Radiology Department, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| | - Reham Ragab
- Biostatistician, Biomedical Informatics and Medical Statistics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Omniya Abdel Aziz
- Associate Professor, Oral & Maxillofacial Surgery Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Walaa Abd El Aty Ahmed
- Lecturer, Oral and Maxillofacial Radiology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Alshaimaa Ahmed Shabaan
- Associate Professor, Oral & Maxillofacial Surgery Department, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| |
Collapse
|
20
|
Zhao Z, Bi B, Cheng G, Zhao Y, Wu H, Zheng M, Cao Z. Melatonin ameliorates osteoarthritis rat cartilage injury by inhibiting matrix metalloproteinases and JAK2/STAT3 signaling pathway. Inflammopharmacology 2023; 31:359-368. [PMID: 36427113 DOI: 10.1007/s10787-022-01102-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To observe the effect of melatonin intervention on rat knee osteoarthritis (KOA) model and explore its mechanism. METHODS A total of 81 Sprague-Dawley (SD) rats were employed. Haematoxylin and eosin (H&E) staining and safranin o-solid green staining were used to observe the changes of pathology in KOA, and inflammation factors in serum were detected by enzyme-linked immunosorbent assay (ELISA), type II collagen (Col-II) was detected by immunohistochemistry, chondrocyte apoptosis was detected by TdT-mediated dUTP nick-end labeling (TUNEL). The expression of matrix metalloproteinases (MMPs) and JAK2/STAT3 signaling were detected by western blot. RESULTS Melatonin treatment ameliorated the histomorphology of knee joint in rats compared to the model group. The contents of TNF-α, IL-6, and IL-1β in serum were decreased after melatonin treatment. In addition, compared to the model group, the positive expression of Col-II increased, the chondrocyte apoptosis decreased after melatonin treatment. Interestingly, the expression levels of MMP3, MMP9, MMP13, p-JAK2 and p-STAT3 decreased (p < 0.05). Importantly, melatonin combined with AG490 is significantly ameliorates histomorphology of knee joint, reduced cartilage loss compared with melatonin treatment alone. CONCLUSIONS Melatonin treatment can effectively diminish the cartilage injury. Its mechanism may be related to protect the articular cartilage by reducing the release of inflammatory factors, inhibit the expression of MMPs and JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Zhongyuan Zhao
- Department of Articulation Surgery, Yantaishan Hospital, Yantai, Shandong, China
| | - Benjun Bi
- Department of Hand and Foot Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Gong Cheng
- Department of Sports Medicine, Yantaishan Hospital, Laishan District Science and Technology Avenue 10087, Yantai, 264003, Shandong, China
| | - Yuchi Zhao
- Department of Articulation Surgery, Yantaishan Hospital, Yantai, Shandong, China
| | - Hao Wu
- Department of Hand and Foot Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mingdi Zheng
- Department of Hand and Foot Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhilin Cao
- Department of Hand and Foot Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
21
|
Liu Y, Tan YQ, Zhou G. Melatonin: a potential therapeutic approach for the management of primary Sjögren's syndrome. Immunol Res 2023; 71:373-387. [PMID: 36715831 DOI: 10.1007/s12026-023-09360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/03/2023] [Indexed: 01/31/2023]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease that primarily affects the exocrine glands and is mainly characterized by sicca symptoms of the eyes and mouth. Approximately 30-50% of pSS patients develop systemic multi-organ disorders including malignant lymphoma. The etiology of pSS is not well understood; growing evidence suggests that uncontrolled immune/inflammatory responses, excessive oxidative stress, defected apoptosis, dysregulated autophagy, exosomes, and exogenous virus infections may participate in the pathogenesis of pSS. There is no ideal therapeutic method for pSS; the management of pSS is mainly palliative, which aims to alleviate sicca symptoms. Melatonin, as the main secretory product of the pineal gland, has been evidenced to show various physiological functions, including effects of immunoregulation, capability of antioxidation, moderation of autophagy, suppressive activities of apoptosis, regulative capacity of exosomes, properties of anti-infection, and improvement of sleep. The beneficial effects of melatonin have been already validated in some autoimmune diseases such as multiple sclerosis (MS), type 1 diabetes mellitus (T1DM), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD). However, our previous research firstly revealed that melatonin might inhibit pathogenic responses of peripheral Th17 and double-negative (DN) T cells in pSS. More importantly, melatonin administration alleviated the development of pSS in animal models with reduced infiltrating lymphocytes, improved functional activity of salivary gland, and decreased production of inflammatory factors as well as autoantibodies. Owing to the important biological properties reported in melatonin are characteristics closely related to the treatment of pSS; the potential role and underlying mechanisms of melatonin in the administration of pSS are certainly worth further investigations. Consequently, the aim of this review is to give a deep insight to the therapeutic potency of melatonin for pSS.
Collapse
Affiliation(s)
- Yi Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China. .,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China.
| |
Collapse
|
22
|
Arnao MB, Giraldo-Acosta M, Castejón-Castillejo A, Losada-Lorán M, Sánchez-Herrerías P, El Mihyaoui A, Cano A, Hernández-Ruiz J. Melatonin from Microorganisms, Algae, and Plants as Possible Alternatives to Synthetic Melatonin. Metabolites 2023; 13:metabo13010072. [PMID: 36676997 PMCID: PMC9862825 DOI: 10.3390/metabo13010072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Melatonin dietary supplements are widely consumed worldwide, with developed countries as the largest consumers, with an estimated annual growth rate of approximately 10% until 2027, mainly in developing countries. The wide use of melatonin against sleep disorders and particular problems, such as jet lag, has been added to other applications, such as anti-aging, anti-stress, immune system activation, anticancer, and others, which have triggered its use, normally without a prescription. The chemical industry currently covers 100% of the needs of the melatonin market. Motivated by sectors with more natural consumption habits, a few years ago, the possibility of obtaining melatonin from plants, called phytomelatonin, arose. More recently, the pharmaceutical industry has developed genetically modified microorganisms whose ability to produce biological melatonin in bioreactors has been enhanced. This paper reviews the aspects of the chemical and biological synthesis of melatonin for human consumption, mainly as dietary supplements. The pros and cons of obtaining melatonin from microorganisms and phytomelatonin from plants and algae are analyzed, as well as the advantages of natural melatonin, avoiding unwanted chemical by-products from the chemical synthesis of melatonin. Finally, the economic and quality aspects of these new products, some of which are already marketed, are analyzed.
Collapse
|
23
|
Kang C, Jeong S, Kim J, Ju S, Im E, Heo G, Park S, Yoo JW, Lee J, Yoon IS, Jung Y. N-Acetylserotonin is an oxidation-responsive activator of Nrf2 ameliorating colitis in rats. J Pineal Res 2023; 74:e12835. [PMID: 36214640 DOI: 10.1111/jpi.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
N-Acetylserotonin (NAS) is an intermediate in the melatonin biosynthetic pathway. We investigated the anti-inflammatory activity of NAS by focusing on its chemical feature oxidizable to an electrophile. NAS was readily oxidized by reaction with HOCl, an oxidant produced in the inflammatory state. HOCl-reacted NAS (Oxi-NAS), but not NAS, activated the anti-inflammatory nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase (HO)-1 pathway in cells. Chromatographic and mass analyses demonstrated that Oxi-NAS was the iminoquinone form of NAS and could react with N-acetylcysteine possessing a nucleophilic thiol to form a covalent adduct. Oxi-NAS bound to Kelch-like ECH-associated protein 1, resulting in Nrf2 dissociation. Moreover, rectally administered NAS increased the levels of nuclear Nrf2 and HO-1 proteins in the inflamed colon of rats. Simultaneously, NAS was converted to Oxi-NAS in the inflamed colon. Rectal NAS mitigated colonic damage and inflammation. The anticolitic effects were significantly compromised by the coadministration of an HO-1 inhibitor.
Collapse
Affiliation(s)
- Changyu Kang
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Seongkeun Jeong
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jaejeong Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sanghyun Ju
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Soyeong Park
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
24
|
Kalita E, Panda M, Prajapati VK. The interplay between circadian clock and viral infections: A molecular perspective. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:293-330. [PMID: 37709380 DOI: 10.1016/bs.apcsb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The circadian clock influences almost every aspect of mammalian behavioral, physiological and metabolic processes. Being a hierarchical network, the circadian clock is driven by the central clock in the brain and is composed of several peripheral tissue-specific clocks. It orchestrates and synchronizes the daily oscillations of biological processes to the environment. Several pathological events are influenced by time and seasonal variations and as such implicate the clock in pathogenesis mechanisms. In context with viral infections, circadian rhythmicity is closely associated with host susceptibility, disease severity, and pharmacokinetics and efficacies of antivirals and vaccines. Leveraging the circadian molecular mechanism insights has increased our understanding of clock infection biology and proposes new avenues for viral diagnostics and therapeutics. In this chapter, we address the molecular interplay between the circadian clock and viral infections and discuss the importance of chronotherapy as a complementary approach to conventional medicines, emphasizing the significance of virus-clock studies.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India..
| |
Collapse
|
25
|
Al-Shahat A, Hulail MAE, Soliman NMM, Khamis T, Fericean LM, Arisha AH, Moawad RS. Melatonin Mitigates Cisplatin-Induced Ovarian Dysfunction via Altering Steroidogenesis, Inflammation, Apoptosis, Oxidative Stress, and PTEN/PI3K/Akt/mTOR/AMPK Signaling Pathway in Female Rats. Pharmaceutics 2022; 14:2769. [PMID: 36559263 PMCID: PMC9786155 DOI: 10.3390/pharmaceutics14122769] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Ovarian damage and fertility impairment are major side effects of chemotherapy in pre-menopausal cancer patients. Cisplatin is a widely used chemotherapeutic drug. The present study was designed to assess the ameliorative effects of melatonin as an adjuvant for fertility preservation. Thirty-two adult female Wistar rats were divided randomly into four equal groups: Control, Melatonin, Cisplatin (CP) treated, and CP + Melatonin treated. The cisplatin-treated group showed decreased body and ovarian weights, decreased serum E2 and AMH, increased serum LH and FSH, reduced ovarian levels of SOD, CAT, GSH, and TAC, and increased ovarian MDA. The histopathological examination of the cisplatin-treated group showed deleterious changes within ovarian tissue in the form of damaged follicles and corpus luteum, hemorrhage, and inflammatory infiltrates with faint PAS reaction in zona pellucida, increased ovarian collagen deposition, and marked expression of caspase-3 immune reaction in granulosa and theca cells, stroma, and oocytes. Alongside, there was a significant downregulation in the mRNA expression of steroidogenic enzymes, IL10, AMPK, PI3K, AKT, mTOR, and PTEN, while TGF-β1, IL1β, IL6, TNF-α, NF-Kβ, P53, p38-MAPK, JNK, and FOXO3 mRNA expressions were upregulated in cisplatin-treated rats' ovarian tissue. Coadministration of cisplatin-treated rats with melatonin reversed these changes significantly. In conclusion, melatonin's antioxidant, anti-inflammatory, and anti-apoptotic activities could modulate ovarian disturbances induced by cisplatin and preserve fertility.
Collapse
Affiliation(s)
- Amal Al-Shahat
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohey A. E. Hulail
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nada M. M. Soliman
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Liana Mihaela Fericean
- Biology Department, Faculty of Agriculture, University of Life Sciences “King Michael I of Romania” from Timisoara, Aradului St. 119, 300645 Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Rania S. Moawad
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
26
|
Ismail HTH. Toxic effects of excess exposure to boric acid on serum biochemical aspect, hematology and histological alterations and ameliorative potential role of melatonin in rats. Saudi J Biol Sci 2022; 29:103425. [PMID: 36060109 PMCID: PMC9436754 DOI: 10.1016/j.sjbs.2022.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
The current work clarifies the negative effects of excess exposure to boric acid (H3BO3) as a boron-containing compound on rats and the possible ameliorative effect of melatonin (MEL). Forty rats were equally divided into 5 groups as follows: group 1 was treated as control while groups 2, 3, 4 and 5 were orally administered corn oil (0.5 ml), H3BO3 (1330 mg/kg BW), MEL (10 mg/kg BW) and H3BO3 + MEL for 28 consecutive days, respectively. At the end of the experiment, blood was sampled for biochemical and hematological analysis and tissues were collected for histopathological examination. The obtained results demonstrated that the exposure to H3BO3 induced hepatorenal dysfunctions, alterations in bone-related minerals and hormones levels, prostaglandin E2 as inflammatory mediator and hematological indices. H3BO3 induced histological alterations in the liver, kidneys, bone and skin. The co-administration of MEL with H3BO3 resulted in a significant improvement in most of the measured parameters and restoration of morpho-functional state of different organs compared to the H3BO3 group. In conclusion, the study clearly demonstrated that H3BO3- induced various adverse effects and that melatonin may be beneficial in a partial mitigating the H3BO3 and may represent a novel approach in the counteracting its toxicity.
Collapse
|
27
|
Abstract
The pineal gland is a interface between light-dark cycle and shows neuro-endocrine functions. Melatonin is the primary hormone of pineal gland, secreted at night. The night-time melatonin peak regulates the physiological functions at dark. Melatonin has several unique features as it synchronises internal rhythm with daily and seasonal variations, regulates circadian rhythm and sleep-wake cycle. Physiologically melatonin involves in detoxification of free radicals, immune functions, neuro-protection, oncostatic effects, cardiovascular functions, reproduction, and foetal development. The precise functions of melatonin are exhibited by specific receptors. In relation to pathophysiology, impaired melatonin secretion promotes sleep disorder, cancer progression, type-2 diabetes, and neurodegenerative diseases. Several reports have highlighted the therapeutic benefits of melatonin specially related to cancer protection, sleep disorder, psychiatric disorders, and jet lag problems. This review will touch the most of the area of melatonin-oriented health impacts and its therapeutic aspects.
Collapse
|
28
|
Ismail HTH. Toxic effects of excess exposure to boric acid on serum biochemical aspect, hematology and histological alterations and ameliorative potential role of melatonin in rats. Saudi J Biol Sci 2022; 29:103425. [DOI: https:/doi.org/10.1016/j.sjbs.2022.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
|
29
|
Targhazeh N, Hutt KJ, Winship AL, Reiter R, Yousefi B. Melatonin as an oncostatic agent: Review of the modulation of tumor microenvironment and overcoming multidrug resistance. Biochimie 2022; 202:71-84. [PMID: 36116742 DOI: 10.1016/j.biochi.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
Abstract
Multi drug resistance (MDR) generally limits the efficacy of chemotherapy in cancer patients and can be categorized into primary or acquired resistance. Melatonin (MLT), a lipophilic hormone released from pineal gland, is a molecule with oncostatic effects. Here, we will briefly review the contribution of different microenvironmental components including fibroblasts, immune and inflammatory cells, stem cells and vascular endothelial cells in tumor initiation, progression and development. Then, the mechanisms by which MLT can potentially affect these elements and regulate drug resistance will be presented. Finally, we will explain how different studies have used novel strategies incorporating MLT to suppress cancer resistance against therapeutics.
Collapse
Affiliation(s)
- Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karla J Hutt
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Amy L Winship
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Russel Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA.
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Redox Status and Hematological Variables in Melatonin-Treated Ewes during Early Pregnancy under Heat Stress. Vet Sci 2022; 9:vetsci9090499. [PMID: 36136715 PMCID: PMC9505195 DOI: 10.3390/vetsci9090499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The preovulatory follicles and preimplantation stage embryos are found to be rather sensitive to heat stress due to their low potential for scavenging reactive oxygen species (ROS). The aim of the present study was to assess the impact of melatonin administration on redox status and hematological variables during the preovulatory period and early stages of embryogenesis in heat-stressed ewes in vivo. Forty Karagouniko-breed ewes were divided in two groups, the melatonin (M, n = 20) group and control (C, n = 20) one. All animals were subjected to heat stress throughout the study, which lasted forty days (D0 to D40). In M group, melatonin implants were administered on D0. Then, oestrous synchronization was applied (D19-D33). On D34, six rams were introduced into the ewe flock for mating. Ultrasonographic examination was conducted on D73 for pregnancy diagnosis. The temperature humidity index (THI), the rectal temperature (RT), and the number of breaths per minute (BR) were evaluated twice daily. Redox biomarkers, namely total antioxidant capacity (TAC), reduced glutathione (GSH), and thiobarbituric acid reactive substances (TBARS), were assayed in blood samples collected on D0, D33, and D40. In addition, packed cell volume (PCV), white blood cells (WBCs), leukocyte differential count, and cortisol assessment were conducted in blood samples on D33 and D40. The results indicated improved fertility rate and mean number of lambs born per ewe due to improved redox status (p < 0.05) in ewes that received melatonin implants 34 days approximately before the onset of oestrus. The PCV decreased in both groups between the two time-points (p < 0.05). However, the NEU/LYMPH ratio decreased (p < 0.05) only in group M. The low cortisol levels and the decreased NEU/LYMPH ratio in both groups support the hypothesis that ewes of the indigenous Karagouniko breed may exhibit adaptation to environmental thermal stress. The administration of melatonin as an antioxidant regime may improve the reproductive competence of heat stressed ewes and may also enhance their ability to adapt at high ambient temperatures.
Collapse
|
31
|
Wezynfeld NE, Bonna AM, Płonka D, Bal W, Frączyk T. Ni(II) Ions May Target the Entire Melatonin Biosynthesis Pathway—A Plausible Mechanism of Nickel Toxicity. Molecules 2022; 27:molecules27175582. [PMID: 36080347 PMCID: PMC9458082 DOI: 10.3390/molecules27175582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022] Open
Abstract
Nickel is toxic to humans. Its compounds are carcinogenic. Furthermore, nickel allergy is a severe health problem that affects approximately 10–20% of humans. The mechanism by which these conditions develop remains unclear, but it may involve the cleavage of specific proteins by nickel ions. Ni(II) ions cleave the peptide bond preceding the Ser/Thr-Xaa-His sequence. Such sequences are present in all four enzymes of the melatonin biosynthesis pathway, i.e., tryptophan 5-hydroxylase 1, aromatic-l-amino-acid decarboxylase, serotonin N-acetyltransferase, and acetylserotonin O-methyltransferase. Moreover, fragments prone to Ni(II) are exposed on surfaces of these proteins. Our results indicate that all four studied fragments undergo cleavage within tens of hours at pH 8.2 and 37 °C, corresponding with the conditions in the mitochondrial matrix. Since melatonin, a potent antioxidant and anti-inflammatory agent, is synthesized within the mitochondria of virtually all human cells, depleting its supply may be detrimental, e.g., by raising the oxidative stress level. Intriguingly, Ni(II) ions have been shown to mimic hypoxia through the stabilization of HIF-1α protein, but melatonin prevents the action of HIF-1α. Considering all this, the enzymes of the melatonin biosynthesis pathway seem to be a toxicological target for Ni(II) ions.
Collapse
Affiliation(s)
- Nina E. Wezynfeld
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Arkadiusz M. Bonna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Tomasz Frączyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence:
| |
Collapse
|
32
|
Kholghi G, Eskandari M, Shokouhi Qare Saadlou MS, Zarrindast MR, Vaseghi S. Night shift hormone: How does melatonin affect depression? Physiol Behav 2022; 252:113835. [PMID: 35504318 DOI: 10.1016/j.physbeh.2022.113835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022]
Abstract
Melatonin is the main hormone secreted by the pineal gland that modulates the circadian rhythm and mood. Previous studies have shown the therapeutic effects of melatonin, or its important analogue, agomelatine, on depression. In this review study, we aimed to discuss the potential mechanisms of melatonin involved in the treatment of depression. It was noted that disrupted circadian rhythm can lead to depressive state, and melatonin via regulating circadian rhythm shows a therapeutic effect. It was also noted that melatonin induces antidepressant effects via promoting antioxidant system and neurogenesis, and suppressing oxidative stress, neuroinflammation, and apoptosis. The interaction effect between melatonin or agomelatine and serotonergic signaling has a significant effect on depression. It was noted that the psychotropic effects of agomelatine are induced by the synergistic interaction between melatonin and 5-HT2C receptors. Agomelatine also interacts with glutamatergic signaling in brain regions involved in regulating mood and circadian rhythm. Interestingly, it was concluded that melatonin exerts both pro- and anti-inflammatory effects, depending on the grade of inflammation. It was suggested that synergistic interaction between melatonin and 5-HT2C receptors may be able to induce therapeutic effects on other psychiatric disorders. Furthermore, dualistic role of melatonin in regulating inflammation is an important point that can be examined at different levels of inflammation in animal models of depression.
Collapse
Affiliation(s)
- Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
33
|
Liu Y, Chen XQ, Wang F, Cheng B, Zhou G. Melatonin relieves Th17/CD4−CD8− T cells inflammatory responses via nuclear-receptor dependent manner in peripheral blood of primary Sjögren’s syndrome. Int Immunopharmacol 2022; 109:108778. [DOI: 10.1016/j.intimp.2022.108778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
|
34
|
Ng MY, Lin T, Chao SC, Chu PM, Yu CC. Potential Therapeutic Applications of Natural Compounds in Diabetes-Associated Periodontitis. J Clin Med 2022; 11:jcm11133614. [PMID: 35806899 PMCID: PMC9267692 DOI: 10.3390/jcm11133614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is a major worldwide health burden. DM is a metabolic disease characterized by chronic hyperglycemia, and if left untreated, can lead to various complications. Individuals with uncontrolled DM are more susceptible to periodontitis due to both a hyper-inflammatory host response and an impaired immune response. Periodontitis, on the other hand, may exacerbate DM by increasing both local and systemic inflammatory components of DM-related complications. The current standard for periodontal treatment in diabetes-associated periodontitis (DP) focuses mostly on reducing bacterial load and less on controlling the excessive host response, and hence, may not be able to resolve DP completely. Over the past decade, natural compounds have emerged as an adjunct approach for modulating the host immune response with the hope of curing DP. The anti-oxidant, anti-inflammatory, and anti-diabetic characteristics of natural substances are well-known, and they can be found in regularly consumed foods and drinks, as well as plants. The pathophysiology of DP and the treatment benefits of various bioactive extracts for DP will be covered in this review.
Collapse
Affiliation(s)
- Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yi-lan, Luodong 265501, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Correspondence: ; Tel.: +886-4-2471-8668
| |
Collapse
|
35
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
36
|
Liu Y, Weng X, Wei M, Yu S, Ding Y, Cheng B. Melatonin alleviates the immune response and improves salivary gland function in primary Sjögren's syndrome. Biochem Pharmacol 2022; 201:115073. [PMID: 35525327 DOI: 10.1016/j.bcp.2022.115073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease that primarily affects exocrine glands and is characterized by sicca syndrome and systemic manifestation. Mounting evidence indicates that circadian clocks are involved in the onset and progression of autoimmune diseases, including rheumatic arthritis, multiple sclerosis, and systemic lupus erythematosus. However, few studies have reported the expression of clock genes in pSS. There is no ideal therapeuticmethod for pSS, the management of pSS is mainly palliative, aims to alleviate sicca symptoms. Melatonin is a neuroendocrine hormone mainly secreted by the pineal gland that plays an important role in the maintenance of the circadian rhythm and immunomodulation. Hence, this study aimed to analyse the circadian expression profile of clock genes in pSS, and further evaluate the therapeutic potential of melatonin in pSS. We discovered a distinct clock gene expression profile in an animal model and in patients with pSS. More importantly, melatonin administration regulated clock gene expression, improved the hypofunction of the salivary glands, and inhibited inflammatory development in animal model of pSS. Our study suggested that the pathogenesis of pSS might correlate with abnormal expression of circadian genes, and that melatonin might be a potential candidate for prevention and treatment of pSS.
Collapse
Affiliation(s)
- Yi Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Xiuhong Weng
- Department of Stomatology, Zhongnan Hospital of Wuhan University
| | - Mingbo Wei
- Department of Stomatology, Zhongnan Hospital of Wuhan University
| | - Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China.
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University.
| |
Collapse
|
37
|
Li Y, Liu N, Ge Y, Yang Y, Ren F, Wu Z. Tryptophan and the innate intestinal immunity: Crosstalk between metabolites, host innate immune cells and microbiota. Eur J Immunol 2022; 52:856-868. [PMID: 35362153 DOI: 10.1002/eji.202149401] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 11/11/2022]
Abstract
The intestinal mucosal barrier is critical for the absorption of nutrients and the health of both humans and animals. Recent publications from clinical and experimental studies have shown the importanceof the nutrients-bacteria-host interaction for the intestinal homeostasis. Dysfunction of these interactions has been reported to be associated with metabolic disorders and development of intestinal diseases, such as the irritable bowel syndrome and inflammatory bowel diseases. Tryptophan and its metabolites, including kynurenine, kynurenic acid, and 5-hydroxytrptamine, can influence the proliferation of enterocytes, intestinal integrity and immune response, as well as intestinal microbiota, therefore regulating and contributing to the intestinal health. In this review, we highlight recent findings on the effect of tryptophan and its metabolites on the mucosal barrier and intestinal homeostasis and its regulation of innate immune response. Moreover, we present the signaling pathways related to Trp metabolism, such as mammalian target of rapamycin, aryl hydrocarbon receptor, and pregnane X receptor, that contribute to the intestinal homeostasis and discuss future perspectives on spontaneous interference in host tryptophan metabolism as potential clinical strategies of intestinal diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yunke Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Ning Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Yao Ge
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
38
|
Pivonello C, Negri M, Patalano R, Amatrudo F, Montò T, Liccardi A, Graziadio C, Muscogiuri G, Pivonello R, Colao A. The role of melatonin in the molecular mechanisms underlying metaflammation and infections in obesity: A narrative review. Obes Rev 2022; 23:e13390. [PMID: 34861097 PMCID: PMC9285339 DOI: 10.1111/obr.13390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/20/2022]
Abstract
Obesity is a chronic condition whose management is a critical challenge for physicians. The scientific community has increased its focus on the molecular mechanisms involved in obesity etiopathogenesis to better manage patients with obesity and its associated complications. The tight connection between adipose tissue and the immune system has been demonstrated to play a crucial role in inflammation, and melatonin is important for circadian rhythm regulation and metabolic homeostasis, in which it orchestrates several molecular mechanisms involved in obesity and associated inflammation. Melatonin also regulates innate and adaptive immunity; its antioxidant properties are linked to reduced predisposition to infection and weight gain in patients with obesity through the modulation of the immune response, which has a significant beneficial effect on inflammation and, consequently, on the metabolic state. Low melatonin levels have been linked to obesity, and melatonin supplementation can reduce body weight, improve metabolic profile, and ameliorate immune responses and pro-inflammatory stimuli. The role of melatonin in obesity is mainly related to improved oxidative stress signaling, modulation of adipokine secretion, and a switching from white-to-brown adipose tissue phenotype and activity. Moreover, the role of melatonin in obesity modulation by controlling circadian rhythm has recently emerged as a pivotal mechanism for lipid and glucose metabolism dysfunction in adipose, muscle, and liver tissues. Melatonin may also regulate the immune system by acting directly on thymus morphology and activity as well as by modulating oxidative stress and inflammatory states during infections. The tight association between melatonin and immune response regulation is coordinated by Toll-like receptors, which are rhythmically expressed during the day. Their expression may be strongly modulated by melatonin as their signaling is highly inhibited by melatonin. The current review summarizes studies of melatonin-induced mechanisms involved in infection regulation, particularly the modulation of obesity-associated inflammation and systemic complications.
Collapse
Affiliation(s)
- Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Roberta Patalano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Feliciana Amatrudo
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Tatiana Montò
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Alessia Liccardi
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Chiara Graziadio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.,UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| |
Collapse
|
39
|
Pahlavani N, Malekahmadi M, Sedaghat A, Rostami A, Alkadir OKA, Taifi A, Ranjbar G, Sahebkar A, Abdelbasset WK, Beigmohammadi MT, Mir M, Bagheri Moghaddam A, Tabesh H, Sadeghi O, Gholizadeh Navashenaq J, Firouzi S, Fathi Najafi M, Safarian M, Ghayour-Mobarhan M. Effects of Melatonin and Propolis Supplementation on Inflammation, Oxidative Stress, and Clinical Outcomes in Patients with Primary Pneumosepsis: A Randomized Controlled Clinical Trial. Complement Med Res 2022; 29:275-285. [DOI: 10.1159/000523766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 02/18/2022] [Indexed: 11/19/2022]
Abstract
Background & Objective: The present study aimed to investigate the effects of propolis and melatonin supplementation on inflammation, clinical outcomes, and oxidative stress markers in patients with primary pneumosepsis.
Materials and Methods: This pilot randomized controlled trial was conducted on 55 patients with primary pneumosepsis who were randomly assigned to the intervention and control groups. In the three intervention groups, the patients received propolis alone (1,000 mg/day), propolis (1,000 mg/day) plus melatonin (20 mg/day), and melatonin alone (20 mg/day). The control group received placebo. The inflammatory and oxidative stress markers as well as clinical outcomes were evaluated before and after the intervention, and the 28-day survival rate was also recorded.
Results: After the intervention, the combination of propolis and melatonin significantly reduced interleukin-6 (-55.282 pg/ml ) and C-reactive protein (-21.656 mg/l ) levels, while increasing gavage intake (326.680 ml/day ) and improving some clinical outcomes (APACHE II, SOFA and NUTRIC scores) compared to control group. However, no significant difference was observed between the groups in terms of oxidative stress and hematological indices. In addition, the 28-day survival rate had no significant difference between the groups (P=0.07).
Conclusion: Supplementation with propolis and melatonin may improve clinical outcomes by reducing inflammation. Further investigations are required to confirm these findings.
Collapse
|
40
|
Sharma A, Moon E, Kim G, Kang SU. Perspectives of Circadian-Based Music Therapy for the Pathogenesis and Symptomatic Treatment of Neurodegenerative Disorders. Front Integr Neurosci 2022; 15:769142. [PMID: 35153687 PMCID: PMC8825343 DOI: 10.3389/fnint.2021.769142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Music therapy (MT) and other rhythmic-based interventions for the treatment of neurodegeneration (ND) have been successful in improving the quality of life of affected individuals. Music therapy and rhythm-based stimuli affect patients with Alzheimer’s disease (AD) and Parkinson’s disease (PD) respectively not only through cognitive channels and subjective qualifications but also through altered brain structures and neural systems. Often implicated in the pathogenesis and resulting symptoms of these diseases is the role of aberrant circadian rhythmicity (CR), namely disrupted sleep. Recent literature suggests that proper maintenance of this timekeeping framework may be beneficial for patients with neurodegenerative disorders and serve a neuroprotective role. While music therapy can improve the quality of life for neurodegenerative patients, longitudinal studies analyzing sleep patterns of affected individuals and possible mechanisms of intervention remain sparse. Furthermore, the role of music therapy in the context of circadian rhythmicity has not been adequately explored. By analyzing the links between circadian rhythmicity, neurodegeneration, and music therapy, a more comprehensive picture emerges, suggesting that possible uses of non-pharmacological circadian-based music therapy to target mechanisms involved in the pathogenesis of Alzheimer’s disease and Parkinson’s disease may enhance clinical treatment and potentially indicate neuroprotection as a preventative measure.
Collapse
Affiliation(s)
- Arastu Sharma
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Peabody Institute Baltimore, Johns Hopkins University, Baltimore, MD, United States
| | - Eric Moon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Geunhoo Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Sung-Ung Kang
| |
Collapse
|
41
|
Topical Melatonin Exerts Immunomodulatory Effect and Improves Dermatitis Severity in a Mouse Model of Atopic Dermatitis. Int J Mol Sci 2022; 23:ijms23031373. [PMID: 35163297 PMCID: PMC8835891 DOI: 10.3390/ijms23031373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Oral melatonin supplement has been shown to improve dermatitis severity in children with AD, but the mechanism of the effect is unclear, and it is uncertain whether melatonin has a direct immunomodulatory effect on the dermatitis. Topical melatonin treatment was applied to DNCB-stimulated Balb/c mice, and gross and pathological skin findings, serum IgE, and cytokine levels in superficial lymph nodes were analyzed. Secretion of chemokines and cell proliferative response after melatonin treatment in human keratinocyte HaCaT cells were also studied. We found that in DNCB-stimulated Balb/c mice, topical melatonin treatment improved gross dermatitis severity, reduced epidermal hyperplasia and lymphocyte infiltration in the skin, and decreased IP-10, CCL27, IL-4, and IL-17 levels in superficial skin-draining lymph nodes. Melatonin also reduced cytokine-induced secretion of AD-related chemokines IP-10 and MCP-1 and decreased IL-4-induced cell proliferation in HaCaT cells. Melatonin seems to have an immunomodulatory effect on AD, with IP-10 as a possible target, and topical melatonin treatment is a potentially useful treatment for patients with AD.
Collapse
|
42
|
Exogenous Melatonin Alleviates Skeletal Muscle Wasting by Regulating Hypothalamic Neuropeptides Expression in Endotoxemia Rats. Neurochem Res 2022; 47:885-896. [PMID: 35061163 PMCID: PMC8891201 DOI: 10.1007/s11064-021-03489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 10/25/2022]
Abstract
To investigate whether exogenous melatonin (MLT) could alleviate skeletal muscle wasting by regulating hypothalamic neuropeptides expression. Adult male Sprague Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) (10 mg/kg), followed by MLT (30 mg/kg/day) or saline for 3 days. Hypothalamic tissues and skeletal muscle were obtained on day 3. Skeletal muscle wasting was measured by the mRNA expression of two E3 ubiquitin ligases, muscle atrophy F-box and muscle ring finger 1 as well as 3-methylhistidine (3-MH) and tyrosine release. Three hypothalamic neuropeptides (POMC, AgRP, CART) expression were detected in all groups. POMC expression knockdown was achieved by ARC injection of lentiviruses containing shRNA against POMC. Two weeks after ARC viruses injection, rats were i.p. injected with LPS (10 mg/kg) followed by MLT (30 mg/kg/day) or saline for 3 days. Brain tissues were harvested for immunostaining. In septic rats, 3-MH, tyrosine release and muscle atrophic gene expression were significantly decreased in MLT treated group. POMC and CART expression were lower while AgRP expression was higher in MLT treated group. Furthermore, in septic rats treated with MLT, muscle wasting in those with lower expression of neuropeptide POMC did not differ from those with normal POMC expression. Exogenous MLT could alleviate skeletal muscle wasting in septic rats by regulating hypothalamic neuropeptides.
Collapse
|
43
|
Huang K, Luo X, Zhong Y, Deng L, Feng J. New insights into the role of melatonin in diabetic cardiomyopathy. Pharmacol Res Perspect 2022; 10:e00904. [PMID: 35005848 PMCID: PMC8929360 DOI: 10.1002/prp2.904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic cardiovascular complications and impaired cardiac function are considered to be the main causes of death in diabetic patients worldwide, especially patients with type 2 diabetes mellitus (T2DM). An increasing number of studies have shown that melatonin, as the main product secreted by the pineal gland, plays a vital role in the occurrence and development of diabetes. Melatonin improves myocardial cell metabolism, reduces vascular endothelial cell death, reverses microcirculation disorders, reduces myocardial fibrosis, reduces oxidative and endoplasmic reticulum stress, regulates cell autophagy and apoptosis, and improves mitochondrial function, all of which are the characteristics of diabetic cardiomyopathy (DCM). This review focuses on the role of melatonin in DCM. We also discuss new molecular findings that might facilitate a better understanding of the underlying mechanism. Finally, we propose potential new therapeutic strategies for patients with T2DM.
Collapse
Affiliation(s)
- Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xianling Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
44
|
Patel R, Parmar N, Pramanik Palit S, Rathwa N, Ramachandran AV, Begum R. Diabetes mellitus and melatonin: Where are we? Biochimie 2022; 202:2-14. [PMID: 35007648 DOI: 10.1016/j.biochi.2022.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM) and diabetes-related complications are amongst the leading causes of mortality worldwide. The international diabetes federation (IDF) has estimated 592 million people to suffer from DM by 2035. Hence, finding a novel biomolecule that can effectively aid diabetes management is vital, as other existing drugs have numerous side effects. Melatonin, a pineal hormone having antioxidative and anti-inflammatory properties, has been implicated in circadian dysrhythmia-linked DM. Reduced levels of melatonin and a functional link between melatonin and insulin are implicated in the pathogenesis of type 2 diabetes (T2D) Additionally, genomic studies revealed that rare variants in melatonin receptor 1b (MTNR1B) are also associated with impaired glucose tolerance and increased risk of T2D. Moreover, exogenous melatonin treatment in cell lines, rodent models, and diabetic patients has shown a potent effect in alleviating diabetes and other related complications. This highlights the role of melatonin in glucose homeostasis. However, there are also contradictory reports on the effects of melatonin supplementation. Thus, it is essential to explore if melatonin can be taken from bench to bedside for diabetes management. This review summarizes the therapeutic potential of melatonin in various diabetic models and whether it can be considered a safe drug for managing diabetic complications and diabetic manifestations like oxidative stress, inflammation, ER stress, mitochondrial dysfunction, metabolic dysregulation, etc.
Collapse
Affiliation(s)
- Roma Patel
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Nishant Parmar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Sayantani Pramanik Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Nirali Rathwa
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - A V Ramachandran
- Division of Life Science, School of Sciences, Navrachana University, Vadodara, 391 410, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India.
| |
Collapse
|
45
|
Li R, Li Z, Huang Y, Hu K, Ma B, Yang Y. The effect of magnesium alone or its combination with other supplements on the markers of inflammation, OS and metabolism in women with polycystic ovarian syndrome (PCOS): A systematic review. Front Endocrinol (Lausanne) 2022; 13:974042. [PMID: 35992132 PMCID: PMC9389579 DOI: 10.3389/fendo.2022.974042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 12/05/2022] Open
Abstract
UNLABELLED The objective of this systematic review is to synthesize the available evidence on the effectiveness of magnesium supplements on the markers of inflammation, oxidative stress (OS), and metabolism in PCOS patients and to provide a basis for its clinical treatment. Electronic databases (PubMed, Cochrane Library databases, Embase, Web of science, CMB, CNKI, VIP, Wan Fang and ClinicalTrials.gov) were searched from their inception until January 2022. Randomized controlled trials (RCTs) for PCOS undergoing therapy with magnesium supplementation alone or in combination with other agents. The primary outcomes were the markers of blood glucose and OS.363 patients from nine RCTs were included in the current systematic review. Four of the nine studies reported the effects of magnesium supplementation alone on OS or metabolic markers in women with PCOS. Whilemagnesium supplementation alone did not show any significant improvement in the markers of inflammation, OS or metabolism in PCOS, seven of the nine articles reported the effect of magnesium co-supplementation on OS or metabolic markers in PCOS patients. Magnesium combined with vitamin E or zinc-calcium-vitamin D significantly improved glucose and lipid metabolism in PCOS patients. Magnesium intake alone did not lead to a significant improvement in the markers of OS, blood glucose, or serum lipids in PCOS. However, magnesium combined with other supplements (vitamin E, zinc, zinc-calcium-vitamin D) significantly improved serum hs-CRP, insulin, HOMA-IR, TG, TC levels, and the improvement in OS markers was inconclusive. The effect of magnesium and melatonin supplementation on the markers of metabolism needs to be further verified. SYSTEM REVIEW REGISTRATION PROSPERO https://www.crd.york.ac.uk/PROSPERO/#myprospero, CRD42022303410.
Collapse
Affiliation(s)
- Ruiyun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhiyuan Li
- Gansu Provincial Maternal and Child Health Hospital, Lanzhou, China
| | - Yi Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Kaiyan Hu
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bin Ma
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- The reproductive Medicine Center, The 1st Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yuan Yang,
| |
Collapse
|
46
|
Hu W, Liang JW, Liao S, Zhao ZD, Wang YX, Mao XF, Hao SW, Wang YF, Zhu H, Guo B. Melatonin attenuates radiation-induced cortical bone-derived stem cells injury and enhances bone repair in postradiation femoral defect model. Mil Med Res 2021; 8:61. [PMID: 34895335 PMCID: PMC8666036 DOI: 10.1186/s40779-021-00355-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The healing of bone defects can be challenging for clinicians to manage, especially after exposure to ionizing radiation. In this regard, radiation therapy and accidental exposure to gamma (γ)-ray radiation have been shown to inhibit bone formation and increase the risk of fractures. Cortical bone-derived stem cells (CBSCs) are reportedly essential for osteogenic lineages, bone maintenance and repair. This study aimed to investigate the effects of melatonin on postradiation CBSCs and bone defect healing. METHODS CBSCs were extracted from C57BL/6 mice and were identified by flow cytometry. Then CBSCs were subjected to 6 Gy γ-ray radiation followed by treatment with various concentrations of melatonin. The effects of exogenous melatonin on the self-renewal and osteogenic capacity of postradiation CBSCs in vitro were analyzed. The underlying mechanisms involved in genomic stability, apoptosis and oxidative stress-related signaling were further analyzed by Western blotting, flow cytometry and immunofluorescence assays. Moreover, postradiation femoral defect models were established and treated with Matrigel and melatonin. The effects of melatonin on postradiation bone healing in vivo were evaluated by micro-CT and pathological analysis. RESULTS The decrease in radiation-induced self-renewal and osteogenic capacity were partially reversed in postradiation CBSCs treated with melatonin (P < 0.05). Melatonin maintained genomic stability, reduced postradiation CBSC apoptosis and intracellular oxidative stress, and enhanced expression of antioxidant-related enzymes (P < 0.05). Western blotting validated the anti-inflammatory effects of melatonin by downregulating interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels via the extracellular regulated kinase (ERK)/nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway. Melatonin was also found to exhibit antioxidant effects via NRF2 signaling. In vivo experiments demonstrated that the newly formed bone in the melatonin plus Matrigel group had higher trabecular bone volume per tissue volume (BV/TV) and bone mineral density values with lower IL-6 and TNF-α levels than in the irradiation and the Matrigel groups (P < 0.05). CONCLUSION This study suggested that melatonin could protect CBSCs against γ-ray radiation and assist in the healing of postradiation bone defects.
Collapse
Affiliation(s)
- Wei Hu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China.,Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jia-Wu Liang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China.,Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Song Liao
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Zhi-Dong Zhao
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Yu-Xing Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Xiao-Fei Mao
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China.,Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Si-Wei Hao
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China.,Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yi-Fan Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China.,Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Heng Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100840, China.
| | - Bin Guo
- Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
47
|
Association of Melatonin Administration in Pregnant Ewes with Growth, Redox Status and Immunity of Their Offspring. Animals (Basel) 2021; 11:ani11113161. [PMID: 34827893 PMCID: PMC8614450 DOI: 10.3390/ani11113161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Melatonin is a known antioxidant and anti-inflammatory regime, while in sheep it is broadly used to accelerate the onset of the breeding season. Our recent study showed that melatonin administration during pregnancy in heat-stressed ewes improved fertility rate and number of lambs born per ewe, the redox status of the maternal organism and the produced milk quantity until weaning. In this study, we present the impact of melatonin administration in stressed ewes during pregnancy considering: (a) humoral response of both maternal organism and offspring during the first two days after parturition, (b) chemical composition and antioxidant parameters of colostrum and milk until weaning and (c) redox status of the offspring until weaning. The results indicated that melatonin improved the redox status of the offspring and the quality of colostrum. Moreover, melatonin could be administered as immune-modulatory regime, apart from antioxidant, in prenatally stressed offspring in order to cope with the crucial first days of their life, as the humoral response results suggested. Abstract In this study, the effects of melatonin treatment on growth, redox status and immunity in prenatally stressed newborn lambs were evaluated. Thirty-seven newborn lambs were allocated into two groups (melatonin-MEL and control-CON), based on whether their mothers were treated with melatonin implants or not, respectively. All pregnant ewes were exposed to heat stress. The body weight of lambs was recorded at birth (L0), and then on days 15 (L15) and 40 (L40). Redox biomarkers [total antioxidant capacity (TAC), glutathione (GSH), thiobarbituric acid reactive substances (TBARS)] were assayed in blood samples collected from lambs on days L0, L1, L2, L5, L10 and L40. Chemical analysis and antioxidant capacity were evaluated in colostrum and milk samples collected at the same time points with blood samples. Cytokines (IL-1β, IL-6, IL-10, IFN-γ) and immunoglobulin (IgG) were assayed in blood and colostrum samples collected from ewes on days L0 and L1, and in lambs’ blood on days L0, L1 and L2. The results revealed that body weight gain of newborn lambs did not differ between the two groups (p > 0.05). Better redox status was found in MEL lambs until L2, as well as higher antioxidant capacity in the colostrum of MEL ewes compared to CON ones on day L0 (p < 0.05). In MEL ewes’ colostrum, higher protein content was measured on day L0 and higher fat content on L1 compared to CON group (p < 0.05). The highest level of IL-6 was found in MEL ewes on L1, with a concomitant increase of IL-10 level in MEL lambs in comparison to CON lambs on L2. Moreover, CON colostrum resulted in a higher level of IL-10 within time, coupled with an increased level of IgG found in lambs’ plasma on L2 (p = 0.04). This study indicated that melatonin could be administered as antioxidant and immune-modulatory regime in prenatally stressed offspring in order to cope with the crucial first days of their life. This effect of melatonin was also amplified by crosstalk between IL-6, IL-10 and IgG production, resulting in an improved quality of produced milk.
Collapse
|
48
|
Lu KH, Lu PWA, Lu EWH, Tang CH, Su SC, Lin CW, Yang SF. The potential remedy of melatonin on osteoarthritis. J Pineal Res 2021; 71:e12762. [PMID: 34435392 DOI: 10.1111/jpi.12762] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA), the most common arthritis worldwide, is a degenerative joint disease characterized by progressive cartilage breakdown, subchondral remodeling, and synovial inflammation. Although conventional pharmaceutical therapies aimed to prevent further cartilage loss and joint dysfunction, there are no ideal strategies that target the pathogenesis of OA. Melatonin exhibits a variety of regulatory properties by binding to specific receptors and downstream molecules and exerts a myriad of receptor-independent actions via intracellular targets as a chondrocyte protector, an anti-inflammation modulator, and a free radical scavenger. Melatonin also modulates cartilage regeneration and degradation by directly/indirectly regulating the expression of main circadian clock genes, such as transcriptional activators [brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (Bmal) and circadian locomotor output cycles kaput (Clock)], transcriptional repressors [period circadian regulator (Per)1/2, cryptochrome (Cry)1/2, and Dec2], and nuclear hormone receptors [Rev-Erbs and retinoid acid-related orphan receptors (Rors)]. Owing to its effects on cartilage homeostasis, we propose a potential role for melatonin in the prevention and therapy of OA via the modulation of circadian clock genes, mitigation of chondrocyte apoptosis, anti-inflammatory activity, and scavenging of free radicals.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital 402, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
49
|
Matos RS, Oriá RB, Bruin PFC, Pinto DV, Viana AFSC, Santos FA, Duarte ASG, Bruin VMS. Acute blockade of endogenous melatonin by Luzindole, with or without peripheral LPS injection, induces jejunal inflammation and morphological alterations in Swiss mice. ACTA ACUST UNITED AC 2021; 54:e11215. [PMID: 34431873 PMCID: PMC8389610 DOI: 10.1590/1414-431x2021e11215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022]
Abstract
This study investigated the acute blockade of endogenous melatonin (MLT) using Luzindole with or without systemic lipopolysaccharide (LPS) challenge and evaluated changes in inflammatory and oxidative stress markers in the mouse jejunum. Luzindole is an MT1/MT2 MLT receptor antagonist. Both receptors occur in the small intestine. Swiss mice were treated with either saline (0.35 mg/kg, ip), Luzindole (0.35 mg/kg, ip), LPS (1.25 mg/kg, ip), or Luzindole+LPS (0.35 and 1.25 mg/kg, ip, respectively). Jejunum samples were evaluated regarding intestinal morphometry, histopathological crypt scoring, and PAS-positive villus goblet cell counting. Inflammatory Iba-1, interleukin (IL)-1β, tumor necrosis factor (TNF)-α, nuclear factor (NF)-kB, myeloperoxidase (MPO), and oxidative stress (NP-SHs, catalase, MDA, nitrate/nitrite) markers were assessed. Mice treated with Luzindole, LPS, and Luzindole+LPS showed villus height shortening. Crypt damage was worse in the LPS group. Luzindole, LPS, and Luzindole+LPS reduced the PAS-goblet cell labeling and increased Iba-1-immunolabelled cells compared to the saline group. Immunoblotting for IL-1β, TNF-α, and NF-kB was greater in the Luzindole group. The LPS-challenged group showed higher MPO activity than the saline and Luzindole groups. Catalase was reduced in the Luzindole and Luzindole+LPS groups compared to saline. The Luzindole group showed an increase in NP-SHs, an effect related to compensatory GSH activity. The acute blockade of endogenous MLT with Luzindole induced early changes in inflammatory markers with altered intestinal morphology. The other non-detectable deleterious effects of Luzindole may be balanced by the unopposed direct action of MLT in immune cells bypassing the MT1/MT2 receptors.
Collapse
Affiliation(s)
- R S Matos
- Laboratório de Sono e Ritmos Biológicos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R B Oriá
- Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil.,Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - P F C Bruin
- Laboratório de Sono e Ritmos Biológicos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - D V Pinto
- Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A F S C Viana
- Laboratório de Produtos Naturais, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - F A Santos
- Laboratório de Produtos Naturais, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A S G Duarte
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - V M S Bruin
- Laboratório de Sono e Ritmos Biológicos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
50
|
Alves CDS, Frias HV, Bonamin LV, Correia MSF, Corrêa MG, Bondan EF, de Fátima M Martins M, Coelho CP, Bernardi MM, Suffredini IB. Luffa operculata at a late period of gestation dysregulates melatonin and cytokines interfering with weight of dams and their male offspring. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:113867. [PMID: 33892067 DOI: 10.1016/j.jep.2021.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/20/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The tea made with the fruits of Luffa operculata (L.) Cogn. (Cucurbitaceae; EBN) is popularly used as abortive. AIM OF THE STUDY The present work aimed at accessing how the exposition of female Wistar rats to 1.0 mg/kg of EBN (experimental group, EG), or distilled water (control group, CG), by gavage, at gestational days (GD) 17-21 interfered with the reproductive performance, and with dams' behavior after weaning. MATERIALS AND METHODS At post-natal day 2 (PND2), the number of male and female pups was evaluated, as well as their weight. After weaning (PND21), dams were euthanized, and their liver and kidneys were removed for histological and biochemical analyses, while the blood was used in the evaluation of cytokines IL-1α, IL-1β, IL-6 and TNF-α, corticosterone, adrenocorticotrophic hormone, melatonin, AST, ALT and creatinine levels. RESULTS AND DISCUSSION Dams that were treated with EBN showed an anxiety-like behavior, weight loss at the end of gestation and weight gain at weaning, accompanied with a significant decrease in pro-inflammatory cytokines and in the melatonin level. No significant histological or biochemical alterations have occurred in the liver or kidneys. The number of female pups was significantly higher in the EG. The male pups showed weight gain at PND60. CONCLUSION The presence of cucurbitacins is probably involved in the dysregulations that were found, due to their polycyclic steroid triterpene structure.
Collapse
Affiliation(s)
- Cinthia Dos S Alves
- Programa de Pós-Graduação Em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil
| | - Humberto V Frias
- Programa de Pós-Graduação Em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil
| | - Leoni V Bonamin
- Programa de Pós-Graduação Em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil
| | - Michelle S F Correia
- Programa de Pós-Graduação Em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil
| | - Monica G Corrêa
- Programa de Pós-Graduação Em Odontologia, Universidade Paulista - UNIP, Brazil
| | - Eduardo F Bondan
- Programa de Pós-Graduação Em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil
| | | | | | - Maria M Bernardi
- Programa de Pós-Graduação Em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil; Programa de Pós-Graduação Em Odontologia, Universidade Paulista - UNIP, Brazil
| | - Ivana B Suffredini
- Programa de Pós-Graduação Em Patologia Ambiental e Experimental, Universidade Paulista - UNIP, Brazil; Programa de Pós-Graduação Em Odontologia, Universidade Paulista - UNIP, Brazil; Núcleo de Pesquisas Em Biodiversidade, Laboratório de Extração, Universidade Paulista - UNIP, Brazil.
| |
Collapse
|