1
|
Chowdhury RR, Grosso MF, Gadara DC, Spáčil Z, Vidová V, Sovadinová I, Babica P. Cyanotoxin cylindrospermopsin disrupts lipid homeostasis and metabolism in a 3D in vitro model of the human liver. Chem Biol Interact 2024; 397:111046. [PMID: 38735451 DOI: 10.1016/j.cbi.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Cylindrospermopsin, a potent hepatotoxin produced by harmful cyanobacterial blooms, poses environmental and human health concerns. We used a 3D human liver in vitro model based on spheroids of HepG2 cells, in combination with molecular and biochemical assays, automated imaging, targeted LC-MS-based proteomics, and lipidomics, to explore cylindrospermopsin effects on lipid metabolism and the processes implicated in hepatic steatosis. Cylindrospermopsin (1 μM, 48 h) did not significantly affect cell viability but partially reduced albumin secretion. However, it increased neutral lipid accumulation in HepG2 spheroids while decreasing phospholipid levels. Simultaneously, cylindrospermopsin upregulated genes for lipogenesis regulation (SREBF1) and triacylglycerol synthesis (DGAT1/2) and downregulated genes for fatty acid synthesis (ACLY, ACCA, FASN, SCD1). Fatty acid uptake, oxidation, and lipid efflux genes were not significantly affected. Targeted proteomics revealed increased levels of perilipin 2 (adipophilin), a major hepatocyte lipid droplet-associated protein. Lipid profiling quantified 246 lipid species in the spheroids, with 28 significantly enriched and 15 downregulated by cylindrospermopsin. Upregulated species included neutral lipids, sphingolipids (e.g., ceramides and dihexosylceramides), and some glycerophospholipids (phosphatidylethanolamines, phosphatidylserines), while phosphatidylcholines and phosphatidylinositols were mostly reduced. It suggests that cylindrospermopsin exposures might contribute to developing and progressing towards hepatic steatosis or metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Riju Roy Chowdhury
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Marina Felipe Grosso
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | | | - Zdeněk Spáčil
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Veronika Vidová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic.
| |
Collapse
|
2
|
Chowdhury RR, Rose S, Ezan F, Sovadinová I, Babica P, Langouët S. Hepatotoxicity of cyanotoxin microcystin-LR in human: Insights into mechanisms of action in the 3D culture model Hepoid-HepaRG. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123047. [PMID: 38036087 DOI: 10.1016/j.envpol.2023.123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin produced by harmful cyanobacterial blooms (CyanoHABs). MC-LR targets highly differentiated hepatocytes expressing organic anion transporting polypeptides OATP1B1 and OATP1B3 that are responsible for hepatocellular uptake of the toxin. The present study utilized an advanced 3D in vitro human liver model Hepoid-HepaRG based on the cultivation of collagen-matrix embedded multicellular spheroids composed of highly differentiated and polarized hepatocyte-like cells. 14-d-old Hepoid-HepaRG cultures showed increased expression of OATP1B1/1B3 and sensitivity to MC-LR cytotoxicity at concentrations >10 nM (48 h exposure, EC20 = 26 nM). MC-LR induced neither caspase 3/7 activity nor expression of the endoplasmic reticulum stress marker gene BiP/GRP78, but increased release of pro-inflammatory cytokine IL-8, indicating a necrotic type of cell death. Subcytotoxic (10 nM) and cytotoxic (≥100 nM) MC-LR concentrations disrupted hepatocyte functions, such as xenobiotic metabolism phase-I enzyme activities (cytochrome P450 1A/1B) and albumin secretion, along with reduced expression of CYP1A2 and ALB genes. MC-LR also decreased expression of HNF4A gene, a critical regulator of hepatocyte differentiation and function. Genes encoding hepatobiliary membrane transporters (OATP1B1, BSEP, NTCP), hepatocyte gap junctional gene connexin 32 and the epithelial cell marker E-cadherin were also downregulated. Simultaneous upregulation of connexin 43 gene, primarily expressed by liver progenitor and non-parenchymal cells, indicated a disruption of tissue homeostasis. This was associated with a shift in the expression ratio of E-cadherin to N-cadherin towards the mesenchymal cell marker, a process linked to epithelial-mesenchymal transition (EMT) and hepatocarcinogenesis. The effects observed in the human liver cell in vitro model revealed mechanisms that can potentially contribute to the MC-LR-induced promotion and progression of hepatocellular carcinoma (HCC). Hepoid-HepaRG cultures provide a robust, accessible and versatile in vitro model, capable of sensitively detecting hepatotoxic effects at toxicologically relevant concentrations, allowing for assessing hepatotoxicity mechanisms, human health hazards and impacts of environmental hepatotoxins, such as MC-LR.
Collapse
Affiliation(s)
- Riju R Chowdhury
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 61137, Brno, Czech Republic
| | - Sophie Rose
- University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France
| | - Frédéric Ezan
- University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France
| | - Iva Sovadinová
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 61137, Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 61137, Brno, Czech Republic
| | - Sophie Langouët
- University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|
3
|
A comprehensive transcriptomic comparison of hepatocyte model systems improves selection of models for experimental use. Commun Biol 2022; 5:1094. [PMID: 36241695 PMCID: PMC9568534 DOI: 10.1038/s42003-022-04046-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
The myriad of available hepatocyte in vitro models provides researchers the possibility to select hepatocyte-like cells (HLCs) for specific research goals. However, direct comparison of hepatocyte models is currently challenging. We systematically searched the literature and compared different HLCs, but reported functions were limited to a small subset of hepatic functions. To enable a more comprehensive comparison, we developed an algorithm to compare transcriptomic data across studies that tested HLCs derived from hepatocytes, biliary cells, fibroblasts, and pluripotent stem cells, alongside primary human hepatocytes (PHHs). This revealed that no HLC covered the complete hepatic transcriptome, highlighting the importance of HLC selection. HLCs derived from hepatocytes had the highest transcriptional resemblance to PHHs regardless of the protocol, whereas the quality of fibroblasts and PSC derived HLCs varied depending on the protocol used. Finally, we developed and validated a web application (HLCompR) enabling comparison for specific pathways and addition of new HLCs. In conclusion, our comprehensive transcriptomic comparison of HLCs allows selection of HLCs for specific research questions and can guide improvements in culturing conditions.
Collapse
|
4
|
Blaszkiewicz J, Duncan SA. Advancements in Disease Modeling and Drug Discovery Using iPSC-Derived Hepatocyte-like Cells. Genes (Basel) 2022; 13:573. [PMID: 35456379 PMCID: PMC9030659 DOI: 10.3390/genes13040573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Serving as the metabolic hub of the human body, the liver is a vital organ that performs a variety of important physiological functions. Although known for its regenerative potential, it remains vulnerable to a variety of diseases. Despite decades of research, liver disease remains a leading cause of mortality in the United States with a multibillion-dollar-per-year economic burden. Prior research with model systems, such as primary hepatocytes and murine models, has provided many important discoveries. However, progress has been impaired by numerous obstacles associated with these models. In recent years, induced pluripotent stem cell (iPSC)-based systems have emerged as advantageous platforms for studying liver disease. Benefits, including preserved differentiation and physiological function, amenability to genetic manipulation via tools such as CRISPR/Cas9, and availability for high-throughput screening, make these systems increasingly attractive for both mechanistic studies of disease and the identification of novel therapeutics. Although limitations exist, recent studies have made progress in ameliorating these issues. In this review, we discuss recent advancements in iPSC-based models of liver disease, including improvements in model system construction as well as the use of high-throughput screens for genetic studies and drug discovery.
Collapse
Affiliation(s)
| | - Stephen A. Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
5
|
Stanley LA, Wolf CR. Through a glass, darkly? HepaRG and HepG2 cells as models of human phase I drug metabolism. Drug Metab Rev 2022; 54:46-62. [PMID: 35188018 DOI: 10.1080/03602532.2022.2039688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pharmacokinetic and safety assessment of drug candidates is becoming increasingly dependent upon in vitro models of hepatic metabolism and toxicity. Predominant among these is the HepG2 cell line, although HepaRG is becoming increasingly popular because of its perceived closer resemblance to human hepatocytes. We review the functionality of these cell lines in terms of Phase I protein expression, basal cytochrome P450-dependent activity, and utility in P450 induction studies. Our analysis indicates that HepG2 cells are severely compromised: proteomic studies show that they express few key proteins in common with hepatocytes and they lack drug-metabolizing capacity. Differentiated HepaRGs are more hepatocyte-like than HepG2s, but they also have limitations, and it is difficult to assess their utility because of the enormous variability in data reported, possibly arising from the complex differentiation protocols required to obtain hepatocyte-like cells. This is exacerbated by the use of DMSO in the induction protocol, together with proprietary supplements whose composition is a commercial secret. We conclude that, while currently available data on the utility of HepaRG generates a confusing picture, this line does have potential utility in drug metabolism studies. However, to allow studies to be compared directly a standardized, reproducible differentiation protocol is essential and the cell line's functionality in terms of known mechanisms of P450 regulation must be demonstrated. We, therefore, support the development of regulatory guidelines for the use of HepaRGs in induction studies as a first step in generating a database of consistent, reliable data.
Collapse
Affiliation(s)
- Lesley A Stanley
- Consultant in Investigative Toxicology, Linlithgow, UK.,School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - C Roland Wolf
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, UK
| |
Collapse
|
6
|
Tricot T, Verfaillie CM, Kumar M. Current Status and Challenges of Human Induced Pluripotent Stem Cell-Derived Liver Models in Drug Discovery. Cells 2022; 11:442. [PMID: 35159250 PMCID: PMC8834601 DOI: 10.3390/cells11030442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
The pharmaceutical industry is in high need of efficient and relevant in vitro liver models, which can be incorporated in their drug discovery pipelines to identify potential drugs and their toxicity profiles. Current liver models often rely on cancer cell lines or primary cells, which both have major limitations. However, the development of human induced pluripotent stem cells (hiPSCs) has created a new opportunity for liver disease modeling, drug discovery and liver toxicity research. hiPSCs can be differentiated to any cell of interest, which makes them good candidates for disease modeling and drug discovery. Moreover, hiPSCs, unlike primary cells, can be easily genome-edited, allowing the creation of reporter lines or isogenic controls for patient-derived hiPSCs. Unfortunately, even though liver progeny from hiPSCs has characteristics similar to their in vivo counterparts, the differentiation of iPSCs to fully mature progeny remains highly challenging and is a major obstacle for the full exploitation of these models by pharmaceutical industries. In this review, we discuss current liver-cell differentiation protocols and in vitro iPSC-based liver models that could be used for disease modeling and drug discovery. Furthermore, we will discuss the challenges that still need to be overcome to allow for the successful implementation of these models into pharmaceutical drug discovery platforms.
Collapse
Affiliation(s)
| | | | - Manoj Kumar
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; (T.T.); (C.M.V.)
| |
Collapse
|
7
|
Tricot T, Thibaut HJ, Abbasi K, Boon R, Helsen N, Kumar M, Neyts J, Verfaillie C. Metabolically Improved Stem Cell Derived Hepatocyte-Like Cells Support HBV Life Cycle and Are a Promising Tool for HBV Studies and Antiviral Drug Screenings. Biomedicines 2022; 10:biomedicines10020268. [PMID: 35203482 PMCID: PMC8869365 DOI: 10.3390/biomedicines10020268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 11/16/2022] Open
Abstract
More than 300 million people worldwide are diagnosed with a chronic hepatitis B virus (HBV) infection. Nucleos(t)ide viral polymerase inhibitors are available on the market and can efficiently treat patients with chronic HBV. However, life-long treatment is needed as covalently closed circular DNA (cccDNA) persists in the hepatocyte nucleus. Hence, there is a high demand for novel therapeutics that can eliminate cccDNA from the hepatocyte nucleus and cure chronically infected HBV patients. The gold standard for in vitro HBV studies is primary human hepatocytes (PHHs). However, alternatives are needed due to donor organ shortage and high batch-to-batch variability. Therefore, human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) are being explored as an in vitro HBV infection model. We recently generated hPSC lines that overexpress three transcription factors (HC3x) and that, upon differentiation in a high amino-acid supplemented maturation medium, generate a more mature hepatocyte progeny (HC3x-AA-HLCs). Here, we demonstrate that HBV can efficiently infect these HC3x-AA-HLCs, as was shown by the presence of HBV core (HBc) and surface antigens. A clear increasing release of HBV surface and e antigens was detected, indicating the formation of functional cccDNA. Moreover, back-titration of culture supernatant of HBV-infected HC3x-AA-HLCs on HepG2-NTCP cells revealed the production of novel infectious HBV particles. Additionally, an increasing number of HBc-positive HC3x-AA-HLCs over time suggests viral spreading is occurring. Finally, the HC3x-AA-HLC model was validated for use in antiviral drug studies using the nucleoside reverse-transcriptase inhibitor, lamivudine, and the HBV entry inhibitor, Myrcludex B.
Collapse
Affiliation(s)
- Tine Tricot
- Stem Cell Institute, Rega Institute KU Leuven, 3000 Leuven, Belgium; (R.B.); (N.H.); (M.K.)
- Correspondence: (T.T.); (H.J.T.); (C.V.); Tel.: +32-16-37-71-09 (T.T.); +32-16-32-16-82 (H.J.T.); +32-16-37-26-54 (C.V.)
| | - Hendrik Jan Thibaut
- Department of Microbiology, Immunology and Transplantation, Virology and Chemotherapy, Rega Institute KU Leuven, 3000 Leuven, Belgium; (K.A.); (J.N.)
- Department of Microbiology, Immunology and Transplantation, Translational Platform Virology and Chemotherapy (TPVC), Rega Institute KU Leuven, 3000 Leuven, Belgium
- Correspondence: (T.T.); (H.J.T.); (C.V.); Tel.: +32-16-37-71-09 (T.T.); +32-16-32-16-82 (H.J.T.); +32-16-37-26-54 (C.V.)
| | - Kayvan Abbasi
- Department of Microbiology, Immunology and Transplantation, Virology and Chemotherapy, Rega Institute KU Leuven, 3000 Leuven, Belgium; (K.A.); (J.N.)
| | - Ruben Boon
- Stem Cell Institute, Rega Institute KU Leuven, 3000 Leuven, Belgium; (R.B.); (N.H.); (M.K.)
- Laboratory for Functional Epigenetics, Department of Human Genetics, Rega Institute KU Leuven, 3000 Leuven, Belgium
| | - Nicky Helsen
- Stem Cell Institute, Rega Institute KU Leuven, 3000 Leuven, Belgium; (R.B.); (N.H.); (M.K.)
- Ismar Healthcare NV, 2500 Lier, Belgium
| | - Manoj Kumar
- Stem Cell Institute, Rega Institute KU Leuven, 3000 Leuven, Belgium; (R.B.); (N.H.); (M.K.)
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Virology and Chemotherapy, Rega Institute KU Leuven, 3000 Leuven, Belgium; (K.A.); (J.N.)
| | - Catherine Verfaillie
- Stem Cell Institute, Rega Institute KU Leuven, 3000 Leuven, Belgium; (R.B.); (N.H.); (M.K.)
- Correspondence: (T.T.); (H.J.T.); (C.V.); Tel.: +32-16-37-71-09 (T.T.); +32-16-32-16-82 (H.J.T.); +32-16-37-26-54 (C.V.)
| |
Collapse
|
8
|
Moreno-Torres M, Kumar M, García-Llorens G, Quintás G, Tricot T, Boon R, Tolosa L, Toprakhisar B, Chesnais F, Verfaillie C, Castell JV. A Novel UPLC-MS Metabolomic Analysis-Based Strategy to Monitor the Course and Extent of iPSC Differentiation to Hepatocytes. J Proteome Res 2022; 21:702-712. [PMID: 34982937 DOI: 10.1021/acs.jproteome.1c00779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Typical protocols to differentiate induced pluripotent stem cells (iPSCs) from hepatocyte-like cells (HLCs) imply complex strategies that include transfection with key hepatic transcription factors and the addition to culture media of nutrients, growth factors, and cytokines. A main constraint to evaluate the hepatic phenotype achieved arises from the way the grade of differentiation is determined. Currently, it relies on the assessment of the expression of a limited number of hepatic gene transcripts, less frequently by assessing certain hepatic metabolic functions, and rarely by the global metabolic performance of differentiated cells. We envisaged a new strategy to assess the extent of differentiation achieved, based on the analysis of the cellular metabolome along the differentiation process and its quantitative comparison with that of primary human hepatocytes (PHHs). To validate our approach, we examined the changes in the metabolome of three iPSC progenies (transfected with/without key transcription factors), cultured in three differentiation media, and compared them to PHHs. Results revealed consistent metabolome changes along differentiation and evidenced the factors that more strongly promote changes in the metabolome. The integrated dissimilarities between the PHHs and HLCs retrieved metabolomes were used as a numerical reference for quantifying the degree of iPSCs differentiation. This newly developed metabolome-analysis approach evidenced its utility in assisting us to select a cell's source, culture conditions, and differentiation media, to achieve better-differentiated HLCs.
Collapse
Affiliation(s)
- Marta Moreno-Torres
- Unidad de Hepatología Experimental, Health Research Institute La Fe, Valencia 46026, Spain
| | - Manoj Kumar
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Guillem García-Llorens
- Unidad de Hepatología Experimental, Health Research Institute La Fe, Valencia 46026, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia 46010, Spain
| | - Guillermo Quintás
- Health and Biomedicine, LEITAT Technological Center, Valencia 46026, Spain.,Analytical Unit, Health Research Institute La Fe, Valencia 46026, Spain
| | - Tine Tricot
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Ruben Boon
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium.,Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston 02114, Massachusetts, United States.,The Broad Institute, Harvard & MIT, Cambridge 02142, Massachusetts, United States
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Health Research Institute La Fe, Valencia 46026, Spain
| | - Burak Toprakhisar
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Francois Chesnais
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium.,Academic Center of Reconstructive Science, King's College London, London SE1 9RT, U.K
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - José V Castell
- Unidad de Hepatología Experimental, Health Research Institute La Fe, Valencia 46026, Spain.,Analytical Unit, Health Research Institute La Fe, Valencia 46026, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia 46010, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
9
|
Three-Dimensional Liver Culture Systems to Maintain Primary Hepatic Properties for Toxicological Analysis In Vitro. Int J Mol Sci 2021; 22:ijms221910214. [PMID: 34638555 PMCID: PMC8508724 DOI: 10.3390/ijms221910214] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022] Open
Abstract
Drug-induced liver injury (DILI) is the major reason for failures in drug development and withdrawal of approved drugs from the market. Two-dimensional cultures of hepatocytes often fail to reliably predict DILI: hepatoma cell lines such as HepG2 do not reflect important primary-like hepatic properties and primary human hepatocytes (pHHs) dedifferentiate quickly in vitro and are, therefore, not suitable for long-term toxicity studies. More predictive liver in vitro models are urgently required in drug development and compound safety evaluation. This review discusses available human hepatic cell types for in vitro toxicology analysis and their usage in established and emerging three-dimensional (3D) culture systems. Generally, 3D cultures maintain or improve primary hepatic functions (including expression of drug-metabolizing enzymes) of different liver cells for several weeks of culture, thus allowing long-term and repeated-dose toxicity studies. Spheroid cultures of pHHs have been comprehensively tested, but also other cell types such as HepaRG benefit from 3D culture systems. Emerging 3D culture techniques include usage of induced pluripotent stem-cell-derived hepatocytes and primary-like upcyte cells, as well as advanced culture techniques such as microfluidic liver-on-a-chip models. In-depth characterization of existing and emerging 3D hepatocyte technologies is indispensable for successful implementation of such systems in toxicological analysis.
Collapse
|
10
|
Pasqua M, Di Gesù R, Chinnici CM, Conaldi PG, Francipane MG. Generation of Hepatobiliary Cell Lineages from Human Induced Pluripotent Stem Cells: Applications in Disease Modeling and Drug Screening. Int J Mol Sci 2021; 22:8227. [PMID: 34360991 PMCID: PMC8348238 DOI: 10.3390/ijms22158227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
The possibility to reproduce key tissue functions in vitro from induced pluripotent stem cells (iPSCs) is offering an incredible opportunity to gain better insight into biological mechanisms underlying development and disease, and a tool for the rapid screening of drug candidates. This review attempts to summarize recent strategies for specification of iPSCs towards hepatobiliary lineages -hepatocytes and cholangiocytes-and their use as platforms for disease modeling and drug testing. The application of different tissue-engineering methods to promote accurate and reliable readouts is discussed. Space is given to open questions, including to what extent these novel systems can be informative. Potential pathways for improvement are finally suggested.
Collapse
Affiliation(s)
- Mattia Pasqua
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
| | - Roberto Di Gesù
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
| | - Cinzia Maria Chinnici
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
- Dipartimento della Ricerca, IRCCS ISMETT, 90127 Palermo, Italy;
| | | | - Maria Giovanna Francipane
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
11
|
Nikasa P, Tricot T, Mahdieh N, Baharvand H, Totonchi M, Hejazi MS, Verfaillie CM. Patient-Specific Induced Pluripotent Stem Cell-Derived Hepatocyte-Like Cells as a Model to Study Autosomal Recessive Hypercholesterolemia. Stem Cells Dev 2021; 30:714-724. [PMID: 33938231 DOI: 10.1089/scd.2020.0199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Autosomal recessive hypercholesterolemia (ARH) is a rare monogenic disorder caused by pathogenic variants in the low-density lipoprotein receptor (LDLR) adaptor protein 1 (LDLRAP1) gene, encoding for the LDLRAP1 protein, which impairs internalization of hepatic LDLR. There are variable responses of ARH patients to treatment and the pathophysiological mechanism(s) for this variability remains unclear. This is in part caused by absence of reliable cellular models to evaluate the effect of LDLRAP1 mutations on the LDLRAP1 protein function and its role in LDLR internalization. Here, we aimed to validate patient-specific induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) as an appropriate tool to model ARH disease. Fibroblasts from an ARH patient carrying the recently reported nonsense mutation, c.649G>T, were reprogrammed into hiPSCs using Sendai viral vectors. In addition, we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to create an LDLRAP1 gene (also known as ARH) knockout in two different human iPSC lines. ARH patient-derived iPSCs, ARH-knockout iPSC lines, and control iPSCs were efficiently differentiated into HLCs. Western blot analysis demonstrated the absence of LDLRAP1 in HLCs derived from patient and knockout iPSCs, and this was associated with a decreased low-density lipoprotein cholesterol (LDL-C) uptake in ARH-mutant/knockout HLCs compared to control HLCs. In conclusion, we determined that the recently described c.649G>T point mutation in LDLRAP1 induces absence of the LDLRAP1 protein, similar to what is seen following LDLRAP1 knockout. This causes a decreased, although not fully absent, LDL-uptake in ARH-mutant/knockout HLCs. As knockout of LDLRAP1 or presence of the c.649G>T point mutation results in absence of LDLRAP1 protein, residual LDL uptake might be regulated by LDLRAP1-independent internalization mechanisms. Patient-specific iPSC-derived HLCs can therefore be a powerful tool to further decipher LDLRAP1 mutations and function of the protein.
Collapse
Affiliation(s)
- Parisa Nikasa
- Department of Molecular Medicine, Faculty of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Institute, Department of Development and Regeneration, University of Leuven (KULeuven), Leuven, Belgium.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tine Tricot
- Stem Cell Institute, Department of Development and Regeneration, University of Leuven (KULeuven), Leuven, Belgium
| | - Nejat Mahdieh
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.,Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Saeid Hejazi
- Department of Molecular Medicine, Faculty of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Catherine M Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, University of Leuven (KULeuven), Leuven, Belgium
| |
Collapse
|
12
|
Qosa H, Ribeiro AJS, Hartman NR, Volpe DA. Characterization of a commercially available line of iPSC hepatocytes as models of hepatocyte function and toxicity for regulatory purposes. J Pharmacol Toxicol Methods 2021; 110:107083. [PMID: 34098110 DOI: 10.1016/j.vascn.2021.107083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/11/2021] [Accepted: 06/01/2021] [Indexed: 10/25/2022]
Abstract
It has recently become possible to produce hepatocytes from human induced pluripotent stem cells (iPSC-heps), which may offer some advantages over primary human hepatocytes (Prim-heps) in the regulatory environment. The aim of this research was to assess similarities and differences between commercially available iPSC-heps and Prim-heps in preliminary assays of drug metabolism, hepatotoxicity, and drug transport. Hepatocytes were either cultured in collagen-coated 96-well plates (Prim-heps and 2d-iPSC-heps) or in ultra-low adhesion plates as spheroids (3d-iPSC-heps). 3d-iPSC-heps were used to enhance physiological cell-cell contacts, which is essential to maintain the phenotype of mature hepatocytes. Cytochrome P450 (CYP) 3A4, CYP1A2, and CYP2B6 activity levels were evaluated using fluorescent assays. Phase II metabolism was assessed by HPLC measurement of formation of glucuronides and sulfates of 4-methylumbelliferone, 1-naphthol, and estradiol. The toxicity of acetaminophen, amiodarone, aspirin, clozapine, tacrine, tamoxifen, and troglitazone was monitored using a luminescent cell viability assay. Canaliculi formation was monitored by following the fluorescence of 5,6-carboxy-2',7'-dichlorofluorescein diacetate. All culture models showed similar levels of basal CYP3A4, CYP1A2 and CYP2B6 activity. However, while Prim-heps showed a vigorous response to CYP inducing agents, 2d-iPSC-heps showed no response and 3d-iPSC-heps displayed an inconclusive response. 2d-iPSC-heps showed reduced, yet appreciable, glucuronide and sulfate formation compared to Prim-heps. All culture models showed similar activity in tests of hepatotoxicity, with Prim-heps generally being more sensitive. All models formed canaliculi capable of transporting carboxy-2',7'-dichlorofluorescein. The iPSC-heps appear to be useful for toxicity and transport studies, but metabolic activity is not optimum, and metabolism studies would benefit from a more mature model.
Collapse
Affiliation(s)
- Hisham Qosa
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, United States of America
| | - Alexandre J S Ribeiro
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, United States of America
| | - Neil R Hartman
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, United States of America
| | - Donna A Volpe
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, United States of America.
| |
Collapse
|
13
|
Advancements in practical and scientific bioanalytical approaches to metabolism studies in drug development. Bioanalysis 2021; 13:913-930. [PMID: 33961500 DOI: 10.4155/bio-2021-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Advancement in metabolism profiling approaches and bioanalytical techniques has been revolutionized over the last two decades. Different in vitro and in vivo approaches along with advanced bioanalytical techniques are enabling the accurate qualitative and quantitative analysis of metabolites. This review summarizes various modern in vitro and in vivo approaches for executing metabolism studies with special emphasis on the recent advancement in the field. Advanced bioanalytical techniques, which can be employed in metabolism studies, have been discussed suggesting their particular application based on specific study objectives. This article can efficiently guide the researchers to scientifically plan metabolism studies and their bioanalysis during drug development programs taking advantage of a detailed understanding of instances of failure in the past.
Collapse
|
14
|
Cox CR, Lynch S, Goldring C, Sharma P. Current Perspective: 3D Spheroid Models Utilizing Human-Based Cells for Investigating Metabolism-Dependent Drug-Induced Liver Injury. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:611913. [PMID: 35047893 PMCID: PMC8757888 DOI: 10.3389/fmedt.2020.611913] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a leading cause for the withdrawal of approved drugs. This has significant financial implications for pharmaceutical companies, places increasing strain on global health services, and causes harm to patients. For these reasons, it is essential that in-vitro liver models are capable of detecting DILI-positive compounds and their underlying mechanisms, prior to their approval and administration to patients or volunteers in clinical trials. Metabolism-dependent DILI is an important mechanism of drug-induced toxicity, which often involves the CYP450 family of enzymes, and is associated with the production of a chemically reactive metabolite and/or inefficient removal and accumulation of potentially toxic compounds. Unfortunately, many of the traditional in-vitro liver models fall short of their in-vivo counterparts, failing to recapitulate the mature hepatocyte phenotype, becoming metabolically incompetent, and lacking the longevity to investigate and detect metabolism-dependent DILI and those associated with chronic and repeat dosing regimens. Nevertheless, evidence is gathering to indicate that growing cells in 3D formats can increase the complexity of these models, promoting a more mature-hepatocyte phenotype and increasing their longevity, in vitro. This review will discuss the use of 3D in vitro models, namely spheroids, organoids, and perfusion-based systems to establish suitable liver models to investigate metabolism-dependent DILI.
Collapse
Affiliation(s)
- Christopher R. Cox
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: Christopher R. Cox
| | - Stephen Lynch
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Christopher Goldring
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Parveen Sharma
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| |
Collapse
|
15
|
Oleaga C, Bridges LR, Persaud K, McAleer CW, Long CJ, Hickman JJ. A functional long-term 2D serum-free human hepatic in vitro system for drug evaluation. Biotechnol Prog 2020; 37:e3069. [PMID: 32829524 DOI: 10.1002/btpr.3069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 01/05/2023]
Abstract
Human in vitro hepatic models generate faster drug toxicity data with higher human predictability compared to animal models. However, for long-term studies, current models require the use of serum and 3D architecture, limiting their utility. Maintaining a functional long-term human in vitro hepatic culture that avoids complex structures and serum would improve the value of such systems for preclinical studies. This would also enable a more straightforward integration with current multi-organ devices to study human systemic toxicity to generate an alternative model to chronic animal evaluations. A human primary hepatocyte culture system was characterized for 28 days in 2D and serum-free defined conditions. Under the studied conditions, human primary hepatocytes maintained their characteristic morphology, hepatic markers and functions for 28 days. The acute and chronic administration of known drugs validated the sensitivity of the system for drug testing. This human 2D model represents a realistic system to evaluate hepatic function for long-term drug studies, without the need of animal serum, confounding variable in most models, and with less complexity and resultant cost compared to most 3D models. The defined culture conditions can easily be integrated into complex multi-organ in vitro models for studying systemic effects driven by the liver function for long-term evaluations.
Collapse
Affiliation(s)
- Carlota Oleaga
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - L Richard Bridges
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Keisha Persaud
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | | | - Christopher J Long
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
16
|
Allwardt V, Ainscough AJ, Viswanathan P, Sherrod SD, McLean JA, Haddrick M, Pensabene V. Translational Roadmap for the Organs-on-a-Chip Industry toward Broad Adoption. Bioengineering (Basel) 2020; 7:E112. [PMID: 32947816 PMCID: PMC7552662 DOI: 10.3390/bioengineering7030112] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Organs-on-a-Chip (OOAC) is a disruptive technology with widely recognized potential to change the efficiency, effectiveness, and costs of the drug discovery process; to advance insights into human biology; to enable clinical research where human trials are not feasible. However, further development is needed for the successful adoption and acceptance of this technology. Areas for improvement include technological maturity, more robust validation of translational and predictive in vivo-like biology, and requirements of tighter quality standards for commercial viability. In this review, we reported on the consensus around existing challenges and necessary performance benchmarks that are required toward the broader adoption of OOACs in the next five years, and we defined a potential roadmap for future translational development of OOAC technology. We provided a clear snapshot of the current developmental stage of OOAC commercialization, including existing platforms, ancillary technologies, and tools required for the use of OOAC devices, and analyze their technology readiness levels. Using data gathered from OOAC developers and end-users, we identified prevalent challenges faced by the community, strategic trends and requirements driving OOAC technology development, and existing technological bottlenecks that could be outsourced or leveraged by active collaborations with academia.
Collapse
Affiliation(s)
- Vanessa Allwardt
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; (V.A.); (S.D.S.); (J.A.M.)
| | | | - Priyalakshmi Viswanathan
- Medicines Discovery Catapult, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK; (P.V.); (M.H.)
| | - Stacy D. Sherrod
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; (V.A.); (S.D.S.); (J.A.M.)
| | - John A. McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; (V.A.); (S.D.S.); (J.A.M.)
- Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
| | - Malcolm Haddrick
- Medicines Discovery Catapult, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK; (P.V.); (M.H.)
| | - Virginia Pensabene
- School of Electronic and Electrical Engineering, School of Medicine, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
17
|
Matsui T, Miyamoto N, Saito F, Shinozawa T. Molecular Profiling of Human Induced Pluripotent Stem Cell-Derived Cells and their Application for Drug Safety Study. Curr Pharm Biotechnol 2020; 21:807-828. [PMID: 32321398 DOI: 10.2174/1389201021666200422090952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Drug-induced toxicity remains one of the leading causes of discontinuation of the drug candidate and post-marketing withdrawal. Thus, early identification of the drug candidates with the potential for toxicity is crucial in the drug development process. With the recent discovery of human- Induced Pluripotent Stem Cells (iPSC) and the establishment of the differentiation protocol of human iPSC into the cell types of interest, the differentiated cells from human iPSC have garnered much attention because of their potential applicability in toxicity evaluation as well as drug screening, disease modeling and cell therapy. In this review, we expanded on current information regarding the feasibility of human iPSC-derived cells for the evaluation of drug-induced toxicity with a focus on human iPSCderived hepatocyte (iPSC-Hep), cardiomyocyte (iPSC-CMs) and neurons (iPSC-Neurons). Further, we CSAHi, Consortium for Safety Assessment using Human iPS Cells, reported our gene expression profiling data with DNA microarray using commercially available human iPSC-derived cells (iPSC-Hep, iPSC-CMs, iPSC-Neurons), their relevant human tissues and primary cultured human cells to discuss the future direction of the three types of human iPSC-derived cells.
Collapse
Affiliation(s)
- Toshikatsu Matsui
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | - Norimasa Miyamoto
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | - Fumiyo Saito
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | | |
Collapse
|
18
|
Yu F, Goh YT, Li H, Chakrapani NB, Ni M, Xu GL, Hsieh TM, Toh YC, Cheung C, Iliescu C, Yu H. A vascular-liver chip for sensitive detection of nutraceutical metabolites from human pluripotent stem cell derivatives. BIOMICROFLUIDICS 2020; 14:034108. [PMID: 32509050 PMCID: PMC7255812 DOI: 10.1063/5.0004286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/14/2020] [Indexed: 05/07/2023]
Abstract
Human pluripotent stem cell (hPSC) is a great resource for generating cell derivatives for drug efficiency testing. Metabolites of nutraceuticals can exert anti-inflammatory effects on blood vessels. However, the concentration of nutraceutical metabolites produced in hPSC-derived hepatocytes (hPSC-HEPs) is usually low. To enable the detection of these metabolites under the in vitro environment, we have developed a co-culture model consisting of parallel co-culture chambers and a recirculating microfluidic system with minimum fluid volume, optimal cell culture environment. The model allows cells to be exposed continuously to nutraceutical metabolites. In this perfused culturing model, hPSC-derived endothelial cells and hPSC-HEPs are co-cultured without physical contact. When an anti-inflammatory nutraceutical, quercetin, was administrated to the co-culture, higher levels of quercetin metabolites were detected on-chip compared with static control. We further induced inflammation with Interleukin-1β in the co-culture model and measured interleukin 8 (IL-8) generation. The IL-8 level was suppressed more significantly by quercetin metabolites in the perfusion co-culture, as compared to static culture. This is due to enhanced metabolites production on-chip. This microfluidic co-culture model enables in vitro screening of nutraceuticals using hPSC-derived cells.
Collapse
Affiliation(s)
| | | | - Huan Li
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore 138669
| | | | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100105, Ecuador
| | | | | | | | | | | | | |
Collapse
|
19
|
Lee SML, Bertinetti-Lapatki C, Schiergens TS, Jauch KW, Roth AB, Thasler WE. Concurrent isolation of hepatic stem cells and hepatocytes from the human liver. In Vitro Cell Dev Biol Anim 2020; 56:253-260. [PMID: 32221840 PMCID: PMC7186250 DOI: 10.1007/s11626-020-00433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/27/2020] [Indexed: 11/02/2022]
Abstract
Hepatocytes differentiated from induced pluripotent stem cells or stem cells have the potential to be representative in vitro models of the human liver for research as well as early safety assessment programs. However, up until now, there has been no definitive proof that differentiated hepatocytes recapitulate the phenotype and functional characteristics of primary hepatocytes from the same individual. Thus, a method for the concurrent isolation of hepatocytes and hepatic stem cells is presented here to provide the cells necessary for the evaluation of the required benchmarking. The method presented here generated high-quality hepatocytes with a purity of 94 ± 1% and a high percentage viability of 79 ± 2%. Furthermore, the hepatic stem cells isolated were found to be actively proliferating and have a purity of 98 ± 1%. Thus, these isolated cells can be used as a powerful tool for the validation of differentiated hepatocyte in vitro models.
Collapse
Affiliation(s)
- Serene M L Lee
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 5H 02 Room 428, Marchioninistr. 15, 81377, Munich, Germany.
| | - Cristina Bertinetti-Lapatki
- F. Hoffmann-La Roche Ltd, Pharmaceutical Sciences, Roche Innovation Centre, Grenzacherstr 124, 4070, Basel, Switzerland
| | - Tobias S Schiergens
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 5H 02 Room 428, Marchioninistr. 15, 81377, Munich, Germany
| | - Karl-Walter Jauch
- Medical Directorate, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Adrian B Roth
- F. Hoffmann-La Roche Ltd, Pharmaceutical Sciences, Roche Innovation Centre, Grenzacherstr 124, 4070, Basel, Switzerland
| | - Wolfgang E Thasler
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 5H 02 Room 428, Marchioninistr. 15, 81377, Munich, Germany.,Department of General Visceral and Minimally Invasive Surgery, Red Cross Hospital Munich, Nymphenburger Str. 163, 80634, Munich, Germany
| |
Collapse
|
20
|
Boon R, Kumar M, Tricot T, Elia I, Ordovas L, Jacobs F, One J, De Smedt J, Eelen G, Bird M, Roelandt P, Doglioni G, Vriens K, Rossi M, Vazquez MA, Vanwelden T, Chesnais F, El Taghdouini A, Najimi M, Sokal E, Cassiman D, Snoeys J, Monshouwer M, Hu WS, Lange C, Carmeliet P, Fendt SM, Verfaillie CM. Amino acid levels determine metabolism and CYP450 function of hepatocytes and hepatoma cell lines. Nat Commun 2020; 11:1393. [PMID: 32170132 PMCID: PMC7069944 DOI: 10.1038/s41467-020-15058-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022] Open
Abstract
Predicting drug-induced liver injury in a preclinical setting remains challenging, as cultured primary human hepatocytes (PHHs), pluripotent stem cell-derived hepatocyte-like cells (HLCs), and hepatoma cells exhibit poor drug biotransformation capacity. We here demonstrate that hepatic functionality depends more on cellular metabolism and extracellular nutrients than on developmental regulators. Specifically, we demonstrate that increasing extracellular amino acids beyond the nutritional need of HLCs and HepG2 cells induces glucose independence, mitochondrial function, and the acquisition of a transcriptional profile that is closer to PHHs. Moreover, we show that these high levels of amino acids are sufficient to drive HLC and HepG2 drug biotransformation and liver-toxin sensitivity to levels similar to those in PHHs. In conclusion, we provide data indicating that extracellular nutrient levels represent a major determinant of cellular maturity and can be utilized to guide stem cell differentiation to the hepatic lineage.
Collapse
Affiliation(s)
- Ruben Boon
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium.
| | - Manoj Kumar
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Tine Tricot
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Ilaria Elia
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Laura Ordovas
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón Institute of Engineering Research, IIS Aragón University of Zaragoza, Aragon I + D Foundation (ARAID), Zaragoza, Spain
| | - Frank Jacobs
- Janssen Research and Development, Beerse, Belgium
| | - Jennifer One
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jonathan De Smedt
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center of Cancer Biology, VIB, Leuven, Belgium
| | - Matthew Bird
- Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Philip Roelandt
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
- Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
- Translational Research in GastroIntestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim Vriens
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Marta Aguirre Vazquez
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Thomas Vanwelden
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - François Chesnais
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Adil El Taghdouini
- Laboratory of Pediatric Hepatology and Cell Therapy, Universit Catholique de Louvain & Cliniques Universitaires St Luc, Institut de Recherche Clinique et Expérimentale (IREC), Brussels, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Universit Catholique de Louvain & Cliniques Universitaires St Luc, Institut de Recherche Clinique et Expérimentale (IREC), Brussels, Belgium
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Universit Catholique de Louvain & Cliniques Universitaires St Luc, Institut de Recherche Clinique et Expérimentale (IREC), Brussels, Belgium
| | - David Cassiman
- Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Jan Snoeys
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Mario Monshouwer
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Christian Lange
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center of Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center of Cancer Biology, VIB, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Tricot T, De Boeck J, Verfaillie C. Alternative Cell Sources for Liver Parenchyma Repopulation: Where Do We Stand? Cells 2020; 9:E566. [PMID: 32121068 PMCID: PMC7140465 DOI: 10.3390/cells9030566] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/28/2022] Open
Abstract
Acute and chronic liver failure is a highly prevalent medical condition with high morbidity and mortality. Currently, the therapy is orthotopic liver transplantation. However, in some instances, chiefly in the setting of metabolic diseases, transplantation of individual cells, specifically functional hepatocytes, can be an acceptable alternative. The gold standard for this therapy is the use of primary human hepatocytes, isolated from livers that are not suitable for whole organ transplantations. Unfortunately, primary human hepatocytes are scarcely available, which has led to the evaluation of alternative sources of functional hepatocytes. In this review, we will compare the ability of most of these candidate alternative cell sources to engraft and repopulate the liver of preclinical animal models with the repopulation ability found with primary human hepatocytes. We will discuss the current shortcomings of the different cell types, and some of the next steps that we believe need to be taken to create alternative hepatocyte progeny capable of regenerating the failing liver.
Collapse
|
22
|
Holmgren G, Ulfenborg B, Asplund A, Toet K, Andersson CX, Hammarstedt A, Hanemaaijer R, Küppers-Munther B, Synnergren J. Characterization of Human Induced Pluripotent Stem Cell-Derived Hepatocytes with Mature Features and Potential for Modeling Metabolic Diseases. Int J Mol Sci 2020; 21:ijms21020469. [PMID: 31940797 PMCID: PMC7014160 DOI: 10.3390/ijms21020469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/17/2023] Open
Abstract
There is a strong anticipated future for human induced pluripotent stem cell-derived hepatocytes (hiPS-HEP), but so far, their use has been limited due to insufficient functionality. We investigated the potential of hiPS-HEP as an in vitro model for metabolic diseases by combining transcriptomics with multiple functional assays. The transcriptomics analysis revealed that 86% of the genes were expressed at similar levels in hiPS-HEP as in human primary hepatocytes (hphep). Adult characteristics of the hiPS-HEP were confirmed by the presence of important hepatocyte features, e.g., Albumin secretion and expression of major drug metabolizing genes. Normal energy metabolism is crucial for modeling metabolic diseases, and both transcriptomics data and functional assays showed that hiPS-HEP were similar to hphep regarding uptake of glucose, low-density lipoproteins (LDL), and fatty acids. Importantly, the inflammatory state of the hiPS-HEP was low under standard conditions, but in response to lipid accumulation and ER stress the inflammation marker tumor necrosis factor α (TNFα) was upregulated. Furthermore, hiPS-HEP could be co-cultured with primary hepatic stellate cells both in 2D and in 3D spheroids, paving the way for using these co-cultures for modeling non-alcoholic steatohepatitis (NASH). Taken together, hiPS-HEP have the potential to serve as an in vitro model for metabolic diseases. Furthermore, differently expressed genes identified in this study can serve as targets for future improvements of the hiPS-HEP.
Collapse
Affiliation(s)
- Gustav Holmgren
- Systems biology research center, School of Bioscience, University of Skövde, 54128 Skövde, Sweden; (G.H.); (J.S.)
| | - Benjamin Ulfenborg
- Systems biology research center, School of Bioscience, University of Skövde, 54128 Skövde, Sweden; (G.H.); (J.S.)
- Correspondence: (B.U.); (B.K.-M.)
| | - Annika Asplund
- R&D, Hepatocyte Product Development, Takara Bio Europe AB, 41346 Gothenburg, Sweden; (A.A.)
| | - Karin Toet
- Department of Metabolic Health Research, TNO, 2333 Leiden, The Netherlands; (K.T.); (R.H.)
| | - Christian X Andersson
- R&D, Hepatocyte Product Development, Takara Bio Europe AB, 41346 Gothenburg, Sweden; (A.A.)
| | - Ann Hammarstedt
- The Lundberg Laboratory for Diabetes Research, Departments of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden;
| | - Roeland Hanemaaijer
- Department of Metabolic Health Research, TNO, 2333 Leiden, The Netherlands; (K.T.); (R.H.)
| | - Barbara Küppers-Munther
- R&D, Hepatocyte Product Development, Takara Bio Europe AB, 41346 Gothenburg, Sweden; (A.A.)
- Correspondence: (B.U.); (B.K.-M.)
| | - Jane Synnergren
- Systems biology research center, School of Bioscience, University of Skövde, 54128 Skövde, Sweden; (G.H.); (J.S.)
| |
Collapse
|
23
|
Ikemura K, Hiramatsu SI, Shinogi Y, Nakatani Y, Tawara I, Iwamoto T, Katayama N, Okuda M. Concomitant febuxostat enhances methotrexate-induced hepatotoxicity by inhibiting breast cancer resistance protein. Sci Rep 2019; 9:20359. [PMID: 31889141 PMCID: PMC6937279 DOI: 10.1038/s41598-019-56900-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023] Open
Abstract
Methotrexate (MTX) is an antifolate agent used for the treatment of various malignancies and is eliminated by breast cancer resistance protein (BCRP). Because febuxostat (FBX) is known to inhibit BCRP activity, FBX might exacerbate MTX-related adverse effects. In this study, we examined the drug-drug interaction between FBX and MTX in BCRP-expressing membrane vesicles. Moreover, we retrospectively investigated the impact of FBX on MTX-related adverse effects in 38 patients (144 cycles) receiving high-dose MTX therapy (HDMTX). The Food and Drug Administration Adverse Event Reporting System (FAERS) database and human hepatocellular carcinoma cell line HepG2 cells were used to evaluate the effects of FBX on MTX-induced hepatotoxicity. In the membrane vesicle study, FBX significantly inhibited BCRP-mediated transport of MTX. Concomitant FBX significantly increased the incidence of hepatotoxicity, but not of nephrotoxicity and hematological toxicity in patients receiving HDMTX. FAERS database analyses revealed that the reporting odds ratio of FBX for MTX-induced hepatotoxicity was 4.16 (95% CI: 2.89-5.98). Co-incubated FBX significantly decreased the cell viability and increased cytotoxicity in MTX-treated HepG2 cells. These findings suggest that concomitant FBX enhances MTX-induced hepatotoxicity by inhibiting hepatic BCRP. These findings provide important information for the safe management of HDMTX therapy in clinical settings.
Collapse
Affiliation(s)
- Kenji Ikemura
- Department of Pharmacy, Mie University Hospital, Tsu, Mie, 514-8507, Japan.
| | - Shun-Ichi Hiramatsu
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Yuri Shinogi
- Department of Pharmacy, Mie University Hospital, Tsu, Mie, 514-8507, Japan
| | - Yusuke Nakatani
- Department of Pharmacy, Mie University Hospital, Tsu, Mie, 514-8507, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Takuya Iwamoto
- Department of Pharmacy, Mie University Hospital, Tsu, Mie, 514-8507, Japan.,Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Masahiro Okuda
- Department of Pharmacy, Osaka University Hospital, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
24
|
Advances in Human Induced Pluripotent Stem Cell-Derived Hepatocytes for Use in Toxicity Testing. Ann Biomed Eng 2019; 48:1045-1057. [PMID: 31372857 DOI: 10.1007/s10439-019-02331-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated into multiple cell types in the body while maintaining proliferative capabilities. The generation of hepatocyte-like cells (HLCs) from iPSCs has resulted in a new source for liver cells. Since healthy primary human hepatocytes and hepatic cells are difficult to obtain, HLCs are gaining attention. HLCs can be obtained from a continuous, stable source while maintaining their original donor genotype, which opens new avenues into patient-specific testing and therapeutics. Studies have utilized HLCs for toxicity testing to further understand their drug metabolizing capabilities. This review focuses on advances being made to achieve hepatic functions from HLCs, their current use in hepatotoxicity testing, and their potential for future liver-related toxicity evaluations.
Collapse
|
25
|
Aleo MD, Ukairo O, Moore A, Irrechukwu O, Potter DM, Schneider RP. Liver safety evaluation of endothelin receptor antagonists using HepatoPac
®
: A single model impact assessment on hepatocellular health, function and bile acid disposition. J Appl Toxicol 2019; 39:1192-1207. [DOI: 10.1002/jat.3805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Michael D. Aleo
- Drug Safety Research and Development, Worldwide Research & DevelopmentPfizer Inc. Groton Connecticut
| | | | - Amanda Moore
- BioIVT, formerly Hepregen Corporation Medford Massachusetts
| | | | - David M. Potter
- Drug Safety Research and Development, Worldwide Research & DevelopmentPfizer Inc. Groton Connecticut
| | - Richard P. Schneider
- Pharmacokinetics, Dynamics and Metabolism, Worldwide Research & DevelopmentPfizer Inc. Groton Connecticut
| |
Collapse
|
26
|
Natale A, Vanmol K, Arslan A, Van Vlierberghe S, Dubruel P, Van Erps J, Thienpont H, Buzgo M, Boeckmans J, De Kock J, Vanhaecke T, Rogiers V, Rodrigues RM. Technological advancements for the development of stem cell-based models for hepatotoxicity testing. Arch Toxicol 2019; 93:1789-1805. [PMID: 31037322 DOI: 10.1007/s00204-019-02465-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Stem cells are characterized by their self-renewal capacity and their ability to differentiate into multiple cell types of the human body. Using directed differentiation strategies, stem cells can now be converted into hepatocyte-like cells (HLCs) and therefore, represent a unique cell source for toxicological applications in vitro. However, the acquired hepatic functionality of stem cell-derived HLCs is still significantly inferior to primary human hepatocytes. One of the main reasons for this is that most in vitro models use traditional two-dimensional (2D) setups where the flat substrata cannot properly mimic the physiology of the human liver. Therefore, 2D-setups are progressively being replaced by more advanced culture systems, which attempt to replicate the natural liver microenvironment, in which stem cells can better differentiate towards HLCs. This review highlights the most recent cell culture systems, including scaffold-free and scaffold-based three-dimensional (3D) technologies and microfluidics that can be employed for culture and hepatic differentiation of stem cells intended for hepatotoxicity testing. These methodologies have shown to improve in vitro liver cell functionality according to the in vivo liver physiology and allow to establish stem cell-based hepatic in vitro platforms for the accurate evaluation of xenobiotics.
Collapse
Affiliation(s)
- Alessandra Natale
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Koen Vanmol
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Aysu Arslan
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Jürgen Van Erps
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | | | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
27
|
Viiri LE, Rantapero T, Kiamehr M, Alexanova A, Oittinen M, Viiri K, Niskanen H, Nykter M, Kaikkonen MU, Aalto-Setälä K. Extensive reprogramming of the nascent transcriptome during iPSC to hepatocyte differentiation. Sci Rep 2019; 9:3562. [PMID: 30837492 PMCID: PMC6401154 DOI: 10.1038/s41598-019-39215-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocyte-like cells (HLCs) derived from induced pluripotent stem cells (iPSCs) provide a renewable source of cells for drug discovery, disease modelling and cell-based therapies. Here, by using GRO-Seq we provide the first genome-wide analysis of the nascent RNAs in iPSCs, HLCs and primary hepatocytes to extend our understanding of the transcriptional changes occurring during hepatic differentiation process. We demonstrate that a large fraction of hepatocyte-specific genes are regulated at transcriptional level and identify hundreds of differentially expressed non-coding RNAs (ncRNAs), including primary miRNAs (pri-miRNAs) and long non-coding RNAs (lncRNAs). Differentiation induced alternative transcription start site (TSS) usage between the cell types as evidenced for miR-221/222 and miR-3613/15a/16-1 clusters. We demonstrate that lncRNAs and coding genes are tightly co-expressed and could thus be co-regulated. Finally, we identified sets of transcriptional regulators that might drive transcriptional changes during hepatocyte differentiation. These included RARG, E2F1, SP1 and FOXH1, which were associated with the down-regulated transcripts, and hepatocyte-specific TFs such as FOXA1, FOXA2, HNF1B, HNF4A and CEBPA, as well as RXR, PPAR, AP-1, JUNB, JUND and BATF, which were associated with up-regulated transcripts. In summary, this study clarifies the role of regulatory ncRNAs and TFs in differentiation of HLCs from iPSCs.
Collapse
Affiliation(s)
- Leena E Viiri
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland.
| | - Tommi Rantapero
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Mostafa Kiamehr
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Anna Alexanova
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Mikko Oittinen
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Keijo Viiri
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Katriina Aalto-Setälä
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
- Heart Center, Tampere University Hospital, Tampere, 33520, Finland
| |
Collapse
|
28
|
Donato MT, Tolosa L. Stem-cell derived hepatocyte-like cells for the assessment of drug-induced liver injury. Differentiation 2019; 106:15-22. [PMID: 30844688 DOI: 10.1016/j.diff.2019.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Abstract
Drug-induced liver injury is a major cause of drug discovery failure in clinical trials and a leading cause of liver disease. Current preclinical drug testing does not predict hepatotoxicity which highlights the importance of developing highly predictive cell-based models. The use of stem cell technology and differentiation into hepatocyte-like cells (HLCs) could provide a stable source of hepatocytes for multiple applications, including drug screening. HLCs derived from both embryonic and induced pluripotent stem cells have been used to accurately predict hepatotoxicity as well as to test individual-specific toxicity. Although there are still many limitations, mainly related to the lack of fully maturity of the HLCs derived from pluripotent stem cells, they could provide a relative unlimited and consistent supply of cells with stable phenotype, that could be obtained from different donors, enabling the generation of a library of HLCs representative of the variability of human population.
Collapse
Affiliation(s)
- M Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, Valencia, 46010, Spain.
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| |
Collapse
|
29
|
Kammerer S, Küpper JH. Human hepatocyte systems for in vitro toxicology analysis. ACTA ACUST UNITED AC 2018. [DOI: 10.3233/jcb-179012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sarah Kammerer
- Institute of Biotechnology, Brandenburg University of Technology, Cottbus-Senftenberg, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology, Cottbus-Senftenberg, Germany
| |
Collapse
|
30
|
Kvist AJ, Kanebratt KP, Walentinsson A, Palmgren H, O'Hara M, Björkbom A, Andersson LC, Ahlqvist M, Andersson TB. Critical differences in drug metabolic properties of human hepatic cellular models, including primary human hepatocytes, stem cell derived hepatocytes, and hepatoma cell lines. Biochem Pharmacol 2018; 155:124-140. [PMID: 29953844 DOI: 10.1016/j.bcp.2018.06.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Abstract
Primary human hepatocytes (PHH), HepaRG™, HepG2, and two sources of induced pluripotent stem cell (iPSC) derived hepatocytes were characterized regarding gene expression and function of key hepatic proteins, important for the metabolic fate of drugs. The gene expression PCA analysis showed a distance between the two iPSC derived hepatocytes as well as the HepG2 and HepaRG™ cells to the three PHH donors and PHH pool, which were clustered more closely together. Correlation-based hierarchical analysis clustered HepG2 close to the stem cell derived hepatocytes both when the expression of 91 genes related to liver function or only cytochrome P450 (P450) genes were analyzed indicating the non-liver feature and a similar low P450 profile in these cell models. The specific P450 activities and the metabolic pattern of well-characterized drug substances in the cell models demonstrated that iPSC derived hepatocytes had modest levels of CYP3A and CYP2C9, while CYP1A2, 2B6, 2C8, 2C9, 2C19, and 2D6 were barely detectable. High expression of several extrahepatic P450s such as CYP1A1 and 1B1 detected in the stem cell derived hepatocytes may have significant effects on metabolite profiles. However, one of the iPSC derived hepatocytes demonstrated significant combined P450 and conjugating enzyme activity of certain drugs. HepaRG™ cells showed many metabolic properties similar to PHHs and will in many respects be a good model in studies of metabolic pathways and induction of drug metabolism whereas there is still ground to cover before iPSC derived hepatocytes will be seen as a substitute to PHH in drug metabolism studies.
Collapse
Affiliation(s)
- Alexander J Kvist
- IMED Operations Project Management, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| | - Kajsa P Kanebratt
- Drug Metabolism and Pharmacokinetics, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anna Walentinsson
- Translational Sciences, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Henrik Palmgren
- Bioscience Diabetes, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | - Anders Björkbom
- Drug Metabolism and Pharmacokinetics, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Linda C Andersson
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marie Ahlqvist
- Drug Metabolism and Pharmacokinetics, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Tommy B Andersson
- Drug Metabolism and Pharmacokinetics, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Lahlou H, Lopez-Juarez A, Fontbonne A, Nivet E, Zine A. Modeling human early otic sensory cell development with induced pluripotent stem cells. PLoS One 2018; 13:e0198954. [PMID: 29902227 PMCID: PMC6002076 DOI: 10.1371/journal.pone.0198954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/24/2018] [Indexed: 11/18/2022] Open
Abstract
The inner ear represents a promising system to develop cell-based therapies from human induced pluripotent stem cells (hiPSCs). In the developing ear, Notch signaling plays multiple roles in otic region specification and for cell fate determination. Optimizing hiPSC induction for the generation of appropriate numbers of otic progenitors and derivatives, such as hair cells, may provide an unlimited supply of cells for research and cell-based therapy. In this study, we used monolayer cultures, otic-inducing agents, Notch modulation, and marker expression to track early and otic sensory lineages during hiPSC differentiation. Otic/placodal progenitors were derived from hiPSC cultures in medium supplemented with FGF3/FGF10 for 13 days. These progenitor cells were then treated for 7 days with retinoic acid (RA) and epidermal growth factor (EGF) or a Notch inhibitor. The differentiated cultures were analyzed in parallel by qPCR and immunocytochemistry. After the 13 day induction, hiPSC-derived cells displayed an upregulated expression of a panel of otic/placodal markers. Strikingly, a subset of these induced progenitor cells displayed key-otic sensory markers, the percentage of which was increased in cultures under Notch inhibition as compared to RA/EGF-treated cultures. Our results show that modulating Notch pathway during in vitro differentiation of hiPSC-derived otic/placodal progenitors is a valuable strategy to promote the expression of human otic sensory lineage genes.
Collapse
Affiliation(s)
- Hanae Lahlou
- Aix Marseille Université, CNRS, LNIA UMR 7260, Marseille, France
| | | | - Arnaud Fontbonne
- Aix Marseille Université, CNRS, LNIA UMR 7260, Marseille, France
| | - Emmanuel Nivet
- Aix Marseille Université, CNRS, NICN UMR 7259, Marseille, France
| | - Azel Zine
- Aix Marseille Université, CNRS, LNIA UMR 7260, Marseille, France
- Université de Montpellier, Faculté de Pharmacie, Montpellier, France
- * E-mail: ,
| |
Collapse
|
32
|
Sambathkumar R, Akkerman R, Dastidar S, Roelandt P, Kumar M, Bajaj M, Mestre Rosa AR, Helsen N, Vanslembrouck V, Kalo E, Khurana S, Laureys J, Gysemans C, Faas MM, de Vos P, Verfaillie CM. Generation of hepatocyte- and endocrine pancreatic-like cells from human induced endodermal progenitor cells. PLoS One 2018; 13:e0197046. [PMID: 29750821 PMCID: PMC5947914 DOI: 10.1371/journal.pone.0197046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/25/2018] [Indexed: 01/27/2023] Open
Abstract
Multipotent Adult Progenitor Cells (MAPCs) are one potential stem cell source to generate functional hepatocytes or β-cells. However, human MAPCs have less plasticity than pluripotent stem cells (PSCs), as their ability to generate endodermal cells is not robust. Here we studied the role of 14 transcription factors (TFs) in reprogramming MAPCs to induced endodermal progenitor cells (iENDO cells), defined as cells that can be long-term expanded and differentiated to both hepatocyte- and endocrine pancreatic-like cells. We demonstrated that 14 TF-iENDO cells can be expanded for at least 20 passages, differentiate spontaneously to hepatocyte-, endocrine pancreatic-, gut tube-like cells as well as endodermal tumor formation when grafted in immunodeficient mice. Furthermore, iENDO cells can be differentiated in vitro into hepatocyte- and endocrine pancreatic-like cells. However, the pluripotency TF OCT4, which is not silenced in iENDO cells, may contribute to the incomplete differentiation to mature cells in vitro and to endodermal tumor formation in vivo. Nevertheless, the studies presented here provide evidence that reprogramming of adult stem cells to an endodermal intermediate progenitor, which can be expanded and differentiate to multiple endodermal cell types, might be a valid alternative for the use of PSCs for creation of endodermal cell types.
Collapse
Affiliation(s)
- Rangarajan Sambathkumar
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
- * E-mail: (CMV); (RS)
| | - Renate Akkerman
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
- University of Groningen, University Medical Center Groningen (UMCG), Pathology and Medical Biology, Division of Medical Biology, Section Immunoendocrinology, Groningen, The Netherlands
| | - Sumitava Dastidar
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Philip Roelandt
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Manoj Kumar
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Manmohan Bajaj
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Ana Rita Mestre Rosa
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Nicky Helsen
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Veerle Vanslembrouck
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Eric Kalo
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Jos Laureys
- KU Leuven, Department of Clinical and Experimental Medicine, Clinical and Experimental Endocrinology unit, Leuven, Belgium
| | - Conny Gysemans
- KU Leuven, Department of Clinical and Experimental Medicine, Clinical and Experimental Endocrinology unit, Leuven, Belgium
| | - Marijke M. Faas
- University of Groningen, University Medical Center Groningen (UMCG), Pathology and Medical Biology, Division of Medical Biology, Section Immunoendocrinology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen (UMCG), Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Paul de Vos
- University of Groningen, University Medical Center Groningen (UMCG), Pathology and Medical Biology, Division of Medical Biology, Section Immunoendocrinology, Groningen, The Netherlands
| | - Catherine M. Verfaillie
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
- * E-mail: (CMV); (RS)
| |
Collapse
|
33
|
Starokozhko V, Hemmingsen M, Larsen L, Mohanty S, Merema M, Pimentel RC, Wolff A, Emnéus J, Aspegren A, Groothuis G, Dufva M. Differentiation of human-induced pluripotent stem cell under flow conditions to mature hepatocytes for liver tissue engineering. J Tissue Eng Regen Med 2018; 12:1273-1284. [PMID: 29499107 PMCID: PMC5969064 DOI: 10.1002/term.2659] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 01/30/2018] [Accepted: 02/17/2018] [Indexed: 12/27/2022]
Abstract
Hepatic differentiation of human-induced pluripotent stem cells (hiPSCs) under flow conditions in a 3D scaffold is expected to be a major step forward for construction of bioartificial livers. The aims of this study were to induce hepatic differentiation of hiPSCs under perfusion conditions and to perform functional comparisons with fresh human precision-cut liver slices (hPCLS), an excellent benchmark for the human liver in vivo. The majority of the mRNA expression of CYP isoenzymes and transporters and the tested CYP activities, Phase II metabolism, and albumin, urea, and bile acid synthesis in the hiPSC-derived cells reached values that overlap those of hPCLS, which indicates a higher degree of hepatic differentiation than observed until now. Differentiation under flow compared with static conditions had a strong inducing effect on Phase II metabolism and suppressed AFP expression but resulted in slightly lower activity of some of the Phase I metabolism enzymes. Gene expression data indicate that hiPSCs differentiated into both hepatic and biliary directions. In conclusion, the hiPSC differentiated under flow conditions towards hepatocytes express a wide spectrum of liver functions at levels comparable with hPCLS indicating excellent future perspectives for the development of a bioartificial liver system for toxicity testing or as liver support device for patients.
Collapse
Affiliation(s)
- Viktoriia Starokozhko
- Groningen Research Institute for PharmacyUniversity of GroningenGroningenThe Netherlands
| | - Mette Hemmingsen
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| | - Layla Larsen
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| | | | - Marjolijn Merema
- Groningen Research Institute for PharmacyUniversity of GroningenGroningenThe Netherlands
| | - Rodrigo C. Pimentel
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| | - Anders Wolff
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| | - Jenny Emnéus
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| | | | - Geny Groothuis
- Groningen Research Institute for PharmacyUniversity of GroningenGroningenThe Netherlands
| | - Martin Dufva
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| |
Collapse
|
34
|
Adipose tissue stem cell-derived hepatic progenies as an in vitro model for genotoxicity testing. Arch Toxicol 2018; 92:1893-1903. [DOI: 10.1007/s00204-018-2190-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/13/2018] [Indexed: 01/16/2023]
|
35
|
Nakamae S, Toba Y, Takayama K, Sakurai F, Mizuguchi H. Nanaomycin A Treatment Promotes Hepatoblast Differentiation from Human iPS Cells. Stem Cells Dev 2018; 27:405-414. [PMID: 29378471 DOI: 10.1089/scd.2017.0251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human induced pluripotent stem cell-derived hepatocyte-like cells (HLCs) are expected to be utilized in pharmaceutical research, including drug screening. However, the hepatocyte functions of the HLCs are still lower than those of human hepatocytes. Therefore, we attempted to improve the hepatocyte differentiation method by modulating the DNA epigenetic status. We first examined the expression profiles of the maintenance DNA methyltransferase (DNMT) 1 and the de novo DNMTs DNMT3A and DNMT3B, all of which are essential for mammalian development. Among these DNMTs, the expression levels of DNMT3B were significantly decreased during the hepatoblast differentiation. To accelerate the hepatoblast differentiation, a DNMT3B-selective inhibitor, nanaomycin A, was treated during the hepatoblast differentiation. The gene expression levels of hepatoblast markers (such as alpha-fetoprotein and hepatocyte nuclear factor 4 alpha) were increased by the nanaomycin A treatment. On the other hand, the gene expression levels of hepatoblast markers were decreased by DNMT3B overexpression. These results suggest that it might be possible to promote the hepatoblast differentiation by DNMT3B inhibition using nanaomycin A. Importantly, we also confirmed that the hepatocyte differentiation potency of nanaomycin A-treated hepatoblast-like cells was higher than that of dimethyl sulfoxide-treated hepatoblast-like cells. Our findings should assist in the future generation of functional HLCs for pharmaceutical research.
Collapse
Affiliation(s)
- Souichiro Nakamae
- 1 Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Yukiko Toba
- 1 Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Kazuo Takayama
- 1 Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan .,2 PRESTO, Japan Science and Technology Agency , Saitama, Japan .,3 Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Fuminori Sakurai
- 1 Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Hiroyuki Mizuguchi
- 1 Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan .,3 Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation , Health and Nutrition, Osaka, Japan .,4 Global Center for Medical Engineering and Informatics, Osaka University , Osaka, Japan
| |
Collapse
|
36
|
Pistoni M, Helsen N, Vanhove J, Boon R, Xu Z, Ordovas L, Verfaillie CM. Dynamic regulation of EZH2 from HPSc to hepatocyte-like cell fate. PLoS One 2017; 12:e0186884. [PMID: 29091973 PMCID: PMC5665677 DOI: 10.1371/journal.pone.0186884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/09/2017] [Indexed: 11/18/2022] Open
Abstract
Currently, drug metabolization and toxicity studies rely on the use of primary human hepatocytes and hepatoma cell lines, which both have conceivable limitations. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) are an alternative and valuable source of hepatocytes that can overcome these limitations. EZH2 (enhancer of zeste homolog 2), a transcriptional repressor of the polycomb repressive complex 2 (PRC2), may play an important role in hepatocyte development, but its role during in vitro hPSC-HLC differentiation has not yet been assessed. We here demonstrate dynamic regulation of EZH2 during hepatic differentiation of hPSC. To enhance EZH2 expression, we inducibly overexpressed EZH2 between d0 and d8, demonstrating a significant improvement in definitive endoderm formation, and improved generation of HLCs. Despite induction of EZH2 overexpression until d8, EZH2 transcript and protein levels decreased from d4 onwards, which might be caused by expression of microRNAs predicted to inhibit EZH2 expression. In conclusion, our studies demonstrate that EZH2 plays a role in endoderm formation and hepatocyte differentiation, but its expression is tightly post-transcriptionally regulated during this process.
Collapse
Affiliation(s)
- Mariaelena Pistoni
- KU Leuven—Department Development and Regeneration, Stem Cell Institute (SCIL), Leuven, Belgium
- * E-mail:
| | - Nicky Helsen
- KU Leuven—Department Development and Regeneration, Stem Cell Institute (SCIL), Leuven, Belgium
| | - Jolien Vanhove
- KU Leuven—Department Development and Regeneration, Stem Cell Institute (SCIL), Leuven, Belgium
| | - Ruben Boon
- KU Leuven—Department Development and Regeneration, Stem Cell Institute (SCIL), Leuven, Belgium
| | - Zhuofei Xu
- KU Leuven—Department Development and Regeneration, Stem Cell Institute (SCIL), Leuven, Belgium
| | - Laura Ordovas
- KU Leuven—Department Development and Regeneration, Stem Cell Institute (SCIL), Leuven, Belgium
| | - Catherine M. Verfaillie
- KU Leuven—Department Development and Regeneration, Stem Cell Institute (SCIL), Leuven, Belgium
| |
Collapse
|
37
|
HLA and Histo-Blood Group Antigen Expression in Human Pluripotent Stem Cells and their Derivatives. Sci Rep 2017; 7:13072. [PMID: 29026098 PMCID: PMC5638960 DOI: 10.1038/s41598-017-12231-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/06/2017] [Indexed: 01/03/2023] Open
Abstract
One prerequisite for a successful clinical outcome of human pluripotent stem cell (hPSC) based therapies is immune compatibility between grafted cells/tissue and recipient. This study explores immune determinants of human embryonic stem cell lines (hESC) and induced human pluripotent stem cell (hiPSC) lines and hepatocyte- and cardiomyocyte-like cells derived from these cells. HLA class I was expressed on all pluripotent hPSC lines which upon differentiation into hepatocyte-like cells was considerably reduced in contrast to cardiomyocyte-like cells which retained class I antigens. No HLA class II antigens were found in the pluripotent or differentiated cells. Histo-blood group carbohydrate antigens SSEA-3/SSEA-4/SSEA-5, Globo H, A, Lex/Ley and sialyl-lactotetra were expressed on all hPSC lines. Blood group AB(O)H antigen expression was in accordance with ABO genotype. Interestingly, only a subpopulation of A1O1 cells expressed A. During differentiation of hPSC, some histo-blood group antigens showed congruent alteration patterns while expression of other antigens differed between the cell lines. No systematic difference in the hPSC cell surface tissue antigen expression was detected. In conclusion, hPSC and their derivatives express cell surface antigens that may cause an immune rejection. Furthermore, tissue antigen expression must be established for each individual stem cell line prior to clinical application.
Collapse
|
38
|
Ghosheh N, Küppers-Munther B, Asplund A, Edsbagge J, Ulfenborg B, Andersson TB, Björquist P, Andersson CX, Carén H, Simonsson S, Sartipy P, Synnergren J. Comparative transcriptomics of hepatic differentiation of human pluripotent stem cells and adult human liver tissue. Physiol Genomics 2017; 49:430-446. [DOI: 10.1152/physiolgenomics.00007.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/26/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatocytes derived from human pluripotent stem cells (hPSC-HEP) have the potential to replace presently used hepatocyte sources applied in liver disease treatment and models of drug discovery and development. Established hepatocyte differentiation protocols are effective and generate hepatocytes, which recapitulate some key features of their in vivo counterparts. However, generating mature hPSC-HEP remains a challenge. In this study, we applied transcriptomics to investigate the progress of in vitro hepatic differentiation of hPSCs at the developmental stages, definitive endoderm, hepatoblasts, early hPSC-HEP, and mature hPSC-HEP, to identify functional targets that enhance efficient hepatocyte differentiation. Using functional annotation, pathway and protein interaction network analyses, we observed the grouping of differentially expressed genes in specific clusters representing typical developmental stages of hepatic differentiation. In addition, we identified hub proteins and modules that were involved in the cell cycle process at early differentiation stages. We also identified hub proteins that differed in expression levels between hPSC-HEP and the liver tissue controls. Moreover, we identified a module of genes that were expressed at higher levels in the liver tissue samples than in the hPSC-HEP. Considering that hub proteins and modules generally are essential and have important roles in the protein-protein interactions, further investigation of these genes and their regulators may contribute to a better understanding of the differentiation process. This may suggest novel target pathways and molecules for improvement of hPSC-HEP functionality, having the potential to finally bring this technology to a wider use.
Collapse
Affiliation(s)
- Nidal Ghosheh
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde, Sweden
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | - Benjamin Ulfenborg
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde, Sweden
| | - Tommy B. Andersson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Helena Carén
- Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; and
| | - Stina Simonsson
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Sartipy
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde, Sweden
- AstraZeneca Research and Development, Global Medicines Development Cardiovascular and Metabolic Diseases Global Medicines Development Unit, Mölndal, Sweden
| | - Jane Synnergren
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde, Sweden
| |
Collapse
|
39
|
Andersson TB. Evolution of Novel 3D Culture Systems for Studies of Human Liver Function and Assessments of the Hepatotoxicity of Drugs and Drug Candidates. Basic Clin Pharmacol Toxicol 2017; 121:234-238. [PMID: 28470941 DOI: 10.1111/bcpt.12804] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/25/2017] [Indexed: 12/23/2022]
Abstract
The pharmaceutical industry urgently needs reliable pre-clinical models to evaluate the efficacy and safety of new chemical entities before they enter the clinical trials. Development of in vitro model systems that emulate the functions of the human liver organ has been an elusive task. Cell lines exhibit a low drug-metabolizing capacity and primary liver cells rapidly dedifferentiate in culture, which restrict their usefulness substantially. Recently, the development of hepatocyte spheroid cultures has shown promising results. The proteome and transcriptome in the spheroids were similar to the liver tissue, and hepatotoxicity of selected substances was detected at in vivo-relevant concentrations.
Collapse
Affiliation(s)
- Tommy B Andersson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
40
|
Narmada BC, Goh YT, Li H, Sinha S, Yu H, Cheung C. Human Stem Cell-Derived Endothelial-Hepatic Platform for Efficacy Testing of Vascular-Protective Metabolites from Nutraceuticals. Stem Cells Transl Med 2017; 6:851-863. [PMID: 28297582 PMCID: PMC5442778 DOI: 10.5966/sctm.2016-0129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis underlies many cardiovascular and cerebrovascular diseases. Nutraceuticals are emerging as a therapeutic moiety for restoring vascular health. Unlike small-molecule drugs, the complexity of ingredients in nutraceuticals often confounds evaluation of their efficacy in preclinical evaluation. It is recognized that the liver is a vital organ in processing complex compounds into bioactive metabolites. In this work, we developed a coculture system of human pluripotent stem cell-derived endothelial cells (hPSC-ECs) and human pluripotent stem cell-derived hepatocytes (hPSC-HEPs) for predicting vascular-protective effects of nutraceuticals. To validate our model, two compounds (quercetin and genistein), known to have anti-inflammatory effects on vasculatures, were selected. We found that both quercetin and genistein were ineffective at suppressing inflammatory activation by interleukin-1β owing to limited metabolic activity of hPSC-ECs. Conversely, hPSC-HEPs demonstrated metabolic capacity to break down both nutraceuticals into primary and secondary metabolites. When hPSC-HEPs were cocultured with hPSC-ECs to permit paracrine interactions, the continuous turnover of metabolites mitigated interleukin-1β stimulation on hPSC-ECs. We observed significant reductions in inflammatory gene expressions, nuclear translocation of nuclear factor κB, and interleukin-8 production. Thus, integration of hPSC-HEPs could accurately reproduce systemic effects involved in drug metabolism in vivo to unravel beneficial constituents in nutraceuticals. This physiologically relevant endothelial-hepatic platform would be a great resource in predicting the efficacy of complex nutraceuticals and mechanistic interrogation of vascular-targeting candidate compounds. Stem Cells Translational Medicine 2017;6:851-863.
Collapse
Affiliation(s)
| | - Yeek Teck Goh
- Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Huan Li
- Institute of Bioengineering and Nanotechnology, Nanos, Singapore
| | - Sanjay Sinha
- The Anne McLaren Laboratory of Regenerative Medicine, Wellcome Trust‐Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Division of Cardiovascular Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, Nanos, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Mechanobiology Institute, Singapore
- Singapore‐MIT Alliance for Research and Technology, BioSyM, Singapore
| | - Christine Cheung
- Institute of Molecular and Cell Biology, Proteos, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
41
|
Zakikhan K, Pournasr B, Vosough M, Nassiri-Asl M. In Vitro Generated Hepatocyte-Like Cells: A Novel Tool in Regenerative Medicine and Drug Discovery. CELL JOURNAL 2017; 19:204-217. [PMID: 28670513 PMCID: PMC5412779 DOI: 10.22074/cellj.2016.4362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022]
Abstract
Hepatocyte-like cells (HLCs) are generated from either various human pluripotent stem
cells (hPSCs) including induced pluripotent stem cells (iPSCs) and embryonic stem cells
(ESCs), or direct cell conversion, mesenchymal stem cells as well as other stem cells like
gestational tissues. They provide potential cell sources for biomedical applications. Liver
transplantation is the gold standard treatment for the patients with end stage liver disease,
but there are many obstacles limiting this process, like insufficient number of donated
healthy livers. Meanwhile, the number of patients receiving a liver organ transplant for
a better life is increasing. In this regard, HLCs may provide an adequate cell source to
overcome these shortages. New molecular engineering approaches such as CRISPR/
Cas system applying in iPSCs technology provide the basic principles of gene correction
for monogenic inherited metabolic liver diseases, as another application of HLCs. It has
been shown that HLCs could replace primary human hepatocytes in drug discovery and
hepatotoxicity tests. However, generation of fully functional HLCs is still a big challenge;
several research groups have been trying to improve current differentiation protocols to
achieve better HLCs according to morphology and function of cells. Large-scale generation
of functional HLCs in bioreactors could make a new opportunity in producing enough
hepatocytes for treating end-stage liver patients as well as other biomedical applications
such as drug studies. In this review, regarding the biomedical value of HLCs, we focus
on the current and efficient approaches for generating hepatocyte-like cells in vitro and
discuss about their applications in regenerative medicine and drug discovery.
Collapse
Affiliation(s)
- Kobra Zakikhan
- Cellular and Molecular Research Center, Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Behshad Pournasr
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.,Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
42
|
Goldring C, Antoine DJ, Bonner F, Crozier J, Denning C, Fontana RJ, Hanley NA, Hay DC, Ingelman-Sundberg M, Juhila S, Kitteringham N, Silva-Lima B, Norris A, Pridgeon C, Ross JA, Sison Young R, Tagle D, Tornesi B, van de Water B, Weaver RJ, Zhang F, Park BK. Stem cell-derived models to improve mechanistic understanding and prediction of human drug-induced liver injury. Hepatology 2017; 65:710-721. [PMID: 27775817 PMCID: PMC5266558 DOI: 10.1002/hep.28886] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/01/2016] [Indexed: 01/12/2023]
Abstract
Current preclinical drug testing does not predict some forms of adverse drug reactions in humans. Efforts at improving predictability of drug-induced tissue injury in humans include using stem cell technology to generate human cells for screening for adverse effects of drugs in humans. The advent of induced pluripotent stem cells means that it may ultimately be possible to develop personalized toxicology to determine interindividual susceptibility to adverse drug reactions. However, the complexity of idiosyncratic drug-induced liver injury means that no current single-cell model, whether of primary liver tissue origin, from liver cell lines, or derived from stem cells, adequately emulates what is believed to occur during human drug-induced liver injury. Nevertheless, a single-cell model of a human hepatocyte which emulates key features of a hepatocyte is likely to be valuable in assessing potential chemical risk; furthermore, understanding how to generate a relevant hepatocyte will also be critical to efforts to build complex multicellular models of the liver. Currently, hepatocyte-like cells differentiated from stem cells still fall short of recapitulating the full mature hepatocellular phenotype. Therefore, we convened a number of experts from the areas of preclinical and clinical hepatotoxicity and safety assessment, from industry, academia, and regulatory bodies, to specifically explore the application of stem cells in hepatotoxicity safety assessment and to make recommendations for the way forward. In this short review, we particularly discuss the importance of benchmarking stem cell-derived hepatocyte-like cells to their terminally differentiated human counterparts using defined phenotyping, to make sure the cells are relevant and comparable between labs, and outline why this process is essential before the cells are introduced into chemical safety assessment. (Hepatology 2017;65:710-721).
Collapse
Affiliation(s)
- Christopher Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Daniel J. Antoine
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | | | - Jonathan Crozier
- European Partnership for Alternative Approaches to Animal Testing (EPAA), Brussels, Belgium
| | - Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Robert J. Fontana
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Neil A. Hanley
- Centre for Endocrinology & Diabetes, University of Manchester; Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre Manchester, UK
| | - David C. Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, UK
| | | | - Satu Juhila
- R&D, In Vitro Biology, Orion Pharma, Espoo, Finland
| | - Neil Kitteringham
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | | | - Alan Norris
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Chris Pridgeon
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - James A. Ross
- MRC Centre for Regenerative Medicine, University of Edinburgh, UK
| | - Rowena Sison Young
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Danilo Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Belen Tornesi
- Abbvie Global Pharmaceutical Research and Development, North Chicago, IL, USA
| | - Bob van de Water
- Faculty of Science, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, University of Leiden, Netherlands
| | - Richard J. Weaver
- Institut de Recherches Internationales Servier (I.R.I.S), Suresnes, 92284, Cedex France
| | - Fang Zhang
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - B. Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
43
|
Abecasis B, Aguiar T, Arnault É, Costa R, Gomes-Alves P, Aspegren A, Serra M, Alves PM. Expansion of 3D human induced pluripotent stem cell aggregates in bioreactors: Bioprocess intensification and scaling-up approaches. J Biotechnol 2017; 246:81-93. [PMID: 28131858 DOI: 10.1016/j.jbiotec.2017.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/15/2022]
Abstract
Human induced pluripotent stem cells (hiPSC) are attractive tools for drug screening and disease modeling and promising candidates for cell therapy applications. However, to achieve the high numbers of cells required for these purposes, scalable and clinical-grade technologies must be established. In this study, we use environmentally controlled stirred-tank bioreactors operating in perfusion as a powerful tool for bioprocess intensification of hiPSC production. We demonstrate the importance of controlling the dissolved oxygen concentration at low levels (4%) and perfusion at 1.3day-1 dilution rate to improve hiPSC growth as aggregates in a xeno-free medium. This strategy allowed for increased cell specific growth rate, maximum volumetric concentrations (4.7×106cell/mL) and expansion factors (approximately 19 in total cells), resulting in a 2.6-fold overall improvement in cell yields. Extensive cell characterization, including whole proteomic analysis, was performed to confirm that cells' pluripotent phenotype was maintained during culture. A scalable protocol for continuous expansion of hiPSC aggregates in bioreactors was implemented using mechanical dissociation for aggregate disruption and cell passaging. A total expansion factor of 1100 in viable cells was obtained in 11days of culture, while cells maintained their proliferation capacity, pluripotent phenotype and potential as well as genomic stability after 3 sequential passages in bioreactors.
Collapse
Affiliation(s)
- Bernardo Abecasis
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Tiago Aguiar
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Émilie Arnault
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Rita Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Patricia Gomes-Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Anders Aspegren
- Takara Bio Europe AB, Arvid Wallgrens Backe 20, SE-413 46 Gothenburg, Sweden.
| | - Margarida Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
| | - Paula M Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| |
Collapse
|
44
|
Choudhury Y, Toh YC, Xing J, Qu Y, Poh J, Li H, Tan HS, Kanesvaran R, Yu H, Tan MH. Patient-specific hepatocyte-like cells derived from induced pluripotent stem cells model pazopanib-mediated hepatotoxicity. Sci Rep 2017; 7:41238. [PMID: 28120901 PMCID: PMC5264611 DOI: 10.1038/srep41238] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
Idiosyncratic drug-induced hepatotoxicity is a major cause of liver damage and drug pipeline failure, and is difficult to study as patient-specific features are not readily incorporated in traditional hepatotoxicity testing approaches using population pooled cell sources. Here we demonstrate the use of patient-specific hepatocyte-like cells (HLCs) derived from induced pluripotent stem cells for modeling idiosyncratic hepatotoxicity to pazopanib (PZ), a tyrosine kinase inhibitor drug associated with significant hepatotoxicity of unknown mechanistic basis. In vitro cytotoxicity assays confirmed that HLCs from patients with clinically identified hepatotoxicity were more sensitive to PZ-induced toxicity than other individuals, while a prototype hepatotoxin acetaminophen was similarly toxic to all HLCs studied. Transcriptional analyses showed that PZ induces oxidative stress (OS) in HLCs in general, but in HLCs from susceptible individuals, PZ causes relative disruption of iron metabolism and higher burden of OS. Our study establishes the first patient-specific HLC-based platform for idiosyncratic hepatotoxicity testing, incorporating multiple potential causative factors and permitting the correlation of transcriptomic and cellular responses to clinical phenotypes. Establishment of patient-specific HLCs with clinical phenotypes representing population variations will be valuable for pharmaceutical drug testing.
Collapse
Affiliation(s)
- Yukti Choudhury
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore
| | - Yi Chin Toh
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, E4 #04-08, Singapore 117583, Republic of Singapore
| | - Jiangwa Xing
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore
| | - Yinghua Qu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore
| | - Jonathan Poh
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore
| | - Huan Li
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore
| | - Hui Shan Tan
- Division of Medical Oncology, National Cancer Centre, Singapore 169610, Republic of Singapore
| | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Centre, Singapore 169610, Republic of Singapore
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore.,Yong Loo Lin School of Medicine and Mechanobiology Institute, National University of Singapore, Republic of Singapore.,Gastroenterology Department, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Min-Han Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore.,Division of Medical Oncology, National Cancer Centre, Singapore 169610, Republic of Singapore
| |
Collapse
|
45
|
Nicolas CT, Hickey RD, Chen HS, Mao SA, Lopera Higuita M, Wang Y, Nyberg SL. Concise Review: Liver Regenerative Medicine: From Hepatocyte Transplantation to Bioartificial Livers and Bioengineered Grafts. Stem Cells 2017; 35:42-50. [PMID: 27641427 PMCID: PMC5529050 DOI: 10.1002/stem.2500] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/27/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Abstract
Donor organ shortage is the main limitation to liver transplantation as a treatment for end-stage liver disease and acute liver failure. Liver regenerative medicine may in the future offer an alternative form of therapy for these diseases, be it through cell transplantation, bioartificial liver (BAL) devices, or bioengineered whole organ liver transplantation. All three strategies have shown promising results in the past decade. However, before they are incorporated into widespread clinical practice, the ideal cell type for each treatment modality must be found, and an adequate amount of metabolically active, functional cells must be able to be produced. Research is ongoing in hepatocyte expansion techniques, use of xenogeneic cells, and differentiation of stem cell-derived hepatocyte-like cells (HLCs). HLCs are a few steps away from clinical application, but may be very useful in individualized drug development and toxicity testing, as well as disease modeling. Finally, safety concerns including tumorigenicity and xenozoonosis must also be addressed before cell transplantation, BAL devices, and bioengineered livers occupy their clinical niche. This review aims to highlight the most recent advances and provide an updated view of the current state of affairs in the field of liver regenerative medicine. Stem Cells 2017;35:42-50.
Collapse
Affiliation(s)
- Clara T Nicolas
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymond D Hickey
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Harvey S Chen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Shennen A Mao
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Manuela Lopera Higuita
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yujia Wang
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott L Nyberg
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
46
|
One Standardized Differentiation Procedure Robustly Generates Homogenous Hepatocyte Cultures Displaying Metabolic Diversity from a Large Panel of Human Pluripotent Stem Cells. Stem Cell Rev Rep 2016; 12:90-104. [PMID: 26385115 DOI: 10.1007/s12015-015-9621-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human hepatocytes display substantial functional inter-individual variation regarding drug metabolizing functions. In order to investigate if this diversity is mirrored in hepatocytes derived from different human pluripotent stem cell (hPSC) lines, we evaluated 25 hPSC lines originating from 24 different donors for hepatic differentiation and functionality. Homogenous hepatocyte cultures could be derived from all hPSC lines using one standardized differentiation procedure. To the best of our knowledge this is the first report of a standardized hepatic differentiation procedure that is generally applicable across a large panel of hPSC lines without any adaptations to individual lines. Importantly, with regard to functional aspects, such as Cytochrome P450 activities, we observed that hepatocytes derived from different hPSC lines displayed inter-individual variation characteristic for primary hepatocytes obtained from different donors, while these activities were highly reproducible between repeated experiments using the same line. Taken together, these data demonstrate the emerging possibility to compile panels of hPSC-derived hepatocytes of particular phenotypes/genotypes relevant for drug metabolism and toxicity studies. Moreover, these findings are of significance for applications within the regenerative medicine field, since our stringent differentiation procedure allows the derivation of homogenous hepatocyte cultures from multiple donors which is a prerequisite for the realization of future personalized stem cell based therapies.
Collapse
|
47
|
Cipriano M, Correia JC, Camões SP, Oliveira NG, Cruz P, Cruz H, Castro M, Ruas JL, Santos JM, Miranda JP. The role of epigenetic modifiers in extended cultures of functional hepatocyte-like cells derived from human neonatal mesenchymal stem cells. Arch Toxicol 2016; 91:2469-2489. [PMID: 27909741 DOI: 10.1007/s00204-016-1901-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/24/2016] [Indexed: 01/06/2023]
Abstract
The development of predictive in vitro stem cell-derived hepatic models for toxicological drug screening is an increasingly important topic. Herein, umbilical cord tissue-derived mesenchymal stem cells (hnMSCs) underwent hepatic differentiation using an optimized three-step core protocol of 24 days that mimicked liver embryogenesis with further exposure to epigenetic markers, namely the histone deacetylase inhibitor trichostatin A (TSA), the cytidine analogue 5-azacytidine (5-AZA) and dimethyl sulfoxide (DMSO). FGF-2 and FGF-4 were also tested to improve endoderm commitment and foregut induction during Step 1 of the differentiation protocol, being HHEX expression increased with FGF-2 (4 ng/mL). DMSO (1%, v/v) when added at day 10 enhanced cell morphology, glycogen storage ability, enzymatic activity and induction capacity. Moreover, the stability of the hepatic phenotype under the optimized differentiation conditions was examined up to day 34. Our findings showed that hepatocyte-like cells (HLCs) acquired the ability to metabolize glucose, produce albumin and detoxify ammonia. Global transcriptional analysis of the HLCs showed a partial hepatic differentiation degree. Global analysis of gene expression in the different cells revealed shared expression of gene groups between HLCs and human primary hepatocytes (hpHeps) that were not observed between HepG2 and hpHeps. In addition, bioinformatics analysis of gene expression data placed HLCs between the HepG2 cell line and hpHeps and distant from hnMSCs. The enhanced hepatic differentiation observed was supported by the presence of the hepatic drug transporters OATP-C and MRP-2 and gene expression of the hepatic markers CK18, TAT, AFP, ALB, HNF4A and CEBPA; and by their ability to display stable UGT-, EROD-, ECOD-, CYP1A1-, CYP2C9- and CYP3A4-dependent activities at levels either comparable with or even higher than those observed in primary hepatocytes and HepG2 cells. Overall, an improvement of the hepatocyte-like phenotype was achieved for an extended culture time suggesting a role of the epigenetic modifiers in hepatic differentiation and maturation and presenting hnMSC-HLCs as an advantageous alternative for drug discovery and in vitro toxicology testing.
Collapse
Affiliation(s)
- M Cipriano
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - J C Correia
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - S P Camões
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - N G Oliveira
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - P Cruz
- ECBio S.A., Amadora, Portugal
| | - H Cruz
- ECBio S.A., Amadora, Portugal
| | - M Castro
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - J L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - J P Miranda
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
48
|
Vanhove J, Pistoni M, Welters M, Eggermont K, Vanslembrouck V, Helsen N, Boon R, Najimi M, Sokal E, Collas P, Voncken JW, Verfaillie CM. H3K27me3 Does Not Orchestrate the Expression of Lineage-Specific Markers in hESC-Derived Hepatocytes In Vitro. Stem Cell Reports 2016; 7:192-206. [PMID: 27477635 PMCID: PMC4982990 DOI: 10.1016/j.stemcr.2016.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 01/21/2023] Open
Abstract
Although pluripotent stem cells can be differentiated into the hepatocyte lineages, such cells retain an immature phenotype. As the chromatin state of regulatory regions controls spatiotemporal gene expression during development, we evaluated changes in epigenetic histone marks in lineage-specific genes throughout in vitro hepatocyte differentiation from human embryonic stem cells (hESCs). Active acetylation and methylation marks at promoters and enhancers correlated with progressive changes in gene expression. However, repression-associated H3K27me3 marks at these control regions showed an inverse correlation with gene repression during transition from hepatic endoderm to a hepatocyte-like state. Inhibitor of Enhancer of Zeste Homolog 2 (EZH2) reduced H3K27me3 decoration but did not improve hepatocyte maturation. Thus, H3K27me3 at regulatory regions does not regulate transcription and appears dispensable for hepatocyte lineage differentiation of hESCs in vitro. Epigenetic studies to understand hepatocyte differentiation from human PSC Dynamics in histone profile correlate with alterations in gene transcription hESC-derived HLCs have higher H3K27me3 mark at regulatory regions compared with PHHs Reducing H3K27me3 by EZH2 inhibition did not improve hepatocyte differentiation
Collapse
Affiliation(s)
- Jolien Vanhove
- Department Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium.
| | - Mariaelena Pistoni
- Department Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium.
| | - Marc Welters
- Department Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Kristel Eggermont
- Department Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Veerle Vanslembrouck
- Department Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Nicky Helsen
- Department Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Ruben Boon
- Department Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Université Catholique de Louvain, Cliniques St-Luc - Institut de Recherche Expérimentale et Clinique (IREC), Brussels 1200, Belgium
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Université Catholique de Louvain, Cliniques St-Luc - Institut de Recherche Expérimentale et Clinique (IREC), Brussels 1200, Belgium
| | - Philippe Collas
- Faculty of Medicine, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo 0372, Norway
| | - J Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Catherine M Verfaillie
- Department Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
49
|
Gómez-Lechón MJ, Tolosa L. Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening. Arch Toxicol 2016; 90:2049-2061. [PMID: 27325232 DOI: 10.1007/s00204-016-1756-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 06/09/2016] [Indexed: 01/09/2023]
Abstract
Drug-induced liver injury (DILI) is a frequent cause of failure in both clinical and post-approval stages of drug development, and poses a key challenge to the pharmaceutical industry. Current animal models offer poor prediction of human DILI. Although several human cell-based models have been proposed for the detection of human DILI, human primary hepatocytes remain the gold standard for preclinical toxicological screening. However, their use is hindered by their limited availability, variability and phenotypic instability. In contrast, pluripotent stem cells, which include embryonic and induced pluripotent stem cells (iPSCs), proliferate extensively in vitro and can be differentiated into hepatocytes by the addition of soluble factors. This provides a stable source of hepatocytes for multiple applications, including early preclinical hepatotoxicity screening. In addition, iPSCs also have the potential to establish genotype-specific cells from different individuals, which would increase the predictivity of toxicity assays allowing more successful clinical trials. Therefore, the generation of human hepatocyte-like cells derived from pluripotent stem cells seems to be promising for overcoming limitations of hepatocyte preparations, and it is expected to have a substantial repercussion in preclinical hepatotoxicity risk assessment in early drug development stages.
Collapse
Affiliation(s)
- María José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe de Valencia, Torre A, 6ª Planta, Avenida Fernando Abril Martorell 106, 46026, Valencia, Spain.,CIBERehd, FIS, 08036, Barcelona, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe de Valencia, Torre A, 6ª Planta, Avenida Fernando Abril Martorell 106, 46026, Valencia, Spain.
| |
Collapse
|
50
|
Tolosa L, Gómez-Lechón MJ, López S, Guzmán C, Castell JV, Donato MT, Jover R. Human Upcyte Hepatocytes: Characterization of the Hepatic Phenotype and Evaluation for Acute and Long-Term Hepatotoxicity Routine Testing. Toxicol Sci 2016; 152:214-29. [PMID: 27208088 DOI: 10.1093/toxsci/kfw078] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The capacity of human hepatic cell-based models to predict hepatotoxicity depends on the functional performance of cells. The major limitations of human hepatocytes include the scarce availability and rapid loss of the hepatic phenotype. Hepatoma cells are readily available and easy to handle, but are metabolically poor compared with hepatocytes. Recently developed human upcyte hepatocytes offer the advantage of combining many features of primary hepatocytes with the unlimited availability of hepatoma cells. We analyzed the phenotype of upcyte hepatocytes comparatively with HepG2 cells and adult primary human hepatocytes to characterize their functional features as a differentiated hepatic cell model. The transcriptomic analysis of liver characteristic genes confirmed that the upcyte hepatocytes expression profile comes closer to human hepatocytes than HepG2 cells. CYP activities were measurable and showed a similar response to prototypical CYP inducers than primary human hepatocytes. Upcyte hepatocytes also retained conjugating activities and key hepatic functions, e.g. albumin, urea, lipid and glycogen synthesis, at levels close to hepatocytes. We also investigated the suitability of this cell model for preclinical hepatotoxicity risk assessments using multiparametric high-content screening, as well as transcriptomics and targeted metabolomic analysis. Compounds with well-documented in vivo hepatotoxicity were screened after acute and repeated doses up to 1 week. The evaluation of complex mechanisms of cell toxicity, drug-induced steatosis and oxidative stress biomarkers demonstrated that, by combining the phenotype of primary human hepatocytes and the ease of handling of HepG2 cells, upcyte hepatocytes offer suitable properties to be potentially used for toxicological assessments during drug development.
Collapse
Affiliation(s)
- Laia Tolosa
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), Unidad de Hepatología Experimental, Avda. Fernando Abril Martorell, N° 106- Torre A, Valencia, 46026, Spain
| | - M José Gómez-Lechón
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), Unidad de Hepatología Experimental, Avda. Fernando Abril Martorell, N° 106- Torre A, Valencia, 46026, Spain CIBEREHD, Madrid, Spain
| | - Silvia López
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), Unidad de Hepatología Experimental, Avda. Fernando Abril Martorell, N° 106- Torre A, Valencia, 46026, Spain
| | - Carla Guzmán
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), Unidad de Hepatología Experimental, Avda. Fernando Abril Martorell, N° 106- Torre A, Valencia, 46026, Spain
| | - José V Castell
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), Unidad de Hepatología Experimental, Avda. Fernando Abril Martorell, N° 106- Torre A, Valencia, 46026, Spain CIBEREHD, Madrid, Spain Departamento de Bioquímica Y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain
| | - M Teresa Donato
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), Unidad de Hepatología Experimental, Avda. Fernando Abril Martorell, N° 106- Torre A, Valencia, 46026, Spain CIBEREHD, Madrid, Spain Departamento de Bioquímica Y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain CIBEREHD, Madrid, Spain
| | - Ramiro Jover
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), Unidad de Hepatología Experimental, Avda. Fernando Abril Martorell, N° 106- Torre A, Valencia, 46026, Spain CIBEREHD, Madrid, Spain Departamento de Bioquímica Y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain
| |
Collapse
|