1
|
Wellington NJ, Boųcas AP, Lagopoulos J, Quigley BL, Kuballa AV. Molecular pathways of ketamine: A systematic review of immediate and sustained effects on PTSD. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06756-4. [PMID: 40097854 DOI: 10.1007/s00213-025-06756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
RATIONALE Existing studies predominantly focus on the molecular and neurobiological mechanisms underlying Ketamine's acute treatment effects on post-traumatic stress disorder (PTSD). This emphasis has largely overlooked its sustained therapeutic effects, which hold significant potential for the development of targeted interventions. OBJECTIVES This systematic review examines the pharmacokinetic and pharmacodynamic effects of ketamine on PTSD, differentiating between immediate and sustained molecular effects. METHOD A comprehensive search across databases (Web of Science, Scopus, Global Health, PubMed) and grey literature yielded 317 articles, where 29 studies met the inclusion criteria. These studies included preclinical models and clinical trials, through neurotransmitter regulation, gene expression, synaptic plasticity, and neural pathways (PROSPERO ID: CRD42024582874). RESULTS We found accumulating evidence that the immediate effects of ketamine, which involve changes in GABA, glutamate, and glutamine levels, trigger the re-regulation of BDNF, enhancing synaptic plasticity via pathways such as TrkB and PSD-95. Other molecular influences also include c-Fos, GSK-3, HDAC, HCN1, and the modulation of hormones like CHR and ACTH, alongside immune responses (IL-6, IL-1β, TNF-α). Sustained effects arise from neurotransmitter remodulations and involve prolonged changes in gene expression. These include mTOR-mediated BDNF expression, alterations in GSK-3β, FkBP5, GFAP, ERK phosphorylation, and epigenetic modifications (DNMT3, MeCP2, H3K27me3, mir-132, mir-206, HDAC). CONCLUSION These molecular changes promote long-term synaptic stability and re-regulation in key brain regions, contributing to prolonged therapeutic benefits. Understanding the sustained molecular and epigenetic mechanisms behind ketamine's effects is critical for developing safe and effective personalised treatments, potentially leading to more effective recovery.
Collapse
Affiliation(s)
- Nathan J Wellington
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, QLD, Australia.
- School of Health, UniSC, Sippy Downs, QLD, Australia.
- Centre for Bioinnovation, UniSC, Sippy Downs, QLD, Australia.
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, Australia.
| | - Ana P Boųcas
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, QLD, Australia
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Maroochydore, QLD, Australia
| | - Bonnie L Quigley
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, QLD, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, QLD, Australia
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Anna V Kuballa
- School of Health, UniSC, Sippy Downs, QLD, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, QLD, Australia
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, Australia
| |
Collapse
|
2
|
Cui LY, Duan JY, Yan JZ, Wang JY, Ren P, Zhang LM, Guo WZ, Dai W, Li YF. The impact and mechanisms of YL-IPA08, a potent ligand for the translocator protein (18 kDa) on protection against LPS-induced depression and cognitive dysfunction in rodents. Metab Brain Dis 2025; 40:137. [PMID: 40047959 DOI: 10.1007/s11011-025-01565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/02/2025] [Indexed: 03/26/2025]
Abstract
Translocator protein (18 kDa) (TSPO) has been implicated in the development of depression and cognitive dysfunction. This study aimed to investigate the anti-depression/anti-anxiety and cognitive enhancing impacts and potential mechanisms of TSPO ligand YL-IPA08 in lipopolysaccharide (LPS)-induced inflammatory model. The effects of YL-IPA08 in LPS induced mice were identified by behavioral tests, and the target of YL-IPA08 was validated using the TSPO antagonist PK11195. The microglia in PFC were analyzed by immunofluorescence, and the inflammatory cytokines (IL-6, IL-1β and TNF-α) and anti-inflammatory factors (IL-4, IL-10, TGF-β1) in PFC was detected by ELISA or WB. Effect of TGF-β1 inhibitor Repsox on the actions of YL-IPA08 in LPS-treated mice was further verified. We found that YL-IPA08 administration ameliorated LPS-induced depression/anxiety-like behaviors and cognitive impairment, which were blocked by PK11195. YL-IPA08 reversed the increased number and inflammatory morphological changes of microglia in PFC of LPS mice by targeting TSPO. YL-IPA08 reversed the increased inflammatory cytokines (IL-6, IL-1β and TNF-α) and decreased anti-inflammatory factors (IL-4, IL-10) in the PFC of LPS mice by TSPO activation. In addition, YL-IPA08 elevated the suppressed levels of TGF-β1 and smad3 (member of TGF-β1 pathway) in PFC of LPS mice by TSPO activation. TGF-β1 inhibitor Repsox blocked the anti-depression/anxiety and cognition enhancing effects of YL-IPA08 in LPS mice. Our data implicated that central inflammation regulation and TSPO-TGF-β1/Smad pathway activation contributed to the anti-depressant/anxiety and cognitive promoting impacts of YL-IPA08.
Collapse
Affiliation(s)
- Lin-Yu Cui
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100013, China
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China
| | - Jing-Yao Duan
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jiao-Zhao Yan
- Lingang Laboratory, ShanghaiTech University, 555 Qiangye Road, Shanghai, 201210, China
| | - Jing-Ya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Peng Ren
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wen-Zhi Guo
- Department of Anesthesiology, Seventh Medical Center of PLA General Hospital, 5 Nanmencang Road, Dongcheng, Beijing, 100070, China.
| | - Wei Dai
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
3
|
Murayama R, Liu G, Zhao MM, Xu D, Zhu TT, Cai Y, Yue Y, Nakamura H, Hashimoto K. Microbiome depletion by broad-spectrum antibiotics does not influence demyelination and remyelination in cuprizone-treated mice. Pharmacol Biochem Behav 2025; 247:173946. [PMID: 39672388 DOI: 10.1016/j.pbb.2024.173946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/10/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Demyelination in the central nervous system (CNS) is a feature of various psychiatric and neurological disorders. Emerging evidence suggests that the gut-brain axis may play a crucial role in CNS demyelination. The cuprizone (CPZ) model, which involves the administration of CPZ-containing food pellets, is commonly used to study the effects of different compounds on CNS demyelination and subsequent remyelination. This study aimed to evaluate the impact of microbiome depletion, induced by an antibiotic cocktail (ABX), on demyelination in CPZ-treated mice and the subsequent remyelination following CPZ withdrawal. Our findings indicate that a chronic 4-week oral ABX regimen, administered both during and after a 6-week CPZ exposure, does not affect demyelination or remyelination in the brains of CPZ-treated mice. Specifically, ABX treatment for 2 weeks before and 2 weeks after CPZ exposure, in the final 4 weeks before sacrifice, and for 4 weeks post-CPZ withdrawal, did not significantly alter these processes compared to control mice receiving water instead of ABX. These results indicate that despite effective microbiome depletion, a 4-week oral ABX regimen does not influence demyelination or remyelination in the CPZ model. Thus, it is unlikely that gut microbiota depletion by ABX plays a significant role in these processes. However, further research is needed to fully understand the role of the host microbiome on CPZ-induced demyelination.
Collapse
Affiliation(s)
- Rumi Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Guilin Liu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Ming-Ming Zhao
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dan Xu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ting-Ting Zhu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Cai
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yong Yue
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
4
|
Ma L, Wang HB, Hashimoto K. The vagus nerve: An old but new player in brain-body communication. Brain Behav Immun 2025; 124:28-39. [PMID: 39566667 DOI: 10.1016/j.bbi.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/02/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024] Open
Abstract
The vagus nerve is a crucial component of the parasympathetic nervous system, facilitating communication between the brain and various organs, including the ears, heart, lungs, pancreas, spleen, and gastrointestinal tract. The caudal nucleus of the solitary tract in the brainstem is the initial site regulated by the vagus nerve in brain-body communication, including the interactions with immune system. Increasing evidence suggests that the gut-brain axis, via the vagus nerve, may play a role in the development and progression of psychiatric, neurologic, and inflammation-related disorders. Population-based cohort studies indicate that truncal vagotomy may reduce the risk of neurological disorders such as Parkinson's disease and Alzheimer's disease, underscoring the vagus nerve's significance in these conditions. Given its role in the cholinergic anti-inflammatory pathway, α7 nicotinic acetylcholine receptors present a potential therapeutic target. Additionally, noninvasive transcutaneous auricular vagus nerve stimulation (taVNS) shows promise as a therapeutic tool for these disorders. This article provides a historical review of the vagus nerve and explores its role in brain-body communication. Finally, we discuss future directions, including the potential of noninvasive taVNS as a therapeutic approach.
Collapse
Affiliation(s)
- Li Ma
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, PR China
| | - Han-Bing Wang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, PR China.
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
5
|
Aguiar-Geraldo JM, Canever L, Marino DP, Coan C, Possamai-Della T, Pescador B, Quevedo J, Dal-Pizzol F, Valvassori SS, Zugno AI. Exploring the Different Impacts of Ketamine on Neurotrophic Factors and Inflammatory Parameters in a Cecal Ligation and Puncture-Induced Sepsis Model. Neurotox Res 2025; 43:5. [PMID: 39833594 DOI: 10.1007/s12640-024-00727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Given ketamine's conflicting impacts on the central nervous system, investigating its effects within an inflammatory context becomes crucial. This study aimed to assess the impact of varying ketamine doses on neurotrophin and inflammatory cytokine levels within the brains of rats submitted to the sepsis model. Wistar rats were submitted to the cecal ligation and puncture (CLP) model of sepsis. Intraperitoneal ketamine injections (5, 15, or 25 mg/kg) or saline were administered daily for seven days, thirty days post-CLP. Rats were euthanized thirty minutes following the last injection for analysis of IL-1β, IL-6, IL-10, TNF-α, BDNF, NGF, NT-3, and GDNF levels in the frontal cortex, hippocampus, and striatum. CLP-induced elevated IL-1𝛽, IL-6, IL-10, and TNF-α levels in the frontal cortex and hippocampus of rats, with reduced BDNF levels across all structures examined. Furthermore, reduced NGF and GDNF levels were observed solely in the hippocampus. Ketamine at 5 mg/kg normalized CLP-induced alterations and, in Sham animals, increased BDNF and NGF levels in the frontal cortex and/or hippocampus. At 15 mg/kg, ketamine elevated BDNF and NGF levels in Sham animals, while at 25 mg/kg, it exacerbated the inflammatory response initiated by CLP. These findings suggest variable effects of ketamine within a context of systemic inflammation, emphasizing the importance of considering individual inflammatory backgrounds when utilizing ketamine.
Collapse
Affiliation(s)
- Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Lara Canever
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Debora P Marino
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Camila Coan
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Bruna Pescador
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Alexandra Ioppi Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
6
|
Liu D, Gao X, Zhuo Y, Cheng W, Yang Y, Wu X, Yang H, Yao Y. Effect of Esketamine on Cognitive Recovery After Propofol Sedation for Outpatient Colonoscopy: A Randomized Clinical Trial. Drug Des Devel Ther 2025; 19:425-437. [PMID: 39867863 PMCID: PMC11762454 DOI: 10.2147/dddt.s503129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Purpose While esketamine shows promise as an adjunct in procedural sedation, its impact on postoperative cognitive recovery remains incompletely characterized. This study investigated the effects of esketamine on multiple dimensions of recovery, particularly cognition, in patients undergoing colonoscopy with propofol-based sedation. Patients and Methods We conducted this randomized, double-blinded, placebo-controlled trial from January 6, 2023, to May 20, 2024, at two hospitals in China. Patients were randomized in a 1:1 ratio to receive either esketamine 0.2 mg/kg (n = 126) or placebo (n = 126), followed by propofol 1 mg/kg. We administered additional propofol boluses (0.5 mg/kg) to maintain sedation. The study assessed cognitive recovery on postoperative day 3 as the primary outcome, measured by the Postoperative Quality of Recovery Scale (PostopQRS). Secondary outcomes included overall recovery, recovery in other PostopQRS domains, time to discharge, and adverse events. Results Esketamine significantly enhanced cognitive recovery compared to placebo on postoperative day 3 (95.2% vs 83.3%, relative risk = 1.14; 95% confidence interval: 1.05-1.25, P = 0.002). Discharge times were comparable between groups (odds ratio = 0.70; 95% confidence interval: 0.43-1.16, P = 0.163). The esketamine group demonstrated higher satisfaction (P = 0.003) and significantly reduced incidences of hypotension (14.3% vs 36.5%, P < 0.001), bradycardia (5.6% vs 15.1%, P = 0.013), hypoxemia (2.4% vs 8.7%, P = 0.028), and injection site pain (21.4% vs 48.4%, P < 0.001). Conclusion Adding esketamine 0.2 mg/kg to propofol for colonoscopy sedation improved postoperative cognitive recovery, enhanced patient satisfaction, and reduced cardiopulmonary adverse events without prolonging discharge time. These findings establish low-dose esketamine as a beneficial adjunct to propofol in procedural sedation for colonoscopy.
Collapse
Affiliation(s)
- Deshan Liu
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Xiuchai Gao
- Department of Anesthesiology, Fujian Xiapu County Hospital, Xiapu, Fujian, People’s Republic of China
| | - Yifen Zhuo
- Department of Anesthesiology, Xiamen Haicang Hospital, Xiamen, Fujian, People’s Republic of China
| | - Wanjie Cheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Ying Yang
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Xiaoyan Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Huobao Yang
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Yusheng Yao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
7
|
Zhu TT, Zhao MM, Xu D, Cai Y, Liu G, Murayama R, Yue Y, Yang JJ, Hashimoto K. Arketamine alleviates cognitive impairments and demyelination in mice with postoperative cognitive dysfunction via TGF-β1 activation. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111228. [PMID: 39719219 DOI: 10.1016/j.pnpbp.2024.111228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is characterized by a decline in cognitive functions, including memory, attention, and executive abilities, following surgery, with no effective therapeutic drugs currently available. Arketamine, the (R)-enantiomer of ketamine, has shown promise in mitigating cognitive deficits in animal models. In this study, we investigated whether arketamine could ameliorate cognitive deficits in a mouse model of POCD, with a focus on the role of transforming growth factor (TGF)-β1 in its effects. POCD mice displayed cognitive impairments and demyelination in the corpus callosum. A single arketamine injection (10 mg/kg) significantly improved both cognitive function and demyelination in the corpus callosum of POCD mice. Notably, pretreatment with RepSox (10 mg/kg), a TGF-β receptor 1 inhibitor, significantly blocked the beneficial effects of arketamine on cognitive deficits and demyelination. Moreover, intranasal administration of TGF-β1 (3.0 μg/kg) markedly alleviated cognitive impairments and demyelination in POCD mice. These findings suggest that arketamine exerts its effects through a TGF-β1-dependent mechanism, positioning it as a potential therapeutic option for POCD.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Ming-Ming Zhao
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Dan Xu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Cai
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Guilin Liu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Rumi Murayama
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yong Yue
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
8
|
Fan Y, Luan X, Wang X, Li H, Zhao H, Li S, Li X, Qiu Z. Exploring the association between BDNF related signaling pathways and depression: A literature review. Brain Res Bull 2025; 220:111143. [PMID: 39608613 DOI: 10.1016/j.brainresbull.2024.111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Depression is a debilitating mental disease that inflicts significant harm upon individuals and society, yet effective treatment options remain elusive. At present, the pathogenesis of multiple depression is not fully clear, but its occurrence can be related to biological or environmental pathways, among which Brain-derived neurotrophic factor (BDNF) can unequivocally act on two downstream receptors, tyrosine kinase receptor (TrkB) and the p75 neurotrophin receptor (p75NTR), then affect the related signal pathways, affecting the occurrence and development of depression. Accumulating studies have revealed that BDNF-related pathways are critical in the pathophysiology of depression, and their interaction can further influence the efficacy of depression treatment. In this review, we mainly summarized the signaling pathways associated with BDNF and classified them according to different receptors and related molecules, providing promising insights and future directions in the treatment of depression.
Collapse
Affiliation(s)
- Yuchen Fan
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Xinchi Luan
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Xuezhe Wang
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Hongchi Li
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Hongjiao Zhao
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Sheng Li
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Xiaoxuan Li
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zhenkang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
9
|
Xu D, Liu G, Zhao M, Wan X, Qu Y, Murayama R, Hashimoto K. Effects of arketamine on depression-like behaviors and demyelination in mice exposed to chronic restrain stress: A role of transforming growth factor-β1. J Affect Disord 2024; 367:745-755. [PMID: 39236893 DOI: 10.1016/j.jad.2024.08.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Chronic restrain stress (CRS) induces depression-like behaviors and demyelination in the brain; however, the relationship between these depression-like behaviors and demyelination remains unclear. Arketamine, the (R)-enantiomer of ketamine, has shown rapid antidepressant-like effects in CRS-exposed mice. METHODS We examined whether arketamine can improve both depression-like behaviors and demyelination in the brains of CRS-exposed mice. Additionally, we investigated the role of transforming growth factor β1 (TGF-β1) in the beneficial effects of arketamine. RESULTS A single dose of arketamine (10 mg/kg) improved both depression-like behavior and demyelination in the corpus callosum of CRS-exposed mice. Correlations were found between depression-like behaviors and demyelination in this region. Furthermore, pretreatment with RepSox, an inhibitor of TGF-β1 receptor, significantly blocked the beneficial effects of arketamine on depression-like behaviors and demyelination in CRS-exposed mice. Finally, a single intranasal administration of TGF-β1 ameliorated both depression-like behaviors and demyelination in CRS-exposed mice. LIMITATIONS The precise mechanisms by which TGF-β1 contributes to the effects of arketamine remain unclear. CONCLUSIONS These data suggest that CRS-induced demyelination in the corpus callosum may contribute to depression-like behaviors, and that arketamine can mitigate these changes through a TGF-β1-dependent mechanism.
Collapse
Affiliation(s)
- Dan Xu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Guilin Liu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, PR China
| | - Mingming Zhao
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Xiayun Wan
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Rumi Murayama
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
10
|
Zhao MM, Zhu TT, Xu D, Wan X, Liu G, Murayama R, Cai Y, Yue Y, Wang XM, Yang JJ, Hashimoto K. Transforming growth factor-β1 mediates the beneficial effects of arketamine on demyelination and remyelination in the brains of cuprizone-treated mice. Eur J Pharmacol 2024; 985:177096. [PMID: 39500390 DOI: 10.1016/j.ejphar.2024.177096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
The novel antidepressant arketamine, the (R)-enantiomer of ketamine, has been shown to ameliorate demyelination and facilitate remyelination in the brains of cuprizone (CPZ)-treated mice. However, the mechanisms behind its effects remain unclear. Given the role of transforming growth factor β1 (TGF-β1) in arketamine's antidepressant-like effects, we examined whether TGF-β1 also plays a role in arketamine's effects on demyelination and remyelination in CPZ-treated mice. Additionally, we investigated the effects of intranasal TGF-β1 on demyelination and remyelination in these mice. Repeated intermittent administration of arketamine (10 mg/kg/day, twice weekly for the last 2-weeks) attenuated demyelination in the corpus callosum (CC) of CPZ (6 weeks)-treated mice. Furthermore, pretreatment with RepSox (10 mg/kg/day), an inhibitor of the TGF-β receptor 1, significantly blocked the beneficial effects of arketamine on the demyelination in the CC of CPZ-treated mice. Additionally, repeated intermittent administration of TGF-β1 (3.0 μg/kg/day, twice weekly for 2 weeks) significantly ameliorated demyelination and facilitated remyelination in the CC of CPZ-treated mice. These data suggest that arketamine can mitigate demyelination and facilitates remyelination in the brains of CPZ-treated mice through a TGF-β1-dependent mechanism.
Collapse
Affiliation(s)
- Ming-Ming Zhao
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Ting-Ting Zhu
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Dan Xu
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiayun Wan
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Guilin Liu
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266100, China
| | - Rumi Murayama
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Yi Cai
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Yong Yue
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Xing-Ming Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
11
|
Liu G, Ma L, Sakamoto A, Fujimura L, Xu D, Zhao M, Wan X, Murayama R, Anzai N, Hashimoto K. Splenic γδ T cells mediate antidepressant and prophylactic actions of arketamine in lipopolysaccharide-induced depression in mice. Pharmacol Biochem Behav 2024; 245:173906. [PMID: 39549733 DOI: 10.1016/j.pbb.2024.173906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Arketamine, the (R)-enantiomer of ketamine, exhibits both therapeutic and sustained prophylactic effects in an inflammation-driven model of depression, although the precise mechanisms remain elusive. Given the involvement of γδ T cells in inflammatory processes, this study explored their role in the effects of arketamine. To assess therapeutic outcomes, mice received lipopolysaccharide (LPS:1.0 mg/kg), followed by either arketamine (10 mg/kg) or saline. For prophylactic assessment, arketamine or saline was administered six days prior to LPS exposure. A single dose of LPS (1.0 mg/kg) reduced the proportion of γδ T cells in the spleen but did not affect their levels in the blood, prefrontal cortex, or small intestine. Arketamine mitigated LPS-induced splenomegaly, counteracted the elevation of plasma interleukin-6 levels and the reduction in the proportion of splenic γδ T cells, and alleviated depression-like behavior as assessed by the forced swimming test. Notably, negative correlations were observed between the proportion of splenic γδ T cells and indicators of inflammation and depression. Furthermore, pretreatment with a γδ TCR antibody significantly countered the therapeutic and prophylactic effects of arketamine on LPS-induced changes. These findings highlight a novel role for splenic γδ T cells in inflammation-associated depression and suggest the potential of arketamine as a treatment option. Consequently, γδ T cells may represent a novel therapeutic target for inflammation-related depression. Further studies on the role of γδ T cells in depressed patients with inflammation are warranted.
Collapse
Affiliation(s)
- Guilin Liu
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Li Ma
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan
| | - Akemi Sakamoto
- Biomedical Research Center, Chiba University, Chiba 260-8677, Japan; Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Lisa Fujimura
- Biomedical Research Center, Chiba University, Chiba 260-8677, Japan
| | - Dan Xu
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingming Zhao
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiayun Wan
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan
| | - Rumi Murayama
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan.
| |
Collapse
|
12
|
He J, Zhang Y, Guo Y, Guo J, Chen X, Xu S, Xu X, Wu C, Liu C, Chen J, Ding Y, Fisher M, Jiang M, Liu G, Ji X, Wu D. Blood-derived factors to brain communication in brain diseases. Sci Bull (Beijing) 2024; 69:3618-3632. [PMID: 39353815 DOI: 10.1016/j.scib.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 10/04/2024]
Abstract
Brain diseases, mainly including acute brain injuries, neurodegenerative diseases, and mental disorders, have posed a significant threat to human health worldwide. Due to the limited regenerative capability and the existence of the blood-brain barrier, the brain was previously thought to be separated from the rest of the body. Currently, various cross-talks between the central nervous system and peripheral organs have been widely described, including the brain-gut axis, the brain-liver axis, the brain-skeletal muscle axis, and the brain-bone axis. Moreover, several lines of evidence indicate that leveraging systemic biology intervention approaches, including but not limited to lifestyle interventions, exercise, diet, blood administration, and peripheral immune responses, have demonstrated a significant influence on the progress and prognosis of brain diseases. The advancement of innovative proteomic and transcriptomic technologies has enriched our understanding of the nuanced interplay between peripheral organs and brain diseases. An array of novel or previously underappreciated blood-derived factors have been identified to play pivotal roles in mediating these communications. In this review, we provide a comprehensive summary of blood-to-brain communication following brain diseases. Special attention is given to the instrumental role of blood-derived signals, positing them as significant contributors to the complex process of brain diseases. The insights presented here aim to bridge the current knowledge gaps and inspire novel therapeutic strategies for brain diseases.
Collapse
Affiliation(s)
- Jiachen He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin 150081, China
| | - Yanming Zhang
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yansu Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiaqi Guo
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xi Chen
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xiaohan Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chengeng Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit MI 46801, USA
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02115, USA
| | - Miaowen Jiang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China; Brain Hospital, Shengli Oilfield Central Hospital, Dongying 257034, China.
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
13
|
Zhang W, Wang D, Li S, Chen Y, Bi C. Effect of esketamine on postoperative delirium in general anesthesia patients undergoing elective surgery: a meta-analysis of randomized controlled trials. BMC Anesthesiol 2024; 24:442. [PMID: 39609668 PMCID: PMC11603621 DOI: 10.1186/s12871-024-02833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Postoperative delirium is a common neurological complication, especially in older patients undergoing surgery, which is closely related to the poor prognosis of patients. The objective was to investigate the effects of esketamine on postoperative delirium in patients with general anesthesia. METHODS The databases of PubMed, Embase, Cochrane Library and the Chinese National Knowledge Infrastructure were searched for all available randomised controlled trials on the effects of esketamine induction on postoperative delirium in patients undergoing elective general anesthesia from inception until April 21, 2024. We used RevMan5.4 software for data analysis. Dichotomous data was analyzed by risk ratios(RR) with a 95% confidence interval(CI), and continuous data by mean differences(MD). We also evaluated the risk of literature bias using the Cochrane Bias Risk Assessment tool. RESULTS We included a total of 17 randomized controlled trials, including 1286 patients undergoing elective general anesthesia. In 17 studies, esketamine significantly reduced the incidence of postoperative delirium (RR: 0.43; 95%CI: 0.33 ~ 0.57; p < 0.001). Five studies examined the incidence of postoperative adverse events (nausea, vomiting, dizziness and resporatory depression) and showed no statistically significant difference between the esketamine group and the control group (normal saline or dexmedetomidine) (RR: 0.82; 95%CI: 0.65 ~ 1.03; p = 0.08). In addition, this study found that the esketamine group had a lower incidence of hypotension (RR: 0.24; 95%CI: 0.12 ~ 0.48; p < 0.001) and a lower score on the visual analogue scale 24 h after surgery (MD: -0.44; 95%CI: -0.54 ~ -0.33; p < 0.001). CONCLUSION According to our meta-analysis, the use of esketamine during anesthesia induction significantly reduced the incidence of postoperative delirium in patients undergoing elective general anesthesia without increasing the incidence of postoperative adverse reactions.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Anesthesiology, Central Hospital of Dalian University of Technology, No. 826 Southwest Road, Shahekou District, Dalian, Liaoning Province, China
- China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Di Wang
- Department of Anesthesiology, Central Hospital of Dalian University of Technology, No. 826 Southwest Road, Shahekou District, Dalian, Liaoning Province, China
- Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, Liaoning Province, China
| | - Siru Li
- Department of Anesthesiology, Central Hospital of Dalian University of Technology, No. 826 Southwest Road, Shahekou District, Dalian, Liaoning Province, China
- Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, Liaoning Province, China
| | - Yutao Chen
- Department of Anesthesiology, Central Hospital of Dalian University of Technology, No. 826 Southwest Road, Shahekou District, Dalian, Liaoning Province, China
- Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, Liaoning Province, China
| | - Congjie Bi
- Department of Anesthesiology, Central Hospital of Dalian University of Technology, No. 826 Southwest Road, Shahekou District, Dalian, Liaoning Province, China.
| |
Collapse
|
14
|
Hung KC, Kao CL, Lai YC, Chen JY, Lin CH, Ko CC, Lin CM, Chen IW. Perioperative administration of sub-anesthetic ketamine/esketamine for preventing postpartum depression symptoms: A trial sequential meta-analysis. PLoS One 2024; 19:e0310751. [PMID: 39556562 PMCID: PMC11573214 DOI: 10.1371/journal.pone.0310751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/04/2024] [Indexed: 11/20/2024] Open
Abstract
OBJECTIVE Postpartum depression (PPD) is a major mental health issue affecting 10%-15% of women globally. This meta-analysis synthesized updated evidence on sub-anesthetic ketamine/esketamine's efficacy in preventing PPD. METHODS Randomized controlled trials (RCTs) comparing ketamine/esketamine to a placebo for PPD prevention were searched without language restriction. Primary outcomes were PPD risk at 1- and 4-6-week postpartum. Secondary outcomes included the difference in depression scores and risk of adverse events. Trial sequential analysis (TSA) was conducted to validate the reliability. RESULTS A meta-analysis of 22 RCTs (n = 3,463) showed that ketamine/esketamine significantly decreased PPD risk at 1- (risk ratio [RR], 0.41; 95% confidence interval [CI], 0.3-0.57) and 4-6-week (RR, 0.47; 95%CI, 0.35-0.63) follow-ups. Consistently, participants receiving ketamine/esketamine had lower depression-related scores at 1- (standardized mean difference [SMD], -0.94; 95%CI, -1.26 to -0.62) and 4-6-week (SMD, -0.89; 95%CI, -1.25 to -0.53) follow-ups. Despite potential publication bias, TSA confirmed the evidence's reliability. Subgroup analysis showed that ketamine/esketamine's preventive effect on 1-week PPD was consistent, regardless of administration timing, type of agents, or total dosage (<0.5 vs. ≥0.5 mg/kg). For the 4-6-week period, PPD risk was favorably reduced only with postoperative administration or the use of esketamine, with the total dosage having no observed influence. Participants on ketamine/esketamine experienced more frequency of hallucinations (RR, 4.77; 95%CI, 1.39-16.44) and dizziness (RR, 1.36; 95%CI, 1.02-1.81). CONCLUSION Our findings advocate for the postoperative administration of low-dose ketamine/esketamine to avert PPD, which needed additional research for confirmation.
Collapse
Affiliation(s)
- Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Chia-Li Kao
- Department of Anesthesiology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Chen Lai
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Jen-Yin Chen
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chien-Hung Lin
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Ching-Chung Ko
- Department of Medical Imaging, Chi Mei Medical Center, Tainan City, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan
| | - Chien-Ming Lin
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - I-Wen Chen
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| |
Collapse
|
15
|
Wang L, Zhao S, Shao J, Su C. The effect and mechanism of low-dose esketamine in neuropathic pain-related depression-like behavior in rats. Brain Res 2024; 1843:149117. [PMID: 38977235 DOI: 10.1016/j.brainres.2024.149117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Clinical evidence suggests that Esketamine (ESK) is an effective treatment for depression. However, the effects of Esketamine in treating depression-like behavior induced by neuropathic pain is unclear. The underlying molecular mechanisms require further investigation to provide new therapeutic targets for the treatment of clinical neuropathic pain-related depression. METHODS A neuropathic pain-related depression model was established in rats with spared nerve injury (SNI). Male Sprague-Dawley rats were randomly divided into four groups: Sham Group, SNI group, SNI + Normal Saline (NS) Group and SNI + ESK5mg/kg Group. Mechanical pain thresholds were measured to assess pain sensitivity in SNI rats. On the 14th day after surgery a forced swim test and sucrose preference test were used to evaluate the depressive-like behavior of rats in each group. Further, a proteomic analysis was used to quantify differentially expressed proteins. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed to explore the main protein targets of SNI in the medial prefrontal cortex. The expression of proteins was detected by Western blotting. RESULTS A neuropathic pain-related depression model was established. Compared with the Sham group, the mechanical pain threshold was decreased significantly (13.2 ± 1.0 vs. 0.7 ± 0.01 g n = 8), while immobility on the forced swim test was also decreased (93.1 ± 7.4 vs. 169.5 ± 9.6 s n = 8), and sucrose preference rate was significantly increased (98.8 ± 0.3 vs. 73.1 ± 1.4n = 7) in SNI group rats. Compared with the SNI + NS group, the mechanical pain threshold was not statistically significant, while immobility on the forced swim test was clearly decreased (161.1 ± 11.6 vs. 77.9 ± 5.0 s n = 8), and sucrose preference rate was significantly increased (53.1 ± 8.9 vs. 96.1 ± 1.4n = 7) in SNI + ESK5mg/kg group rats. To further investigate the underlying mechanism, we employed proteomics to identify proteins exhibiting more than a 1.2-fold difference (P < 0.05) in expression levels within each group for subsequent analysis. Relative to the Sham group, 88 downregulated and 104 up-regulated proteins were identified in the SNI group, while 120 and 84 proteins were up- and down-regulated in the Esketamine treatment group compared with the SNI + NS group. Compared with Sham group, the expressions of mGluR5 and Homer1a were up-regulated in the medial prefrontal cortex (mPFC) in SNI group (mGluR5:0.97 ± 0.05 vs 1.47 ± 0.15, Homer1a:1.03 ± 0.06 vs 1.46 ± 0.16n = 6), and down-regulated after intervention with Esketamine (mGluR5:1.54 ± 0.11 vs 1.06 ± 0.07, Homer1a:1.51 ± 0.13 vs 1.12 ± 0.34n = 6). CONCLUSIONS Low-dose Esketamine appeared to relieve depression-like behavior induced by neuropathic pain. The Homer1a-mGluR5 signaling pathway might be the mechanism of antidepressant effect of Esketamine.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, Hunan, China; Department of Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuwu Zhao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jiali Shao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, Hunan, China
| | - Chen Su
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, Hunan, China.
| |
Collapse
|
16
|
Huang T, He Y, Cheng R, Zhang Q, Zhong X, Hashimoto K, Liu Y, Pu Y. Ketamine attenuates kidney damage and depression-like behaviors in mice with cisplatin-induced acute kidney injury. Transl Psychiatry 2024; 14:468. [PMID: 39521765 PMCID: PMC11550419 DOI: 10.1038/s41398-024-03176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Acute kidney injury (AKI) is a serious condition characterized by decreased urine output, often accompanied by psychiatric symptoms like depression. However, there are limited pharmacological treatments available for AKI and its associated depressive symptoms. In this study, we investigated whether cisplatin-induced AKI in mice leads to depression-like behaviors and whether ketamine could alleviate both the kidney injury and these behaviors. Mice with cisplatin-induced AKI exhibited elevated levels of creatinine and urea, kidney damage, increased kidney injury molecule-1 protein, and pathological changes in the liver, colon, and spleen. They also showed depression-like behaviors and reduced expression of synaptic proteins in the prefrontal cortex. Remarkably, a single dose of ketamine significantly reduced these symptoms and pathological changes. Interestingly, the beneficial effects of ketamine on the kidneys, other organs, and depression-like behaviors, were reversed by the tropomyosin receptor kinase B (TrkB) inhibitor ANA-12. Western blot analysis revealed the involvement of the TrkB and ERK (extracellular signal-regulated kinase)-CREB (cAMP response element binding protein) signaling pathway. Additionally, metabolomics analysis indicated that blood metabolites, such as C16-ceramide, may contribute to the effects of ketamine in this model. These findings suggest that cisplatin-induced nephrotoxicity in AKI mice contributes to depression-like behaviors, and ketamine can alleviate both kidney damage and depression-like symptoms by modulating the TrkB and ERK-CREB signaling pathways, as well as altering blood metabolites. However, the role of the kidney-brain axis in these depression-like behaviors remains unclear. Furthermore, ketamine may have therapeutic potential for treating kidney diseases such as AKI, along with associated depressive symptoms.
Collapse
Affiliation(s)
- Tianwen Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yangyang He
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Ruijuan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiang Zhong
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yaoyu Pu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
17
|
da Costa Gonçalves KT, de Tavares VDO, de Morais Barros ML, de Brito AJC, Cavalcanti-Ribeiro P, Palhano-Fontes F, Falchi-Carvalho M, Arcoverde E, Dos Santos RG, Hallak JEC, de Araujo DB, Galvão-Coelho NL. Ketamine-induced altered states of consciousness: a systematic review of implications for therapeutic outcomes in psychiatric practices. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01925-6. [PMID: 39467856 DOI: 10.1007/s00406-024-01925-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
This systematic review aims to elucidate the nexus between ketamine's psychoactive properties and its efficacy in treating a broad spectrum of psychiatric disorders. We searched three databases and used citation tracking to include 29 studies. Predominantly, mood disorders, including bipolar disorder (BD) and major depressive disorder (MDD) (MDD + BD: + n = 25 studies), a large part of them involve treatment-resistant patients (n = 14 studies), substance use disorder (SUD, n = 3 studies), and social anxiety disorder (SAD, n = 1 study). From all included studies (n = 29), 15 (51.72%) of them identified a positive relation between ketamine-induced altered states of consciousness and clinical outcomes, while 13 studies (44.83%) showed no linkage between them, and one study (3.45%) delineated a negative association. Focusing solely on intravenous (IV) ketamine infusions (n = 25), 14 studies (56%) reported a positive modulation of ketamine's psychoactive effects and therapeutic benefits, whereas 10 studies (40%) confirmed no relationship, and one study (4%) showed a negative association. The single study (33.34%) involving subcutaneous ketamine and all three studies (66.6%) intranasal administration did not demonstrate a significant interaction between ketamine's psychoactive effects and therapeutic response. All three SUD studies reported a positive correlation between ketamine's psychoactive effects and therapeutic response. In contrast, the single SAD study did not find a relationship between these parameters. For studies involving mood disorders (n = 25), 12 studies (48%) reported a positive relationship between psychoactive effects and therapeutic response. Others 12 studies (48%) identified a null relationship, and one study (4%) found a significant negative association. Although we have found a larger association than previous studies between ketamine's psychoactive properties and its efficacy in treating a broad spectrum of psychiatric disorders, its topic remains indeterminate, mainly due to the high heterogeneity.
Collapse
Affiliation(s)
- Kaike Thiê da Costa Gonçalves
- Postgraduate Program in Mental Health and Behavior, Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Advanced Center for Psychedelic Medicine, Natal, RN, Brazil
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Vagner Deuel O de Tavares
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Faculty of Nursing, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Maria Luiza de Morais Barros
- Advanced Center for Psychedelic Medicine, Natal, RN, Brazil
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Aldielyson Jorge Cavalcante de Brito
- Advanced Center for Psychedelic Medicine, Natal, RN, Brazil
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Patrícia Cavalcanti-Ribeiro
- Advanced Center for Psychedelic Medicine, Natal, RN, Brazil
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Fernanda Palhano-Fontes
- Advanced Center for Psychedelic Medicine, Natal, RN, Brazil
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Emerson Arcoverde
- Advanced Center for Psychedelic Medicine, Natal, RN, Brazil
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Rafael Guimarães Dos Santos
- Postgraduate Program in Mental Health and Behavior, Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- National Institute for Science and Technology in Translational Medicine (INCT-TM), CNPq/FAPESP/CAPES, Ribeirão Preto, Brazil
| | - Jaime E C Hallak
- Postgraduate Program in Mental Health and Behavior, Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- National Institute for Science and Technology in Translational Medicine (INCT-TM), CNPq/FAPESP/CAPES, Ribeirão Preto, Brazil
| | - Draulio Barros de Araujo
- Advanced Center for Psychedelic Medicine, Natal, RN, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Nicole Leite Galvão-Coelho
- Postgraduate Program in Mental Health and Behavior, Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
- Advanced Center for Psychedelic Medicine, Natal, RN, Brazil.
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
- National Institute for Science and Technology in Translational Medicine (INCT-TM), CNPq/FAPESP/CAPES, Ribeirão Preto, Brazil.
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia.
- Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Caixa Postal, 1511, Natal, RN, Brazil.
| |
Collapse
|
18
|
Kawczak P, Feszak I, Bączek T. Ketamine, Esketamine, and Arketamine: Their Mechanisms of Action and Applications in the Treatment of Depression and Alleviation of Depressive Symptoms. Biomedicines 2024; 12:2283. [PMID: 39457596 PMCID: PMC11505277 DOI: 10.3390/biomedicines12102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Research over the past years has compared the enantiomers (S)-ketamine (esketamine) and (R)-ketamine (arketamine) of the previously known racemic mixture called ketamine (R/S-ketamine). Esketamine has been found to be more potent, offering three times stronger analgesic effects and 1.5 times greater anesthetic efficacy than arketamine. It provides smoother anesthesia with fewer side effects and is widely used in clinical settings due to its neuroprotective, bronchodilatory, and antiepileptic properties. Approved by the FDA and EMA in 2019, esketamine is currently used alongside SSRIs or SNRIs for treatment-resistant depression (TRD). On the other hand, arketamine has shown potential for treating neurological disorders such as Alzheimer's, Parkinson's, and multiple sclerosis, offering possible antidepressant effects and anti-inflammatory benefits. While esketamine is already in clinical use, arketamine's future depends on further research to address its safety, efficacy, and optimal dosing. Both enantiomers hold significant clinical value, with esketamine excelling in anesthesia, and arketamine showing promise in neurological and psychiatric treatments.
Collapse
Affiliation(s)
- Piotr Kawczak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | - Igor Feszak
- Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland;
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
- Department of Nursing and Medical Rescue, Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland
| |
Collapse
|
19
|
Yang Y, Eguchi A, Mori C, Hashimoto K. Splenic nerve denervation attenuates depression-like behaviors in Chrna7 knock-out mice via the spleen-gut-brain axis. J Affect Disord 2024; 362:114-125. [PMID: 38944290 DOI: 10.1016/j.jad.2024.06.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Growing evidence highlights the role of the spleen-brain axis in inflammation-associated depression. The α7-subtype of nicotinic acetylcholine receptor (α7 nAChR, encoded by the Chrna7 gene) is implicated in systemic inflammation, with Chrna7 knock-out (KO) mice displaying depression-like behaviors. Yet, the influence of spleen nerve on depression-like behaviors in these KO mice remains to be elucidated. METHODS We investigated the effects of the splenic nerve denervation (SND) on depression-like behaviors, the protein expression in the prefrontal cortex (PFC), and the gut microbiota composition in Chrna7 KO mice. RESULTS SND markedly alleviated depression-like behaviors and the reduced expression of GluA1 and postsynaptic density protein-95 (PSD-95) in the PFC of Chrna7 KO mice. No changes in α-diversity of gut microbiota were noted among the control, KO + sham, and KO + SND groups. However, significant differences in β-diversity of gut microbiota were noted among the groups. Notable alterations in various microbiota (e.g., Fluviimonas_pallidilutea, Maribacter_arcticus, Parvibacter_caecicola) and plasma metabolites (e.g., helicide, N-acetyl-L-aspartic acid, α-D-galactose 1-phosphate, choline, creatine) were observed between KO + sham and KO + SND groups. Interestingly, correlations were found between the relative abundance of specific microbiota and other outcomes, including synaptic proteins, metabolites and behavioral data. LIMITATIONS The underlying mechanisms remain to be fully understood. CONCLUSIONS Our findings indicate that the splenic nerve contributes to depression-like phenotypes in Chrna7 KO mice via the spleen-gut-brain axis.
Collapse
Affiliation(s)
- Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8677, Japan; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8677, Japan.
| |
Collapse
|
20
|
Liang CW, Cheng HY, Tseng MCM. Effects of sodium benzoate on cognitive function in neuropsychiatric disorders: a systematic review and meta-analysis. Front Psychiatry 2024; 15:1370431. [PMID: 39315325 PMCID: PMC11416944 DOI: 10.3389/fpsyt.2024.1370431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
We performed a systematic review and meta-analysis on sodium benzoate's effects on cognitive function and other psychiatric symptoms in individuals with neuropsychiatric disorders. We searched PubMed, Embase, Cochrane Library, and PsychInfo databases until September 2023. A random-effects meta-analysis was performed within a frequentist framework. To investigate the potential sources of heterogeneity, we performed subgroup analyses based on sex, dose, diagnosis, and risk of bias of the included studies. Trial sequential analyses were performed to investigate the statistical power of the synthesized studies. The certainty in evidence was evaluated using the Grading of Recommendations Assessment, Development and Evaluation approach. A total of 10 studies were included in the analysis. Sodium benzoate demonstrated a small-to-moderate positive effect on global cognitive function compared with placebo (standardized mean difference 0.40, 95% confidence interval 0.20 to 0.60, high certainty). Subgroup analyses suggested more pronounced effects in women; individuals receiving doses >500 mg/day; and individuals with early-phase Alzheimer's disease, chronic schizophrenia, or major depressive disorder. Sodium benzoate also demonstrated potential efficacy in enhancing the speed of processing, working memory, verbal learning and memory, visual learning and memory, and reasoning and problem solving. Furthermore, sodium benzoate was effective for positive psychotic symptoms but not for negative psychotic and depressive symptoms with moderate certainty. The current evidence strongly supports the positive effects of sodium benzoate on cognitive function in neuropsychiatric disorders. Further research is required to confirm its efficacy across different subtypes or stages of neurocognitive disorders and within specific cognitive domains. Systematic Review Registration PROSPERO, identifier CRD42023457462.
Collapse
Affiliation(s)
- Chun-Wei Liang
- Department of Primary Care Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Yi Cheng
- Department of Primary Care Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Mei-Chih Meg Tseng
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
21
|
He L, Mo X, He L, Ma Q, Cai L, Zheng Y, Huang L, Lin X, Wu M, Ding W, Zhou C, Zhang JC, Hashimoto K, Yao W, Chen JX. The role of BDNF transcription in the antidepressant-like effects of 18β-glycyrrhetinic acid in a chronic social defeat stress model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155332. [PMID: 38851983 DOI: 10.1016/j.phymed.2023.155332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 06/10/2024]
Abstract
BACKGROUND Xiaoyaosan (XYS), a traditional Chinese medicine formulation, has been used in the treatment of depression. However, no studies have yet identified the active compounds responsible for its antidepressant effects in the brain. STUDY DESIGN We investigated the antidepressants effects of XYS and identified 18β-glycyrrhetinic acid (18β-GA) as the primary compound present in the brain following XYS injection. Furthermore, we explored the molecular mechanisms underlying the antidepressant-like effects of both XYS and 18β-GA. METHODS To investigate the antidepressant-like effects of XYS and elucidate the associated molecular mechanisms, we employed various methodologies, including cell cultures, the chronic social defeat stress (CSDS) model, behavioral tests, immunoprecipitation, quantitative PCR (qPCR) assays, Western blotting assays, luciferase assays, chromatin immunoprecipitation (ChIP) assays, immunofluorescence staining, and dendritic spine analysis. RESULTS We identified 18β-GA as the primary compound in the brain following XYS injection. In vitro, 18β-GA was found to bind with ERK (extracellular signal-regulated kinase), subsequently activating ERK kinase activity toward both c-Jun and cAMP response element binding protein (CREB). Moreover, 18β-GA activated brain-derived neurotrophic factor (BDNF) transcription by stimulating nuclear factor-erythroid factor 2-related factor 2 (Nrf2), c-Jun, and CREB, while also inhibiting methyl CpG binding protein 2 (MeCP2) both in vitro and in vivo. Chronic intraperitoneal (i.p.) administration of 18β-GA exhibited prophylactic antidepressant-like effects in a CSDS model, primarily by activating BDNF transcription in the medial prefrontal cortex (mPFC). Interestingly, a single i.p. injection of 18β-GA produced rapid and sustained antidepressant-like effects in CSDS-susceptible mice by engaging the BDNF-tropomyosin receptor kinase B (TrkB) signaling pathway in the mPFC. CONCLUSION These findings suggest that the activation of BDNF transcription in the mPFC underlies the antidepressant-like effects of 18β-GA, a key component of XYS in the brain.
Collapse
Affiliation(s)
- Lujuan He
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China; Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Xiaowei Mo
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Lili Cai
- Department of Mental Rehabilitation, Mental Hospital of Guangzhou Civil Affairs Bureau, Guangzhou 510632, PR China
| | - Yi Zheng
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Lixuan Huang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Xuanyu Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Mansi Wu
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Wanzhao Ding
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Chan Zhou
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Ji-Chun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Wei Yao
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| |
Collapse
|
22
|
Chang L, Wei Y, Qu Y, Zhao M, Zhou X, Long Y, Hashimoto K. Role of oxidative phosphorylation in the antidepressant effects of arketamine via the vagus nerve-dependent spleen-brain axis. Neurobiol Dis 2024; 199:106573. [PMID: 38901783 DOI: 10.1016/j.nbd.2024.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024] Open
Abstract
Arketamine, the (R)-enantiomer of ketamine, exhibits antidepressant-like effects in mice, though the precise molecular mechanisms remain elusive. It has been shown to reduce splenomegaly and depression-like behaviors in the chronic social defeat stress (CSDS) model of depression. This study investigated whether the spleen contributes to the antidepressant-like effects of arketamine in the CSDS model. We found that splenectomy significantly inhibited arketamine's antidepressant-like effects in CSDS-susceptible mice. RNA-sequencing analysis identified the oxidative phosphorylation (OXPHOS) pathway in the prefrontal cortex (PFC) as a key mediator of splenectomy's impact on arketamine's effects. Furthermore, oligomycin A, an inhibitor of the OXPHOS pathway, reversed the suppressive effects of splenectomy on arketamine's antidepressant-like effects. Specific genes within the OXPHOS pathways, such as COX11, UQCR11 and ATP5e, may contribute to these inhibitory effects. Notably, transforming growth factor (TGF)-β1, along with COX11, appears to modulate the suppressive effects of splenectomy and contribute to arketamine's antidepressant-like effects. Additionally, SRI-01138, an agonist of the TGF-β1 receptor, alleviated the inhibitory effects of splenectomy on arketamine's antidepressant-like effects. Subdiaphragmatic vagotomy also counteracted the inhibitory effects of splenectomy on arketamine's antidepressant-like effects in CSDS-susceptible mice. These findings suggest that the OXPHOS pathway and TGF-β1 in the PFC play significant roles in the antidepressant-like effects of arketamine, mediated through the spleen-brain axis via the vagus nerve.
Collapse
Affiliation(s)
- Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, China
| | - Yan Wei
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Mingming Zhao
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiangyu Zhou
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, China; Department of Thyroid and Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yang Long
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
23
|
Ishii K, Okita K. Potential effect of ketamine in treatment for dextromethorphan use disorder exploding in Japanese young population. Asian J Psychiatr 2024; 99:104164. [PMID: 39047355 DOI: 10.1016/j.ajp.2024.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
In Japan, the landscape of clinical practice for substance use disorder is changing significantly, primarily due to an increase in patients using over-the-counter drugs. A major concern is the rising number of patients misusing dextromethorphan (DXM). These patients with DXM use disorders often have severe trauma-related and mood symptoms, and therefore try to cope with those symptoms by self-medicating with DXM. In this article, we propose that ketamine, which has similar psychopharmacological effects to DXM, may be a useful alternative pharmacological treatment for these patients.
Collapse
Affiliation(s)
- Kaori Ishii
- Department of Pharmacology, Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Drug Dependence Research, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Science, Tokyo University of Science, Tokyo, Japan
| | - Kyoji Okita
- Department of Psychiatry, Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Drug Dependence Research, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neuropsychiatry, Okayama University Hospital, Okayama, Japan.
| |
Collapse
|
24
|
Weiler M, Acunzo DJ, Cozzolino PJ, Greyson B. Exploring the transformative potential of out-of-body experiences: A pathway to enhanced empathy. Neurosci Biobehav Rev 2024; 163:105764. [PMID: 38879098 DOI: 10.1016/j.neubiorev.2024.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
Out-of-body experiences (OBEs) are subjective phenomena during which individuals feel disembodied or perceive themselves as outside of their physical bodies, often resulting in profound and transformative effects. In particular, experiencers report greater heightened pro-social behavior, including more peaceful relationships, tolerance, and empathy. Drawing parallels with the phenomenon of ego dissolution induced by certain psychedelic substances, we explore the notion that OBEs may engender these changes through ego dissolution, which fosters a deep-seated sense of unity and interconnectedness with others. We then assess potential brain mechanisms underlying the link between OBEs and empathy, considering the involvement of the temporoparietal junction and the Default Mode Network. This manuscript offers an examination of the potential pathways through which OBEs catalyze empathic enhancement, shedding light on the intricate interplay between altered states of consciousness and human empathy.
Collapse
Affiliation(s)
- Marina Weiler
- Division of Perceptual Studies. Department of Psychiatry and Neurobehavioral Sciences, University of Virginia Health System, Charlottesville, VA, USA.
| | - David J Acunzo
- Division of Perceptual Studies. Department of Psychiatry and Neurobehavioral Sciences, University of Virginia Health System, Charlottesville, VA, USA
| | - Philip J Cozzolino
- Division of Perceptual Studies. Department of Psychiatry and Neurobehavioral Sciences, University of Virginia Health System, Charlottesville, VA, USA
| | - Bruce Greyson
- Division of Perceptual Studies. Department of Psychiatry and Neurobehavioral Sciences, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
25
|
Aykan D, Genc M, Unal G. Environmental enrichment enhances the antidepressant effect of ketamine and ameliorates spatial memory deficits in adult rats. Pharmacol Biochem Behav 2024; 240:173790. [PMID: 38761992 DOI: 10.1016/j.pbb.2024.173790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Ketamine is a rapid-acting antidepressant associated with various cognitive side effects. To mitigate these side effects while enhancing efficacy, it can be co-administered with other antidepressants. In our study, we adopted a similar strategy by combining ketamine with environmental enrichment, a potent sensory-motor paradigm, in adult male Wistar rats. We divided the animals into four groups based on a combination of housing conditions and ketamine versus vehicle injections. The groups included those housed in standard cages or an enriched environment for 50 days, which encompassed a 13-day-long behavioral testing period. Each group received either two doses of ketamine (20 mg/kg, IP) or saline as a vehicle. We tested the animals in the novel object recognition test (NORT), forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and Morris water maze (MWM), which was followed by ex vivo c-Fos immunohistochemistry. We observed that combining environmental enrichment with ketamine led to a synergistic antidepressant effect. Environmental enrichment also ameliorated the spatial memory deficits caused by ketamine in the MWM. There was enhanced neuronal activity in the habenula of the enrichment only group following the probe trial of the MWM. In contrast, no differential activity was observed in enriched animals that received ketamine injections. The present study showed how environmental enrichment can enhance the antidepressant properties of ketamine while reducing some of its side effects, highlighting the potential of combining pharmacological and sensory-motor manipulations in the treatment of mood disorders.
Collapse
Affiliation(s)
- Deren Aykan
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Mert Genc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
26
|
Shafique H, Demers JC, Biesiada J, Golani LK, Cerne R, Smith JL, Szostak M, Witkin JM. ( R)-(-)-Ketamine: The Promise of a Novel Treatment for Psychiatric and Neurological Disorders. Int J Mol Sci 2024; 25:6804. [PMID: 38928508 PMCID: PMC11203826 DOI: 10.3390/ijms25126804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
NMDA receptor antagonists have potential for therapeutics in neurological and psychiatric diseases, including neurodegenerative diseases, epilepsy, traumatic brain injury, substance abuse disorder (SUD), and major depressive disorder (MDD). (S)-ketamine was the first of a novel class of antidepressants, rapid-acting antidepressants, to be approved for medical use. The stereoisomer, (R)-ketamine (arketamine), is currently under development for treatment-resistant depression (TRD). The compound has demonstrated efficacy in multiple animal models. Two clinical studies disclosed efficacy in TRD and bipolar depression. A study by the drug sponsor recently failed to reach a priori clinical endpoints but post hoc analysis revealed efficacy. The clinical value of (R)-ketamine is supported by experimental data in humans and rodents, showing that it is less sedating, does not produce marked psychotomimetic or dissociative effects, has less abuse potential than (S)-ketamine, and produces efficacy in animal models of a range of neurological and psychiatric disorders. The mechanisms of action of the antidepressant effects of (R)-ketamine are hypothesized to be due to NMDA receptor antagonism and/or non-NMDA receptor mechanisms. We suggest that further clinical experimentation with (R)-ketamine will create novel and improved medicines for some of the neurological and psychiatric disorders that are underserved by current medications.
Collapse
Affiliation(s)
- Hana Shafique
- Duke University School of Medicine, Durham, NC 27710, USA
| | - Julie C. Demers
- Indiana University-Purdue University, Indianapolis, IN 46202, USA; (J.C.D.); (J.B.)
| | - Julia Biesiada
- Indiana University-Purdue University, Indianapolis, IN 46202, USA; (J.C.D.); (J.B.)
| | - Lalit K. Golani
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA; (R.C.); (J.L.S.)
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA; (R.C.); (J.L.S.)
| | - Marta Szostak
- Department of Psychology, SWPS University, 03-815 Warsaw, Poland;
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA; (R.C.); (J.L.S.)
- Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA
| |
Collapse
|
27
|
Guan S, Li Y, Xin Y, Wang D, Lu P, Han F, Xu H. Deciphering the dual role of N-methyl-D-Aspartate receptor in postoperative cognitive dysfunction: A comprehensive review. Eur J Pharmacol 2024; 971:176520. [PMID: 38527701 DOI: 10.1016/j.ejphar.2024.176520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication following surgery, adversely impacting patients' recovery, increasing the risk of negative outcomes, prolonged hospitalization, and higher mortality rates. The N-methyl-D-aspartate (NMDA) receptor, crucial for learning, memory, and synaptic plasticity, plays a significant role in the development of POCD. Various perioperative factors, including age and anesthetic use, can reduce NMDA receptor function, while surgical stress, inflammation, and pain may lead to its excessive activation. This review consolidates preclinical and clinical research to explore the intricate relationship between perioperative factors affecting NMDA receptor functionality and the onset of POCD. It discusses the influence of aging, anesthetic administration, perioperative injury, pain, and inflammation on the NMDA receptor-related pathophysiology of POCD. The comprehensive analysis presented aims to identify effective treatment targets for POCD, contributing to the improvement of patient outcomes post-surgery.
Collapse
Affiliation(s)
- Shaodi Guan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yali Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yueyang Xin
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Danning Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei Lu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fanglong Han
- Department of Anesthesiology, Xiangyang Maternal and Child Health Hospital, Xiangyang, 441003, China
| | - Hui Xu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
28
|
Lou XJ, Qiu D, Ren ZY, Hashimoto K, Zhang GF, Yang JJ. Efficacy and safety of esketamine for perioperative depression in patients undergoing elective surgery: A meta-analysis of randomized controlled trials. Asian J Psychiatr 2024; 95:103997. [PMID: 38492442 DOI: 10.1016/j.ajp.2024.103997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Depression is a prevalent mood disorder during the perioperative period, with both preoperative concurrent depression and new-onset postoperative depression impacting postoperative recovery. Recent studies have indicated that the dissociative anesthetic esketamine may alleviate perioperative depressive symptoms. OBJECTIVE This meta-analysis aimed to assess the efficacy and safety of esketamine in treating perioperative depression. METHODS We selected randomized controlled trials comparing esketamine to placebo in terms of postoperative depressive symptoms. The primary outcome was postoperative depression scores, with secondary outcomes including the prevalence of postoperative depression, pain scores using the Visual Analogue Scale or Numeric Rating Scale, and incidences of adverse reactions such as nausea/vomiting, dizziness, dreams/nightmares, hallucinations. RESULTS We enrolled a total of 17 studies involving 2462 patients. The esketamine group demonstrated a significant reduction in postoperative depression scores within one week after surgery (SMD -0.47, 95% CI (-0.66, -0.27), P < 0.001) and over the long term (SMD -0.44, 95% CI (-0.79, -0.09), P = 0.01). Furthermore, esketamine significantly decreased the prevalence of postoperative depression both within one week (RR 0.46, 95% CI (0.33, 0.63), P < 0.001) and over the long term (RR 0.50, 95% CI (0.36, 0.70), P < 0.001). Additionally, esketamine effectively relieved pain on the first postoperative day compared to control. However, it also increased the risks of dizziness and hallucinations for a short time. CONCLUSION This meta-analysis suggests that the intraoperative or postoperative application of esketamine could be a potentially effective treatment for perioperative depression, although the increased risk of adverse reactions should be considered.
Collapse
Affiliation(s)
- Xue-Jie Lou
- Department of Anesthesiology, Pain and Perioperative Medicine, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Di Qiu
- Department of Anesthesiology, Pain and Perioperative Medicine, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zhuo-Yu Ren
- Department of Anesthesiology, Pain and Perioperative Medicine, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Kenji Hashimoto
- Department of Anesthesiology, Pain and Perioperative Medicine, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan.
| | - Guang-Fen Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
29
|
Ma L, Eguchi A, Liu G, Qu Y, Wan X, Murayama R, Mori C, Hashimoto K. A role of gut-brain axis on prophylactic actions of arketamine in male mice exposed to chronic restrain stress. Pharmacol Biochem Behav 2024; 238:173736. [PMID: 38401573 DOI: 10.1016/j.pbb.2024.173736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
The gut-brain axis, which includes gut microbiota and microbiome-derived metabolites, might be implicated in depression. We reported the sustained prophylactic effects of a new antidepressant arketamine in chronic restrain stress (CRS) model of depression. In this study, we investigated the role of gut-brain axis on the prophylactic effects of arketamine in the CRS (7 days) model. Pretreatment with arketamine (10 mg/kg, 1 day prior to the CRS onset) significantly prevented CRS-induced body weight loss, increased immobility time of forced swimming test, decreased sucrose preference of sucrose preference test, and reduced expressions of synaptic proteins (GluA1 and PSD-95) in the prefrontal cortex (PFC) in the male mice. Gut microbiota analysis showed that pretreatment with arketamine might restore altered abundance of gut microbiota in CRS-exposed mice. An untargeted metabolomics analysis revealed four metabolites (e.g., L-leucine, N-acetyl-l-glutamine, 2-(2,4-dichlorophenyl)-3-[4-(dimethylamino)phenyl]acrylonitrile, L-threonine amide) that were altered between control and CRS group; however, there were found to be altered between the saline + CRS group and the arketamine + CRS group. Network analysis demonstrated correlations among synaptic proteins in the PFC and certain microbiota, and blood metabolites. These findings suggest that gut-brain axis, including its metabolites, might partially contribute to the persistent prophylactic effects of arketamine in the CRS model.
Collapse
Affiliation(s)
- Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Guilin Liu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Rumi Murayama
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8670, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
30
|
Zhao LY, Zhang GF, Lou XJ, Hashimoto K, Yang JJ. Ketamine and its enantiomers for depression: a bibliometric analysis from 2000 to 2023. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01809-9. [PMID: 38662093 DOI: 10.1007/s00406-024-01809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Ketamine has demonstrated rapid and sustained antidepressant effects, marking its emergence as an innovative treatment of depression. Despite the growing number of preclinical and clinical studies exploring the antidepressant effects of ketamine and its enantiomers, a comprehensive bibliometric analysis in this field has yet to be conducted. This study employs bibliometric methods and visualization tools to examine the literature and identify key topics related to the antidepressant effects of ketamine and its enantiomers. We sourced publications on the antidepressant effects of ketamine and its enantiomers from the Web of Science Core Collection (WOSCC) database, covering the period from 2000 to 2023. Tools such as VOSviewer, CiteSpace and the R package "bibliometrix" were utilized for visual analysis. The study included 4,274 publications, with a notable increase in publications peaking in 2022. Co-occurrence analysis highlighted two primary research focal points: the efficacy and safety of ketamine and its enantiomers in treating depression, and the mechanisms behind their antidepressant effects. In conclusion, this analysis revealed a significant increase in research on the antidepressant effects of ketamine and its enantiomers over the past two decades, leading to the approval of esketamine nasal spray for treatment-resistant depression. The rapid antidepressant effects of ketamine have spurred further studies into its mechanisms of action and the search for new antidepressants with fewer side effects.
Collapse
Affiliation(s)
- Li-Yuan Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Guang-Fen Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xue-Jie Lou
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Kenji Hashimoto
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
31
|
Zhang S, Pu Y, Liu J, Li L, An C, Wu Y, Zhang W, Zhang W, Qu S, Yan W. Exploring the multifaceted potential of (R)-ketamine beyond antidepressant applications. Front Pharmacol 2024; 15:1337749. [PMID: 38666026 PMCID: PMC11043571 DOI: 10.3389/fphar.2024.1337749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
(R, S)- and (S)-ketamine have made significant progress in the treatment of treatment-resistant depression (TRD) and have become a research focus in recent years. However, they both have risks of psychomimetic effects, dissociative effects, and abuse liability, which limit their clinical use. Recent preclinical and clinical studies have shown that (R)-ketamine has a more efficient and lasting antidepressant effect with fewer side effects compared to (R, S)- and (S)-ketamine. However, a recent small-sample randomized controlled trial found that although (R)-ketamine has a lower incidence of adverse reactions in adult TRD treatment, its antidepressant efficacy is not superior to the placebo group, indicating its antidepressant advantage still needs further verification and clarification. Moreover, an increasing body of research suggests that (R)-ketamine might also have significant applications in the prevention and treatment of medical fields or diseases such as cognitive disorders, perioperative anesthesia, ischemic stroke, Parkinson's disease, multiple sclerosis, osteoporosis, substance use disorders, inflammatory diseases, COVID-19, and organophosphate poisoning. This article briefly reviews the mechanism of action and research on antidepressants related to (R)-ketamine, fully revealing its application potential and development prospects, and providing some references and assistance for subsequent expanded research.
Collapse
Affiliation(s)
- Senbing Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Anesthesiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yanzhu Pu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jianning Liu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lewen Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chibing An
- Department of Anesthesiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yumin Wu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenjie Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenxia Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Song Qu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenjun Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
32
|
Yang Y, Eguchi A, Mori C, Hashimoto K. Depression-like phenotypes in mice following common bile duct ligation: Insights into the gut-liver-brain axis via the vagus nerve. Neurobiol Dis 2024; 192:106433. [PMID: 38331354 DOI: 10.1016/j.nbd.2024.106433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Depression frequently occurs in patients with liver cirrhosis, yet the reasons for this correlation are not fully understood. Dysbiosis of gut microbiota has been implicated in depression through the gut-brain axis via the vagus nerve. This study explored the potential role of the gut-liver-brain axis via the vagus nerve in depression-like phenotypes in mice with liver cirrhosis. These mice underwent common bile duct ligation (CBDL), a method used to stimulate liver cirrhosis. To assess depression-like behaviors, behavioral tests were conducted 10 days following either sham or CBDL surgeries. The mice with CBDL displayed symptoms such as splenomegaly, elevated plasma levels of interleukin-6 and tumor necrosis factor-α, depression-like behaviors, decreased levels of synaptic proteins in the prefrontal cortex (PFC), disrupted gut microbiota balance, and changes in blood metabolites (or lipids). Additionally, there were positive or negative correlations between the relative abundance of microbiome and behavioral data or blood metabolites (or lipids). Significantly, these changes were reversed in CBDL mice by performing a subdiaphragmatic vagotomy. Intriguingly, depression-like phenotypes in mice with CBDL were improved after a single injection of arketamine, a new antidepressant. These results suggest that CBDL-induced depression-like phenotypes in mice are mediated through the gut-liver-brain axis via the subdiaphragmatic vagus nerve, and that arketamine might offer a new treatment approach for depression in liver cirrhosis patients.
Collapse
Affiliation(s)
- Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
33
|
Lewis V, Rurak G, Salmaso N, Aguilar-Valles A. An integrative view on the cell-type-specific mechanisms of ketamine's antidepressant actions. Trends Neurosci 2024; 47:195-208. [PMID: 38220554 DOI: 10.1016/j.tins.2023.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/08/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Abstract
Over the past six decades, the use of ketamine has evolved from an anesthetic and recreational drug to the first non-monoaminergic antidepressant approved for treatment-resistant major depressive disorder (MDD). Subanesthetic doses of ketamine and its enantiomer (S)-ketamine (esketamine) directly bind to several neurotransmitter receptors [including N-methyl-d-aspartic acid receptor (NMDAR), κ and μ opioid receptor (KOR and MOR)] widely distributed in the brain and across different cell types, implicating several potential molecular mechanisms underlying the action of ketamine as an antidepressant. This review examines preclinical studies investigating cell-type-specific mechanisms underlying the effects of ketamine on behavior and synapses. Cell-type-specific approaches are crucial for disentangling the critical mechanisms involved in the therapeutic effect of ketamine.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Gareth Rurak
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Argel Aguilar-Valles
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
34
|
Hashimoto K. Are "mystical experiences" essential for antidepressant actions of ketamine and the classic psychedelics? Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01770-7. [PMID: 38411629 DOI: 10.1007/s00406-024-01770-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024]
Abstract
The growing interest in the rapid and sustained antidepressant effects of the dissociative anesthetic ketamine and classic psychedelics, such as psilocybin, is remarkable. However, both ketamine and psychedelics are known to induce acute mystical experiences; ketamine can cause dissociative symptoms such as out-of-body experience, while psychedelics typically bring about hallucinogenic experiences, like a profound sense of unity with the universe or nature. The role of these mystical experiences in enhancing the antidepressant outcomes for patients with depression is currently an area of ongoing investigation and debate. Clinical studies have shown that the dissociative symptoms following the administration of ketamine or (S)-ketamine (esketamine) are not directly linked to their antidepressant properties. In contrast, the antidepressant potential of (R)-ketamine (arketamine), thought to lack dissociative side effects, has yet to be conclusively proven in large-scale clinical trials. Moreover, although the activation of the serotonin 5-HT2A receptor is crucial for the hallucinogenic effects of psychedelics in humans, its precise role in their antidepressant action is still under discussion. This article explores the importance of mystical experiences in enhancing the antidepressant efficacy of both ketamine and classic psychedelics.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan.
| |
Collapse
|
35
|
Yin YY, Yan JZ, Lai SX, Wei QQ, Sun SR, Zhang LM, Li YF. Gamma oscillations in the mPFC: A potential predictive biomarker of depression and antidepressant effects. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110893. [PMID: 37949392 DOI: 10.1016/j.pnpbp.2023.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Gamma oscillations have attracted much attention in the field of mood disorders, but their role in depression remains poorly understood. This study aimed to investigate whether gamma oscillations in the medial prefrontal cortex (mPFC) could serve as a predictive biomarker of depression. Chronic restraint stress (CRS) or lipopolysaccharide (LPS) were used to induce depression-like behaviors in mice; local field potentials (LFPs) in the mPFC were recorded by electrophysiological techniques; We found that both CRS and LPS induced significant depression-like behaviors in mice, including increasing immobility durations in the forced swimming test (FST) and tail suspension test (TST) and increasing the latency to feed in the novelty-suppressed feeding test (NSFT). Electrophysiological results suggested that CRS and LPS significantly reduced low and high gamma oscillations in the mPFC. Furthermore, a single injection of ketamine or scopolamine for 24 h significantly increased gamma oscillations and elicited rapid-acting antidepressant-like effects. In addition, fluoxetine treatment for 21 days significantly increased gamma oscillations and elicited antidepressant-like effects. Taken together, our findings suggest that gamma oscillations are strongly associated with depression, yielding new insights into investigating the predictive biomarkers of depression and the time course of antidepressant effects.
Collapse
Affiliation(s)
- Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| | - Jiao-Zhao Yan
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shi-Xin Lai
- School of Medicine, Sun Yat-Sen University, Shenzhen campus, Shenzhen, China
| | - Qian-Qian Wei
- School of Medicine, Nantong University, Nantong, China
| | - Si-Rui Sun
- Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China; Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
36
|
Li S, Zhuo Z, Li R, Guo K. Efficacy of esketamine for the treatment of postpartum depression and pain control following cesarean section: a randomized, double-blind, controlled clinical trial. BMC Anesthesiol 2024; 24:52. [PMID: 38321436 PMCID: PMC10845461 DOI: 10.1186/s12871-024-02436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Postpartum depression (PPD) following a cesarean delivery is a frequently seen complication. Despite the prophylactic effects of ketamine, the impact of esketamine on PPD in women undergoing cesarean section remains uncertain. This study aimed to assess the effectiveness of esketamine as an adjunct to patient-controlled intravenous analgesia (PCIA) in preventing PPD in women undergoing caesarean section. METHODS A total of 275 parturients undergoing caesarean section and subsequent patient-controlled intravenous analgesia (PCIA) were randomly assigned to receive either the control treatment (sufentanil 2 µg/kg + tropisetron 10 mg) or the experimental treatment with additional esketamine (1.5 mg/kg). The primary outcome measured was the incidence of postpartum depression (PPD), classified by Edinburgh Postnatal Depression Scale (EPDS) scores equal to or greater than 13 indicating PPD. Secondary outcomes included cumulative sufentanil consumption during specific time periods (0-24 h, 24-48 h, and 0-48 h) after the surgical procedure and numerical rating scale (NRS) scores at rest and during movements. RESULTS The final analysis included a total of 246 postpartum women who had undergone caesarean delivery. On postoperative day 42, the incidence of depression among the control group was 17.6%, which was significantly higher compared to the esketamine group with a rate of 8.2% (P = 0.02). The EPDS scores also showed a significant difference between the two groups, with a mean score of 9.02 ± 2.21 in the control group and 6.87 ± 2.14 in the esketamine group (p < 0.0001). In terms of pain management, the esketamine group showed lower sufentanil consumption in the 0-24 h (42.5 ± 4.58 µg vs. 50.15 ± 5.47 µg, P = 0.04) and 0-48 h (87.40 ± 9.51 µg vs. 95.10 ± 9.36 µg, P = 0.04) postoperative periods compared to the control group. Differences in movement were also observed between the two groups at 24 and 48 h after the cesarean Sect. (3.39 ± 1.57 vs. 4.50 ± 0.80, P = 0.02; 2.43 ± 0.87 vs. 3.56 ± 0.76, P = 0.02). It is worth noting that the frequency of side effects observed in both groups was comparable. CONCLUSIONS Esketamine at a dose of 1.5 mg/kg, when used as a supplement in PCIA, has been shown to significantly reduce the occurrence of PPD within 42 days. Additionally, it has been found to decrease cumulative consumption of sufentanil over a 48-hour period following cesarean operation, all without increasing the rate of adverse effects. TRIAL REGISTRATION Registered in the Chinese Clinical Trial Registry (ChiCTR2200067054) on December 26, 2022.
Collapse
Affiliation(s)
- Shurong Li
- Department of anesthesiology, The First Hospital of Putian City, Putian, Fujian, China
| | - Zhifang Zhuo
- Department of anesthesiology, The First Hospital of Putian City, Putian, Fujian, China
| | - Renwei Li
- Department of anesthesiology, The First Hospital of Putian City, Putian, Fujian, China
| | - Kaikai Guo
- Department of pain medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
37
|
Matin S, Dadkhah M. BDNF/CREB signaling pathway contribution in depression pathogenesis: A survey on the non-pharmacological therapeutic opportunities for gut microbiota dysbiosis. Brain Res Bull 2024; 207:110882. [PMID: 38244808 DOI: 10.1016/j.brainresbull.2024.110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Emerging evidence supports the gut microbiota and the brain communication in general health. This axis may affect behavior through modulating neurotransmission, and thereby involve in the pathogenesis and/or progression of different neuropsychiatric disorders such as depression. Brain-derived neurotrophic factor and cAMP response element-binding protein known as CREB/BDNF pathway plays have critical functions in the pathogenesis of depression as the same of mechanisms related to antidepressants. However, the putative causal significance of the CREB/BDNF signaling cascade in the gut-brain axis in depression remains unknown. Also interventions such as probiotics supplementation and exercise can influence microbiome also improve bidirectional communication of gut and brain. In this review we aim to explain the BDNF/CREB signaling pathway and gut microbiota dysfunction and then evaluate the potential role of probiotics, prebiotics, and exercise as a therapeutic target in the gut microbiota dysfunction induced depression. The current narrative review will specifically focus on the impact of exercise and diet on the intestinal microbiota component, as well as the effect that these therapies may have on the microbiota to alleviate depressive symptoms. Finally, we look at how BDNF/CREB signaling pathway may exert distinct effects on depression and gut microbiota dysfunction.
Collapse
Affiliation(s)
- Somaieh Matin
- Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
38
|
Elmeseiny OSA, Müller HK. A molecular perspective on mGluR5 regulation in the antidepressant effect of ketamine. Pharmacol Res 2024; 200:107081. [PMID: 38278430 DOI: 10.1016/j.phrs.2024.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Ketamine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, has received much attention for its rapid antidepressant effects. A single administration of ketamine elicits rapid and sustained antidepressant effects in both humans and animals. Current efforts are focused on uncovering molecular mechanisms responsible for ketamine's antidepressant activity. Ketamine primarily acts via the glutamatergic pathway, and increasing evidence suggests that ketamine induces synaptic and structural plasticity through increased translation and release of neurotrophic factors, activation of mammalian target of rapamycin (mTOR), and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR)-mediated synaptic potentiation. However, the initial events triggering activation of intracellular signaling cascades and the mechanisms responsible for the sustained antidepressant effects of ketamine remain poorly understood. Over the last few years, it has become apparent that in addition to the fast actions of the ligand-gated AMPARs and NMDARs, metabotropic glutamate receptors (mGluRs), and particularly mGluR5, may also play a role in the antidepressant action of ketamine. Although research on mGluR5 in relation to the beneficial actions of ketamine is still in its infancy, a careful evaluation of the existing literature can identify converging trends and provide new interpretations. Here, we review the current literature on mGluR5 regulation in response to ketamine from a molecular perspective and propose a possible mechanism linking NMDAR inhibition to mGluR5 modulation.
Collapse
Affiliation(s)
- Ola Sobhy A Elmeseiny
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
39
|
Yang Y, Eguchi A, Wan X, Mori C, Hashimoto K. Depression-like phenotypes in mice with hepatic ischemia/reperfusion injury: A role of gut-microbiota-liver-brain axis via vagus nerve. J Affect Disord 2024; 345:157-167. [PMID: 37879416 DOI: 10.1016/j.jad.2023.10.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Depression is a frequent symptom in patients with chronic liver disease; however, the mechanisms underlying this association remain unclear. Dysbiosis of gut microbiota plays a critical role in depression through the gut-brain axis via the vagus nerve. In this study, we investigated whether the gut-microbiota-liver-brain axis plays a role in depression-like phenotypes in mice with hepatic ischemia/reperfusion (HI/R) injury via the vagus nerve. Behavioral tests for depression-like behaviors were performed 7 days after sham or HI/R injury surgery. Mice with HI/R injury exhibited splenomegaly, systemic inflammation, depression-like behaviors, reduced expression of synaptic proteins in the prefrontal cortex (PFC), abnormal composition of gut microbiota, and altered blood metabolites and lipids. Furthermore, there were positive or negative correlations between the relative abundance of microbiome and behavioral data or blood metabolites (or lipids). Moreover, subdiaphragmatic vagotomy significantly blocked these changes in mice with HI/R injury. Notably, depression-like phenotypes in mice with HI/R injury were ameliorated after subsequent single injection of the new antidepressant arketamine. The current findings suggest that HI/R injury induces depression-like phenotypes in mice through the gut-microbiota-liver-brain axis via the subdiaphragmatic vagus nerve. Furthermore, arketamine may have therapeutic potential in the treatment of depression in patients with chronic liver disease.
Collapse
Affiliation(s)
- Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
40
|
Xu S, Yang J, Li J, Zhang M, Sun J, Liu Q, Yang J. Esketamine pretreatment during cesarean section reduced the incidence of postpartum depression: a randomized controlled trail. BMC Anesthesiol 2024; 24:20. [PMID: 38200438 PMCID: PMC10777554 DOI: 10.1186/s12871-023-02398-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Postpartum depression (PPD) is a common mental disease in postpartum women, which has received more and more attention in society. Ketamine has been confirmed for its rapid antidepressant effect in women with PPD. We speculate that esketamine, an enantiomer of ketamine, pretreatment during cesarean can also reduce the incidence of PPD. METHODS All the parturients enrolled in the study were randomly assigned to two groups: the esktamine group (0.2 mg/kg esketamine) and the control group (a same volume of saline). All the drugs were pumped for 40 min started from the beginning of the surgery. The Amsterdam Anxiety and Information Scale (APAIS) scores before the surgery, the Edinburgh postnatal depression scale (EPDS) scores at 4 d and 42 d after surgery, the Pain Numerical Rating Scale (NRS) scores at 6 h, 12 h, 24 h and 48 h post-operation were evaluated, as well as the adverse reactions were recorded. RESULTS A total of 319 parturients were analyzed in the study. The incidence of PPD (EPDS score > 9) in the esketamine group was lower than the control group at 4 days after surgery (13.8% vs 23.1%, P = 0.0430) but not 42 days after surgery (P = 0.0987). Esketamine 0.2 mg/kg could reduce the NRS score at 6 h,12 h and 24 h after surgery, as well as the use of vasoactive drugs during surgery (P < 0.05). The incidences of maternal dizziness (17.0%), blurred vision (5%), illusion (3.8%) and drowsiness (3.8%) in the esketamine group were higher than those of control group (P < 0.05). CONCLUSIONS Intraoperative injection of esketamine (0.2 mg/kg) prevented the occurrence of depression (EPDS score > 9) at 4 days after delivery but not 42 days. Esketamine reduced the NRS scores at 6 h, 12 h and 24 h after surgery, but the occurrence of maternal side effects such as dizziness, blurred vision, drowsiness and hallucination were increased. TRIAL REGISTRATION Registered in the Chinese Clinical Trial Registry (ChiCTR2100053422) on 20/11/2021.
Collapse
Affiliation(s)
- Shixia Xu
- Department of Anesthesiology, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210000, Jiangsu, China
| | - Jiaojiao Yang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210000, Jiangsu, China
| | - Jing Li
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210000, Jiangsu, China
| | - Min Zhang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210000, Jiangsu, China
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210000, Jiangsu, China
| | - Qingren Liu
- Department of Anesthesiology, Xishan People's Hospital of Wuxi City, Wuxi, 214105, China
| | - Jianjun Yang
- Department of Anesthesiology, Nanjing Medical University, Nanjing, 210000, Jiangsu, China.
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
41
|
Meng Y, Sun J, Zhang G. Pick fecal microbiota transplantation to enhance therapy for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110860. [PMID: 37678703 DOI: 10.1016/j.pnpbp.2023.110860] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
In recent years, fecal microbiota transplantation (FMT) has emerged as a promising therapy for major depressive disorder (MDD). The goal of the operation is to restore a healthy gut microbiota by introducing feces from a healthy donor into the recipient's digestive system. The brain-gut axis is thought to have a significant role in regulating mood, behavior, and cognition, which supports the use of FMT in the treatment of MDD. Numerous studies have shown a correlation between abnormalities of the gut microbiota and MDD, whereas FMT has demonstrated the potential to restore microbial equilibrium. While FMT has shown encouraging results, it is crucial to highlight the potential hazards and limits inherent to this therapeutic approach. Stool donor-to-recipient disease transfer is a concern of FMT. Furthermore, it still needs to be determined what effect FMT has on the gut microbiota and the brain in the long run. This literature review provides an overview of the possible efficacy of FMT as a therapeutic modality for MDD. There is hope for patients who have not reacted well to typical antidepressant therapy since FMT may become an invaluable tool in the treatment of MDD as researchers continue to examine the relationship between gut microbiota and MDD.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang 110042, China
| |
Collapse
|
42
|
Jóźwiak-Bębenista M, Sokołowska P, Wiktorowska-Owczarek A, Kowalczyk E, Sienkiewicz M. Ketamine - A New Antidepressant Drug with Anti-Inflammatory Properties. J Pharmacol Exp Ther 2024; 388:134-144. [PMID: 37977808 DOI: 10.1124/jpet.123.001823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023] Open
Abstract
Ketamine is a new, potent and rapid-acting antidepressant approved for therapy of treatment-resistant depression, which has a different mechanism of action than currently-available antidepressant therapies. It owes its uniquely potent antidepressant properties to a complex mechanism of action, which currently remains unclear. However, it is thought that it acts by modulating the functioning of the glutamatergic system, which plays an important role in the process of neuroplasticity associated with depression. However, preclinical and clinical studies have also found ketamine to reduce inflammation, either directly or indirectly (by activating neuroprotective branches of the kynurenine pathway), among patients exhibiting higher levels of inflammation. Inflammation and immune system activation are believed to play key roles in the development and course of depression. Therefore, the present work examines the role of the antidepressant effect of ketamine and its anti-inflammatory properties in the treatment of depression. SIGNIFICANCE STATEMENT: The present work examines the relationship between the antidepressant effect of ketamine and its anti-inflammatory properties, and the resulting benefits in treatment-resistant depression (TRD). The antidepressant mechanism of ketamine remains unclear, and there is an urgent need to develop new therapeutic strategies for treatment of depression, particularly TRD.
Collapse
Affiliation(s)
- Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Paulina Sokołowska
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| |
Collapse
|
43
|
Jiang Y, Wang X, Chen J, Zhang Y, Hashimoto K, Yang JJ, Zhou Z. Repeated ( S)-ketamine administration ameliorates the spatial working memory impairment in mice with chronic pain: role of the gut microbiota-brain axis. Gut Microbes 2024; 16:2310603. [PMID: 38332676 PMCID: PMC10860353 DOI: 10.1080/19490976.2024.2310603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Chronic pain is commonly linked with diminished working memory. This study explores the impact of the anesthetic (S)-ketamine on spatial working memory in a chronic constriction injury (CCI) mouse model, focusing on gut microbiome. We found that multiple doses of (S)-ketamine, unlike a single dose, counteracted the reduced spontaneous alteration percentage (%SA) in the Y-maze spatial working memory test, without affecting mechanical or thermal pain sensitivity. Additionally, repeated (S)-ketamine treatments improved the abnormal composition of the gut microbiome (β-diversity), as indicated by fecal 16S rRNA analysis, and increased levels of butyrate, a key gut - brain axis mediator. Protein analysis showed that these treatments also corrected the upregulated histone deacetylase 2 (HDAC2) and downregulated brain-derived neurotrophic factor (BDNF) in the hippocampi of CCI mice. Remarkably, fecal microbiota transplantation from mice treated repeatedly with (S)-ketamine to CCI mice restored %SA and hippocampal BDNF levels in CCI mice. Butyrate supplementation alone also improved %SA, BDNF, and HDAC2 levels in CCI mice. Furthermore, the TrkB receptor antagonist ANA-12 negated the beneficial effects of repeated (S)-ketamine on spatial working memory impairment in CCI mice. These results indicate that repeated (S)-ketamine administration ameliorates spatial working memory impairment in CCI mice, mediated by a gut microbiota - brain axis, primarily through the enhancement of hippocampal BDNF - TrkB signaling by butyrate.
Collapse
Affiliation(s)
- Yubin Jiang
- Department of Anesthesiology, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xingming Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiawei Chen
- Department of Anesthesiology, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Yibao Zhang
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
44
|
Evrensel A. Probiotics and Fecal Microbiota Transplantation in Major Depression: Doxa or Episteme? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:67-83. [PMID: 39261424 DOI: 10.1007/978-981-97-4402-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In the human body, eukaryotic somatic cells and prokaryotic microorganisms live together. In this state, the body can be viewed as a "superorganism." Symbiotic life with commensal microorganisms can be observed in almost every part of the body. Intestinal microbiota plays an important role in health and disease, and in shaping and regulating neuronal functions from the intrauterine period to the end of life. Microbiota-based treatment opportunities are becoming more evident in both understanding the etiopathogenesis and treatment of neuropsychiatric disorders, especially depression. Antidepressant drugs, which are the first choice in the treatment of depression, also have antimicrobial and immunomodulatory mechanisms of action. From these perspectives, direct probiotics and fecal microbiota transplantation are treatment options to modulate microbiota composition. There are few preclinical and clinical studies on the effectiveness and safety of these applications in depression. The information obtained from these studies may still be at a doxa level. However, the probability that this information will become episteme in the future seems to be increasing.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, Istanbul, Turkey.
- NP Brain Hospital, Istanbul, Turkey.
| |
Collapse
|
45
|
Chang L, Hashimoto K. Comments to behavioral tests for antidepressant-like actions of (2R,6R)-hydroxynorketamine by Bonaventura et al. Mol Psychiatry 2024; 29:3-4. [PMID: 36100667 DOI: 10.1038/s41380-022-01766-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
46
|
Yu XB, Zhong KL, Chen C, Fu J, Chen F, Zhou HM, Zhang XH, Kim K, Pan JY. Simvastatin ameliorates synaptic plasticity impairment in chronic mild stress-induced depressed mice by modulating hippocampal NMDA receptor. Psychopharmacology (Berl) 2024; 241:75-88. [PMID: 37715015 DOI: 10.1007/s00213-023-06464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND In our previous study, we showed simvastatin exerts an antidepressant effect and inhibits neuroinflammation. Given the role of synaptic impairment in depression development, we investigate the effect of simvastatin on synaptic plasticity in depression and the related mechanisms. METHODS Electrophysiological analysis, Golgi staining, and transmission electron microscope were performed to analyze the effect of simvastatin on synaptic impairment in depression. In addition, the localization and reactivity of N-methyl-D-aspartate receptor (NMDAR) subunits and the downstream signaling were investigated to explore the mechanism of simvastatin's effect on synaptic plasticity. RESULTS Simvastatin ameliorated the reduction of the magnitude of long-term potentiation (LTP) in Schaffer collateral-CA1, restored hippocampal dendritic spine density loss, improved the number of spine synapses, reversed the reduction in BrdU-positive cells in chronic mild stress (CMS)-induced depressed mice, and ameliorated NMDA-induced neurotoxicity in hippocampal neurons. Dysfunction of NMDAR activity in the hippocampus is associated with depression. Simvastatin treatment reversed the surface expression and phosphorylation changes of NMDAR subunits in NMDA-treated hippocampal neurons and depressed mice. In addition, simvastatin further increased the levels of mature BDNF, activating TrkB-Akt-mTOR signaling, which is critical for synaptic plasticity. CONCLUSIONS These findings suggest that simvastatin can improve the dysfunction of NMDAR and ameliorate hippocampal synaptic plasticity impairment in depressed mice.
Collapse
Affiliation(s)
- Xu-Ben Yu
- School of Pharmacy, Chonnam National University, Gwangju, South Korea.
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.
| | - Kai-Long Zhong
- Department of Pharmacy, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, People's Republic of China
| | - Chuang Chen
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Jing Fu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Fang Chen
- Department of Pharmacy, The First Affiliated Hospital of Xiamen University, Xiamen, 361005, People's Republic of China
| | - Hong-Min Zhou
- Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Xiu-Hua Zhang
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Kwonseop Kim
- School of Pharmacy, Chonnam National University, Gwangju, South Korea.
| | - Jing-Ye Pan
- Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
47
|
Liu G, Ma L, Qu Y, Wan X, Xu D, Zhao M, Murayama R, Hashimoto K. Prophylactic effects of arketamine, but not hallucinogenic psychedelic DOI nor non-hallucinogenic psychedelic analog lisuride, in lipopolysaccharide-treated mice and mice exposed to chronic restrain stress. Pharmacol Biochem Behav 2023; 233:173659. [PMID: 37844631 DOI: 10.1016/j.pbb.2023.173659] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Anesthetic ketamine and classical psychedelics that act as 5-hydroxytryptamine-2A receptor (5-HT2AR) agonists demonstrated rapid and sustained antidepressant actions in patients with treatment-resistant depression. The new antidepressant arketamine is reported to cause long-lasting prophylactic effects in lipopolysaccharide (LPS)-treated mice and mice exposed to chronic restrain stress (CRS). However, no study has compared the prophylactic effects of DOI (2,5-dimethoxy-4-iodoamphetamine: a hallucinogenic psychedelic drug with potent 5-HT2AR agonism), lisuride (non-hallucinogenic psychedelic analog with 5-HT2AR and 5-HT1AR agonism), and arketamine on depression-like behaviors in mice. Saline (10 ml/kg), DOI (2.0 or 4.0 mg/kg), lisuride (1.0 or 2.0 mg/kg), or arketamine (10 mg/kg) was administered intraperitoneally (i.p.) to male mice 6 days before administration of LPS (1.0 mg/kg). Pretreatment with aketamine, but not DOI and lisuride, significantly ameliorated body weight loss, splenomegaly, the increased immobility time of forced swimming test (FST), and the decreased expression of PSD-95 in the prefrontal cortex (PFC) of LPS-treated mice. In another test, male mice received the same treatment one day before CRS (7 days). Pretreatment with aketamine, but not DOI and lisuride, significantly ameliorated the increased FST immobility time, the reduced sucrose preference in the sucrose preference test, and the decreased expression of PSD-95 in the PFC of CRS-exposed mice. These findings suggest that, unlike to arketamine, both DOI and lisuride did not exhibit long-lasting prophylactic effects in mouse models of depression.
Collapse
Affiliation(s)
- Guilin Liu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Dan Xu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Mingming Zhao
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Rumi Murayama
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
48
|
Liu QR, Zong QK, Ding LL, Dai HY, Sun Y, Dong YY, Ren ZY, Hashimoto K, Yang JJ. Effects of perioperative use of esketamine on postpartum depression risk in patients undergoing cesarean section: A randomized controlled trial. J Affect Disord 2023; 339:815-822. [PMID: 37482224 DOI: 10.1016/j.jad.2023.07.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Postpartum depression (PPD) is a prevalent public health issue. Although ketamine has prophylactic effects on PPD in women undergoing cesarean section, the effects of esketamine on PPD remain unclear. This trial aimed to evaluate the efficacy of perioperative esketamine infusion on PPD risk by assessing Edinburgh Postnatal Depression Scale (EPDS) scores and blood biomarkers. METHODS A total of 150 participants undergoing elective cesarean section were randomly allocated to receive either esketamine or normal saline. Since 27 participants were excluded due to consent withdrawal or loss to follow-up, 123 patients were included. The primary outcome was the prevalence of PPD risk. Secondary outcomes included the prevalence of postpartum anxiety (PPA) risk, levels of biomarkers, postoperative pain intensity, and cumulative sufentanil consumption. RESULTS The prevalence of PPD and PPA risk at 3 days, 42 days, 3 months, and 6 months postpartum did not differ between the two groups. Furthermore, EPDS scores, pain intensity at rest, and during coughing on postoperative days (POD) 1 and 2 did not differ between the two groups. Sufentanil consumption during 0-12 h, 12-24 h, 0-24 h, and 0-48 h postoperatively were significantly lower in the esketamine group compared to the control group. Blood biomarkers did not differ between the two groups on POD 3. LIMITATIONS The sample size was small. PPD risk was simply screened, not diagnosed. CONCLUSIONS Perioperative administration of esketamine did not decrease the incidence of PPD risk in women after elective cesarean section. However, esketamine reduced opioid consumption.
Collapse
Affiliation(s)
- Qing-Ren Liu
- Department of Anesthesiology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| | - Qian-Kun Zong
- Department of Anesthesiology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| | - Li-Li Ding
- Department of Anesthesiology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| | - Hong-Yan Dai
- Department of Obstetrics & Gynecology, Xishan People's Hospital of Wuxi City, Wuxi, 214105, China
| | - Yan Sun
- Department of Obstetrics & Gynecology, Xishan People's Hospital of Wuxi City, Wuxi, 214105, China
| | - Yong-Yan Dong
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zhuo-Yu Ren
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
49
|
Wu G, Xu H. A synopsis of multitarget therapeutic effects of anesthetics on depression. Eur J Pharmacol 2023; 957:176032. [PMID: 37660970 DOI: 10.1016/j.ejphar.2023.176032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Depression is a profound mental disorder that dampens the mood and undermines volition, which exhibited an increased incidence over the years. Although drug-based interventions remain the primary approach for depression treatment, the available medications still can't satisfy the patients. In recent years, the newly discovered therapeutic targets such as N-methyl-D-aspartate (NMDA) receptor, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor, and tyrosine kinase B (TrkB) have brought new breakthroughs in the development of antidepressant drugs. Moreover, it has come to light that certain anesthetics possess pharmacological mechanisms intricately linked to the aforementioned therapeutic targets for depression. At present, numerous preclinical and clinical studies have explored the therapeutic effects of anesthetic drugs such as ketamine, isoflurane, N2O, and propofol, on depression. These investigations suggested that these drugs can swiftly ameliorate patients' depression symptoms and engender long-term effects. In this paper, we provide a comprehensive review of the research progress and potential molecular mechanisms of various anesthetic drugs for depression treatment. By shedding light on this subject, we aim to facilitate the development and clinical implementation of new antidepressant drugs based on anesthetic medications.
Collapse
Affiliation(s)
- Guowei Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongwei Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
50
|
García-Gutiérrez MS, Navarro D, Torregrosa AB, Viudez-Martínez A, Giner S, Manzanares J. Alterations of BDNF, mGluR5, Homer1a, p11 and excitatory/inhibitory balance in corticolimbic brain regions of suicide decedents. J Affect Disord 2023; 339:366-376. [PMID: 37437733 DOI: 10.1016/j.jad.2023.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/02/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Developing biological based approaches for preventing suicide has become a priority. In recent years, there has been a surge in studies investigating the role of the glutamatergic system in suicide, although it remains unclear. METHODS We evaluated changes in the gene expression of the metabotropic glutamate receptor 5 (mGluR5) and its scaffolding proteins Homer1a and p11 in the dorsolateral prefrontal cortex (DLPFC), amygdala (AMY), and hippocampus (HIP) of 28 suicide decedents (S) (with no clinical psychiatric history or treatment with anxiolytics or antidepressants) and 26 controls (C) by real-time PCR (qPCR). Indeed, we measured BDNF gene expression and VGluT1 and VGAT immunoreactivities in the HIP by qPCR and immunohistochemistry, respectively. Cases and controls matched for age (C: 48.6 ± 11.6 years; S: 46.9 ± 14.5 years) and postmortem interval (PMI; C: 20.1 ± 13h; S: 16.9 ± 5h). RESULTS In DLPFC, S had lower p11 gene expression levels, but no differences were found in mGluR5 or Homer1a. In the AMY and HIP, mGluR5 and Homer1a were increased, p11 and BDNF were reduced. In the HIP, there were less VGAT-ir and more VGluT1-ir. LIMITATIONS Future studies are necessary to evaluate protein levels, and determine the cell types and potential compensatory mechanisms in a larger sample including S diagnosed with psychiatric disorders, females and different ethnicities. CONCLUSIONS This study identified significant alterations in mGluR5, Homer1a, p11, BDNF and excitatory/inhibitory balance in corticolimbic brain areas of S. These results further characterize the biological basis of suicide, contributing to the identification of potential biomarkers for suicide prevention.
Collapse
Affiliation(s)
- María S García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante 03550, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante 03550, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Abraham B Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante 03550, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | | | - Salvador Giner
- Instituto de Medicina Legal, Avenida Aguilera 53, 03007, Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante 03550, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|