1
|
Chen SJ, Cho RL, Yeh SHH, Tsai MC, Chuang YP, Lien CF, Chiu CH, Yeh YW, Lin CS, Ma KH. Pitavastatin attenuates hypercholesterolemia-induced decline in serotonin transporter availability. Lipids Health Dis 2024; 23:250. [PMID: 39154177 PMCID: PMC11330603 DOI: 10.1186/s12944-024-02236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
INTRODUCTION Hypercholesterolemia is associated with increased inflammation and impaired serotonin neurotransmission, potentially contributing to depressive symptoms. However, the role of statins, particularly pitavastatin, in modulating serotonin transporter (SERT) function within this context remains underexplored. This study aimed to investigate whether pitavastatin counteracts the neurobiological effects of hypercholesterolemia. METHODS Low-density lipoprotein receptor knockout (LDLR-/-) mice on a C57BL/6 background were assigned to three groups: a control group fed a standard chow diet, a group fed a high-fat diet (HFD), and a third group fed a high-fat diet supplemented with pitavastatin (HFD + Pita). We evaluated the effects of HFD with or without pitavastatin on lipid profiles, inflammatory markers, and SERT availability using small-animal positron emission tomography (PET) scans with the radioligand 4-[18F]-ADAM over a 20-week period. RESULTS Pitavastatin treatment in HFD-fed mice significantly reduced both total cholesterol and LDL cholesterol levels in HFD-fed mice compared to those on HFD alone. Elevated inflammatory markers such as IL-1α, MCP-1/CCL2, and TNF-α in HFD mice were notably decreased in the HFD + Pita group. PET scans showed reduced SERT availability in the brains of HFD mice; however, pitavastatin improved this in brain regions associated with mood regulation, suggesting enhanced serotonin neurotransmission. Additionally, the sucrose preference test showed a trend towards increased preference in the HFD + Pita group compared to the HFD group, indicating a potential reduction in depressive-like behavior. CONCLUSION Our findings demonstrate that pitavastatin not only lowers cholesterol and reduces inflammation but also enhances SERT availability, suggesting a potential role in alleviating depressive symptoms associated with hypercholesterolemia. These results highlight the multifaceted benefits of pitavastatin, extending beyond its lipid-lowering effects to potentially improving mood regulation and neurotransmitter function.
Collapse
Affiliation(s)
- Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan.
| | - Rou-Ling Cho
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Skye Hsin-Hsien Yeh
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chaio Tung University, Taipei, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ping Chuang
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Feng Lien
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chuang-Hsin Chiu
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Wei Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan.
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan.
| |
Collapse
|
2
|
Sadykova D, Nigmatullina R, Salakhova K, Slastnikova E, Galimova L, Khaliullina C, Valeeva I. Membrane Transporter of Serotonin and Hypercholesterolemia in Children. Int J Mol Sci 2024; 25:767. [PMID: 38255840 PMCID: PMC10815017 DOI: 10.3390/ijms25020767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The serotonin membrane transporter is one of the main mechanisms of plasma serotonin concentration regulation. Serotonin plays an important role in the pathogenesis of various cardiovascular diseases, stimulating the proliferation of smooth muscle cells, key cells in the process of hypertrophic vascular remodeling. Vascular remodeling is one of the leading prognostically unfavorable factors of atherosclerosis, the main manifestation of familial hypercholesterolemia. Familial hypercholesterolemia is one of the most common genetically determined lipid metabolism disorders and occurs in 1 in 313 people. The aim of our study was to investigate the levels of plasma and platelet serotonin, 5-hydroxyindoleacetic acid, and membrane transporter in a cross-sectional study of two pediatric groups, including patients with familial hypercholesterolemia and the control group, which consisted of apparently healthy children without cardiovascular diseases. The study involved 116 children aged 5 to 17 years old. The proportion of boys was 50% (58/116) and the average age of the children was 10.5 years (CI 2.8-18.1). The concentrations of serotonin in blood plasma and platelets and 5-hydroxyindoleacetic acid were higher in children with familial hypercholesterolemia than in the controls. The concentration of the serotonin transporter in platelets in healthy children, compared with the main group, was 1.3 times higher. A positive correlation was revealed between the level of serotonin (5-HT and PWV: ρ = 0.6, p < 0.001), its transporter (SERT and PWV: ρ = 0.5, p < 0.001), and the main indicators of arterial vascular stiffness. Our study revealed the relationship between high serotonin and SERT concentrations and markers of arterial stiffness. The results we obtained suggest the involvement of serotonin and SERT in the process of vascular remodeling in familial hypercholesterolemia in children.
Collapse
Affiliation(s)
- Dinara Sadykova
- Department of Hospital Pediatrics, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (E.S.); (L.G.); (C.K.)
| | - Razina Nigmatullina
- Department of Normal Physiology, Kazan State Medical University, 420012 Kazan, Russia;
| | - Karina Salakhova
- Department of Hospital Pediatrics, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (E.S.); (L.G.); (C.K.)
| | - Evgeniia Slastnikova
- Department of Hospital Pediatrics, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (E.S.); (L.G.); (C.K.)
- Children’s Republican Clinical Hospital, 420138 Kazan, Russia
| | - Liliya Galimova
- Department of Hospital Pediatrics, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (E.S.); (L.G.); (C.K.)
- Children’s Republican Clinical Hospital, 420138 Kazan, Russia
| | - Chulpan Khaliullina
- Department of Hospital Pediatrics, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (E.S.); (L.G.); (C.K.)
| | - Ildaria Valeeva
- Central Research Laboratory, Kazan State Medical University, 420012 Kazan, Russia;
| |
Collapse
|
3
|
Yang D, Zhao Z, Tajkhorshid E, Gouaux E. Structures and membrane interactions of native serotonin transporter in complexes with psychostimulants. Proc Natl Acad Sci U S A 2023; 120:e2304602120. [PMID: 37436958 PMCID: PMC10629533 DOI: 10.1073/pnas.2304602120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 07/14/2023] Open
Abstract
The serotonin transporter (SERT) is a member of the SLC6 neurotransmitter transporter family that mediates serotonin reuptake at presynaptic nerve terminals. SERT is the target of both therapeutic antidepressant drugs and psychostimulant substances such as cocaine and methamphetamines, which are small molecules that perturb normal serotonergic transmission by interfering with serotonin transport. Despite decades of studies, important functional aspects of SERT such as the oligomerization state of native SERT and its interactions with potential proteins remain unresolved. Here, we develop methods to isolate SERT from porcine brain (pSERT) using a mild, nonionic detergent, utilize fluorescence-detection size-exclusion chromatography to investigate its oligomerization state and interactions with other proteins, and employ single-particle cryo-electron microscopy to elucidate the structures of pSERT in complexes with methamphetamine or cocaine, providing structural insights into psychostimulant recognition and accompanying pSERT conformations. Methamphetamine and cocaine both bind to the central site, stabilizing the transporter in an outward open conformation. We also identify densities attributable to multiple cholesterol or cholesteryl hemisuccinate (CHS) molecules, as well as to a detergent molecule bound to the pSERT allosteric site. Under our conditions of isolation, we find that pSERT is best described as a monomeric entity, isolated without interacting proteins, and is ensconced by multiple cholesterol or CHS molecules.
Collapse
Affiliation(s)
- Dongxue Yang
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
| | - Zhiyu Zhao
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Emad Tajkhorshid
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
- HHMI, Oregon Health and Science University, Portland, OR97239
| |
Collapse
|
4
|
De Giorgi R, Rizzo Pesci N, Rosso G, Maina G, Cowen PJ, Harmer CJ. The pharmacological bases for repurposing statins in depression: a review of mechanistic studies. Transl Psychiatry 2023; 13:253. [PMID: 37438361 PMCID: PMC10338465 DOI: 10.1038/s41398-023-02533-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023] Open
Abstract
Statins are commonly prescribed medications widely investigated for their potential actions on the brain and mental health. Pre-clinical and clinical evidence suggests that statins may play a role in the treatment of depressive disorders, but only the latter has been systematically assessed. Thus, the physiopathological mechanisms underlying statins' putative antidepressant or depressogenic effects have not been established. This review aims to gather available evidence from mechanistic studies to strengthen the pharmacological basis for repurposing statins in depression. We used a broad, well-validated search strategy over three major databases (Pubmed/MEDLINE, Embase, PsychINFO) to retrieve any mechanistic study investigating statins' effects on depression. The systematic search yielded 8068 records, which were narrowed down to 77 relevant papers. The selected studies (some dealing with more than one bodily system) described several neuropsychopharmacological (44 studies), endocrine-metabolic (17 studies), cardiovascular (6 studies) and immunological (15 studies) mechanisms potentially contributing to the effects of statins on mood. Numerous articles highlighted the beneficial effect of statins on depression, particularly through positive actions on serotonergic neurotransmission, neurogenesis and neuroplasticity, hypothalamic-pituitary axis regulation and modulation of inflammation. The role of other mechanisms, especially the association between statins, lipid metabolism and worsening of depressive symptoms, appears more controversial. Overall, most mechanistic evidence supports an antidepressant activity for statins, likely mediated by a variety of intertwined processes involving several bodily systems. Further research in this area can benefit from measuring relevant biomarkers to inform the selection of patients most likely to respond to statins' antidepressant effects while also improving our understanding of the physiopathological basis of depression.
Collapse
Affiliation(s)
- Riccardo De Giorgi
- University of Oxford, Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom.
| | - Nicola Rizzo Pesci
- University of Turin, Department of Neurosciences "Rita Levi Montalcini", Via Cherasco 15, Turin, 10126, Italy
| | - Gianluca Rosso
- University of Turin, Department of Neurosciences "Rita Levi Montalcini", Via Cherasco 15, Turin, 10126, Italy
| | - Giuseppe Maina
- University of Turin, Department of Neurosciences "Rita Levi Montalcini", Via Cherasco 15, Turin, 10126, Italy
| | - Philip J Cowen
- University of Oxford, Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom
- Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom
| | - Catherine J Harmer
- University of Oxford, Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxfordshire, Oxford, OX3 7JX, United Kingdom
| |
Collapse
|
5
|
Tan Y, Zhang C, Tang C, Li Z, Chen W, Jing H, Liang W, Li X, Xie G, Liang J, Guo H. Differences and correlations of biochemical index levels in patients with bipolar disorder and major depressive disorder during a stable period. Medicine (Baltimore) 2023; 102:e34172. [PMID: 37352030 PMCID: PMC10289778 DOI: 10.1097/md.0000000000034172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
The differences and correlation of biochemical indexes between bipolar disorder (BPD) and major depressive disorder (MDD) in stable stage were analyzed and discussed. Patients diagnosed with BPD and MDD in the Third People's Hospital of Foshan from January 2019 to December 2021 were selected as the research subjects, with 200 cases in each. Fasting serum was collected from patients and then detected regarding TC, TG, high-density lipoprotein, low-density lipoprotein (LDL), aspartate aminotransferase, lactic dehydrogenase, creatine kinase, creatine kinase-MB, urea, creatinine, uric acid, alanine aminotransferase, glucose (GLU), hemoglobin A1c, prolactin, high-sensitivity C-reactive protein, homocysteine. The results showed that the mean age and serum LDL, GLU, and HbAc1 levels of the MDD group were significantly higher than those of the BPD group (P < .05), while there was no significant difference in other indexes (P > .05). The prevalence of BPD was significantly negatively correlated with patient age (r = -0.164, P = .020), LDL (r = -0.150, P = .034), GLU (r = -0.140, P = .048), and HbAc1 (r = -0.215, P = .002) (P < .05). There were no significant differences in serum Hcy and high-sensitivity C-reactive protein levels between the BPD and MDD groups. The age, fasting blood glucose, glycosylated hemoglobin, and LDL of BPD patients were negatively correlated with their incidence.
Collapse
Affiliation(s)
- Yukang Tan
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| | - Chaohua Tang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| | - Zhijian Li
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| | - Wensheng Chen
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| | - Huan Jing
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| | - Wenting Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| | - Xiaoling Li
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| | - Guojun Xie
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| | - Huagui Guo
- Department of Psychiatry, The Third People’s Hospital of Foshan, Guangdong, People’s Republic of China
| |
Collapse
|
6
|
Wang S, Neel AI, Adams KL, Sun H, Jones SR, Howlett AC, Chen R. Atorvastatin differentially regulates the interactions of cocaine and amphetamine with dopamine transporters. Neuropharmacology 2023; 225:109387. [PMID: 36567004 PMCID: PMC9872521 DOI: 10.1016/j.neuropharm.2022.109387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/12/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The function of the dopamine transporter (DAT) is regulated by membrane cholesterol content. A direct, acute removal of membrane cholesterol by methyl-β-cyclodextrin (MβCD) has been shown to reduce dopamine (DA) uptake and release mediated by the DAT. This is of particular interest because a few widely prescribed statins that lower peripheral cholesterol levels are blood-brain barrier (BBB) penetrants, and therefore could alter DAT function through brain cholesterol modulation. The goal of this study was to investigate the effects of prolonged atorvastatin treatment (24 h) on DAT function in neuroblastoma 2A cells stably expressing DAT. We found that atorvastatin treatment effectively lowered membrane cholesterol content in a concentration-dependent manner. Moreover, atorvastatin treatment markedly reduced DA uptake and abolished cocaine inhibition of DA uptake, independent of surface DAT levels. These deficits induced by atorvastatin treatment were reversed by cholesterol replenishment. However, atorvastatin treatment did not change amphetamine (AMPH)-induced DA efflux. This is in contrast to a small but significant reduction in DA efflux induced by acute depletion of membrane cholesterol using MβCD. This discrepancy may involve differential changes in membrane lipid composition resulting from chronic and acute cholesterol depletion. Our data suggest that the outward-facing conformation of DAT, which favors the binding of DAT blockers such as cocaine, is more sensitive to atorvastatin-induced cholesterol depletion than the inward-facing conformation, which favors the binding of DAT substrates such as AMPH. Our study on statin-DAT interactions may have clinical implications in our understanding of neurological side effects associated with chronic use of BBB penetrant statins.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Anna I Neel
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Kristen L Adams
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Haiguo Sun
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Sara R Jones
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Allyn C Howlett
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Rong Chen
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States.
| |
Collapse
|
7
|
Andronie-Cioară FL, Jurcău A, Jurcău MC, Nistor-Cseppentö DC, Simion A. Cholesterol Management in Neurology: Time for Revised Strategies? J Pers Med 2022; 12:jpm12121981. [PMID: 36556202 PMCID: PMC9784893 DOI: 10.3390/jpm12121981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Statin therapy has been extensively evaluated and shown to reduce the incidence of new or recurrent vascular events, ischemic stroke included. As a consequence, each published guideline pushes for lower low-density cholesterol levels in the population at large, recommending increased statin doses and/or adding new cholesterol-lowering molecules. Neurologists find it sometimes difficult to apply these guidelines, having to confront situations such as (1) ischemic strokes, mainly cardioembolic ones, in patients with already low LDL-cholesterol levels; (2) myasthenic patients, whose lifespan has been extended by available treatment, and whose age and cholesterol levels put them at risk for ischemic stroke; (3) patients with myotonic dystrophy, whose disease often associates diabetes mellitus and heart conduction defects, and in whom blood cholesterol management is also not settled. As such, further trials are needed to address these issues.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioară
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Anamaria Jurcău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Maria Carolina Jurcău
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (M.C.J.); (D.C.N.-C.); Tel.: +40-744-600-833 (M.C.J.)
| | - Delia Carmen Nistor-Cseppentö
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (M.C.J.); (D.C.N.-C.); Tel.: +40-744-600-833 (M.C.J.)
| | - Aurel Simion
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
8
|
Jamshidnejad-Tosaramandani T, Kashanian S, Al-Sabri MH, Kročianová D, Clemensson LE, Gentreau M, Schiöth HB. Statins and cognition: Modifying factors and possible underlying mechanisms. Front Aging Neurosci 2022; 14:968039. [PMID: 36046494 PMCID: PMC9421063 DOI: 10.3389/fnagi.2022.968039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Statins are a class of widely prescribed drugs used to reduce low-density lipoprotein cholesterol (LDL-C) and important to prevent cardiovascular diseases (CVD). Most statin users are older adults with CVD, who are also at high risk of cognitive decline. It has been suggested that statins can alter cognitive performance, although their positive or negative effects are still debated. With more than 200 million people on statin therapy worldwide, it is crucial to understand the reasons behind discrepancies in the results of these studies. Here, we review the effects of statins on cognitive function and their association with different etiologies of dementia, and particularly, Alzheimer's disease (AD). First, we summarized the main individual and statin-related factors that could modify the cognitive effects of statins. Second, we proposed the underlying mechanisms for the protective and adverse effects of statins on cognitive performance. Finally, we discussed potential causes of discrepancies between studies and suggested approaches to improve future studies assessing the impact of statins on dementia risk and cognitive function.
Collapse
Affiliation(s)
- Tahereh Jamshidnejad-Tosaramandani
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Soheila Kashanian
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC), Razi University, Kermanshah, Iran
| | - Mohamed H. Al-Sabri
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniela Kročianová
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Laura E. Clemensson
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mélissa Gentreau
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Kosowski M, Smolarczyk-Kosowska J, Hachuła M, Maligłówka M, Basiak M, Machnik G, Pudlo R, Okopień B. The Effects of Statins on Neurotransmission and Their Neuroprotective Role in Neurological and Psychiatric Disorders. Molecules 2021; 26:2838. [PMID: 34064670 PMCID: PMC8150718 DOI: 10.3390/molecules26102838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Statins are among the most widely used drug classes in the world. Apart from their basic mechanism of action, which is lowering cholesterol levels, many pleiotropic effects have been described so far, such as anti-inflammatory and antiatherosclerotic effects. A growing number of scientific reports have proven that these drugs have a beneficial effect on the functioning of the nervous system. The first reports proving that lipid-lowering therapy can influence the development of neurological and psychiatric diseases appeared in the 1990s. Despite numerous studies about the mechanisms by which statins may affect the functioning of the central nervous system (CNS), there are still no clear data explaining this effect. Most studies have focused on the metabolic effects of this group of drugs, however authors have also described the pleiotropic effects of statins, pointing to their probable impact on the neurotransmitter system and neuroprotective effects. The aim of this paper was to review the literature describing the impacts of statins on dopamine, serotonin, acetylcholine, and glutamate neurotransmission, as well as their neuroprotective role. This paper focuses on the mechanisms by which statins affect neurotransmission, as well as on their impacts on neurological and psychiatric diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), vascular dementia (VD), stroke, and depression. The pleiotropic effects of statin usage could potentially open floodgates for research in these treatment domains, catching the attention of researchers and clinicians across the globe.
Collapse
Affiliation(s)
- Michał Kosowski
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.M.); (M.B.); (G.M.); (B.O.)
| | - Joanna Smolarczyk-Kosowska
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (J.S.-K.); (R.P.)
| | - Marcin Hachuła
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.M.); (M.B.); (G.M.); (B.O.)
| | - Mateusz Maligłówka
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.M.); (M.B.); (G.M.); (B.O.)
| | - Marcin Basiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.M.); (M.B.); (G.M.); (B.O.)
| | - Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.M.); (M.B.); (G.M.); (B.O.)
| | - Robert Pudlo
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (J.S.-K.); (R.P.)
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.M.); (M.B.); (G.M.); (B.O.)
| |
Collapse
|