1
|
Yu Q, Zhou X, Kapini R, Arsecularatne A, Song W, Li C, Liu Y, Ren J, Münch G, Liu J, Chang D. Cytokine Storm in COVID-19: Insight into Pathological Mechanisms and Therapeutic Benefits of Chinese Herbal Medicines. MEDICINES (BASEL, SWITZERLAND) 2024; 11:14. [PMID: 39051370 PMCID: PMC11270433 DOI: 10.3390/medicines11070014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Cytokine storm (CS) is the main driver of SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) in severe coronavirus disease-19 (COVID-19). The pathological mechanisms of CS are quite complex and involve multiple critical molecular targets that turn self-limited and mild COVID-19 into a severe and life-threatening concern. At present, vaccines are strongly recommended as safe and effective treatments for preventing serious illness or death from COVID-19. However, effective treatment options are still lacking for people who are at the most risk or hospitalized with severe disease. Chinese herbal medicines have been shown to improve the clinical outcomes of mild to severe COVID-19 as an adjunct therapy, particular preventing the development of mild to severe ARDS. This review illustrates in detail the pathogenesis of CS-involved ARDS and its associated key molecular targets, cytokines and signalling pathways. The therapeutic targets were identified particularly in relation to the turning points of the development of COVID-19, from mild symptoms to severe ARDS. Preclinical and clinical studies were reviewed for the effects of Chinese herbal medicines together with conventional therapies in reducing ARDS symptoms and addressing critical therapeutic targets associated with CS. Multiple herbal formulations, herbal extracts and single bioactive phytochemicals with or without conventional therapies demonstrated strong anti-CS effects through multiple mechanisms. However, evidence from larger, well-designed clinical trials is lacking and their detailed mechanisms of action are yet to be well elucidated. More research is warranted to further evaluate the therapeutic value of Chinese herbal medicine for CS in COVID-19-induced ARDS.
Collapse
Affiliation(s)
- Qingyuan Yu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
- Xiyuan Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Rotina Kapini
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Anthony Arsecularatne
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Wenting Song
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Chunguang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Gerald Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| |
Collapse
|
2
|
Chooklin S, Chuklin S. PATHOPHYSIOLOGICAL MECHANISMS OF DEEP VEIN THROMBOSIS. FIZIOLOHICHNYĬ ZHURNAL 2023; 69:133-144. [DOI: 10.15407/fz69.06.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Deep venous thrombosis is a frequent multifactorial disease and most of the time is triggered by the interaction between acquired risk factors, particularly immobility, and hereditary risk factors such as thrombophilias. The mechanisms underlying deep venous thrombosis are not fully elucidated; however, in recent years the role of venous flow, endothelium, platelets, leukocytes, and the interaction between inflammation and hemostasis has been determined. Alteration of venous blood flow produces endothelial activation, favoring the adhesion of platelets and leukocytes, which, through tissue factor expression and neutrophil extracellular traps formation, contribute to the activation of coagulation, trapping more cells, such as red blood cells, monocytes, eosinophils, lymphocytes. The coagulation factor XI-driven propagation phase of blood coagulation plays a major role in venous thrombus growth, but a minor role in hemostasis. In this work, the main mechanisms involved in the pathophysiology of deep vein thrombosis are described.
Collapse
|
3
|
Shaikh A, Khan SD, Baloch F, Virani SS, Samad Z. The COVID-19 Pandemic and Coronary Heart Disease: the Next Surge. Curr Atheroscler Rep 2023; 25:559-569. [PMID: 37531071 DOI: 10.1007/s11883-023-01131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW In this narrative review, we highlight different ways in which the COVID-19 pandemic has impacted coronary heart disease (CHD) burden and how a surge in morbidity and mortality may be expected in the near future. We also discuss potential solutions, and the direction subsequent research and corrective actions should take. RECENT FINDINGS COVID-19 has been implicated in the development and worsening of CHD via acute and chronic mechanisms in the form of plaque rupture, destabilization, and sustenance of a chronic inflammatory state leading to long COVID syndrome and increased rates of myocardial infarction. However, indirectly the pandemic is likely to further escalate the CHD burden through poor health behaviors such as tobacco consumption, reduced physical activity, economic devastation and its associated sequelae, and regular cardiac care interruptions and delays. COVID-19 has increased the total CHD burden and will require extensive resource allocation and multifaceted strategies to curb future rise.
Collapse
|
4
|
Fu X, Lei T, Tang C, Peng J. Construction of an Antithrombotic and Anti-Inflammatory Polyethersulfone Membrane. Macromol Biosci 2023; 23:e2200543. [PMID: 37057668 DOI: 10.1002/mabi.202200543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/17/2023] [Indexed: 04/15/2023]
Abstract
In addition to being the core factor in thrombosis, thrombin is involved in various inflammatory disease responses, but few studies have examined whether and how it is involved in membrane-related inflammation. In this study, the thrombin inhibitor dabigatran is used to modify a polyethersulfone dialysis membrane. The modified membrane shows good hydrophilic properties and dialysis performance. It reduces the thrombin level in a targeted manner, thereby significantly inhibiting coagulation factor activation (based on the prothrombin time, international normalized ratio, activated partial thromboplastin time and thrombin time) and reducing the fibrinogen level and platelet adhesion. On thromboelastography, it shows excellent dynamic antithrombotic capacity. The modified membrane inhibited membrane-related inflammation by inhibiting the production of the inflammatory mediators C-reactive protein (CRP), interleukin-6 (IL-6), and interleukin-1β (IL-1β) via the thrombin/complement C5a pathway. Moreover, it is found to be safe in an in vivo study. Thus, the dabigatran-modified polyethersulfone membrane may reduce dialysis-related complications through its dual antithrombotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Hematology, National Hemophilia Comprehensive Care Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Lei
- Powder metallurgy institute of central South University, Changsha, China
| | - Ci Tang
- College of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha, China
| | - Jie Peng
- Department of Hematology, National Hemophilia Comprehensive Care Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Lim EHT, Vlaar APJ, de Bruin S, Rückinger S, Thielert C, Habel M, Guo R, Burnett BP, Dickinson J, Brouwer MC, Riedemann NC, van de Beek D. Pharmacokinetic analysis of vilobelimab, anaphylatoxin C5a and antidrug antibodies in PANAMO: a phase 3 study in critically ill, invasively mechanically ventilated COVID-19 patients. Intensive Care Med Exp 2023; 11:37. [PMID: 37332066 DOI: 10.1186/s40635-023-00520-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Vilobelimab, a complement 5a (C5a)-specific monoclonal antibody, reduced mortality in critically ill COVID-19 patients in a phase 3 multicentre, randomized, double-blind, placebo-controlled study. As part of the study, vilobelimab concentrations and C5a levels as well as antidrug antibodies (ADAs) to vilobelimab were analysed. RESULTS From Oct 1, 2020 to Oct 4, 2021, 368 invasively mechanically ventilated COVID-19 patients were randomized: 177 patients were randomly assigned to receive vilobelimab while 191 patients received placebo. Pharmacokinetic sampling was only performed at sites in Western Europe. Blood samples for vilobelimab measurements were available for 93 of 177 (53%) patients in the vilobelimab group and 99 of 191 (52%) patients in the placebo group. On day 8, after three infusions, mean vilobelimab (trough) concentrations ranged from 21,799.3 to 302,972.1 ng/mL (geometric mean 137,881.3 ng/mL). Blood samples for C5a measurements were available for 94 of 177 (53%) patients in the vilobelimab group and 99 of 191 (52%) patients in the placebo group. At screening, C5a levels were highly elevated and comparable between groups. In the vilobelimab group, median C5a levels were 118.3 ng/mL [IQR 71.2-168.2 ng/mL] and in the placebo group, median C5a levels were 104.6 ng/mL [IQR 77.5-156.6 ng/mL]. By day 8, median C5a levels were reduced by 87% in the vilobelimab group (median 14.5 ng/mL [IQR 9.5-21.0 ng/mL], p < 0.001) versus an 11% increase in the placebo group (median 119.2 ng/mL [IQR 85.9-152.1 ng/mL]). Beyond day 8, though plasma sampling was sparse, C5a levels did not reach screening levels in the vilobelimab group while C5a levels remained elevated in the placebo group. Treatment-emergent ADAs were observed in one patient in the vilobelimab group at hospital discharge on day 40 and in one patient in the placebo group at hospital discharge on day 25. CONCLUSIONS This analysis shows that vilobelimab efficiently inhibits C5a in critically ill COVID-19 patients. There was no evidence of immunogenicity associated with vilobelimab treatment. Trial registration ClinicalTrials.gov, NCT04333420. Registered 3 April 2020, https://clinicaltrials.gov/ct2/show/NCT04333420.
Collapse
Affiliation(s)
- Endry H T Lim
- Department of Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, AMC Room C3-421, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Department of Neurology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Alexander P J Vlaar
- Department of Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, AMC Room C3-421, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sanne de Bruin
- Department of Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, AMC Room C3-421, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | - Renfeng Guo
- InflaRx Pharmaceuticals Inc, Ann Arbor, MI, USA
| | | | | | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | | | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Immune Dynamics Involved in Acute and Convalescent COVID-19 Patients. IMMUNO 2023. [DOI: 10.3390/immuno3010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
COVID-19 is a viral disease that has caused millions of deaths around the world since 2020. Many strategies have been developed to manage patients in critical conditions; however, comprehension of the immune system is a key factor in viral clearance, tissue repairment, and adaptive immunity stimulus. Participation of immunity has been identified as a major factor, along with biomarkers, prediction of clinical outcomes, and antibody production after infection. Immune cells have been proposed not only as a hallmark of severity, but also as a predictor of clinical outcomes, while dynamics of inflammatory molecules can also induce worse consequences for acute patients. For convalescent patients, mild disease was related to higher antibody production, although the factors related to the specific antibodies based on a diversity of antigens were not clear. COVID-19 was explored over time; however, the study of immunological predictors of outcomes is still lacking discussion, especially in convalescent patients. Here, we propose a review using previously published studies to identify immunological markers of COVID-19 outcomes and their relation to antibody production to further contribute to the clinical and laboratorial management of patients.
Collapse
|
7
|
Abstract
The pandemic of COVID-19 in worldwide causes recent millions of morbidity and mortality in all countries and is the most important challenge in the world in recent years. Coronavirus is a single-stranded RNA virus and infection with COVID-19 leads to acute respiratory distress syndrome, lung inflammation, cytokine storm, and death. The other complications include endothelial dysfunction, activation of coagulation, thromboembolic events, and vascular disease. Cardiovascular complications such as myocardial and stroke ischemia, pulmonary thromboembolism, systemic arterial, and deep vein thrombosis were reported. In this review, we presented immuno-pathological mechanisms and the effects of COVID-19 on the cardiovascular system, heart, vessels, coagulation system, and molecular glance of immuno-inflammation to the COVID-19's pathology on the cardiovascular system.
Collapse
Affiliation(s)
- Entezar Mehrabi Nasab
- Department of Cardiology, School of Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Cardiology, School of Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hassan Aghajani
- Department of Cardiology, School of Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Hassanzadeh Makoei
- Department of Cardiology, School of Medicine, Ayatollah Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
8
|
Dean LS, Devendra G, Jiyarom B, Subia N, Tallquist MD, Nerurkar VR, Chang SP, Chow DC, Shikuma CM, Park J. Phenotypic alteration of low-density granulocytes in people with pulmonary post-acute sequalae of SARS-CoV-2 infection. Front Immunol 2022; 13:1076724. [PMID: 36591237 PMCID: PMC9797994 DOI: 10.3389/fimmu.2022.1076724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Background Low-density granulocytes (LDGs) are a distinct subset of neutrophils whose increased abundance is associated with the severity of COVID-19. However, the long-term effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on LDG levels and phenotypic alteration remain unexplored. Methods Using participants naïve to SARS-CoV-2 (NP), infected with SARS-CoV-2 with no residual symptoms (NRS), and infected with SARS-CoV-2 with chronic pulmonary symptoms (PPASC), we compared LDG levels and their phenotype by measuring the expression of markers for activation, maturation, and neutrophil extracellular trap (NET) formation using flow cytometry. Results The number of LDGs was elevated in PPASC compared to NP. Individuals infected with SARS-CoV-2 (NRS and PPASC) demonstrated increased CD10+ and CD16hi subset counts of LDGs compared to NP group. Further characterization of LDGs demonstrated that LDGs from COVID-19 convalescents (PPASC and NRS) displayed increased markers of NET forming ability and aggregation with platelets compared to LDGs from NP, but no differences were observed between PPASC and NRS. Conclusions Our data from a small cohort study demonstrates that mature neutrophils with a heightened activation phenotype remain in circulation long after initial SARS-CoV-2 infection. Persistent elevation of markers for neutrophil activation and NET formation on LDGs, as well as an enhanced proclivity for platelet-neutrophil aggregation (PNA) formation in COVID-19 convalescent individuals may be associated with PPASC prognosis and development.
Collapse
Affiliation(s)
- Logan S Dean
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, United States
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu, HI, United States
| | - Gehan Devendra
- Department of Pulmonary and Critical Care, Queen's Medical Center, Honolulu, HI, United States
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, United States
| | - Boonyanudh Jiyarom
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, United States
| | - Natalie Subia
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu, HI, United States
| | - Michelle D Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Vivek R Nerurkar
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu, HI, United States
| | - Sandra P Chang
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu, HI, United States
| | - Dominic C Chow
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, United States
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, United States
| | - Cecilia M Shikuma
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, United States
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, United States
| | - Juwon Park
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, United States
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu, HI, United States
| |
Collapse
|
9
|
Ciccosanti F, Antonioli M, Sacchi A, Notari S, Farina A, Beccacece A, Fusto M, Vergori A, D'Offizi G, Taglietti F, Antinori A, Nicastri E, Marchioni L, Palmieri F, Ippolito G, Piacentini M, Agrati C, Fimia GM. Proteomic analysis identifies a signature of disease severity in the plasma of COVID-19 pneumonia patients associated to neutrophil, platelet and complement activation. Clin Proteomics 2022; 19:38. [PMID: 36348270 PMCID: PMC9641302 DOI: 10.1186/s12014-022-09377-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Most patients infected with SARS-CoV-2 display mild symptoms with good prognosis, while 20% of patients suffer from severe viral pneumonia and up to 5% may require intensive care unit (ICU) admission due to severe acute respiratory syndrome, which could be accompanied by multiorgan failure.Plasma proteomics provide valuable and unbiased information about disease progression and therapeutic candidates. Recent proteomic studies have identified molecular changes in plasma of COVID-19 patients that implied significant dysregulation of several aspects of the inflammatory response accompanied by a general metabolic suppression. However, which of these plasma alterations are associated with disease severity remains only partly characterized.A known limitation of proteomic studies of plasma samples is the large difference in the macromolecule abundance, with concentration spanning at least 10 orders of magnitude. To improve the coverage of plasma contents, we performed a deep proteomic analysis of plasma from 10 COVID-19 patients with severe/fatal pneumonia compared to 10 COVID-19 patients with pneumonia who did not require ICU admission (non-ICU). To this aim, plasma samples were first depleted of the most abundant proteins, trypsin digested and peptides subjected to a high pH reversed-phase peptide fractionation before LC-MS analysis.These results highlighted an increase of proteins involved in neutrophil and platelet activity and acute phase response, which is significantly higher in severe/fatal COVID-19 patients when compared to non-ICU ones. Importantly, these changes are associated with a selective induction of complement cascade factors in severe/fatal COVID-19 patients. Data are available via ProteomeXchange with identifier PXD036491. Among these alterations, we confirmed by ELISA that higher levels of the neutrophil granule proteins DEFA3 and LCN2 are present in COVID-19 patients requiring ICU admission when compared to non-ICU and healthy donors.Altogether, our study provided an in-depth view of plasma proteome changes that occur in COVID-19 patients in relation to disease severity, which can be helpful to identify therapeutic strategies to improve the disease outcome.
Collapse
Affiliation(s)
- Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Manuela Antonioli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Alessandra Sacchi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Stefania Notari
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Anna Farina
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Alessia Beccacece
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Marisa Fusto
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Alessandra Vergori
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Gianpiero D'Offizi
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Fabrizio Taglietti
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Andrea Antinori
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Emanuele Nicastri
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Luisa Marchioni
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Fabrizio Palmieri
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Giuseppe Ippolito
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
- General Directorate for Research and Health Innovation, Italian Ministry of Health, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Agrati
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy.
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy.
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy.
- Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy.
| |
Collapse
|
10
|
Ventura-Santana E, Ninan JR, Snyder CM, Okeke EB. Neutrophil Extracellular Traps, Sepsis and COVID-19 - A Tripod Stand. Front Immunol 2022; 13:902206. [PMID: 35757734 PMCID: PMC9226304 DOI: 10.3389/fimmu.2022.902206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current coronavirus disease 2019 (COVID-19) pandemic. Majority of COVID-19 patients have mild disease but about 20% of COVID-19 patients progress to severe disease. These patients end up in the intensive care unit (ICU) with clinical manifestations of acute respiratory distress syndrome (ARDS) and sepsis. The formation of neutrophil extracellular traps (NETs) has also been associated with severe COVID-19. Understanding of the immunopathology of COVID-19 is critical for the development of effective therapeutics. In this article, we discuss evidence indicating that severe COVID-19 has clinical presentations consistent with the definitions of viral sepsis. We highlight the role of neutrophils and NETs formation in the pathogenesis of severe COVID-19. Finally, we highlight the potential of therapies inhibiting NETs formation for the treatment of COVID-19.
Collapse
Affiliation(s)
- Esmeiry Ventura-Santana
- Department of Biology, State University of New York at Fredonia, Fredonia, NY, United States
| | - Joshua R Ninan
- Department of Biology, State University of New York at Fredonia, Fredonia, NY, United States
| | - Caitlin M Snyder
- Department of Biology, State University of New York at Fredonia, Fredonia, NY, United States
| | - Emeka B Okeke
- Department of Biology, State University of New York at Fredonia, Fredonia, NY, United States
| |
Collapse
|
11
|
Alkayed NJ, Cipolla MJ. Role of Endothelial Cells and Platelets in COVID-Related Cerebrovascular Events. Stroke 2022; 53:2389-2392. [PMID: 35674044 PMCID: PMC9232245 DOI: 10.1161/strokeaha.122.039971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nabil J. Alkayed
- Department of Anesthesiology and Perioperative Medicine and Knight Cardiovascular Institute, Portland, OR (N.J.A.)
| | - Marilyn J. Cipolla
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington (M.J.C.)
| |
Collapse
|
12
|
Sabbatinelli J, Matacchione G, Giuliani A, Ramini D, Rippo MR, Procopio AD, Bonafè M, Olivieri F. Circulating biomarkers of inflammaging as potential predictors of COVID-19 severe outcomes. Mech Ageing Dev 2022; 204:111667. [PMID: 35341896 PMCID: PMC8949647 DOI: 10.1016/j.mad.2022.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 infection has been of unprecedented clinical and socio-economic worldwide relevance. The case fatality rate for COVID-19 grows exponentially with age and the presence of comorbidities. In the older patients, COVID-19 manifests predominantly as a systemic disease associated with immunological, inflammatory, and procoagulant responses. Timely diagnosis and risk stratification are crucial steps to define appropriate therapies and reduce mortality, especially in the older patients. Chronically and systemically activated innate immune responses and impaired antiviral responses have been recognized as the results of a progressive remodeling of the immune system during aging, which can be described by the words 'immunosenescence' and 'inflammaging'. These age-related features of the immune system were highlighted in patients affected by COVID-19 with the poorest clinical outcomes, suggesting that the mechanisms underpinning immunosenescence and inflammaging could be relevant for COVID-19 pathogenesis and progression. Increasing evidence suggests that senescent myeloid and endothelial cells are characterized by the acquisition of a senescence-associated pro-inflammatory phenotype (SASP), which is considered as the main culprit of both immunosenescence and inflammaging. Here, we reviewed this evidence and highlighted several circulating biomarkers of inflammaging that could provide additional prognostic information to stratify COVID-19 patients based on the risk of severe outcomes.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Laboratory Medicine, AOU Ospedali Riuniti, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Ramini
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, Università di Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
13
|
Silberberg E, Filep JG, Ariel A. Weathering the Storm: Harnessing the Resolution of Inflammation to Limit COVID-19 Pathogenesis. Front Immunol 2022; 13:863449. [PMID: 35615359 PMCID: PMC9124752 DOI: 10.3389/fimmu.2022.863449] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
The resolution of inflammation is a temporally and spatially coordinated process that in its innate manifestations, primarily involves neutrophils and macrophages. The shutdown of infection or injury-induced acute inflammation requires termination of neutrophil accumulation within the affected sites, neutrophil demise, and clearance by phagocytes (efferocytosis), such as tissue-resident and monocyte-derived macrophages. This must be followed by macrophage reprogramming from the inflammatory to reparative and consequently resolution-promoting phenotypes and the production of resolution-promoting lipid and protein mediators that limit responses in various cell types and promote tissue repair and return to homeostatic architecture and function. Recent studies suggest that these events, and macrophage reprogramming to pro-resolving phenotypes in particular, are not only important in the acute setting, but might be paramount in limiting chronic inflammation, autoimmunity, and various uncontrolled cytokine-driven pathologies. The SARS-CoV-2 (COVID-19) pandemic has caused a worldwide health and economic crisis. Severe COVID-19 cases that lead to high morbidity are tightly associated with an exuberant cytokine storm that seems to trigger shock-like pathologies, leading to vascular and multiorgan failures. In other cases, the cytokine storm can lead to diffuse alveolar damage that results in acute respiratory distress syndrome (ARDS) and lung failure. Here, we address recent advances on effectors in the resolution of inflammation and discuss how pro-resolution mechanisms with particular emphasis on macrophage reprogramming, might be harnessed to limit the universal COVID-19 health threat.
Collapse
Affiliation(s)
- Esther Silberberg
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - János G. Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
- *Correspondence: Amiram Ariel, ; János G. Filep,
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
- *Correspondence: Amiram Ariel, ; János G. Filep,
| |
Collapse
|
14
|
Cuppen JJM, Gradinaru C, Raap-van Sleuwen BE, de Wit ACE, van der Vegt TAAJ, Savelkoul HFJ. LF-EMF Compound Block Type Signal Activates Human Neutrophilic Granulocytes In Vivo. Bioelectromagnetics 2022; 43:309-316. [PMID: 35481557 PMCID: PMC9324799 DOI: 10.1002/bem.22406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
This research aims to demonstrate in a randomized, placebo-controlled crossover design study that a nominal 5 μT low-frequency electromagnetic field (LF-EMF) signal for 30 min activates neutrophils in vivo in humans. Granularity of neutrophils was measured in blood samples of healthy human volunteers (n = 32) taken before and after exposure for both the exposure and control sessions. A significant decrease in the granularity, indicative of neutrophil activation, was observed both in the exposure measurements and the exposure minus control measurements. Earlier EMF publications show immune function increase in isolated cells and more effective immune responses in animals with infections. This result, therefore, supports the thesis that the exposure can activate the innate immune system in humans, speed up the innate immune response, and may have potential beneficial effects in infectious disease. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Jan J M Cuppen
- Umani Medical BV, Waalre, The Netherlands.,Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | | | | | | | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
15
|
Hollenberg MD, Epstein M. The innate immune response, microenvironment proteinases, and the COVID-19 pandemic: pathophysiologic mechanisms and emerging therapeutic targets. Kidney Int Suppl (2011) 2022; 12:48-62. [PMID: 35316977 PMCID: PMC8931295 DOI: 10.1016/j.kisu.2021.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, causing considerable mortality and morbidity worldwide, has fully engaged the biomedical community in attempts to elucidate the pathophysiology of COVID-19 and develop robust therapeutic strategies. To this end, the predominant research focus has been on the adaptive immune response to COVID-19 infections stimulated by mRNA and protein vaccines and on the duration and persistence of immune protection. In contrast, the role of the innate immune response to the viral challenge has been underrepresented. This overview focuses on the innate immune response to COVID-19 infection, with an emphasis on the roles of extracellular proteases in the tissue microenvironment. Proteinase-mediated signaling caused by enzymes in the extracellular microenvironment occurs upstream of the increased production of inflammatory cytokines that mediate COVID-19 pathology. These enzymes include the coagulation cascade, kinin-generating plasma kallikrein, and the complement system, as well as angiotensin-generating proteinases of the renin-angiotensin system. Furthermore, in the context of several articles in this Supplement elucidating and detailing the trajectory of diverse profibrotic pathways, we extrapolate these insights to explore how fibrosis and profibrotic pathways participate importantly in the pathogenesis of COVID-19. We propose that the lessons garnered from understanding the roles of microenvironment proteinases in triggering the innate immune response to COVID-19 pathology will identify potential therapeutic targets and inform approaches to the clinical management of COVID-19. Furthermore, the information may also provide a template for understanding the determinants of COVID-19-induced tissue fibrosis that may follow resolution of acute infection (so-called "long COVID"), which represents a major new challenge to our healthcare systems.
Collapse
Affiliation(s)
- Morley D. Hollenberg
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Murray Epstein
- Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
16
|
Telerman A, Granot G, Leibovitch C, Yarchovsky-Dolberg O, Shacham-Abulafia A, Partouche S, Yeshurun M, Ellis MH, Raanani P, Wolach O. Neutrophil Extracellular Traps Are Increased in Chronic Myeloid Leukemia and Are Differentially Affected by Tyrosine Kinase Inhibitors. Cancers (Basel) 2021; 14:cancers14010119. [PMID: 35008283 PMCID: PMC8750902 DOI: 10.3390/cancers14010119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neutrophil extracellular traps (NETs) are a recently described form of neutrophil cellular death that has been associated with a thrombotic tendency in many diseases. We studied NET formation in neutrophils derived from patients with chronic myeloid leukemia (CML) and in CML neutrophil cell lines and demonstrated that NETs are increased in CML and that certain drugs used to treat CML (tyrosine kinase inhibitors—TKIs) increase NET formation. These findings may shed light on a novel mechanism linking CML, TKIs and vascular toxicity. Abstract Cardiovascular complications are increasingly reported with the use of certain tyrosine kinase inhibitors (TKIs) to treat chronic myeloid leukemia (CML). We studied neutrophil extracellular trap (NET) formation in CML and evaluated the effect of TKIs on NET formation. Neutrophils isolated from treatment-naïve patients with CML showed a significant increase in NET formation compared to matched controls at baseline and after stimulation with ionomycin (IO) and phorbol 12-myristate 13-acetate (PMA). Expression of citrullinated histone H3 (H3cit), peptidyl arginine deiminase 4 (PAD4) and reactive oxygen species (ROS) was significantly higher in CML samples compared to controls. Pre-treatment of neutrophils with TKIs was associated with a differential effect on NET formation, and ponatinib significantly augmented NET-associated elastase and ROS levels as compared to controls and other TKIs. BCR-ABL1 retroviral transduced HoxB8-immortalized mouse hematopoietic progenitors, which differentiate into neutrophils in-vitro, demonstrated increased H3cit & myeloperoxidase (MPO) expression consistent with excess NET formation. This was inhibited by Cl-amidine, a PAD4 inhibitor, but not by the NADPH inhibitor diphenyleneiodonium (DPI). Ponatinib pre-exposure significantly increased H3cit expression in HoxB8-BCR-ABL1 cells after stimulation with IO. In summary, CML is associated with increased NET formation, which is augmented by ponatinib, suggesting a possible role for NETs in promoting vascular toxicity in CML.
Collapse
Affiliation(s)
- Alona Telerman
- Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Hospital, Petah-Tikva 4941492, Israel; (A.T.); (G.G.); (S.P.)
| | - Galit Granot
- Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Hospital, Petah-Tikva 4941492, Israel; (A.T.); (G.G.); (S.P.)
| | - Chiya Leibovitch
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Beilinson Hospital, Petah-Tikva 4941492, Israel
| | - Osnat Yarchovsky-Dolberg
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Meir Medical Center, Hematology Institute and Blood Bank, Kfar Saba 4428164, Israel
| | - Adi Shacham-Abulafia
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Beilinson Hospital, Petah-Tikva 4941492, Israel
| | - Shirly Partouche
- Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Hospital, Petah-Tikva 4941492, Israel; (A.T.); (G.G.); (S.P.)
| | - Moshe Yeshurun
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Beilinson Hospital, Petah-Tikva 4941492, Israel
| | - Martin H. Ellis
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Meir Medical Center, Hematology Institute and Blood Bank, Kfar Saba 4428164, Israel
| | - Pia Raanani
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Beilinson Hospital, Petah-Tikva 4941492, Israel
| | - Ofir Wolach
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Beilinson Hospital, Petah-Tikva 4941492, Israel
- Correspondence: ; Tel.: +972-50-406-5590
| |
Collapse
|
17
|
Ercan H, Schrottmaier WC, Pirabe A, Schmuckenschlager A, Pereyra D, Santol J, Pawelka E, Traugott MT, Schörgenhofer C, Seitz T, Karolyi M, Yang JW, Jilma B, Zoufaly A, Assinger A, Zellner M. Platelet Phenotype Analysis of COVID-19 Patients Reveals Progressive Changes in the Activation of Integrin αIIbβ3, F13A1, the SARS-CoV-2 Target EIF4A1 and Annexin A5. Front Cardiovasc Med 2021; 8:779073. [PMID: 34859078 PMCID: PMC8632253 DOI: 10.3389/fcvm.2021.779073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 01/08/2023] Open
Abstract
Background: The fatal consequences of an infection with severe acute respiratory syndrome coronavirus 2 are not only caused by severe pneumonia, but also by thrombosis. Platelets are important regulators of thrombosis, but their involvement in the pathogenesis of COVID-19 is largely unknown. The aim of this study was to determine their functional and biochemical profile in patients with COVID-19 in dependence of mortality within 5-days after hospitalization. Methods: The COVID-19-related platelet phenotype was examined by analyzing their basal activation state via integrin αIIbβ3 activation using flow cytometry and the proteome by unbiased two-dimensional differential in-gel fluorescence electrophoresis. In total we monitored 98 surviving and 12 non-surviving COVID-19 patients over 5 days of hospital stay and compared them to healthy controls (n = 12). Results: Over the observation period the level of basal αIIbβ3 activation on platelets from non-surviving COVID-19 patients decreased compared to survivors. In line with this finding, proteomic analysis revealed a decrease in the total amount of integrin αIIb (ITGA2B), a subunit of αIIbβ3, in COVID-19 patients compared to healthy controls; the decline was even more pronounced for the non-survivors. Consumption of the fibrin-stabilizing factor coagulation factor XIIIA (F13A1) was higher in platelets from COVID-19 patients and tended to be higher in non-survivors; plasma concentrations of the latter also differed significantly. Depending on COVID-19 disease status and mortality, increased amounts of annexin A5 (ANXA5), eukaryotic initiation factor 4A-I (EIF4A1), and transaldolase (TALDO1) were found in the platelet proteome and also correlated with the nasopharyngeal viral load. Dysregulation of these proteins may play a role for virus replication. ANXA5 has also been identified as an autoantigen of the antiphospholipid syndrome, which is common in COVID-19 patients. Finally, the levels of two different protein disulfide isomerases, P4HB and PDIA6, which support thrombosis, were increased in the platelets of COVID-19 patients. Conclusion: Platelets from COVID-19 patients showed significant changes in the activation phenotype, in the processing of the final coagulation factor F13A1 and the phospholipid-binding protein ANXA5 compared to healthy subjects. Additionally, these results demonstrate specific alterations in platelets during COVID-19, which are significantly linked to fatal outcome.
Collapse
Affiliation(s)
- Huriye Ercan
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Waltraud Cornelia Schrottmaier
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Anna Schmuckenschlager
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - David Pereyra
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
- Division of Visceral Surgery, Department of General Surgery, General Hospital Vienna, Medical University of Vienna, Vienna, Austria
| | - Jonas Santol
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
- Division of Visceral Surgery, Department of General Surgery, General Hospital Vienna, Medical University of Vienna, Vienna, Austria
| | - Erich Pawelka
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | | | - Christian Schörgenhofer
- Department of Clinical Pharmacology, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Tamara Seitz
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | - Mario Karolyi
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | - Jae-Won Yang
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | | | - Alice Assinger
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Maria Zellner
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death Differ 2021; 28:3125-3139. [PMID: 34031543 PMCID: PMC8142290 DOI: 10.1038/s41418-021-00805-z] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs of dysregulated innate and adaptive immune responses. Emerging evidence implicates neutrophils and the disbalance between neutrophil extracellular trap (NET) formation and degradation plays a central role in the pathophysiology of inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19. Here, we discuss the evidence supporting a role for NETs in COVID-19 manifestations and present putative mechanisms, by which NETs promote tissue injury and immunothrombosis. We present therapeutic strategies, which have been successful in the treatment of immunο-inflammatory disorders and which target dysregulated NET formation or degradation, as potential approaches that may benefit patients with severe COVID-19.
Collapse
|
19
|
Lorini FL, Di Matteo M, Gritti P, Grazioli L, Benigni A, Zacchetti L, Bianchi I, Fabretti F, Longhi L. Coagulopathy and COVID-19. Eur Heart J Suppl 2021; 23:E95-E98. [PMID: 34650364 PMCID: PMC8503535 DOI: 10.1093/eurheartj/suab100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SARS-CoV-2 infection is associated with frequent thrombotic events, at the micro and macro-vascular level, due to the perpetuation of a state of hypercoagulability. The so-called ‘COVID-19 associated coagulopathy’ (CAC) represents a key aspect in the genesis of organ damage from SARS-CoV-2. The main coagulative alterations described in the literature are represented by high levels of D-dimer and fibrinogen. Although CAC has some common features with disseminated intravascular coagulation and sepsis-induced coagulopathy, there are important differences between these clinical pictures and the phenotype of CAC is unique. The pathogenesis of CAC is complex and is affected by the strong interconnection between the inflammatory system and coagulation, in the phenomenon of immunothrombosis and thrombo-inflammation. Several mechanisms come into play, such as inflammatory cytokines, neutrophils, the complement system as well as an alteration of the fibrinolytic system. Finally, an altered platelet function and especially endothelial dysfunction also play a central role in the pathophysiology of CAC. Heparin has several potential effects in CAC, in fact in addition to the anticoagulant effect, it could have a direct antiviral effect and anti-inflammatory properties. The high incidence of thrombo-embolic phenomena despite the use of antithrombotic prophylaxis have led some experts to recommend the use of anticoagulant doses of heparin, but at present the optimal anticoagulant regimen remains to be determined.
Collapse
Affiliation(s)
- Ferdinando Luca Lorini
- Dipartimento di Anestesia e Terapia Intensiva, Ospedale Papa Giovanni XXIII, Bergamo, Italia
| | - Maria Di Matteo
- Dipartimento di Anestesia e Terapia Intensiva, Ospedale Papa Giovanni XXIII, Bergamo, Italia
| | - Paolo Gritti
- Dipartimento di Anestesia e Terapia Intensiva, Ospedale Papa Giovanni XXIII, Bergamo, Italia
| | - Lorenzo Grazioli
- Dipartimento di Anestesia e Terapia Intensiva, Ospedale Papa Giovanni XXIII, Bergamo, Italia
| | - Alberto Benigni
- Dipartimento di Anestesia e Terapia Intensiva, Ospedale Papa Giovanni XXIII, Bergamo, Italia
| | - Lucia Zacchetti
- Dipartimento di Anestesia e Terapia Intensiva, Ospedale Papa Giovanni XXIII, Bergamo, Italia
| | - Isabella Bianchi
- Dipartimento di Anestesia e Terapia Intensiva, Ospedale Papa Giovanni XXIII, Bergamo, Italia
| | - Fabrizio Fabretti
- Dipartimento di Anestesia e Terapia Intensiva, Ospedale Papa Giovanni XXIII, Bergamo, Italia
| | - Luca Longhi
- Dipartimento di Anestesia e Terapia Intensiva, Ospedale Papa Giovanni XXIII, Bergamo, Italia
| |
Collapse
|
20
|
SARS-CoV-2 and Atherosclerosis: Should COVID-19 Be Recognized as a New Predisposing Cardiovascular Risk Factor? J Cardiovasc Dev Dis 2021; 8:jcdd8100130. [PMID: 34677199 PMCID: PMC8539652 DOI: 10.3390/jcdd8100130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022] Open
Abstract
At the beginning of the COVID-19 pandemic, the lung was recognized as the main target organ; now, new evidence suggests that SARS-CoV-2 infection leads to vascular disease. In a previous review, we supposed a bidirectional link between endothelial dysfunction and COVID-19, identifying atherosclerosis as having a crucial role in its pathogenesis. Atherosclerosis with an existing endothelial dysfunction may worsen COVID-19 manifestations, leading to adverse outcomes, as largely reported. However, COVID-19 may be the trigger factor in the progression of the atherosclerotic process up to making it clinically manifest. The thrombotic complications can involve not only the atherosclerotic plaque, but also the durability of the surgical device implanted to treat a pre-existing coronary artery disease as recently reported. The burden of the disease makes necessary a long-term stratification of patients, revising drastically targeted therapy among others.
Collapse
|
21
|
Kaiser R, Leunig A, Pekayvaz K, Popp O, Joppich M, Polewka V, Escaig R, Anjum A, Hoffknecht ML, Gold C, Brambs S, Engel A, Stockhausen S, Knottenberg V, Titova A, Haji M, Scherer C, Muenchhoff M, Hellmuth JC, Saar K, Schubert B, Hilgendorff A, Schulz C, Kääb S, Zimmer R, Hübner N, Massberg S, Mertins P, Nicolai L, Stark K. Self-sustaining IL-8 loops drive a prothrombotic neutrophil phenotype in severe COVID-19. JCI Insight 2021; 6:e150862. [PMID: 34403366 PMCID: PMC8492337 DOI: 10.1172/jci.insight.150862] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophils provide a critical line of defense in immune responses to various pathogens, inflicting self-damage upon transition to a hyperactivated, procoagulant state. Recent work has highlighted proinflammatory neutrophil phenotypes contributing to lung injury and acute respiratory distress syndrome (ARDS) in patients with coronavirus disease 2019 (COVID-19). Here, we use state-of-the art mass spectrometry-based proteomics and transcriptomic and correlative analyses as well as functional in vitro and in vivo studies to dissect how neutrophils contribute to the progression to severe COVID-19. We identify a reinforcing loop of both systemic and neutrophil intrinsic IL-8 (CXCL8/IL-8) dysregulation, which initiates and perpetuates neutrophil-driven immunopathology. This positive feedback loop of systemic and neutrophil autocrine IL-8 production leads to an activated, prothrombotic neutrophil phenotype characterized by degranulation and neutrophil extracellular trap (NET) formation. In severe COVID-19, neutrophils directly initiate the coagulation and complement cascade, highlighting a link to the immunothrombotic state observed in these patients. Targeting the IL-8-CXCR-1/-2 axis interferes with this vicious cycle and attenuates neutrophil activation, degranulation, NETosis, and IL-8 release. Finally, we show that blocking IL-8-like signaling reduces severe acute respiratory distress syndrome of coronavirus 2 (SARS-CoV-2) spike protein-induced, human ACE2-dependent pulmonary microthrombosis in mice. In summary, our data provide comprehensive insights into the activation mechanisms of neutrophils in COVID-19 and uncover a self-sustaining neutrophil-IL-8 axis as a promising therapeutic target in severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rainer Kaiser
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Alexander Leunig
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Kami Pekayvaz
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- DZHK, partner site Berlin, Berlin, Germany
| | - Markus Joppich
- Department of Informatics, Ludwig-Maximilians University Munich, Munich, Germany
| | - Vivien Polewka
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Raphael Escaig
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Afra Anjum
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Marie-Louise Hoffknecht
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Christoph Gold
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Sophia Brambs
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Anouk Engel
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Sven Stockhausen
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Viktoria Knottenberg
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Anna Titova
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Mohamed Haji
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- DZHK, partner site Berlin, Berlin, Germany
| | - Clemens Scherer
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Maximilian Muenchhoff
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- Max von Pettenkofer Institute and GeneCenter, Virology, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
- German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Johannes C. Hellmuth
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- Medical Clinic and Polyclinic III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Kathrin Saar
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- DZHK, partner site Berlin, Berlin, Germany
| | - Benjamin Schubert
- Institute of Computational Biology, Helmholtz Zentrum München (German Research Center for Environmental Health), Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
- The COMBAT C19IR study group is detailed in the Acknowledgments
| | - Anne Hilgendorff
- The COMBAT C19IR study group is detailed in the Acknowledgments
- Institute for Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Germany
- Center for Comprehensive Developmental Care at the interdisciplinary Social Pediatric Center, Haunersches Children’s Hospital, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Stefan Kääb
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Ralf Zimmer
- Department of Informatics, Ludwig-Maximilians University Munich, Munich, Germany
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- DZHK, partner site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- DZHK, partner site Berlin, Berlin, Germany
| | - Leo Nicolai
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Konstantin Stark
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
22
|
Ma Y, Zhang Y, Zhu L. Role of neutrophils in acute viral infection. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1186-1196. [PMID: 34472718 PMCID: PMC8589350 DOI: 10.1002/iid3.500] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022]
Abstract
Neutrophils play multiple roles in acute viral infections. They restrict viral replication and diffusion through phagocytosis, degranulation, respiratory burst, secretion of cytokines, and the release of neutrophil extracellular traps, as well as, activate the adaptive immune response. However, the overactivation of neutrophils may cause tissue damage and lead to poor outcomes. Additionally, some characteristics and functions of neutrophils, such as cell number, lifespan, and antiviral capability, can be influenced while eliminating viruses. This review provides a general description of the protective and pathological roles of neutrophils in acute viral infection.
Collapse
Affiliation(s)
- Yuan Ma
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liuluan Zhu
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Cascino TM, Desai AA, Kanthi Y. At a crossroads: coronavirus disease 2019 recovery and the risk of pulmonary vascular disease. Curr Opin Pulm Med 2021; 27:342-349. [PMID: 34127622 PMCID: PMC8373709 DOI: 10.1097/mcp.0000000000000792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The coronavirus disease 2019 (COVID-19) pandemic has led to almost 3,000,000 deaths across 139 million people infected worldwide. Involvement of the pulmonary vasculature is considered a major driving force for morbidity and mortality. We set out to summarize current knowledge on the acute manifestations of pulmonary vascular disease (PVD) resulting from COVID-19 and prioritize long-term complications that may result in pulmonary hypertension (PH). RECENT FINDINGS Acute COVID-19 infection can result in widespread involvement of the pulmonary vasculature, myocardial injury, evidence of persistent lung disease, and venous thromboembolism. Post COVID-19 survivors frequently report ongoing symptoms and may be at risk for the spectrum of PH, including group 1 pulmonary arterial hypertension, group 2 PH due to left heart disease, group 3 PH due to lung disease and/or hypoxia, and group 4 chronic thromboembolic PH. SUMMARY The impact of COVID-19 on the pulmonary vasculature is central to determining disease severity. Although the long-term PVD manifestations of COVID-19 are currently uncertain, optimizing the care of risk factors for PH and monitoring for the development of PVD will be critical to reducing long-term morbidity and improving the health of survivors.
Collapse
Affiliation(s)
- Thomas M Cascino
- Frankel Cardiovascular Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Yogendra Kanthi
- Frankel Cardiovascular Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Zuo Y, Yalavarthi S, Navaz SA, Hoy CK, Harbaugh A, Gockman K, Zuo M, Madison JA, Shi H, Kanthi Y, Knight JS. Autoantibodies stabilize neutrophil extracellular traps in COVID-19. JCI Insight 2021; 6:150111. [PMID: 34166229 PMCID: PMC8410057 DOI: 10.1172/jci.insight.150111] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
The release of neutrophil extracellular traps (NETs) by hyperactive neutrophils is recognized to play an important role in the thromboinflammatory milieu inherent to severe presentations of COVID-19. At the same time, a variety of functional autoantibodies have been observed in individuals with severe COVID-19, where they likely contribute to immunopathology. Here, we aimed to determine the extent to which autoantibodies might target NETs in COVID-19 and, if detected, to elucidate their potential functions and clinical associations. We measured anti-NET antibodies in 328 individuals hospitalized with COVID-19 alongside 48 healthy controls. We found high anti-NET activity in the IgG and IgM fractions of 27% and 60% of patients, respectively. There was a strong correlation between anti-NET IgG and anti-NET IgM. Both anti-NET IgG and anti-NET IgM tracked with high levels of circulating NETs, impaired oxygenation efficiency, and high circulating D-dimer. Furthermore, patients who required mechanical ventilation had a greater burden of anti-NET antibodies than did those not requiring oxygen supplementation. Levels of anti-NET IgG (and, to a lesser extent, anti-NET IgM) demonstrated an inverse correlation with the efficiency of NET degradation by COVID-19 sera. Furthermore, purified IgG from COVID-19 sera with high levels of anti-NET antibodies impaired the ability of healthy control serum to degrade NETs. In summary, many individuals hospitalized with COVID-19 have anti-NET antibodies, which likely impair NET clearance and may potentiate SARS-CoV-2-mediated thromboinflammation.
Collapse
Affiliation(s)
- Yu Zuo
- Division of Rheumatology, Department of Internal Medicine
| | | | | | - Claire K. Hoy
- Division of Rheumatology, Department of Internal Medicine
| | | | - Kelsey Gockman
- Division of Rheumatology, Department of Internal Medicine
| | - Melanie Zuo
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, and
| | - Jacqueline A. Madison
- Division of Rheumatology, Department of Internal Medicine
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Hui Shi
- Division of Rheumatology, Department of Internal Medicine
- Division of Rheumatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yogendra Kanthi
- Division of Intramural Research National Heart, Lung and Blood Institute Bethesda, Maryland, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
25
|
A Fragile Balance: Does Neutrophil Extracellular Trap Formation Drive Pulmonary Disease Progression? Cells 2021; 10:cells10081932. [PMID: 34440701 PMCID: PMC8394734 DOI: 10.3390/cells10081932] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils act as the first line of defense during infection and inflammation. Once activated, they are able to fulfil numerous tasks to fight inflammatory insults while keeping a balanced immune response. Besides well-known functions, such as phagocytosis and degranulation, neutrophils are also able to release "neutrophil extracellular traps" (NETs). In response to most stimuli, the neutrophils release decondensed chromatin in a NADPH oxidase-dependent manner decorated with histones and granule proteins, such as neutrophil elastase, myeloperoxidase, and cathelicidins. Although primarily supposed to prevent microbial dissemination and fight infections, there is increasing evidence that an overwhelming NET response correlates with poor outcome in many diseases. Lung-related diseases especially, such as bacterial pneumonia, cystic fibrosis, chronic obstructive pulmonary disease, aspergillosis, influenza, and COVID-19, are often affected by massive NET formation. Highly vascularized areas as in the lung are susceptible to immunothrombotic events promoted by chromatin fibers. Keeping this fragile equilibrium seems to be the key for an appropriate immune response. Therapies targeting dysregulated NET formation might positively influence many disease progressions. This review highlights recent findings on the pathophysiological influence of NET formation in different bacterial, viral, and non-infectious lung diseases and summarizes medical treatment strategies.
Collapse
|
26
|
Zuo Y, Yalavarthi S, Navaz S, Hoy C, Harbaugh A, Gockman K, Zuo M, Madison JA, Shi H, Kanthi Y, Knight JS. Autoantibodies stabilize neutrophil extracellular traps in COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.31.21254692. [PMID: 33851189 PMCID: PMC8043486 DOI: 10.1101/2021.03.31.21254692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The release of neutrophil extracellular traps ( NETs ) by hyperactive neutrophils is recognized to play an important role in the thromboinflammatory milieu inherent to severe presentations of COVID-19. At the same time, a variety of functional autoantibodies have been observed in individuals with severe COVID-19 where they likely contribute to immunopathology. Here, we aimed to determine the extent to which autoantibodies might target NETs in COVID-19 and, if detected, to elucidate their potential functions and clinical associations. We measured anti-NET antibodies in 328 individuals hospitalized with COVID-19 alongside 48 healthy controls. We found high anti-NET activity in the IgG and IgM fractions of 27% and 60% of patients, respectively. There was a strong correlation between anti-NET IgG and anti-NET IgM (r=0.4, p<0.0001). Both anti-NET IgG and IgM tracked with high levels of circulating NETs, impaired oxygenation efficiency, and high circulating D-dimer. Furthermore, patients who required mechanical ventilation had a greater burden of anti-NET antibodies than did those not requiring oxygen supplementation. Levels of anti-NET IgG (and to a lesser extent anti-NET IgM) demonstrated an inverse correlation with the efficiency of NET degradation by COVID sera. Furthermore, purified IgG from COVID sera with high levels of anti-NET antibodies impaired the ability of healthy control serum to degrade NETs. In summary, many individuals hospitalized with COVID-19 have anti-NET antibodies, which likely impair NET clearance and may potentiate SARS-CoV-2-mediated thromboinflammation.
Collapse
|
27
|
Abstract
The association between inflammation, infection, and venous thrombosis has long been recognized; yet, only in the last decades have we begun to understand the mechanisms through which the immune and coagulation systems interact and reciprocally regulate one another. These interconnected networks mount an effective response to injury and pathogen invasion, but if unregulated can result in pathological thrombosis and organ damage. Neutrophils, monocytes, and platelets interact with each other and the endothelium in host defense and also play critical roles in the formation of venous thromboembolism. This knowledge has advanced our understanding of both human physiology and pathophysiology, as well as identified mechanisms of anticoagulant resistance and novel therapeutic targets for the prevention and treatment of thrombosis. In this review, we discuss the contributions of inflammation and infection to venous thromboembolism.
Collapse
Affiliation(s)
- Meaghan E. Colling
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Benjamin E. Tourdot
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Conway R, Konig MF, Graef ER, Webb K, Yazdany J, Kim AHJ. Inflammatory arthritis in patients with COVID-19. Transl Res 2021; 232:49-59. [PMID: 33626415 PMCID: PMC7897406 DOI: 10.1016/j.trsl.2021.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Patients with inflammatory arthritis represent a possible high-risk group to COVID-19 due to their immunosuppressive regimen designed to maintain low disease activity. Thus, substantial effort has been put forth to understand the impact of COVID-19 on these patients. Patients with rheumatic diseases as a whole do not appear to be more susceptible to acquiring COVID-19. Furthermore, immunosuppression generally did not increase the likelihood of developing severe COVID-19, with the important exception of medium and high-dose glucocorticoid use. In addition, a small number of COVID-19 patients have developed new inflammatory arthritis; whether this represents an unmasking of previous subclinical disease or a bone fide virus-induced arthritis is unclear. Nevertheless, it appears that inflammatory arthritis patients currently on immunosuppression should continue their medication to prevent future flares and limit glucocorticoid usage. While this continues to be a rapidly evolving field, these data are reassuring to both patients with and providers treating inflammatory arthritides.
Collapse
Key Words
- ace-2, angiotensin converting enzyme-2
- acr, american college of rheumatology
- c1, complement component 1
- ci, confidence interval
- covid-19, coronavirus disease-2019
- dmard, disease-modifying antirheumatic drugs
- eular, european league against rheumatism
- gra, global rheumatology alliance
- hcq, hydroxychloroquine
- hiv, human immunodeficiency virus
- hla, human leukocyte antigen
- hr, hazard ratio
- mis-c, multisystem inflammatory syndrome in children
- mri, magnetic resonance imaging
- nhs, national health service
- or, odds ratio
- pcr, polymerase chain reaction
- ra, rheumatoid arthritis
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
- sle, systemic lupus erythematosus
- slicc, systemic lupus erythematosus international collaborating clinics
- tnfi, tumor necrosis factor inhibitor
- tracr, trinity rheumatology and covid-19 registry
- uk, united kingdom
- us, united states
Collapse
Affiliation(s)
- Richard Conway
- Department of Rheumatology, St. James's Hospital, Dublin, Ireland
| | - Maximilian F Konig
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Kate Webb
- Division of Paediatric Rheumatology, School of Child and Adolescent Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; Crick African Network, Francis Crick Institute, London, UK
| | - Jinoos Yazdany
- Division of Rheumatology, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, California.
| | - Alfred H J Kim
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
29
|
De Sanctis JB, García AH, Moreno D, Hajduch M. Coronavirus infection: An immunologists' perspective. Scand J Immunol 2021; 93:e13043. [PMID: 33783027 PMCID: PMC8250184 DOI: 10.1111/sji.13043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus infections are frequent viral infections in several species. As soon as the severe acute respiratory syndrome (SARS) appeared in the early 2000s, most of the research focused on pulmonary disease. However, disorders in immune response and organ dysfunctions have been documented. Elderly individuals with comorbidities exhibit worse outcomes in all the coronavirus that cause SARS. Disease severity in SARS-CoV-2 infection is related to severe inflammation and tissue injury, and effective immune response against the virus is still under analysis. ACE2 receptor expression and polymorphism, age, gender and immune genetics are factors that also play an essential role in patients' clinical features and immune responses and have been partially discussed. The present report aims to review the physiopathology of SARS-CoV-2 infection and propose new research topics to understand the complex mechanisms of viral infection and viral clearance.
Collapse
Affiliation(s)
- Juan Bautista De Sanctis
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic
- Institute of ImmunologyFaculty of MedicineUniversidad Central de VenezuelaCaracasVenezuela
| | - Alexis Hipólito García
- Institute of ImmunologyFaculty of MedicineUniversidad Central de VenezuelaCaracasVenezuela
| | - Dolores Moreno
- Chair of General Pathology and PathophysiologyFaculty of MedicineCentral University of VenezuelaCaracasVenezuela
| | - Marián Hajduch
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic
| |
Collapse
|