1
|
Zou CY, Han C, Xing F, Jiang YL, Xiong M, Li-Ling J, Xie HQ. Smart design in biopolymer-based hemostatic sponges: From hemostasis to multiple functions. Bioact Mater 2025; 45:459-478. [PMID: 39697242 PMCID: PMC11653154 DOI: 10.1016/j.bioactmat.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Uncontrolled hemorrhage remains the leading cause of death in clinical and emergency care, posing a major threat to human life. To achieve effective bleeding control, many hemostatic materials have emerged. Among them, nature-derived biopolymers occupy an important position due to the excellent inherent biocompatibility, biodegradability and bioactivity. Additionally, sponges have been widely used in clinical and daily life because of their rapid blood absorption. Therefore, we provide the overview focusing on the latest advances and smart designs of biopolymer-based hemostatic sponge. Starting from the component, the applications of polysaccharide and polypeptide in hemostasis are systematically introduced, and the unique bioactivities such as antibacterial, antioxidant and immunomodulation are also concerned. From the perspective of sponge structure, different preparation processes can obtain unique physical properties and structures, which will affect the material properties such as hemostasis, antibacterial and tissue repair. Notably, as development frontier, the multi-functions of hemostatic materials is summarized, mainly including enhanced coagulation, antibacterial, avoiding tumor recurrence, promoting tissue repair, and hemorrhage monitoring. Finally, the challenges facing the development of biopolymer-based hemostatic sponges are emphasized, and future directions for in vivo biosafety, emerging materials, multiple application scenarios and translational research are proposed.
Collapse
Affiliation(s)
- Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Department of Pediatric Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| | - Ming Xiong
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Department of Medical Genetics, West China Second Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| |
Collapse
|
2
|
Yu J, Xu W, Chen H, Yuan H, Wang Y, Qian X, Zhang J, Ji Y, Zhao Q, Li S. Charge Engineering of Star-Shaped Organic Photosensitizers Enables Efficient Type-I Radicals for Photodynamic Therapy of Multidrug-Resistant Bacterial Infection. Adv Healthc Mater 2024:e2402615. [PMID: 39648533 DOI: 10.1002/adhm.202402615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Indexed: 12/10/2024]
Abstract
Infection induced by multidrug-resistant bacteria is now the second most common cause of accidental death worldwide. However, identifying a high-performance strategy with good efficiency and low toxicity is still urgently needed. Antibacterial photodynamic therapy (PDT) is considered a non-invasive and efficient approach with minimal drug resistance. Whereas, the precise molecular design for highly efficient oxygen-independent type-I photosensitizers is still undefined. In this work, the regulation of the positive charge of star-shaped NIR-emissive organic photosensitizers can boost radical generation for the efficient treatment of wounds infected with multidrug-resistant bacteria. With positive charge engineering, TPAT-DNN, which has six positive charges, mainly produces hydroxyl radicals via the type-I pathway, while TPAT-DN, which has three positive charges, tends to generate singlet oxygen and superoxide radicals. For multidrug-resistant bacteria, TPAT-DNN exhibited specific killing effects on multidrug-resistant gram-positive bacteria at low concentrations, while TPAT-DN is similar antibacterial effects on both multidrug-resistant gram-negative and gram-positive bacteria. Furthermore, the efficiency and safety of TPAT-DNN for eradicating multidrug-resistant bacteria methicillin-resistant S. aureus (MRSA) infection and accelerating wound healing in an MRSA-infected mouse model are demonstrated. This work offers a new approach toward manipulating efficient type-I photosensitizers for MRSA treatment.
Collapse
Affiliation(s)
- Jie Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Wenchang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Huan Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Haitao Yuan
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery System Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yu Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Xiandie Qian
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Jie Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yu Ji
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
3
|
Zhang Z, Zhang C, Wang N, Hu Y, Cui L, Wang J, Zhu L, Zhang J, Wang R. Enhanced Photosensitizer Wettability via Anchoring Competition of Violet Phosphorus Quantum Dots for Breakthroughs in Photodynamic Film Sterilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410989. [PMID: 39511870 DOI: 10.1002/adma.202410989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/11/2024] [Indexed: 11/15/2024]
Abstract
Wettability is important for photodynamic film sterilization since higher wettability enhances the capture of bacteria in contact with photosensitizers. Herein, a small number of violet phosphorus quantum dots (VPQDs) are anchored into hypericin bacterial cellulose films (VP/Hy-BC films) to improve wettability, reducing the water contact angle from 56.8° to 33.0°. This modification facilitated more effective interactions between the bacteria and photosensitizers, rapidly inactivating 7 log10 CFU/mL of Staphylococcus aureus within 60 min. First-principles calculations and molecular dynamics simulations reveal that VPQDs, with their low spatial site resistance, reduced the intermolecular Hy self-aggregation force. This increased the solvent-accessible surface area of VP/Hy by ≈25.7%, thereby decreasing hydrophobic photosensitizer aggregation. Consequently, more active sites are exposed, remarkably improving the photoelectron transfer efficiency. VP/Hy-BC demonstrated exceptional efficacy in inhibiting bacterial proliferation; for instance, it extended beef shelf life by up to 10 days. The findings of this study will aid the development of health-conscious, eco-friendly, and efficient antimicrobial packaging films.
Collapse
Affiliation(s)
- Zuwang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Chi Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Na Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Yayun Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Lu Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jinying Zhang
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Rong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
4
|
Gao Z, Zheng X, Dong X, Liu W, Sha J, Bian S, Li J, Cong H, Lee CS, Wang P. A General Strategy for Enhanced Photodynamic Antimicrobial Therapy with Perylenequinonoid Photosensitizers Using a Macrocyclic Supramolecular Carrier. Adv Healthc Mater 2024; 13:e2401778. [PMID: 38979867 DOI: 10.1002/adhm.202401778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Perylenequinonoid natural products are a class of photosensitizers (PSs) that exhibit high reactive oxygen species (ROS) generation and excellent activity for Type I/Type II dual photodynamic therapy. However, their limited activity against gram-negative bacteria and poor water solubility significantly restrict their potential in broad-spectrum photodynamic antimicrobial therapy (PDAT). Herein, a general approach to overcome the limitations of perylenequinonoid photosensitizers (PQPSs) in PDAT by utilizing a macrocyclic supramolecular carrier is presented. Specifically, AnBox·4Cl, a water-soluble cationic cyclophane, is identified as a universal macrocyclic host for PQPSs such as elsinochrome C, hypocrellin A, hypocrellin B, and hypericin, forming 1:1 host-guest complexes with high binding constants (≈107 m -1) in aqueous solutions. Each AnBox·4Cl molecule carries four positive charges that promote strong binding with the membrane of gram-negative bacteria. As a result, the AnBox·4Cl-PQPS complexes can effectively anchor on the surfaces of gram-negative bacteria, while the PQPSs alone cannot. In vitro and in vivo experiments demonstrate that these supramolecular PSs have excellent water solubility and high ROS generation, with broad-spectrum PDAT effect against both gram-negative and gram-positive bacteria. This work paves a new path to enhance PDAT by showcasing an efficient approach to improve PQPSs' water solubility and killing efficacy for gram-negative bacteria.
Collapse
Affiliation(s)
- Zekun Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangyu Dong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Sha
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuaishuai Bian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
5
|
Clementi R, Vargas MA, Cid M, Salvatierra N, Comín R, Tempesti T. Biocompatible Zn-Phthalocyanine/Gelatin Nanofiber Membrane for Antibacterial Therapy. Macromol Biosci 2024:e2400334. [PMID: 39470704 DOI: 10.1002/mabi.202400334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Indexed: 10/30/2024]
Abstract
In this study, the fabrication and characterization of Zn-phthalocyanine/gelatin nanofibrous membranes is reported using the electrospinning technique. The membranes exhibit a homogeneous distribution of Zn-phthalocyanine within the gelatin matrix, maintaining the structural integrity and photosensitizing properties of the phthalocyanine. Scanning electron microscopy revealed that the electrospun fibers possess diameters ranging results as 100-300, 200-700, and 300-800 nm for Gel, ZnPc/Gel 1, and ZnPc/Gel 2, respectively. The addition of ZnPc does not decrease the hydrophilicity of the Gel membrane. The nanofibrous membranes showed good cytocompatibility, as indicated by the high viability of Vero cells exposed to membrane extracts. Furthermore, these composites supported cell adhesion and proliferation on their surfaces. The two Zn-phthalocyanine/gelatin nanofiber formulations exhibited significant antimicrobial activity toward Escherichia Coli (E. Coli) and Staphylococcus Aureus (S. Aureus) under visible light illumination, achieving reductions of 3.4 log10 and 3.6 log10 CFU mL-1 for E. coli, and 3.9 log10 and 4.1 log10 CFU mL-1 for S. aureus. These results demonstrate the potential of Zn-phthalocyanine/gelatin nanofibrous membranes as effective agents in antibacterial photodynamic therapy, providing a promising solution to control bacterial infections and antibiotic resistance.
Collapse
Affiliation(s)
- Romina Clementi
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Maria Angela Vargas
- Laboratorio de Microbiología, Hospital Provincial Florencio Diaz, Córdoba, Argentina
| | - Mariana Cid
- Facultad Ciencias Exactas, Físicas y Naturales, Departamento de Química, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5016, Argentina
- CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Nancy Salvatierra
- Facultad Ciencias Exactas, Físicas y Naturales, Departamento de Química, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5016, Argentina
- CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Romina Comín
- Facultad Ciencias Exactas, Físicas y Naturales, Departamento de Química, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5016, Argentina
- CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Tomas Tempesti
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- INFIQC-CONICET, Instituto de Investigaciones en Físico-Química de Córdoba, Córdoba, Argentina
| |
Collapse
|
6
|
Dube E. Antimicrobial Photodynamic Therapy: Self-Disinfecting Surfaces for Controlling Microbial Infections. Microorganisms 2024; 12:1573. [PMID: 39203415 PMCID: PMC11356738 DOI: 10.3390/microorganisms12081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial infections caused by bacteria, viruses, and fungi pose significant global health threats in diverse environments. While conventional disinfection methods are effective, their reliance on frequent chemical applications raises concerns about resistance and environmental impact. Photodynamic self-disinfecting surfaces have emerged as a promising alternative. These surfaces incorporate photosensitizers that, when exposed to light, produce reactive oxygen species to target and eliminate microbial pathogens. This review explores the concept and mechanism of photodynamic self-disinfecting surfaces, highlighting the variety and characteristics of photosensitizers integrated into surfaces and the range of light sources used across different applications. It also highlights the effectiveness of these surfaces against a broad spectrum of pathogens, including bacteria, viruses, and fungi, while also discussing their potential for providing continuous antimicrobial protection without frequent reapplication. Additionally, the review addresses both the advantages and limitations associated with photodynamic self-disinfecting surfaces and concludes with future perspectives on advancing this technology to meet ongoing challenges in infection control.
Collapse
Affiliation(s)
- Edith Dube
- Department of Biological & Environmental Sciences, Walter Sisulu University, P/B X1, Mthatha 5117, South Africa
| |
Collapse
|
7
|
Bilská K, Bujdák J, Bujdáková H. Nanocomposite system with photoactive phloxine B eradicates resistant Staphylococcus aureus. Heliyon 2024; 10:e33660. [PMID: 39071577 PMCID: PMC11283154 DOI: 10.1016/j.heliyon.2024.e33660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Nanomaterials modified with hybrid films functionalized with photoactive compounds can be an effective system to prevent and eradicate biofilms on medical devices. The aim of this research was to extend current knowledge on nanomaterial comprised of polyurethane (PU) modified with a nanocomposite film of organoclay with the functionalized photosensitizer (PS) phloxine B (PhB). Particles of the clay mineral saponite were, at first modified by octadecyltrimethylammonium cations to activate the surface for PhB adsorption. The colloids were filtered to get silicate films on polytetrafluoroethylene membrane filters, which were layered with a liquid mixture of PU precursors. The penetration of PU into the silicate formed a thin nanocomposite film. This nanomaterial demonstrated excellent effectiveness against methicillin-resistant S. aureus (MRSA) resistant to fluoroquinolones (L12 and S61, respectively). It showed more than 1000- and 10 000-fold inhibition of biofilm growth after irradiation with green laser compared to the unmodified PU material. Principal component analysis and multiple linear regression showed that the effectiveness of the nanomaterial was not influenced by virulence factors such as the expression of efflux pumps of the Nor family, the adhesin PIA encoded by the icaADBC operon or the robustness of the biofilms. However, the presence of organoclay, PhB and irradiation had a significant effect on the anti-biofilm properties of the nanocomposite. The anti-microbial properties of the material were strengthened after irradiation, because of high reactive oxygen species release (more than 14-fold compared to non-irradiated sample). Materials based on photoactive molecules can represent a worthwhile pathway towards the development of more complex nanomaterials applicable in various fields of medicine.
Collapse
Affiliation(s)
- Katarína Bilská
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Ilkovičova 6, 84215, Bratislava, Slovak Republic
| | - Juraj Bujdák
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Ilkovičova 6, 84215, Bratislava, Slovak Republic
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84536, Bratislava, Slovak Republic
| | - Helena Bujdáková
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Ilkovičova 6, 84215, Bratislava, Slovak Republic
| |
Collapse
|
8
|
Zhou D, Ge M, Wang Q, Sun J, Yao H, Deng Y, Xiao L, Wang J, Wei J. Gold Nanoparticles Confined in Mesoporous Bioactive Glass for Periodontitis Therapy. ACS Biomater Sci Eng 2024; 10:3883-3895. [PMID: 38700993 DOI: 10.1021/acsbiomaterials.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Periodontitis is a chronic disease caused by bacterial infection and is characterized with alveolar bone resorption. Bone regeneration in periodontitis remains a critical challenge because bacterial infection induced an unfavorable microenvironment for osteogenesis. Therefore, it is necessary to design proper therapeutic platforms to control bacterial infection and promote bone regeneration. Herein, mesoporous bioactive glass (MBG) with different pore sizes (3.0, 4.3, and 12.3 nm) was used as an in situ reactor to confine the growth of gold nanoparticles (Au NPs), forming MBG@Au hybrids which combine the osteoconductivity of MBG and antibacterial properties of Au NPs. Upon near-infrared (NIR) irradiation, the MBG@Au NPs showed efficient antibacterial properties both in vitro and in vivo. Besides, the osteogenesis properties of MBG@Au also improved under NIR irradiation. Furthermore, the in vivo results demonstrated that MBG@Au can effectively promote alveolar bone regeneration and realize the healing of serious periodontitis.
Collapse
Affiliation(s)
- Dong Zhou
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Min Ge
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - QiHui Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
| | - Jingru Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
| | - Haiyan Yao
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Yunyun Deng
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, QLD 4222, Australia
| | - Jiaolong Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Junchao Wei
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| |
Collapse
|
9
|
Hu B, Qiao W, Cao Y, Fu X, Song J. A sono-responsive antibacterial nanosystem co-loaded with metformin and bone morphogenetic protein-2 for mitigation of inflammation and bone loss in experimental peri-implantitis. Front Bioeng Biotechnol 2024; 12:1410230. [PMID: 38854857 PMCID: PMC11157067 DOI: 10.3389/fbioe.2024.1410230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Background Dental implants have become an increasingly popular option for replacing missing teeth, and the prevalence of peri-implantitis has also increased, which is expected to become a public health problem worldwide and cause high economic and health burdens. This scenario highlights the need for new therapeutic options to treat peri-implantitis. Methods In this study, we proposed a novel sono-responsive antibacterial nanosystem co-loaded with metformin (Met) and bone morphogenetic protein-2 (BMP-2) to promote efficacy in treating peri-implantitis. We introduced the zeolitic imidazolate framework-8 (ZIF-8) as a carrier for hematoporphyrin monomethyl ether (HMME) to enhance the antibacterial effect of sonodynamic antibacterial therapy and tested its reactive oxygen species (ROS) production efficiency and bactericidal effect in vitro. Afterward, HMME-loaded ZIF-8, BMP-2-loaded polylactic acid-glycolic acid (PLGA), and Met were incorporated into gelatin methacryloyl (GelMA) hydrogels to form HMME@ZIF-8/Met/BMP-2@PLGA/GelMA composite hydrogels, and the biocompatibility of which was determined in vitro and in vivo. A bacterial-induced peri-implantitis model in the maxilla of rats was established to detect the effects of the composite hydrogels with adjunctive use of ultrasound on regulating inflammation and promoting bone tissue repair in vivo. Results The results indicated that HMME@ZIF-8 with ultrasound stimulation demonstrated more better ROS production efficiency and antimicrobial efficacy. The composite hydrogels had good biocompatibility. Ultrasound-assisted application of the composite hydrogels reduced the release of the inflammatory factors IL-6 and TNF-α and reduced bone loss around the implant in rats with bacterial-induced peri-implantitis. Conclusion Our observations suggest that HMME@ZIF-8 may be a new good sonosensitizer material for sonodynamic antibacterial therapy. The use of HMME@ZIF-8/Met/BMP-2@PLGA/GelMA composite hydrogels in combination with ultrasound can provide a novel option for treating peri-implantitis in the future.
Collapse
Affiliation(s)
- Bo Hu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wang Qiao
- Department of Stomatology, Shapingba Hospital Affiliated to Chongqing University, Chongqing, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoming Fu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
10
|
Sun L, Han Y, Zhao Y, Cui J, Bi Z, Liao S, Ma Z, Lou F, Xiao C, Feng W, Liu J, Cai B, Li D. Black phosphorus, an advanced versatile nanoparticles of antitumor, antibacterial and bone regeneration for OS therapy. Front Pharmacol 2024; 15:1396975. [PMID: 38725666 PMCID: PMC11079190 DOI: 10.3389/fphar.2024.1396975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor. In the clinic, usual strategies for OS treatment include surgery, chemotherapy, and radiation. However, all of these therapies have complications that cannot be ignored. Therefore, the search for better OS treatments is urgent. Black phosphorus (BP), a rising star of 2D inorganic nanoparticles, has shown excellent results in OS therapy due to its outstanding photothermal, photodynamic, biodegradable and biocompatible properties. This review aims to present current advances in the use of BP nanoparticles in OS therapy, including the synthesis of BP nanoparticles, properties of BP nanoparticles, types of BP nanoparticles, and modification strategies for BP nanoparticles. In addition, we have discussed comprehensively the application of BP in OS therapy, including single, dual, and multimodal synergistic OS therapies, as well as studies about bone regeneration and antibacterial properties. Finally, we have summarized the conclusions, limitations and perspectives of BP nanoparticles for OS therapy.
Collapse
Affiliation(s)
- Lihui Sun
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Yu Han
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Yao Zhao
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhiguo Bi
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Shiyu Liao
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Zheru Ma
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Fengxiang Lou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Eco-materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Wei Feng
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Jianguo Liu
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Bo Cai
- Department of Diagnostic Ultrasound of People's Liberation Army 964 Hospital, Changchun, China
| | - Dongsong Li
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| |
Collapse
|
11
|
Lv H, Xia X, Sun S, Niu Z, Liu J, Li X. Polylactic acid electrospun membrane loaded with cerium nitrogen co-doped titanium dioxide for visible light-triggered antibacterial photocatalytic therapy. Front Microbiol 2024; 15:1375956. [PMID: 38711973 PMCID: PMC11071086 DOI: 10.3389/fmicb.2024.1375956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Wound infection caused by multidrug-resistant bacteria poses a serious threat to antibiotic therapy. Therefore, it is of vital importance to find new methods and modes for antibacterial therapy. The cerium nitrogen co-doped titanium dioxide nanoparticles (N-TiO2, 0.05Ce-N-TiO2, 0.1Ce-N-TiO2, and 0.2Ce-N-TiO2) were synthesized using the hydrothermal method in this study. Subsequently, electrospinning was employed to fabricate polylactic acid (PLA) electrospun membranes loaded with the above-mentioned nanoparticles (PLA-N, PLA-0.05, PLA-0.1, and PLA-0.2). The results indicated that cerium and nitrogen co-doping tetrabutyl titanate enhanced the visible light photocatalytic efficiency of TiO2 nanoparticles and enabled the conversion of ultraviolet light into harmless visible light. The photocatalytic reaction under visible light irradiation induced the generation of ROS, which could effectively inhibit the bacterial growth. The antibacterial assay showed that it was effective in eliminating S. aureus and E. coli and the survival rates of two types of bacteria under 30 min of irradiation were significantly below 20% in the PLA-0.2 experimental group. Moreover, the bactericidal membranes also have excellent biocompatibility performance. This bio-friendly and biodegradable membrane may be applied to skin trauma and infection in future to curb drug-resistant bacteria and provide more alternative options for antimicrobial therapy.
Collapse
Affiliation(s)
- Hanlin Lv
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xiaomin Xia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Sa Sun
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Zhaojun Niu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Jie Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Chen R, Zhang K, Shi Y, Ettelaie R, Shi Y, Li D, Zhang S, Dang Y, Chen J. Advancing Photodynamic Antimicrobial Strategy: Sustainable Fabrication of Novel Lauryl Gallate-Chitosan Hydrophobic Films with Rapid Bacterial Capture and Biofilms Elimination Capabilities for Promoting Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19571-19584. [PMID: 38564737 DOI: 10.1021/acsami.4c01735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bioinspired photoactive composites, in terms of photodynamic inactivation, cost-effectiveness, and biosafety, are promising alternatives to antibiotics for combating bacterial infections while avoiding antibacterial resistance. However, the weak bacterial membrane affinity of the photoactive substrate and the lack of synergistic antibacterial effect remain crucial shortcomings for their antibacterial applications. Herein, we developed a hydrophobic film from food antioxidant lauryl gallate covalently functionalized chitosan (LG-g-CS conjugates) through a green radical-induced grafting reaction that utilizes synergistic bacteria capture, contact-killing, and photodynamic inactivation activities to achieve enhanced bactericidal and biofilm elimination capabilities. Besides, the grafting reaction mechanism between LG and CS in the ascorbic acid (AA)/H2O2 redox system was further proposed. The LG-g-CS films feature hydrophobic side chains and photoactive phenolic hydroxyl groups, facilitating dual bactericidal activities through bacteria capture and contact-killing via strong hydrophobic and electrostatic interactions with bacterial membranes as well as blue light (BL)-driven photodynamic bacterial eradication through the enhanced generation of reactive oxygen species. As a result, the LG-g-CS films efficiently capture and immobilize bacteria and exhibit excellent photodynamic antibacterial activity against model bacteria (Escherichia coli and Staphylococcus aureus) and their biofilms under BL irradiation. Moreover, LG-g-CS films could significantly promote the healing process of S. aureus-infected wounds. This research demonstrates a new strategy for designing and fabricating sustainable bactericidal and biofilm-removing materials with a high bacterial membrane affinity and photodynamic activity.
Collapse
Affiliation(s)
- Rukang Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Ke Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Yugang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Rammile Ettelaie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Yu Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Donghui Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Siying Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Yali Dang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Jianshen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| |
Collapse
|
13
|
Song SN, Zhao XL, Yang XC, Ding Y, Ren FD, Pang XY, Li B, Hu JY, Chen YZ, Gao WW. Nanoarchitectonics of Bimetallic Cu-/Co-Doped Nitrogen-Carbon Nanozyme-Functionalized Hydrogel with NIR-Responsive Phototherapy for Synergistic Mitigation of Drug-Resistant Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16011-16028. [PMID: 38529951 DOI: 10.1021/acsami.4c01783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Superbug infections and transmission have become major challenges in the contemporary medical field. The development of novel antibacterial strategies to efficiently treat bacterial infections and conquer the problem of antimicrobial resistance (AMR) is extremely important. In this paper, a bimetallic CuCo-doped nitrogen-carbon nanozyme-functionalized hydrogel (CuCo/NC-HG) has been successfully constructed. It exhibits photoresponsive-enhanced enzymatic effects under near-infrared (NIR) irradiation (808 nm) with strong peroxidase (POD)-like and oxidase (OXD)-like activities. Upon NIR irradiation, CuCo/NC-HG possesses photodynamic activity for producing singlet oxygen(1O2), and it also has a high photothermal conversion effect, which not only facilitates the elimination of bacteria but also improves the efficiency of reactive oxygen species (ROS) production and accelerates the consumption of GSH. CuCo/NC-HG shows a lower hemolytic rate and better cytocompatibility than CuCo/NC and possesses a positive charge and macroporous skeleton for restricting negatively charged bacteria in the range of ROS destruction, strengthening the antibacterial efficiency. Comparatively, CuCo/NC and CuCo/NC-HG have stronger bactericidal ability against methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Escherichia coli (AmprE. coli) through destroying the cell membranes with a negligible occurrence of AMR. More importantly, CuCo/NC-HG plus NIR irradiation can exhibit satisfactory bactericidal performance in the absence of H2O2, avoiding the toxicity from high-concentration H2O2. In vivo evaluation has been conducted using a mouse wound infection model and histological analyses, and the results show that CuCo/NC-HG upon NIR irradiation can efficiently suppress bacterial infections and promote wound healing, without causing inflammation and tissue adhesions.
Collapse
Affiliation(s)
- Sheng-Nan Song
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xin-Liu Zhao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiao-Chan Yang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong Ding
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feng-Di Ren
- Department of Chemistry, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Xue-Yao Pang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bo Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ji-Yuan Hu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yu-Zhen Chen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
14
|
Li H, Yang L, Feng W, Liu W, Wang M, Liu F, Li G, Wang X. Poly(amino acid)-based drug delivery nanoparticles eliminate Methicillin resistant Staphylococcus aureus via tunable release of antibiotic. Colloids Surf B Biointerfaces 2024; 239:113882. [PMID: 38593511 DOI: 10.1016/j.colsurfb.2024.113882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Bacterial infections threaten public health, and novel therapeutic strategies critically demand to be explored. Herein, poly(amino acid) (PAA)-based drug delivery nanoparticles (NPs) were designed for eliminating Methicillin resistant Staphylococcus aureus (MRSA) via tunable release of antibiotic. Using N-acryloyl amino acids (valine, valine methyl ester, aspartic acid, serine) as monomers, four kinds of amphiphilic PAAs were synthesized via photoinduced electron/energy transfer-reversible addition fragmentation chain-transfer (PET-RAFT) polymerization and were further assembled into nano-sized delivery systems. Their assemble behavior was drove mainly by hydrophobic/hydrophilic interaction, which determined the particle size, efficacy of drug loading and release; but numerous hydrogen bonding (HB) interaction also played an important role in regulating morphologies of the NPs and enriching drug-binding capacity. By changing the HB- and hydrophobic-interaction of the PAAs, the particle sizes (240.7 nm-302.7 nm), the drug loading efficiency (9.57%-19.76%), and the Rifampicin (Rif) release rate (49.6%-69.7%) of the PAA-based NPs could be tunable. Specially, the antimicrobial properties of the Rif-loaded NPs are found to be related to the release of Rif, which was determined by its hydrophobic interaction with hydrophobic blocks and HB interaction with hydrophilic blocks. These studies provide a new outlook for the design of delivery systems for the therapy of bacterial infection.
Collapse
Affiliation(s)
- Haofei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Longlong Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Weilin Liu
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, PR China
| | - Meng Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Fang Liu
- China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
15
|
Zhi L, Cheng C, Jing L, Zhi-Ping P, Lu Y, Yan T, Zhi-Gang W, Guo-Bing Y. Application of fluorocarbon nanoparticles of 131I-fulvestrant as a targeted radiation drug for endocrine therapy on human breast cancer. J Nanobiotechnology 2024; 22:107. [PMID: 38475902 DOI: 10.1186/s12951-024-02309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/26/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Breast cancer is the most prevalent malignant tumor among women, with hormone receptor-positive cases constituting 70%. Fulvestrant, an antagonist for these receptors, is utilized for advanced metastatic hormone receptor-positive breast cancer. Yet, its inhibitory effect on tumor cells is not strong, and it lacks direct cytotoxicity. Consequently, there's a significant challenge in preventing recurrence and metastasis once cancer cells develop resistance to fulvestrant. METHOD To address these challenges, we engineered tumor-targeting nanoparticles termed 131I-fulvestrant-ALA-PFP-FA-NPs. This involved labeling fulvestrant with 131I to create 131I-fulvestrant. Subsequently, we incorporated the 131I-fulvestrant and 5-aminolevulinic acid (ALA) into fluorocarbon nanoparticles with folate as the targeting agent. This design facilitates a tri-modal therapeutic approach-endocrine therapy, radiotherapy, and PDT for estrogen receptor-positive breast cancer. RESULTS Our in vivo and in vitro tests showed that the drug-laden nanoparticles effectively zeroed in on tumors. This targeting efficiency was corroborated using SPECT-CT imaging, confocal microscopy, and small animal fluorescence imaging. The 131I-fulvestrant-ALA-PFP-FA-NPs maintained stability and showcased potent antitumor capabilities due to the synergism of endocrine therapy, radiotherapy, and CR-PDT. Throughout the treatment duration, we detected no notable irregularities in hematological, biochemical, or histological evaluations. CONCLUSION We've pioneered a nanoparticle system loaded with radioactive isotope 131I, endocrine therapeutic agents, and a photosensitizer precursor. This system offers a combined modality of radiotherapy, endocrine treatment, and PDT for breast cancer.
Collapse
Affiliation(s)
- Li Zhi
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Chen Cheng
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Luo Jing
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Peng Zhi-Ping
- Department of Nuclear Medicine Laboratory, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yang Lu
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Tian Yan
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Wang Zhi-Gang
- Department of Ultrasound Research Institute, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yin Guo-Bing
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
16
|
Liang Y, Wang J, Liu X, Chen S, He G, Fang X, Yang J, Teng Z, Liu HB. Anti-adhesion multifunctional poly(lactic-co-glycolic acid)/polydimethylsiloxane wound dressing for bacterial infection monitoring and photodynamic antimicrobial therapy. Int J Biol Macromol 2024; 260:129501. [PMID: 38224803 DOI: 10.1016/j.ijbiomac.2024.129501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Wound infection and adhesion are important factors affecting wound healing. Early detection of pathogen infection and reduction of wound-to-dressing adhesion are critical for improving wound healing. Herein, Ester-J, which can rapidly respond to lipase secreted by bacteria, was designed and synthesized. Then, Ester-J was co-spun with poly(lactic-co-glycolic acid) (PLGA) and polydimethylsiloxane (PDMS) to prepare a PP-EsJ hydrophobic anti-adhesion dressing with a contact angle of 140.7°. When the PP-EsJ membrane came into contact with the bacteria, the loaded Ester-J was hydrolyzed to Tph-TSF-OH, releasing bright cyan-blue fluorescence, thus providing a fluorescence switch for an early warning of infection. The detection limits of PP-EsJ for Pseudomonas aeruginosa and Staphylococcus aureus were 1.0 × 105 and 1.0 × 106 CFU/mL, respectively. Subsequently, Tph-TSF-OH released 1O2 through light irradiation, which rapidly killed P. aeruginosa and S. aureus, and accelerated wound healing. Compared with the control group, enhanced wound closure (up to 99.80 ± 1.10 %) was observed in mice treated with the PP-EsJ membrane. The PP-EsJ membrane not only effectively reduced the risk of external infection but also reduced adhesions to the skin during dressing changes. These characteristics make PP-EsJ membranes potentially useful for clinical treatment.
Collapse
Affiliation(s)
- Yuehui Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Xu Liu
- Medical College of Guangxi University, Guangxi University, Nanning 53004, PR China
| | - Shirong Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Guangpeng He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Xiru Fang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Jiaying Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Zhongshan Teng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53004, PR China.
| |
Collapse
|
17
|
Wang H, Cheng K, Sun S, Wang P, Zhou Y, Sun H, Wang X, Shen H, Li S, Lin H. Controllable Assembly of Cu 2+ and Chlorin E6 for H 2 S-Activatable Recognition of Bacterial Infection and Enhanced Antibacterial Therapy. Adv Healthc Mater 2024; 13:e2302481. [PMID: 38242099 DOI: 10.1002/adhm.202302481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/16/2023] [Indexed: 01/21/2024]
Abstract
Antibacterial photodynamic therapy (APDT) has emerged as one of the intriguing strategies to combat bacterial resistance. However, the antibacterial efficacy of APDT is found to be severely impacted by the hydrogen sulfide (H2 S)-overproduced bacterial infection microenvironment. Herein, a multifunctional APDT platform is developed by assembling Cu2+ and chlorin e6 (Ce6), which exhibits unique H2 S-activatable fluorescence (FL) and antibacterial features. Noteworthily, the assembly conditions are crucial for achievement of Cu-Ce6 nanoassemblies (NAs) with the on-demand responsive properties. The quenched FL and photosensitization of Cu-Ce6 NAs can be selectively activated by the overexpressed H2 S in infected area, enabling specific recognition of bacterial infection and localized antibacterial therapy with minimized side effects. Significantly, amplified oxidative stress is achieved owning to the effective consumption of H2 S by Cu2+ in the NAs, leading to an enhanced APDT. The antibacterial mechanisms including broad-spectrum APDT activity of released Ce6, inherent sterilization effects of produced copper polysulfides and the accompanying disturbance of bacterial sulphide metabolism are further identified. This study may pave a new avenue for the rational design of intelligent APDT platform using minimalist biological building units and thus facilitating the clinical translation of nano-antibacterial agents.
Collapse
Affiliation(s)
- Henggang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ke Cheng
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shan Sun
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Peng Wang
- Department of radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yonghua Zhou
- Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, 214122, China
| | - Haoyi Sun
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xinxin Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hongzhe Shen
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
18
|
Luo Q, Liu C, Zhang A, Zhang D. Research progress in photodynamic therapy for Helicobacter pylori infection. Helicobacter 2024; 29:e13068. [PMID: 38497573 DOI: 10.1111/hel.13068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Helicobacter pylori (H. pylori) is a pathogenic microorganism that colonizes the human gastric mucosa and can lead to various gastric disorders, including gastritis, gastric ulcers, and gastric cancer. However, the increasing prevalence of antibiotic resistance in H. pylori has prompted the search for alternative treatment options. Photodynamic therapy has emerged as a potential alternative therapy, thus offering the advantage of avoiding some of the side effects associated with antibiotics and effectively targeting drug-resistant strains. In the postantibiotic era, photodynamic therapy (PDT) has shown promise as a novel treatment for H. pylori infection. This review focused on elucidating the mechanism of photodynamic therapy in the treatment of H. pylori. Additionally, we present an overview of the current research on photodynamic therapy by examining both standalone photodynamic therapy and combination therapies for H. pylori infection treatment. Furthermore, the safety profile of photodynamic therapy was also evaluated. Finally, we discuss the challenges and prospects associated with this innovative technology, with an aim to provide new insights and methodologies for the treatment of H. pylori infection.
Collapse
Affiliation(s)
- Qian Luo
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, Lanzhou University Second Hospital, Lanzhou, China
| | - Chunyan Liu
- Institute of Sensor Technology, Gansu Academy of Sciences, Key Laboratory of Sensor and Sensing Technology of Gansu, Lanzhou, China
| | - Aiping Zhang
- The Second People's Hospital of Lanzhou, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
19
|
Chakraborty S, Shukla S, Rastogi M, Mund SS, Chowdhury A, Mukherjee C, Sahu K, Majumder SK. Evaluation of antimicrobial photodynamic action of a pluronic and pectin based film loaded with methylene blue against methicillin resistant Staphylococcus aureus. Biomed Mater 2024; 19:025004. [PMID: 38181448 DOI: 10.1088/1748-605x/ad1bb3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Antimicrobial wound dressings play a crucial role in treatment of wound infections. However, existing commercial options fall short due to antibiotic resistance and the limited spectrum of activity of newly emerging antimicrobials against bacteria that are frequently encountered in wound infections. Antimicrobial photodynamic therapy (aPDT) is very promising alternative therapeutic approach against antibiotic resistant microbes such as methicillin resistantStaphylococcus aureus (MRSA). However, delivery of the photosensitizer (PS) homogeneously to the wound site is a challenge. Though polymeric wound dressings based on synthetic and biopolymers are being explored for aPDT, there is paucity of data regarding theirin vivoefficacy. Moreover, there are no studies on use of PS loaded, pluoronic (PL) and pectin (PC) based films for aPDT. We report development of a polymeric film for potential use in aPDT. The film was prepared using PL and PC via solvent casting approach and impregnated with methylene blue (MB) for photodynamic inactivation of MRSAin vitroandin vivo. Atomic force microscopic imaging of the films yielded vivid pictures of surface topography, with rough surfaces, pores, and furrows. The PL:PC ratio (2:3) was optimized that would result in an intact film but exhibit rapid release of MB in time scale suitable for aPDT. The film showed good antibacterial activity against planktonic suspension, biofilm of MRSA upon exposure to red light. Investigations on MRSA infected excisional wounds of mice reveal that topical application of MB loaded film for 30 min followed by red light exposure for 5 min (fluence; ∼30 J cm-2) or 10 min (fluence; ∼60 J cm-2) reduces ∼80% or ∼92% of bioburden, respectively. Importantly, the film elicits no significant cytotoxicity against keratinocytes and human adipose derived mesenchymal stem cells. Taken together, our data demonstrate that PS-loaded PL-PC based films are a promising new tool for treatment of MRSA infected wounds.
Collapse
Affiliation(s)
- Sourabrata Chakraborty
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Shivangi Shukla
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Mahima Rastogi
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| | - Sai Sarbani Mund
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| | - Anupam Chowdhury
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Chandrachur Mukherjee
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400 094, India
- Optical Coating Lab, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Khageswar Sahu
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| | - Shovan Kumar Majumder
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| |
Collapse
|
20
|
Zhang J, Yuan X, Li H, Yu L, Zhang Y, Pang K, Sun C, Liu Z, Li J, Ma L, Song J, Chen L. Novel porphyrin derivative containing cations as new photodynamic antimicrobial agent with high efficiency. RSC Adv 2024; 14:3122-3134. [PMID: 38249670 PMCID: PMC10797330 DOI: 10.1039/d3ra07743h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Bacterial infections from chronic wounds affect about 175 million people each year and are a significant clinical problem. Through the integration of photodynamic therapy (PDT) and chemotherapy, a new photosensitizer consisting of ammonium salt N,N-bis-(2-hydroxyethyl)-N-(6-(4-(10,15,20-trimesitylporphyrin-5-yl) phenoxy) hexane)-N-methanaminium bromide, TMP(+) was successfully synthesized with a total reaction yield of 10%. The novel photosensitizer consists of two parts, a porphyrin photosensitizer part and a quaternary ammonium salt part, to achieve the synergistic effect of photodynamic and chemical antibacterial activity. With the increase of TMP(+) concentration, the diameter of the PCT fiber membranes (POL/COL/TMP(+); POL, polycaprolactone; COL, collagen) gradually increased, which was caused by the charge of the quaternary ammonium salt. At the same time, the antibacterial properties were gradually improved. We finally selected the PCT 0.5% group for the antibacterial experiment, with excellent performance in fiber uniformity, hydrophobicity and biosafety. The antibacterial experiment showed that the modified porphyrin TMP(+) had a better antibacterial effect than others. In vivo chronic wound healing experiments proved that the antibacterial and anti-inflammatory effect of the PCTL group was the best, further confirmed by H&E histological analysis, immunofluorescence and immunohistochemistry mechanism experiments. This research lays the foundation for the manufacture of novel molecules that combine chemical and photodynamic strategies.
Collapse
Affiliation(s)
- Jiajing Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao 266071 China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai 264003 China
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Xiaoqian Yuan
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Hongsen Li
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Liting Yu
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Yulong Zhang
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Keyi Pang
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Chaoyue Sun
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Zhongyang Liu
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Jie Li
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Liying Ma
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Jinming Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao 266071 China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai 264003 China
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| |
Collapse
|
21
|
Li J, Zhang S, He C, Ling J. Electrospun fibers based anisotropic silk fibroin film with photodynamic antibacterial therapy for S. aureus infected wound healing. Int J Biol Macromol 2024; 254:127685. [PMID: 38287584 DOI: 10.1016/j.ijbiomac.2023.127685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 01/31/2024]
Abstract
Bacterial infection has been regarded as a life-threatening problem in clinic. In addition to screening of new antibiotics, it is important to develop highly effective antibacterial materials against antibiotic resistance with capacities on modulating chronic inflammation. Herein, aligned Chlorin e6 (Ce6) conjugated silk fibroin electrospun fibers were successfully fabricated on silk fibroin based film via electrospining to achieve effective photodynamic antibacterial activities under near infrared (NIR) irradiation. The aligned electrospun fiber based film composite (SFCF@Film) exhibited good mechanical properties and desirable hemocompatibility. SFCF@Film provided a promising guidance cue for directing cell orientation and promoting cell growth. Significantly, SFCF@Film effectively generated ROS under NIR irradiation to kill S. aureus for treating wound infections within 10 min and promoted M2 polarization of macrophages for wound healing at later stage. Therefore, we believed that this engineered bioscaffold can be a powerful strategy for handling wound infection.
Collapse
Affiliation(s)
- Jiaying Li
- Hospital-Acquired Infection Control Department, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Shuxuan Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Chang He
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China.
| |
Collapse
|
22
|
Jia D, Lin Y, Zou Y, Zhang Y, Yu Q. Recent Advances in Dual-Function Superhydrophobic Antibacterial Surfaces. Macromol Biosci 2023; 23:e2300191. [PMID: 37265089 DOI: 10.1002/mabi.202300191] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Indexed: 06/03/2023]
Abstract
Bacterial adhesion and subsequent biofilm formation on the surfaces of synthetic materials imposes a significant burden in various fields, which can lead to infections in patients or reduce the service life of industrial devices. Therefore, there is increasing interest in imbuing surfaces with antibacterial properties. Bioinspired superhydrophobic surfaces with high water contact angles (>150°) exhibit excellent surface repellency against contaminations, thereby preventing initial bacterial adhesion and inhibiting biofilm formation. However, conventional superhydrophobic surfaces typically lack long-term durability and are incapable of achieving persistent efficacy against bacterial adhesion. To overcome these limitations, in recent decades, dual-function superhydrophobic antibacterial surfaces with both bacteria-repelling and bacteria-killing properties have been developed by introducing bactericidal components. These surfaces have demonstrated improved long-term antibacterial performance in addressing the issues associated with surface-attached bacteria. This review summarizes the recent advancements of these dual-function superhydrophobic antibacterial surfaces. First, a brief overview of the fabrication strategies and bacteria-repelling mechanism of superhydrophobic surfaces is provided and then the dual-function superhydrophobic antibacterial surfaces are classified into three types based on the bacteria-killing mechanism: i) mechanotherapy, ii) chemotherapy, and iii) phototherapy. Finally, the limitations and challenges of current research are discussed and future perspectives in this promising area are proposed.
Collapse
Affiliation(s)
- Dongxu Jia
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215000, P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yuancheng Lin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215000, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
23
|
Wang X, Wang L, Fekrazad R, Zhang L, Jiang X, He G, Wen X. Polyphenolic natural products as photosensitizers for antimicrobial photodynamic therapy: recent advances and future prospects. Front Immunol 2023; 14:1275859. [PMID: 38022517 PMCID: PMC10644286 DOI: 10.3389/fimmu.2023.1275859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a potent contender in the fight against microbial infections, especially in the context of the rising antibiotic resistance crisis. Recently, there has been significant interest in polyphenolic natural products as potential photosensitizers (PSs) in aPDT, given their unique chemical structures and inherent antimicrobial properties. Polyphenolic natural products, abundant and readily obtainable from natural sources, are generally regarded as safe and highly compatible with the human body. This comprehensive review focuses on the latest developments and future implications of using natural polyphenols as PSs in aPDT. Paramount polyphenolic compounds, including curcumin, hypericin, quercetin, hypocrellin, celastrol, riboflavin, resveratrol, gallic acid, and aloe emodin, are elaborated upon with respect to their structural characteristics, absorption properties, and antimicrobial effects. Furthermore, the aPDT mechanism, specifically its targeted action on microbial cells and biofilms, is also discussed. Polyphenolic natural products demonstrate immense potential as PSs in aPDT, representing a promising alternate approach to counteract antibiotic-resistant bacteria and biofilm-related infections.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Lu Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Zhou X, Dong L, Zhao B, Hu G, Huang C, Liu T, Lu Y, Zheng M, Yu Y, Yang Z, Cheng S, Xiong Y, Luo G, Qian W, Yin R. A photoactivatable and phenylboronic acid-functionalized nanoassembly for combating multidrug-resistant gram-negative bacteria and their biofilms. BURNS & TRAUMA 2023; 11:tkad041. [PMID: 37849944 PMCID: PMC10578387 DOI: 10.1093/burnst/tkad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 07/19/2023] [Indexed: 10/19/2023]
Abstract
Background Multidrug-resistant (MDR) gram-negative bacteria-related infectious diseases have caused an increase in the public health burden and mortality. Moreover, the formation of biofilms makes these bacteria difficult to control. Therefore, developing novel interventions to combat MDR gram-negative bacteria and their biofilms-related infections are urgently needed. The purpose of this study was to develop a multifunctional nanoassembly (IRNB) based on IR-780 and N, N'-di-sec-butyl-N, N'- dinitroso-1,4-phenylenediamine (BNN6) for synergistic effect on the infected wounds and subcutaneous abscesses caused by gram-negative bacteria. Methods The characterization and bacteria-targeting ability of IRNB were investigated. The bactericidal efficacy of IRNB against gram-negative bacteria and their biofilms was demonstrated by crystal violet staining assay, plate counting method and live/dead staining in vitro. The antibacterial efficiency of IRNB was examined on a subcutaneous abscess and cutaneous infected wound model in vivo. A cell counting kit-8 assay, Calcein/PI cytotoxicity assay, hemolysis assay and intravenous injection assay were performed to detect the biocompatibility of IRNB in vitro and in vivo. Results Herein, we successfully developed a multifunctional nanoassembly IRNB based on IR-780 and BNN6 for synergistic photothermal therapy (PTT), photodynamic therapy (PDT) and nitric oxide (NO) effect triggered by an 808 nm laser. This nanoassembly could accumulate specifically at the infected sites of MDR gram-negative bacteria and their biofilms via the covalent coupling effect. Upon irradiation with an 808 nm laser, IRNB was activated and produced both reactive oxygen species (ROS) and hyperthermia. The local hyperthermia could induce NO generation, which further reacted with ROS to generate ONOO-, leading to the enhancement of bactericidal efficacy. Furthermore, NO and ONOO- could disrupt the cell membrane, which converts bacteria to an extremely susceptible state and further enhances the photothermal effect. In this study, IRNB showed a superior photothermal-photodynamic-chemo (NO) synergistic therapeutic effect on the infected wounds and subcutaneous abscesses caused by gram-negative bacteria. This resulted in effective control of associated infections, relief of inflammation, promotion of re-epithelization and collagen deposition, and regulation of angiogenesis during wound healing. Moreover, IRNB exhibited excellent biocompatibility, both in vitro and in vivo. Conclusions The present research suggests that IRNB can be considered a promising alternative for treating infections caused by MDR gram-negative bacteria and their biofilms.
Collapse
Affiliation(s)
- Xiaoqing Zhou
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Lanlan Dong
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Baohua Zhao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Guangyun Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Can Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Tengfei Liu
- Department of Burn and Plastic Sugery, No. 906 Hospital of Joint Logistic Support Force of PLA, No. 377 Zhongshan East Road, Yinzhou District, Ningbo 315100, China
| | - Yifei Lu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Mengxue Zheng
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Yanlan Yu
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Zengjun Yang
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Shaowen Cheng
- Department of Wound Repair, the First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou 570102, China
| | - Yan Xiong
- Department of Orthopaedics, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Wei Qian
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Rui Yin
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| |
Collapse
|
25
|
Pedro SN, Valente BF, Vilela C, Oliveira H, Almeida A, Freire MG, Silvestre AJ, Freire CS. Switchable adhesive films of pullulan loaded with a deep eutectic solvent-curcumin formulation for the photodynamic treatment of drug-resistant skin infections. Mater Today Bio 2023; 22:100733. [PMID: 37533730 PMCID: PMC10392606 DOI: 10.1016/j.mtbio.2023.100733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) is a potent tool to surpass the global rise of antimicrobial resistance; still, the effective topical administration of photosensitizers remains a challenge. Biopolymer-based adhesive films can safely extend the residence time of photosensitizers. However, their wide application is narrowed by their limited water absorption capacity and gel strength. In this study, pullulan-based films with a switchable character (from a solid film to an adhesive hydrogel) were developed. This was accomplished by the incorporation of a betaine-based deep eutectic solvent (DES) containing curcumin (4.4 μg.cm-2) into the pullulan films, which tuned the films' skin moisture absorption ability, and therefore they switch into an adhesive hydrogel capable of delivering the photosensitizer. The obtained transparent films presented higher extensibility (elongation at break up to 338.2%) than the pullulan counterparts (6.08%), when stored at 54% of relative humidity, and the corresponding hydrogels a 4-fold higher adhesiveness than commercial hydrogels. These non-cytotoxic adhesives allowed the inactivation (∼5 log reduction), down to the detection limit of the method, of multiresistant strains of Staphylococcus aureus in ex vivo skin samples. Overall, these materials are promising for aPDT in the treatment of resistant skin infections, while being easily removed from the skin.
Collapse
Affiliation(s)
- Sónia N. Pedro
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno F.A. Valente
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Carla Vilela
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Helena Oliveira
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Mara G. Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Armando J.D. Silvestre
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Carmen S.R. Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
26
|
Zhao J, Guo X, Yang J, Xie Y, Zheng Y. In Situ Polymerization of Methylene Blue on Bacterial Cellulose for Photodynamic/Photoelectricity Synergistic Inhibition of Bacterial Biofilm Formation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43591-43606. [PMID: 37681687 DOI: 10.1021/acsami.3c09449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
In the context of long-term antimicrobial treatment, the emergence of bacterial resistance poses a significant challenge. Therefore, there is a pressing need to develop novel antimicrobial materials and methods that can effectively and safely combat microbial infections. This study focuses on the synthesis of bacterial cellulose-polymethylene blue (BC-PMB) with integrated photodynamic and photoelectric antimicrobial properties. The polymerization of methyl blue (MB) onto bacterial celluloses (BC) was achieved, and through comprehensive computational analyses using density functional theory (DFT) and molecular dynamics simulations, it was confirmed that this polymerization greatly enhanced the binding efficiency between methylene blue and BC. Additionally, polymethylene blue (PMB) exhibited superior photoexcitation efficiency and conductivity compared to its precursor. When BC-PMB was exposed to a 30 mW 660 nm light source for 30 min, the material demonstrated a remarkable antimicrobial efficacy of 93.99% against Escherichia coli and 98.58% against Staphylococcus aureus. Furthermore, the synergistic effect of photodynamic and photoelectric antimicrobial mechanisms exhibited long-term inhibitory capabilities against bacterial biofilms.
Collapse
Affiliation(s)
- Jianming Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xingyue Guo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiayu Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
27
|
Tong A, Tong C, Fan J, Shen J, Yin C, Wu Z, Zhang J, Liu B. Prussian blue nano-enzyme-assisted photodynamic therapy effectively eradicates MRSA infection in diabetic mouse skin wounds. Biomater Sci 2023; 11:6342-6356. [PMID: 37581536 DOI: 10.1039/d3bm01039b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Antibiotic therapy can induce the generation of severe bacterial resistance, further challenging the usability of currently available drugs and treatment options. Therefore, it is essential to develop new strategies to effectively eradicate drug-resistant bacteria. Herein, we have reported a combinational strategy for the eradication of drug-resistant bacteria by using chlorin e6 (Ce6) loaded Prussian blue nanoparticles (PB NPs). This nanocomplex showed strong catalase activity and photodynamic properties. In vitro experiments demonstrated that CPB-Ce6 NPs effectively kill MRSA by generating ROS under laser irradiation. Meanwhile, the nano-enzyme activity of CPB NPs can decompose H2O2 in the bacterial microenvironment to upregulate the O2 level, which in turn alleviates hypoxia in the microenvironment and improves the antibacterial effect of PDT. In vivo results demonstrated that CPB-Ce6 NPs with laser irradiation effectively cleared MRSA and promoted infected wound repair in a diabetic mouse model and normal mice through upregulating VEGF. Moreover, CPB-Ce6 NPs showed excellent biosafety profiles in vitro and in vivo. From our point of view, this PDT based on PB NPs with nano-enzyme activity may provide an effective treatment for infections associated with drug-resistant microbes and tissue repair.
Collapse
Affiliation(s)
- Aidi Tong
- School of Medicine, Hunan Normal University, Changsha, 410013, PR China.
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha, 410082, PR China.
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, 410082, PR China.
| | - Jingyi Shen
- School of Medicine, Hunan Normal University, Changsha, 410013, PR China.
| | - Caiyun Yin
- College of Biology, Hunan University, Changsha, 410082, PR China.
| | - Zhou Wu
- College of Biology, Hunan University, Changsha, 410082, PR China.
| | - Jiansong Zhang
- School of Medicine, Hunan Normal University, Changsha, 410013, PR China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
28
|
Tang Z, Li X, Tian L, Sun Y, Zhu X, Liu F. Mesoporous polydopamine based biominetic nanodrug ameliorates liver fibrosis via antioxidation and TGF-β/SMADS pathway. Int J Biol Macromol 2023; 248:125906. [PMID: 37482153 DOI: 10.1016/j.ijbiomac.2023.125906] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/12/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Early intervention of liver fibrosis can prevent its further irreversible progression. Both excess reactive oxygen species (ROS) and transforming growth factor beta(TGF-β)/drosophila mothers against decapentaplegic protein (SMADS) pathway balance disorder promote the progression of hepatic stellate cell (HSC) activation, but existing therapeutic strategies failed to focus on those two problems. A new biomimetic mesoporous polydopamine nandrug (MPO) was constructed for liver fibrosis therapy with multiple targets and reliable biosafety. The MPO was formed by mesoporous polydopamine (mPDA) which has the effect of ROS elimination and encapsulated with anti-fibrotic drug -oxymatrine (OMT) which can intervene liver fibrosis targeting TGF-β/SMADSpathway. Particularly, the nanodrug was completed by macrophage-derived exosome covering. The MPO was confirmed to possess a desired size distribution with negative zeta potential and exhibite strong ROS scavenger ability. Besides, in vitro studies, MPO showed efficient endocytosis and superior intracellular ROS scavenging without cytotoxicity; in vivo studies, MPO effectively cleared the excessive ROS in liver tissue and balanced the TGF-β/SMADS pathways, which in turn inhibited HSC activation and showed superior anti-liver fibrosis therapeutic efficiency with good biological safety. Taken together, this work showed highlights the great potential of the MPO for ameliorating liver fibrosis via ROS elimination and TGF-β/SMADS balancing.
Collapse
Affiliation(s)
- Zihui Tang
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; State Key Laboratory of Systems Medicine for Cancer, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200090, China
| | - Xiaojuan Li
- Department of Gastroenterology, Minhang hospital of Fudan University, China
| | - Le Tian
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuhao Sun
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xinyan Zhu
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Fei Liu
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
29
|
Lu W, Lu H, Wang C, Wang G, Dong W, Tan C. Effectors of the Type VI Secretion System Have the Potential to Be Modified into Antimicrobial Peptides. Microbiol Spectr 2023; 11:e0030823. [PMID: 37470717 PMCID: PMC10434152 DOI: 10.1128/spectrum.00308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 07/21/2023] Open
Abstract
The use of antibiotics has led to the emergence of multidrug-resistant (MDR) bacteria, and there is an urgent need to find alternative treatments to alleviate this pressure. The type VI secretion system (T6SS) is a protein delivery system present in bacterial cells that secretes effectors that participate in bacterial virulence. Given the potential for the transformation of these effectors into antimicrobial peptides (AMPs), we designed T6SS effectors into AMPs that have a membrane-disrupting effect. These effectors kill bacteria by altering the membrane potential and increasing the intracellular reactive oxygen species (ROS) content. Moreover, AMPs also have a significant therapeutic effect both in vivo and in vitro. This finding suggests that it is possible to modify bacterial components of bacteria themselves to create compounds that fight bacteria. IMPORTANCE This study first identified and modified the T6SS effector into positively charged alpha-helical peptides. These peptides have good antibacterial and bactericidal effects on G+ bacteria and G- bacteria. This study broadens the source of AMPs and makes T6SS effectors more useful.
Collapse
Affiliation(s)
- Wenjia Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Hao Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chenchen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Gaoyan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Wenqi Dong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
30
|
Mahmut Z, Zhang C, Ruan F, Shi N, Zhang X, Wang Y, Zheng X, Tang Z, Dong B, Gao D, Sun J. Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules. Molecules 2023; 28:6085. [PMID: 37630337 PMCID: PMC10459369 DOI: 10.3390/molecules28166085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Indocyanine green (ICG) is an important kind of near infrared (NIR) photosensitive molecules for PTT/PDT therapy as well as imaging. When exposed to NIR light, ICG can produce reactive oxygen species (ROS), which can kill cancer cells and pathogenic bacteria. Moreover, the absorbed light can also be converted into heat by ICG molecules to eliminate cancer cells. In addition, it performs exceptionally well in optical imaging-guided tumor therapy and antimicrobial therapy due to its deeper tissue penetration and low photobleaching properties in the near-infrared region compared to other dyes. In order to solve the problems of water and optical stability and multi-function problem of ICG molecules, composite nanomaterials based on ICG have been designed and widely used, especially in the fields of tumors and sterilization. So far, ICG molecules and their composite materials have become one of the most famous infrared sensitive materials. However, there have been no corresponding review articles focused on ICG molecules. In this review, the molecular structure and properties of ICG, composite material design, and near-infrared light- triggered anti-tumor, and antibacterial, and clinical applications are reviewed in detail, which of great significance for related research.
Collapse
Affiliation(s)
- Zulpya Mahmut
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| | - Chunmei Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| | - Fei Ruan
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (F.R.); (Z.T.)
| | - Nan Shi
- Department of Respiratory Medicine, No. 964 Hospital of People’s Liberation Army, 4799 Xi’an Road, Changchun 130062, China;
| | - Xinyao Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| | - Yuda Wang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| | - Xianhong Zheng
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| | - Zixin Tang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (F.R.); (Z.T.)
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (F.R.); (Z.T.)
| | - Donghui Gao
- Department of Anesthesiology and Operating Room, School and Hospital of Stomatology, Jilin University, Changchun 130012, China
| | - Jiao Sun
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China; (Z.M.); (C.Z.); (X.Z.); (Y.W.); (X.Z.)
| |
Collapse
|
31
|
Wang Z, Fu L, Liu D, Tang D, Liu K, Rao L, Yang J, Liu Y, Li Y, Chen H, Yang X. Controllable Preparation and Research Progress of Photosensitive Antibacterial Complex Hydrogels. Gels 2023; 9:571. [PMID: 37504450 PMCID: PMC10379193 DOI: 10.3390/gels9070571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Hydrogels are materials consisting of a network of hydrophilic polymers. Due to their good biocompatibility and hydrophilicity, they are widely used in biomedicine, food safety, environmental protection, agriculture, and other fields. This paper summarizes the typical complex materials of photocatalysts, photosensitizers, and hydrogels, as week as their antibacterial activities and the basic mechanisms of photothermal and photodynamic effects. In addition, the application of hydrogel-based photoresponsive materials in microbial inactivation is discussed, including the challenges faced in their application. The advantages of photosensitive antibacterial complex hydrogels are highlighted, and their application and research progress in various fields are introduced in detail.
Collapse
Affiliation(s)
- Zhijun Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lili Fu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Dongliang Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Dongxu Tang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Kun Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lu Rao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Jinyu Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yi Liu
- College of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Huangqin Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaojie Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
32
|
Du L, Shi W, Hao X, Luan L, Wang S, Lu J, Zhang Q. Synergistic Photodynamic/Antibiotic Therapy with Photosensitive MOF-Based Nanoparticles to Eradicate Bacterial Biofilms. Pharmaceutics 2023; 15:1826. [PMID: 37514013 PMCID: PMC10385796 DOI: 10.3390/pharmaceutics15071826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial biofilms pose a serious threat to human health, as they prevent the penetration of antimicrobial agents. Developing nanocarriers that can simultaneously permeate biofilms and deliver antibacterial agents is an attractive means of treating bacterial biofilm infections. Herein, photosensitive metal-organic framework (MOF) nanoparticles were developed to promote the penetration of antibiotics into biofilms, thereby achieving the goal of eradicating bacterial biofilms through synergistic photodynamic and antibiotic therapy. First, a ligand containing benzoselenadiazole was synthesized and incorporated into MOF skeletons to construct benzoselenadiazole-doped MOFs (Se-MOFs). The growth of the Se-MOFs could be regulated to obtain nanoparticles (Se-NPs) in the presence of benzoic acid. The singlet oxygen (1O2) generation efficiencies of the Se-MOFs and Se-NPs were evaluated. The results show that the Se-NPs exhibited a higher 1O2 generation efficacy than the Se-MOF under visible-light irradiation because the small size of the Se-NPs was conducive to the diffusion of 1O2. Afterward, an antibiotic drug, polymyxin B (PMB), was conjugated onto the surface of the Se-NPs via amidation to yield PMB-modified Se-NPs (PMB-Se-NPs). PMB-Se-NPs exhibit a synergistic antibacterial effect by specifically targeting the lipopolysaccharides present in the outer membranes of Gram-negative bacteria through surface-modified PMB. Benefiting from the synergistic therapeutic effects of antibiotic and photodynamic therapy, PMB-Se-NPs can efficiently eradicate bacterial biofilms at relatively low antibiotic doses and light intensities, providing a promising nanocomposite for combating biofilm infections.
Collapse
Affiliation(s)
- Lehan Du
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenjun Shi
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xin Hao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liang Luan
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Shibo Wang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiaju Lu
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Quan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
33
|
Zeng J, Sun Z, Zeng F, Gu C, Chen X. M2 macrophage-derived exosome-encapsulated microneedles with mild photothermal therapy for accelerated diabetic wound healing. Mater Today Bio 2023; 20:100649. [PMID: 37206877 PMCID: PMC10189292 DOI: 10.1016/j.mtbio.2023.100649] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
Due to local overactive inflammatory response and impaired angiogenesis, current treatments for diabetic wounds remain unsatisfactory. M2 macrophage-derived exosomes (MEs) have shown considerable potential in biomedical applications, especially since they have anti-inflammatory properties that modulate macrophage phenotypes. However, exosome-based strategies still have limitations, such as short half-lives and instability. Herein, we develop a double-layer microneedle-based wound dressing system (MEs@PMN) by encapsulating MEs in the needle tips and polydopamine (PDA) nanoparticles in backing layer to simultaneously suppress inflammation and improve angiogenesis at the wound site. In vitro, released MEs increased macrophage polarization towards the M2 phenotype. In addition, mild heat (40 °C) generated by the photosensitive PMN backing layer contributed to improved angiogenesis. More importantly, MEs@PMN also showed promising effects in diabetic rats. The uncontrolled inflammatory response at the wound site was inhibited by MEs@PMN during a 14-day period; in addition, MEs and the photothermal effects produced by PMN provided a combined proangiogenic effect by improving the expression of CD31 and vWF. Collectively, this study provides a simple and efficient cell-free strategy for suppressing inflammation and promoting vascular regeneration to treat diabetic wounds.
Collapse
Affiliation(s)
- Junkai Zeng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, PR China
| | - Zhenyu Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Feihui Zeng
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
| | - Changjiang Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, PR China
| | - Xiongsheng Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, PR China
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
34
|
Xu M, Tan F, Luo W, Jia Y, Deng Y, Topham PD, Wang L, Yu Q. In Situ Fabrication of Silver Peroxide Hybrid Ultrathin Co-Based Metal-Organic Frameworks for Enhanced Chemodynamic Antibacterial Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22985-22998. [PMID: 37155995 DOI: 10.1021/acsami.3c03863] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Bacterial-induced infectious diseases have always caused an unavoidable problem and lead to an increasing threat to human health. Hence, there is an urgent need for effective antibacterial strategies to treat infectious diseases. Current methods are often ineffective and require large amounts of hydrogen peroxide (H2O2), with harmful effects on normal healthy tissue. Chemodynamic therapy (CDT) provides an ideal infection microenvironment (IME)-activated paradigm to tackle bacterial-related diseases. To take full advantage of the specificity of IME and enhanced CDT for wounds with bacterial infection, we have designed an intelligent antibacterial system that exploits nanocatalytic ZIF-67@Ag2O2 nanosheets. In this system, silver peroxide nanoparticles (Ag2O2 NPs) were grown on ultrathin zeolitic imidazolate framework-67 (ZIF-67) nanosheets by in situ oxidation, and then, ZIF-67@Ag2O2 nanosheets with the ability to self-generate H2O2 were triggered by the mildly acidic environment of IME. Lamellar ZIF-67 nanosheets were shown to rapidly degrade and release Co2+, allowing the conversion of less reactive H2O2 into the highly toxic reactive oxygen species hydroxyl radicals (•OH) for enhanced CDT antibacterial properties. In vivo results revealed that the ZIF-67@Ag2O2 nanosheet system exhibits excellent antibacterial performance against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The proposed hybrid strategy demonstrates a promising therapeutic strategy to enable antibacterial agents with IME-responsive nanocatalytic activity to circumvent antibiotic resistance against bacterial infections.
Collapse
Affiliation(s)
- Mengmeng Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fangrong Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wanru Luo
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yifan Jia
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yan Deng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Paul D Topham
- Chemical Engineering and Applied Chemistry, School of Infrastructure and Sustainable Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B47ET, U.K
| | - LinGe Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qianqian Yu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
35
|
Prospective features of functional 2D nanomaterial graphene oxide in the wound healing process. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
36
|
Kumar Y, Sinha ASK, Nigam KDP, Dwivedi D, Sangwai JS. Functionalized nanoparticles: Tailoring properties through surface energetics and coordination chemistry for advanced biomedical applications. NANOSCALE 2023; 15:6075-6104. [PMID: 36928281 DOI: 10.1039/d2nr07163k] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Significant advances in nanoparticle-related research have been made in the past decade, and amelioration of properties is considered of utmost importance for improving nanoparticle bioavailability, specificity, and catalytic performance. Nanoparticle properties can be tuned through in-synthesis and post-synthesis functionalization operations, with thermodynamic and kinetic parameters playing a crucial role. In spite of robust functionalization techniques based on surface chemistry, scalable technologies have not been explored well. The coordination enhancement via surface functionalization through organic/inorganic/biomolecules material has attracted much attention with morphology modification and shape tuning, which are indispensable aspects in the colloidal phase during biomedical applications. It is envisioned that surface amelioration influences the anchoring properties of nano interfaces for the immobilization of functional groups and biomolecules. In this work, various nanostructure and anchoring methodologies have been discussed, aiming to exploit their full potential in precision engineering applications. Simultaneous discussions on emerging characterization strategies for functionalized assemblies have been made to gain insights into functionalization chemistry. An overview of current advances and prospects of functionalized nanoparticles has been presented, with an emphasis on controllable attributes such as size, shape, morphology, functionality, surface features, Debye and Casimir interactions.
Collapse
Affiliation(s)
- Yogendra Kumar
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai - 600036, India.
| | - A S K Sinha
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
| | - K D P Nigam
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
- School of Chemical Engineering, University of Adelaide, North Terrace Campus, Adelaide (SA) 5005, Australia
| | - Deepak Dwivedi
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
| | - Jitendra S Sangwai
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai - 600036, India.
| |
Collapse
|
37
|
Cheng K, Wang H, Sun S, Wu M, Shen H, Chen K, Zhang Z, Li S, Lin H. Specific Chemiluminescence Imaging and Enhanced Photodynamic Therapy of Bacterial Infections by Hemin-Modified Carbon Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207868. [PMID: 36965080 DOI: 10.1002/smll.202207868] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Antibacterial photodynamic therapy (aPDT) is a promising antibiotics-alternative strategy for bacterial infectious diseases, which features broad-spectrum antibacterial activity with a low risk of inducing bacterial resistance. However, clinical applications of aPDT are still hindered by the hydrophobicity-caused inadequate photodynamic activity of conventional photosensitizers and the hypoxic microenvironment of bacterial infections. To address these problems, herein, a promising strategy is developed to achieve specific chemiluminescence (CL) imaging and enhanced PDT of bacterial infections using hemin-modified carbon dots (H-CDs). The H-CDs can be facilely prepared and exhibit favorable water solubility, augmented photodynamic activity, and unique peroxidase-mimicking capacity. Compared with the free CDs, the photodynamic efficacy of H-CDs is significantly augmented due to the increased electron-hole separation efficiency. Moreover, the peroxidase catalytic performance of H-CDs enables not only infection identification via bacterial infection microenvironment-responsive CL imaging but also oxygen self-supplied aPDT with hypoxia-relief-enhanced bacteria inactivation effects. Finally, the enhanced aPDT efficiencies of H-CDs are validated in both in vivo abscess and infected wound models. This work may provide an effective antibacterial platform for the selective imaging-guided treatment of bacterial infections.
Collapse
Affiliation(s)
- Ke Cheng
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Henggang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Shan Sun
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Mingyu Wu
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hongzhe Shen
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ke Chen
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhiyuan Zhang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
38
|
Tang S, Li G, Zhang H, Bao Y, Wu X, Yan R, Wang Z, Jin Y. Organic disulfide-modified folate carbon dots for tumor-targeted synergistic chemodynamic/photodynamic therapy. Biomater Sci 2023; 11:3128-3143. [PMID: 36919663 DOI: 10.1039/d3bm00124e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Carbon dots (CDs) have great potential for cancer diagnosis and treatment. Photodynamic therapy and chemodynamic therapy are promising treatments mediated by reactive oxygen species (ROS), which have the advantages of being minimally invasive, having no multi-drug resistance, and having no systemic toxic side effects. However, the tumor microenvironment (TME) and poor targetability often reduce the therapeutic effect. In this work, we have successfully prepared folate-based carbon dots (FCP-CDs) from folic acid (FA), citric acid (CA), and polyethyleneimine (PEI) for tumor-targeting. The surface of FCP-CDs was modified using organic disulfide, 3,3'-dithiodipropionic acid (DTPA), and a photosensitizer (PS) pyropheophorbide-a (PPa) to form a tumor microenvironment-responsive nanoplatform, FCP-CDs@DTPA@PPa (named FCPPD), for synergistic cancer therapy. The results showed that FCPPD effectively preserved the tumor target specificity of folic acid and the photodynamic therapeutic (PDT) activity of PPa, and could provide additional chemodynamic therapeutic (CDT) function by reacting with hydrogen peroxide (H2O2) to generate ˙OH. The introduction of DTPA, which contains disulfide bonds, endows FCPPD with an excellent ability to deplete glutathione (GSH) in tumors via intracellular redox reactions, amplifying intracellular oxidative strain and enhancing ROS-based therapeutic effects. Systematic in vitro and in vivo studies under various conditions have shown that the obtained FCPPD nanoparticles have good biocompatibility and could be a promising therapeutic agent for imaging-guided PDT/CDT combination therapy.
Collapse
Affiliation(s)
- Sihan Tang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Guanghao Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Hui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yujun Bao
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China. .,Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
39
|
Liu Y, Dong T, Chen Y, Sun N, Liu Q, Huang Z, Yang Y, Cheng H, Yue K. Biodegradable and Cytocompatible Hydrogel Coating with Antibacterial Activity for the Prevention of Implant-Associated Infection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11507-11519. [PMID: 36852669 DOI: 10.1021/acsami.2c20401] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Implant-associated infection (IAI) caused by pathogens colonizing on the implant surface is a serious issue in the trauma-orthopedic surgery, which often leads to implant failure. The complications of IAI bring a big threat to the clinical practice of implants, accompanied by significant economic cost and long hospitalization time. In this study, we propose an antibiotics-free strategy to address IAI-related challenges by using a biodegradable and cytocompatible hydrogel coating. To achieve this, a novel hydrogel system was developed to combine the synergistic effects of good cell affinity and antibacterial properties. The hydrogel material was prepared by modifying a photocross-linkable gelatin-based polymer (GelMA) with cationic quaternary ammonium salt (QAS) groups via a mild and simple synthesis procedure. By engineering the length of the hydrophobic carbon chain on the QAS group and the degree of functionalization, the resulting GelMA-octylQAS hydrogel exhibited an integration of good mechanical properties, biodegradability, excellent bactericidal activity against various types of bacteria, and high cytocompatibility with mammalian cells. When coated onto the implant via the in situ cross-linking procedure, our hydrogel demonstrated superior antimicrobial ability in the infective model of femoral fracture of rats. Our results suggest that the GelMA-octylQAS hydrogel might provide a promising platform for preventing and treating IAI.
Collapse
Affiliation(s)
- Yanhui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Ting Dong
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Yuhang Chen
- Department of Orthopedic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
- Department of Orthopaedic Surgery, Division of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Na Sun
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Qi Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhenkai Huang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Yafeng Yang
- Department of Orthopedics, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
| | - Hao Cheng
- Department of Orthopaedic Surgery, Division of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
40
|
Li P, Hu J, Wang J, Zhang J, Wang L, Zhang C. The Role of Hydrogel in Cardiac Repair and Regeneration for Myocardial Infarction: Recent Advances and Future Perspectives. Bioengineering (Basel) 2023; 10:bioengineering10020165. [PMID: 36829659 PMCID: PMC9952459 DOI: 10.3390/bioengineering10020165] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
A myocardial infarction (MI) is the leading cause of morbidity and mortality, seriously threatens human health, and becomes a major health burden of our society. It is urgent to pursue effective therapeutic strategies for the regeneration and restore myocardial function after MI. This review discusses the role of hydrogel in cardiac repair and regeneration for MI. Hydrogel-based cardiac patches and injectable hydrogels are the most commonly used applications in cardiac regeneration medicine. With injectable hydrogels, bioactive compounds and cells can be delivered in situ, promoting in situ repair and regeneration, while hydrogel-based cardiac patches reduce myocardial wall stress, which passively inhibits ventricular expansion. Hydrogel-based cardiac patches work as mechanically supportive biomaterials. In cardiac regeneration medicine, clinical trials and commercial products are limited. Biomaterials, biochemistry, and biological actives, such as intelligent hydrogels and hydrogel-based exosome patches, which may serve as an effective treatment for MI in the future, are still under development. Further investigation of clinical feasibility is warranted. We can anticipate hydrogels having immense translational potential for cardiac regeneration in the near future.
Collapse
Affiliation(s)
- Ping Li
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiajia Hu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Junjie Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chengliang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence:
| |
Collapse
|
41
|
Santamarina SC, Heredia DA, Durantini AM, Durantini EN. Porphyrin Polymers Bearing N, N'-Ethylene Crosslinkers as Photosensitizers against Bacteria. Polymers (Basel) 2022; 14:polym14224936. [PMID: 36433062 PMCID: PMC9696963 DOI: 10.3390/polym14224936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
The appearance of microbes resistant to antibiotics requires the development of alternative therapies for the treatment of infectious diseases. In this work two polymers, PTPPF16-EDA and PZnTPPF16-EDA, were synthesized by the nucleophilic aromatic substitution of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin and its Zn(II) complex with ethylenediamine, respectively. In these structures, the tetrapyrrolic macrocycles were N,N'-ethylene crosslinked, which gives them greater mobility. The absorption spectra of the polymers showed a bathochromic shift of the Soret band of ~10 nm with respect to the monomers. This effect was also found in the red fluorescence emission peaks. Furthermore, both polymeric materials produced singlet molecular oxygen with high quantum yields. In addition, they were capable of generating superoxide anion radicals. Photodynamic inactivation sensitized by these polymers was tested in Staphylococcus aureus and Escherichia coli bacteria. A decrease in cell viability greater than 7 log (99.9999%) was observed in S. aureus incubated with 0.5 μM photosensitizer upon 30 min of irradiation. Under these conditions, a low inactivation of E. coli (0.5 log) was found. However, when the cells were treated with KI, the elimination of the Gram-negative bacteria was achieved. Therefore, these polymeric structures are interesting antimicrobial photosensitizing materials for the inactivation of pathogens.
Collapse
|
42
|
Liu X, Fang R, Feng R, Li Q, Su M, Hou C, Zhuang K, Dai Y, Lei N, Jiang Y, Liu Y, Ran Y. Cage-modified hypocrellin against multidrug-resistant Candida spp. with unprecedented activity in light-triggered combinational photodynamic therapy. Drug Resist Updat 2022; 65:100887. [DOI: 10.1016/j.drup.2022.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|