1
|
Courtois A, Gérard S, Esparteiro D, Nguyen‐Khac E, Marcq I, Fouquet G. An Overview of In Vitro Models of Alcohol-Related Hepatocellular Carcinoma. Cancer Med 2025; 14:e70524. [PMID: 39823133 PMCID: PMC11739452 DOI: 10.1002/cam4.70524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2024] [Revised: 10/21/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Chronic and excessive alcohol consumption is the leading cause of death due to chronic liver disease. Alcohol-related liver disease (ALD) encompasses a broad spectrum of clinical and pathological features, ranging from asymptomatic and reversible pathologies to hepatocellular carcinoma (HCC), a highly prevalent and deadly liver cancer. Indeed, alcohol consumption is one of the main worldwide etiologies of HCC. However, the impact of alcohol consumption on HCC pathophysiology and the associated mechanisms remains unclear. Thus, in vitro alcohol-related HCC models are essential for addressing this issue and for assessing new molecular markers of this disease. In this review, we discuss the current in vitro models of alcohol-related HCC. Our global overview demonstrates the lack of uniformity regarding HCC cell lines, alcohol concentration, and duration of alcohol exposure among existing models. Despite efforts to model alcohol exposure effectively that demonstrate enhancement of cancer cell transformation markers and HCC aggressiveness following, respectively, short-term and long-term alcohol exposure, current in vitro models possess numerous limitations. AIM This review highlights future challenges in the development of more integrated and representative models of the complex pathophysiology of alcohol-related HCC.
Collapse
Affiliation(s)
- Anoïsia Courtois
- GRAP INSERM U1247, CursUniversité Picardie Jules VerneAmiensFrance
| | - Sophie Gérard
- GRAP INSERM U1247, CursUniversité Picardie Jules VerneAmiensFrance
| | | | - Eric Nguyen‐Khac
- GRAP INSERM U1247, CursUniversité Picardie Jules VerneAmiensFrance
- HGE départementCHU Amiens PicardieAmiensFrance
| | - Ingrid Marcq
- GRAP INSERM U1247, CursUniversité Picardie Jules VerneAmiensFrance
| | - Grégory Fouquet
- GRAP INSERM U1247, CursUniversité Picardie Jules VerneAmiensFrance
| |
Collapse
|
2
|
Koizumi A, Kaji K, Nishimura N, Asada S, Matsuda T, Tanaka M, Yorioka N, Tsuji Y, Kitagawa K, Sato S, Namisaki T, Akahane T, Yoshiji H. Effects of elafibranor on liver fibrosis and gut barrier function in a mouse model of alcohol-associated liver disease. World J Gastroenterol 2024; 30:3428-3446. [PMID: 39091710 PMCID: PMC11290391 DOI: 10.3748/wjg.v30.i28.3428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/26/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is a leading cause of liver-related morbidity and mortality, but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis. Peroxisome proliferator activated receptor (PPAR) α and δ play a key role in lipid metabolism and intestinal barrier homeostasis, which are major contributors to the pathological progression of ALD. Meanwhile, elafibranor (EFN), which is a dual PPARα and PPARδ agonist, has reached a phase III clinical trial for the treatment of metabolic dysfunction-associated steatotic liver disease and primary biliary cholangitis. However, the benefits of EFN for ALD treatment is unknown. AIM To evaluate the inhibitory effects of EFN on liver fibrosis and gut-intestinal barrier dysfunction in an ALD mouse model. METHODS ALD-related liver fibrosis was induced in female C57BL/6J mice by feeding a 2.5% ethanol (EtOH)-containing Lieber-DeCarli liquid diet and intraperitoneally injecting carbon tetrachloride thrice weekly (1 mL/kg) for 8 weeks. EFN (3 and 10 mg/kg/day) was orally administered during the experimental period. Histological and molecular analyses were performed to assess the effect of EFN on steatohepatitis, fibrosis, and intestinal barrier integrity. The EFN effects on HepG2 lipotoxicity and Caco-2 barrier function were evaluated by cell-based assays. RESULTS The hepatic steatosis, apoptosis, and fibrosis in the ALD mice model were significantly attenuated by EFN treatment. EFN promoted lipolysis and β-oxidation and enhanced autophagic and antioxidant capacities in EtOH-stimulated HepG2 cells, primarily through PPARα activation. Moreover, EFN inhibited the Kupffer cell-mediated inflammatory response, with blunted hepatic exposure to lipopolysaccharide (LPS) and toll like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling. EFN improved intestinal hyperpermeability by restoring tight junction proteins and autophagy and by inhibiting apoptosis and proinflammatory responses. The protective effect on intestinal barrier function in the EtOH-stimulated Caco-2 cells was predominantly mediated by PPARδ activation. CONCLUSION EFN reduced ALD-related fibrosis by inhibiting lipid accumulation and apoptosis, enhancing hepatocyte autophagic and antioxidant capacities, and suppressing LPS/TLR4/NF-κB-mediated inflammatory responses by restoring intestinal barrier function.
Collapse
Affiliation(s)
- Aritoshi Koizumi
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Shohei Asada
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Takuya Matsuda
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Misako Tanaka
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Nobuyuki Yorioka
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Koh Kitagawa
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Shinya Sato
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
3
|
Xu T, Pan Y, Ding Q, Cao F, Chang K, Qiu J, Zhuge H, Hao L, Wei H, Si C, Dou X, Li S. The micro-743a-3p-GSTM1 pathway is an endogenous protective mechanism against alcohol-related liver disease in mice. Cell Mol Biol Lett 2024; 29:35. [PMID: 38475733 DOI: 10.1186/s11658-024-00557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND AND AIMS Epidemiological evidence suggests that the phenotype of glutathione S-transferase mu 1 (GSTM1), a hepatic high-expressed phase II detoxification enzyme, is closely associated with the incidence of alcohol-related liver disease (ALD). However, whether and how hepatic GSTM1 determines the development of ALD is largely unclear. This study was designed to elucidate the role and potential mechanism(s) of hepatic GSTM1 in the pathological process of ALD. METHODS GSTM1 was detected in the liver of various ALD mice models and cultured hepatocytes. Liver-specific GSTM1 or/and micro (miR)-743a-3p deficiency mice were generated by adenoassociated virus-8 delivered shRNA, respectively. The potential signal pathways involving in alcohol-regulated GSTM1 and GSTM1-associated ALD were explored via both genetic manipulation and pharmacological approaches. RESULTS GSTM1 was significantly upregulated in both chronic alcohol-induced mice liver and ethanol-exposed murine primary hepatocytes. Alcohol-reduced miR-743a-3p directly contributed to the upregulation of GSTM1, since liver specific silencing miR-743a-3p enhanced GSTM1 and miR-743a-3p loss protected alcohol-induced liver dysfunctions, which was significantly blocked by GSTM1 knockdown. GSTM1 loss robustly aggravated alcohol-induced hepatic steatosis, oxidative stress, inflammation, and early fibrotic-like changes, which was associated with the activation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase (JNK), and p38. GSTM1 antagonized ASK1 phosphorylation and its downstream JNK/p38 signaling pathway upon chronic alcohol consumption via binding with ASK1. ASK1 blockage significantly rescued hepatic GSTM1 loss-enhanced disorders in alcohol-fed mice liver. CONCLUSIONS Chronic alcohol consumption-induced upregulation of GSTM1 in the liver provides a feedback protection against hepatic steatosis and liver injury by counteracting ASK1 activation. Down-regulation of miR-743a-3p improves alcohol intake-induced hepatic steatosis and liver injury via direct targeting on GSTM1. The miR-743a-3p-GSTM1 axis functions as an innate protective pathway to defend the early stage of ALD.
Collapse
Affiliation(s)
- Tiantian Xu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yan Pan
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Feiwei Cao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Kaixin Chang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Hui Zhuge
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Liuyi Hao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Haibin Wei
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Caijuan Si
- Department of Clinical Nutrition, School of Medicine, Affiliated Zhejiang Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China.
- Department of Clinical Nutrition, School of Medicine, Affiliated Zhejiang Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Thomes PG, Rensch G, Casey CA, Donohue TM. Ethanol Exposure to Ethanol-Oxidizing HEPG2 Cells Induces Intracellular Protein Aggregation. Cells 2023; 12:cells12071013. [PMID: 37048086 PMCID: PMC10093015 DOI: 10.3390/cells12071013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Aggresomes are collections of intracellular protein aggregates. In liver cells of patients with alcoholic hepatitis, aggresomes appear histologically as cellular inclusions known as Mallory–Denk (M–D) bodies. The proteasome is a multicatalytic intracellular protease that catalyzes the degradation of both normal (native) and abnormal (misfolded and/or damaged) proteins. The enzyme minimizes intracellular protein aggregate formation by rapidly degrading abnormal proteins before they form aggregates. When proteasome activity is blocked, either by specific inhibitors or by intracellular oxidants (e.g., peroxynitrite, acetaldehyde), aggresome formation is enhanced. Here, we sought to verify whether inhibition of proteasome activity by ethanol exposure enhances protein aggregate formation in VL-17A cells, which are recombinant, ethanol-oxidizing HepG2 cells that express both alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1). Methods: We exposed ethanol-non-oxidizing HepG2 cells (ADH−/CYP2E1−) or ethanol-oxidizing VL-17A (ADH+/CYP2E1+) to varying levels of ethanol for 24 h or 72 h. After these treatments, we stained cells for aggresomes (detected microscopically) and quantified their numbers and sizes. We also conducted flow cytometric analyses to confirm our microscopic findings. Additionally, aggresome content in liver cells of patients with alcohol-induced hepatitis was quantified. Results: After we exposed VL-17A cells to increasing doses of ethanol for 24 h or 72 h, 20S proteasome activity declined in response to rising ethanol concentrations. After 24 h of ethanol exposure, aggresome numbers in VL-17A cells were 1.8-fold higher than their untreated controls at all ethanol concentrations employed. After 72 h of ethanol exposure, mean aggresome numbers were 2.5-fold higher than unexposed control cells. The mean aggregate size in all ethanol-exposed VL-17A cells was significantly higher than in unexposed control cells but was unaffected by the duration of ethanol exposure. Co-exposure of cells to EtOH and rapamycin, the latter an autophagy activator, completely prevented EtOH-induced aggresome formation. In the livers of patients with alcohol-induced hepatitis (AH), the staining intensity of aggresomes was 2.2-fold higher than in the livers of patients without alcohol use disorder (AUD). Conclusions: We conclude that ethanol-induced proteasome inhibition in ethanol-metabolizing VL-17A hepatoma cells causes accumulation of protein aggregates. Notably, autophagy activation removes such aggregates. The significance of these findings is discussed.
Collapse
Affiliation(s)
- Paul G. Thomes
- Liver Study Unit, VA-Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- The Depts of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Biochemistry/Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-402-995-3738; Fax: +1-402-449-0604
| | - Gage Rensch
- The Depts of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Carol A. Casey
- Liver Study Unit, VA-Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- The Depts of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Biochemistry/Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Terrence M. Donohue
- Liver Study Unit, VA-Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- The Depts of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Biochemistry/Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Role of AMPK-SREBP Signaling in Regulating Fatty Acid Binding-4 (FABP4) Expression following Ethanol Metabolism. BIOLOGY 2022; 11:biology11111613. [PMID: 36358315 PMCID: PMC9687530 DOI: 10.3390/biology11111613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/15/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Fatty acid binding protein-4 (FABP4) is not normally expressed in the liver but is induced in alcohol-dependent liver disease (ALD)). This study sought to identify mechanisms whereby ethanol (EtOH) metabolism alters triglyceride accumulation and FABP4 production. Human hepatoma cells which were stably transfected to express alcohol dehydrogenase (ADH) or cytochrome P4502E1 (CYP2E1) were exposed to EtOH in the absence/presence of inhibitors of ADH (4-methylpyrazole) or CYP2E1 (chlormethiazole). Cells were analyzed for free fatty acid (FFA) content and FABP4 mRNA, then culture medium assayed for FABP4 levels. Cell lysates were analyzed for AMP-activated protein kinase-α (AMPKα), Acetyl-CoA carboxylase (ACC), sterol regulatory element binding protein-1c (SREBP-1c), and Lipin-1β activity and localization in the absence/presence of EtOH and pharmacological inhibitors. CYP2E1-EtOH metabolism led to increased FABP4 mRNA/protein expression and FFA accumulation. Analysis of signaling pathway activity revealed decreased AMPKα activation and increased nuclear-SREBP-1c localization following CYP2E1-EtOH metabolism. The role of AMPKα-SREBP-1c in regulating CYP2E1-EtOH-dependent FFA accumulation and increased FABP4 was confirmed using pharmacological inhibitors and over-expression of AMPKα. Inhibition of ACC or Lipin-1β failed to prevent FFA accumulation or changes in FABP4 mRNA expression or protein secretion. These data suggest that CYP2E1-EtOH metabolism inhibits AMPKα phosphorylation to stimulate FFA accumulation and FABP4 protein secretion via an SREBP-1c dependent mechanism.
Collapse
|
6
|
Li Y, Jiang JX, Fan W, Fish SR, Das S, Gupta P, Mozes G, Vancza L, Sarkar S, Kunimoto K, Chen D, Park H, Clemens D, Tomilov A, Cortopassi G, Török NJ. Shc Is Implicated in Calreticulin-Mediated Sterile Inflammation in Alcoholic Hepatitis. Cell Mol Gastroenterol Hepatol 2022; 15:197-211. [PMID: 36122677 PMCID: PMC9676381 DOI: 10.1016/j.jcmgh.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/29/2021] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Src homology and collagen (Shc) proteins are major adapters to extracellular signals, however, the regulatory role of Shc isoforms in sterile inflammatory responses in alcoholic hepatitis (AH) has not been fully investigated. We hypothesized that in an isoform-specific manner Shc modulates pre-apoptotic signals, calreticulin (CRT) membrane exposure, and recruitment of inflammatory cells. METHODS Liver biopsy samples from patients with AH vs healthy subjects were studied for Shc expression using DNA microarray data and immunohistochemistry. Shc knockdown (hypomorph) and age-matched wild-type mice were pair-fed according to the chronic-plus-binge alcohol diet. To analyze hepatocyte-specific effects, adeno-associated virus 8-thyroxine binding globulin-Cre (hepatocyte-specific Shc knockout)-mediated deletion was performed in flox/flox Shc mice. Lipid peroxidation, proinflammatory signals, redox radicals, reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide ratio, as well as cleaved caspase 8, B-cell-receptor-associated protein 31 (BAP31), Bcl-2-associated X protein (Bax), and Bcl-2 homologous antagonist killer (Bak), were assessed in vivo. CRT translocation was studied in ethanol-exposed p46ShcẟSH2-transfected hepatocytes by membrane biotinylation in conjunction with phosphorylated-eukaryotic initiation factor 2 alpha, BAP31, caspase 8, and Bax/Bak. The effects of idebenone, a novel Shc inhibitor, was studied in alcohol/pair-fed mice. RESULTS Shc was significantly induced in patients with AH (P < .01). Alanine aminotransferase, reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide ratios, production of redox radicals, and lipid peroxidation improved (P < .05), and interleukin 1β, monocyte chemoattractant protein 1, and C-X-C chemokine ligand 10 were reduced in Shc knockdown and hepatocyte-specific Shc knockout mice. In vivo, Shc-dependent induction, and, in hepatocytes, a p46Shc-dependent increase in pre-apoptotic proteins Bax/Bak, caspase 8, BAP31 cleavage, and membrane translocation of CRT/endoplasmic reticulum-resident protein 57 were seen. Idebenone protected against alcohol-mediated liver injury. CONCLUSIONS Alcohol induces p46Shc-dependent activation of pre-apoptotic pathways and translocation of CRT to the membrane, where it acts as a damage-associated molecular pattern, instigating immunogenicity. Shc inhibition could be a novel treatment strategy in AH.
Collapse
Affiliation(s)
- Yuan Li
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Joy X Jiang
- Gastroenterology and Hepatology, University of California Davis Medical Center, Sacramento, California
| | - Weiguo Fan
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Sarah R Fish
- Gastroenterology and Hepatology, University of California Davis Medical Center, Sacramento, California
| | - Suvarthi Das
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Parul Gupta
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Gergely Mozes
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Lorand Vancza
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Sutapa Sarkar
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Koshi Kunimoto
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Dongning Chen
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Hyesuk Park
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California
| | - Dahn Clemens
- Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Alexey Tomilov
- Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Gino Cortopassi
- Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Natalie J Török
- Gastroenterology and Hepatology, Stanford University, VA Palo Alto, Palo Alto, California.
| |
Collapse
|
7
|
Li Y, Wei M, Yuan Q, Liu Y, Tian T, Hou L, Zhang J. MyD88 in hepatic stellate cells promotes the development of alcoholic fatty liver via the AKT pathway. J Mol Med (Berl) 2022; 100:1071-1085. [PMID: 35708745 DOI: 10.1007/s00109-022-02196-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
Myeloid differentiation primary response gene 88 (MyD88), an adaptor protein in the Toll-like receptors (TLRs) signalling pathway, is expressed in various liver cells including hepatocytes, Kupffer cells and hepatic stellate cells (HSCs). And yet, the functional role of MyD88 in HSCs is poorly elucidated in alcoholic fatty liver (AFL). Here, to study the functional role of MyD88 in HSCs and the molecular mechanism related to the development of AFL, chronic-binge ethanol mouse models were established in mice with specific MyD88 knockout in quiescent (MyD88GFAP-KO) and activated HSCs (MyD88SMA-KO), respectively. Our results clearly showed an elevated expression of MyD88 in liver tissues of ethanol treated mouse model which harbours the wild type. Intriguingly, ethanol treatment profoundly inhibited inflammation in both MyD88GFAP-KO and MyD88SMA-KO mice, but the suppression of lipogenesis was only observed in MyD88GFAP-KO mice. Molecularly, our study indicated that MyD88 induced osteopontin (OPN) secretion in HSCs, which consequently resulted in activation of AKT signalling pathway and accumulation of fat in hepatocytes. Additionally, our data also suggested that OPN promoted inflammation by activating p-STAT1. Thus, targeting MyD88 may be a potentially represent a promising strategy for the prevention and treatment of AFL. KEY MESSAGES: The expression of MyD88 in HSCs was significantly increased in ethanol-induced liver tissues of wild-type mice. MyD88 deficiency in quiescent HSCs inhibited inflammation and lipogenesis under the ethanol feeding condition. MyD88 deficiency in activated HSCs only inhibited inflammation under the ethanol feeding condition. MyD88 promoted the OPN secretion of HSCs, which further activated the AKT signalling pathway of hepatocytes and upregulated lipogenic gene expression to promote fat accumulation. OPN also promotes inflammation by activating p-STAT1.
Collapse
Affiliation(s)
- Yukun Li
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, People's Republic of China
| | - Miaomiao Wei
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, People's Republic of China
| | - Qi Yuan
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, People's Republic of China
| | - Yu Liu
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, People's Republic of China
| | - Tian Tian
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, People's Republic of China
| | - Lingling Hou
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, People's Republic of China.
| | - Jinhua Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Attal N, Marrero E, Thompson KJ, McKillop IH. Cytochrome P450 2E1-dependent hepatic ethanol metabolism induces fatty acid-binding protein 4 and steatosis. Alcohol Clin Exp Res 2022; 46:928-940. [PMID: 35403271 DOI: 10.1111/acer.14828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hepatic steatosis is an early pathology of alcohol-associated liver disease (ALD). Fatty acid-binding protein-4 (FABP4, a FABP not normally produced in the liver) is secreted by hepatocytes in ALD and stimulates hepatoma proliferation and migration. This study sought to investigate the mechanism[s] by which hepatic ethanol metabolism regulates FABP4 and steatosis. METHODS Human hepatoma cells (HepG2/HuH7) and cells stably transfected to express cytochrome P450 2E1 (CYP2E1), were exposed to ethanol in the absence or presence of chlormethiazole (a CYP2E1-inhibitor; CMZ) and/or EX-527 (a sirtuin-1 [SIRT1] inhibitor). The culture medium was analyzed for ethanol metabolism and FABP4 protein abundance. Cells were analyzed for FABP4 mRNA expression, SIRT1 protein abundance, and neutral lipid accumulation. In parallel, cells were analyzed for forkhead box O1 [FOXO1], β-catenin, peroxisome proliferator-activated receptor-α [PPARα], and lipin-1α protein abundance in the absence or presence of ethanol and pharmacological inhibitors of the respective target proteins. RESULTS CYP2E1-dependent ethanol metabolism inhibited the amount of SIRT1 protein detected, concomitant with increased FABP4 mRNA expression, FABP4 protein secretion, and neutral lipid accumulation, effects abolished by CMZ. Analysis of pathways associated with lipid oxidation revealed increased FOXO1 nuclear localization and decreased β-catenin, PPARα, and lipin-1α protein levels in CYP2E1-expressing cells in the presence of ethanol. Pharmacological inhibition of SIRT1 mimicked the effects of ethanol, while inhibition of FOXO1 abrogated the effect of ethanol on FABP4 mRNA expression, FABP4 protein secretion, and neutral lipid accumulation in CYP2E1-expressing cells. Pharmacological inhibition of β-catenin, PPARα, or lipin-1α failed to alter the effects of ethanol on FABP4 or neutral lipid accumulation. CONCLUSION CYP2E1-dependent ethanol metabolism inhibits SIRT1-FOXO1 signaling, which leads to increased FABP4 mRNA expression, FABP4 protein secretion, and neutral lipid accumulation. These data suggest that FABP4 released from steatotic hepatocytes could play a role in promoting tumor cell expansion in the setting of ALD and represents a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Neha Attal
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina, USA
| | - Emilio Marrero
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina, USA
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina, USA
| | - Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina, USA
| |
Collapse
|
9
|
He L, Sehrawat TS, Verma VK, Navarro-Corcuera A, Sidhu G, Mauer A, Luo X, Katsumi T, Chen J, Shah S, Arab JP, Cao S, Kashkar H, Gores GJ, Malhi H, Shah VH. XIAP Knockdown in Alcohol-Associated Liver Disease Models Exhibits Divergent in vitro and in vivo Phenotypes Owing to a Potential Zonal Inhibitory Role of SMAC. Front Physiol 2021; 12:664222. [PMID: 34025452 PMCID: PMC8138467 DOI: 10.3389/fphys.2021.664222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol-associated liver disease (ALD) has been recognized as the most common cause of advanced liver disease worldwide, though mechanisms of pathogenesis remain incompletely understood. The X-linked inhibitor of apoptosis (XIAP) protein was originally described as an anti-apoptotic protein that directly binds and inhibits caspases-3, 7, and 9. Here, we investigated the function of XIAP in hepatocytes in vitro using gain and loss-of-function approaches. We noted an XIAP-dependent increase in caspase activation as well as increased inflammatory markers and pro-inflammatory EV release from hepatocytes in vitro. Primary hepatocytes (PMH) from Xiap Alb.Cre and Xiap loxP mice exhibited higher cell death but surprisingly, lower expression of inflammation markers. Conditioned media from these isolated Xiap deleted PMH further decrease inflammation in bone marrow-derived macrophages. Also, interestingly, when administered an ethanol plus Fas-agonist-Jo2 model and an ethanol plus CCl4 model, these animals failed to develop an exacerbated disease phenotype in vivo. Of note, neither Xiap Alb . Cre nor Xiap AAV8.Cre mice presented with aggravated liver injury, hepatocyte apoptosis, liver steatosis, or fibrosis. Since therapeutics targeting XIAP are currently in clinical trials and caspase-induced death is very important for development of ALD, we sought to explore the potential basis of this unexpected lack of effect. We utilized scRNA-seq and spatially reconstructed hepatocyte transcriptome data from human liver tissue and observed that XIAP was significantly zonated, along with its endogenous inhibitor second mitochondria-derived activator of caspases (SMAC) in periportal region. This contrasted with pericentral zonation of other IAPs including cIAP1 and Apollon as well as caspases 3, 7, and 9. Thus providing a potential explanation for compensation of the effect of Xiap deletion by other IAPs. In conclusion, our findings implicate a potential zonallydependent role for SMAC that prevented development of a phenotype in XIAP knockout mice in ALD models. Targeting SMAC may also be important in addition to current efforts of targeting XIAP in treatment of ALD.
Collapse
Affiliation(s)
- Li He
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tejasav S. Sehrawat
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Vikas K. Verma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Amaia Navarro-Corcuera
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Guneet Sidhu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Amy Mauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xin Luo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tomohiro Katsumi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jingbiao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Soni Shah
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Juan Pablo Arab
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Hamid Kashkar
- Centre for Molecular Medicine Cologne and Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
10
|
Arellanes-Robledo J, Ibrahim J, Reyes-Gordillo K, Shah R, Leckey L, Lakshman MR. Flightless-I is a potential biomarker for the early detection of alcoholic liver disease. Biochem Pharmacol 2021; 183:114323. [PMID: 33166508 PMCID: PMC8614159 DOI: 10.1016/j.bcp.2020.114323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is closely linked to oxidative stress induction. Antioxidant enzymes balance oxidative stress and function as intermediary signaling regulators. Nucleoredoxin (NXN), an antioxidant enzyme, regulates physiological processes through redox-sensitive interactions. NXN interacts with myeloid differentiation primary response gene-88 (MYD88) and flightless-I (FLII) to regulate toll-like receptor 4 (TLR4)/MYD88 pathway activation, but FLII also regulates key cell processes and is secreted into the bloodstream. However, the effects of chronic ethanol consumption recapitulated by either ethanol alone or in combination with lipopolysaccharides (LPS), as a two-hit ALD model, on FLII/NXN/MYD88 complex and FLII secretion have not been explored yet. In this study, we have demonstrated that ethanol feeding increased FLII protein levels, its nuclear translocation and plasma secretion, and modified its tissue distribution both in vivo and in vitro ALD models. Ethanol increased MYD88/FLII interaction ratio, and decreased NXN/MYD88 interaction ratio but this was partially reverted by two-hit model. While ethanol and two-hit model increased MYD88/TLR4 interaction ratio, two-hit model significantly decreased FLII nuclear translocation and its plasma secretion. Ethanol and LPS provoked similar effects in vitro; however, NXN overexpression partially reverted these alterations, and ethanol alone increased FLII secretion into culture medium. In summary, by analyzing the response of FLII/NXN/MYD88 complex during ALD early progression both in vivo and in vitro, we have discovered that the effects of chronic ethanol consumption disrupt this complex and identified FLII as a candidate non-invasive plasma biomarker for the early detection of ALD.
Collapse
Affiliation(s)
- Jaime Arellanes-Robledo
- Lipid Research Laboratory, VA Medical Center, Washington, D.C., USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA; Laboratory of Hepatic Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology - CONACYT, CDMX, Mexico.
| | - Joseph Ibrahim
- Lipid Research Laboratory, VA Medical Center, Washington, D.C., USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA
| | - Karina Reyes-Gordillo
- Lipid Research Laboratory, VA Medical Center, Washington, D.C., USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA
| | - Ruchi Shah
- Lipid Research Laboratory, VA Medical Center, Washington, D.C., USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leslie Leckey
- Lipid Research Laboratory, VA Medical Center, Washington, D.C., USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA
| | - M Raj Lakshman
- Lipid Research Laboratory, VA Medical Center, Washington, D.C., USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA
| |
Collapse
|
11
|
Yao Y, Zuo A, Deng Q, Liu S, Zhan T, Wang M, Xu H, Ma J, Zhao Y. Physcion Protects Against Ethanol-Induced Liver Injury by Reprogramming of Circadian Clock. Front Pharmacol 2020; 11:573074. [PMID: 33381029 PMCID: PMC7768821 DOI: 10.3389/fphar.2020.573074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
The circadian clock plays a key role in our daily physiology and metabolism. Alcohol consumption disrupts the circadian rhythm of metabolic genes in the liver; however, the potential contribution of circadian clock modulation to alcoholic liver disease (ALD) is unknown. We identified a novel liver protective agent, physcion, which can alleviate fat accumulation and inflammation in ALD mice via reprogramming the hepatic circadian clock. The model of alcoholic hepatitis was established by intragastrically administering ethanol. In vitro, physcion was investigated by treating HepG2 cells with ethanol. The role of circadian clock in Physcion caused liver protection was tested by knocking down the core circadian gene Bmal1. Physcion application caused reduced lipogenesis and alleviated inflammation in alcohol-induced mice. In alcoholic hepatosteatosis models, physcion upregulated the core circadian genes. And the circadian misalignment triggered by ethanol was efficiently reversed by physcion. Physcion attenuated lipogenesis via reprogramming the circadian clock in HepG2 cells. Suppression of Bmal1 by RNA interference abolished the protective of physcion. In addition, Physcion binds to the active pocket of BMAL1 and promotes its expression. The study identified the novel liver protective effects of physcion on alcohol-induced liver injury, and modulation of the core circadian clock regulators contributes to ALD alleviation. More importantly, strategies targeting the circadian machinery, for example, Bmal1, may prove to be beneficial treatment options for this condition.
Collapse
Affiliation(s)
- Youli Yao
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Along Zuo
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji, China
| | - Qiyu Deng
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Shikang Liu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Tianying Zhan
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Maolin Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Haidong Xu
- University of Chinese Academy of Sciences, Shenzhen Hospital, Shenzhen, China
| | - Junxian Ma
- School of Information Engineering, Shenzhen University, Shenzhen, China
| | - Yingying Zhao
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Alarcón‐Sánchez BR, Guerrero‐Escalera D, Rosas‐Madrigal S, Ivette Aparicio‐Bautista D, Reyes‐Gordillo K, Lakshman MR, Ortiz‐Fernández A, Quezada H, Medina‐Contreras Ó, Villa‐Treviño S, Isael Pérez‐Carreón J, Arellanes‐Robledo J. Nucleoredoxin interaction with flightless‐I/actin complex is differentially altered in alcoholic liver disease. Basic Clin Pharmacol Toxicol 2020; 127:389-404. [DOI: 10.1111/bcpt.13451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2020] [Revised: 04/30/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Brisa Rodope Alarcón‐Sánchez
- Laboratory of Liver Diseases National Institute of Genomic Medicine CDMX Mexico
- Departament of Cell Biology Center for Research and Advanced Studies of the National Polytechnic Institute CDMX Mexico
| | | | - Sandra Rosas‐Madrigal
- Laboratory of Cardiovascular Diseases National Institute of Genomic Medicine CDMX Mexico
| | | | - Karina Reyes‐Gordillo
- Lipid Research Laboratory VA Medical Center Washington DC USA
- Department of Biochemistry and Molecular Medicine The George Washington University Medical Center Washington DC USA
| | - M. Raj Lakshman
- Lipid Research Laboratory VA Medical Center Washington DC USA
- Department of Biochemistry and Molecular Medicine The George Washington University Medical Center Washington DC USA
| | - Arturo Ortiz‐Fernández
- Departament of Cell Biology Center for Research and Advanced Studies of the National Polytechnic Institute CDMX Mexico
| | - Héctor Quezada
- Research Laboratory in Immunology and Proteomics Children's Hospital of Mexico "Federico Gómez” CDMX Mexico
| | - Óscar Medina‐Contreras
- Research Department in Community Health Children's Hospital of Mexico "Federico Gómez" CDMX Mexico
| | - Saúl Villa‐Treviño
- Departament of Cell Biology Center for Research and Advanced Studies of the National Polytechnic Institute CDMX Mexico
| | | | - Jaime Arellanes‐Robledo
- Laboratory of Liver Diseases National Institute of Genomic Medicine CDMX Mexico
- Directorate of Cátedras National Council of Science and Technology CDMX Mexico
| |
Collapse
|
13
|
Santerre-Anderson JL, Werner DF. Ethanol Stimulation of Microglia Release Increases ERK1/2-Dependent Neuronal cPLA 2 Activity in Immature Cultured Cortical Preparations. Neurochem Res 2020; 45:1592-1601. [PMID: 32274627 DOI: 10.1007/s11064-020-03024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
Ethanol consumption typically begins during adolescence and is associated with age-dependent responses and maladaptive neuronal consequences. Our previous work established the role of a putative signaling cascade involving cytoplasmic phospholipase A2 (cPLA2), arachidonic acid (AA) and novel protein kinase C isoforms in adolescent hypnotic sensitivity. The current study aimed to further delineate this pathway by ascertaining the cellular specificity as well as the upstream activators of cPLA2 using an immature cultured cortical preparation. A threefold increase in cPLA2 was detected within 2 min of 100 mM ethanol exposure as measured by phosphorylation of serine 505 (Ser505). Increases in cPLA2 activity were further observed to be primarily confined to neuronal cells. Increases in the number of neurons co-expressing cPLA2 Ser505 phosphorylation were prevented by preincubation with an ERK1/2 inhibitor, but not P38 MAPK inhibition. Finally, conditioned media studies were used to determine whether glial cells were involved in the ethanol-induced neuronal cPLA2 activity. Rapid increases in neuronal cPLA2 activity appears to be initiated through ethanol stimulated microglial, but not astrocytic releasable factors. Taken together, these data extend the proposed signaling cascade involved in developmental ethanol responding.
Collapse
Affiliation(s)
- J L Santerre-Anderson
- Department of Psychology, Binghamton University, Binghamton, NY, USA. .,Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, USA. .,Department of Psychology, King's College, Wilkes-Barre, PA, USA. .,Program in Neuroscience, King's College, Wilkes-Barre, PA, USA.
| | - D F Werner
- Department of Psychology, Binghamton University, Binghamton, NY, USA.,Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
14
|
Ghazali R, Mehta KJ, Bligh SWA, Tewfik I, Clemens D, Patel VB. High omega arachidonic acid/docosahexaenoic acid ratio induces mitochondrial dysfunction and altered lipid metabolism in human hepatoma cells. World J Hepatol 2020; 12:84-98. [PMID: 32231762 PMCID: PMC7097500 DOI: 10.4254/wjh.v12.i3.84] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/24/2019] [Revised: 12/24/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common cause of liver disease worldwide and is a growing epidemic. A high ratio of omega-6 fatty acids to omega-3 fatty acids in the diet has been implicated in the development of NAFLD. However, the inflicted cellular pathology remains unknown. A high ratio may promote lipogenic pathways and contribute to reactive oxygen species (ROS)-mediated damage, perhaps leading to mitochondrial dysfunction. Therefore, these parameters were investigated to understand their contribution to NAFLD development.
AIM To examine the effect of increasing ratios of omega-6:3 fatty acids on mitochondrial function and lipid metabolism mediators.
METHODS HepG2-derived VL-17A cells were treated with normal (1:1, 4:1) and high (15:1, 25:1) ratios of omega-6: omega-3 fatty acids [arachidonic acid (AA): docosahexaenoic acid (DHA)] at various time points. Mitochondrial activity and function were examined via MTT assay and Seahorse XF24 analyzer, respectively. Triglyceride accumulation was determined by using EnzyChrom™ and levels of ROS were measured by fluorescence intensity. Protein expression of the mediators of lipogenic, lipolytic and endocannabinoid pathways was assessed by Western blotting.
RESULTS High AA:DHA ratio decreased mitochondrial activity (P < 0.01; up to 80%) and promoted intracellular triglyceride accumulation (P < 0.05; 40%-70%). Mechanistically, it altered the mediators of lipid metabolism; increased the expression of stearoyl-CoA desaturase (P < 0.05; 22%-35%), decreased the expression of peroxisome proliferator-activated receptor-alpha (P < 0.05; 30%-40%) and increased the expression of cannabinoid receptor 1 (P < 0.05; 31%). Furthermore, the high ratio increased ROS production (P < 0.01; 74%-115%) and reduced mitochondrial respiratory functions such as basal and maximal respiration, ATP production, spare respiratory capacity and proton leak (P < 0.01; 35%-68%).
CONCLUSION High AA:DHA ratio induced triglyceride accumulation, increased oxidative stress and disrupted mitochondrial functions. Stimulation of lipogenic and steroidal transcription factors may partly mediate these effects and contribute to NAFLD development.
Collapse
Affiliation(s)
- Reem Ghazali
- School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
- Clinical Biochemistry Department, Faculty of medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London SE1 1UL, United Kingdom
| | - SW Annie Bligh
- School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
- Caritas Institute of Higher Education, Hong Kong 999077, China
| | - Ihab Tewfik
- School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Dahn Clemens
- Nebraska and Western Iowa Veterans Administration Medical Center and Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Vinood B Patel
- School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| |
Collapse
|
15
|
Alcohol Metabolizing Enzymes, Microsomal Ethanol Oxidizing System, Cytochrome P450 2E1, Catalase, and Aldehyde Dehydrogenase in Alcohol-Associated Liver Disease. Biomedicines 2020; 8:biomedicines8030050. [PMID: 32143280 PMCID: PMC7148483 DOI: 10.3390/biomedicines8030050] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/12/2022] Open
Abstract
Once ingested, most of the alcohol is metabolized in the liver by alcohol dehydrogenase to acetaldehyde. Two additional pathways of acetaldehyde generation are by microsomal ethanol oxidizing system (cytochrome P450 2E1) and catalase. Acetaldehyde can form adducts which can interfere with cellular function, leading to alcohol-induced liver injury. The variants of alcohol metabolizing genes encode enzymes with varied kinetic properties and result in the different rate of alcohol elimination and acetaldehyde generation. Allelic variants of these genes with higher enzymatic activity are believed to be able to modify susceptibility to alcohol-induced liver injury; however, the human studies on the association of these variants and alcohol-associated liver disease are inconclusive. In addition to acetaldehyde, the shift in the redox state during alcohol elimination may also link to other pathways resulting in activation of downstream signaling leading to liver injury.
Collapse
|
16
|
Donohue TM, Osna NA, Kharbanda KK, Thomes PG. Lysosome and proteasome dysfunction in alcohol-induced liver injury. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
|
17
|
Akt1 and Akt2 Isoforms Play Distinct Roles in Regulating the Development of Inflammation and Fibrosis Associated with Alcoholic Liver Disease. Cells 2019; 8:cells8111337. [PMID: 31671832 PMCID: PMC6912497 DOI: 10.3390/cells8111337] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2019] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Akt kinase isoforms (Akt1, Akt2, and Akt3) have generally been thought to play overlapping roles in phosphoinositide 3-kinase (PI3K)-mediated-signaling. However, recent studies have suggested that they display isoform-specific roles in muscle and fat. To determine whether such isoform-specificity is observed with respect to alcoholic liver disease (ALD) progression, we examined the role of Akt1, Akt2, and Akt3 in hepatic inflammation, and pro-fibrogenic proliferation and migration using Kupffer cells, hepatic stellate cells (HSC), and hepatocytes in an ethanol and lipopolysaccharide (LPS)-induced two-hit model in vitro and in vivo. We determined that siRNA-directed silencing of Akt2, but not Akt1, significantly suppressed cell inflammatory markers in HSC and Kupffer cells. Although both Akt1 and Akt2 inhibited cell proliferation in HSC, only Akt2 inhibited cell migration. Both Akt1 and Akt2, but not Akt3, inhibited fibrogenesis in hepatocytes and HSC. In addition, our in vivo results show that administration of chronic ethanol, binge ethanol and LPS (EBL) in wild-type C57BL/6 mice activated all three Akt isoforms with concomitant increases in activated forms of phosphoinositide dependent kinase-1 (PDK1), mammalian target-of-rapamycin complex 2 (mTORC2), and PI3K, resulting in upregulation in expression of inflammatory, proliferative, and fibrogenic genes. Moreover, pharmacological blocking of Akt2, but not Akt1, inhibited EBL-induced inflammation while blocking of both Akt1 and Akt2 inhibited pro-fibrogenic marker expression and progression of fibrosis. Our findings indicate that Akt isoforms play unique roles in inflammation, cell proliferation, migration, and fibrogenesis during EBL-induced liver injury. Thus, close attention must be paid when targeting all Akt isoforms as a therapeutic intervention.
Collapse
|
18
|
Ganesan M, Krutik VM, Makarov E, Mathews S, Kharbanda KK, Poluektova LY, Casey CA, Osna NA. Acetaldehyde suppresses the display of HBV-MHC class I complexes on HBV-expressing hepatocytes. Am J Physiol Gastrointest Liver Physiol 2019; 317:G127-G140. [PMID: 31141391 PMCID: PMC6734374 DOI: 10.1152/ajpgi.00064.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) infection and alcoholism are major public health problems worldwide, contributing to the development of end-stage liver disease. Alcohol intake affects HBV infection pathogenesis and treatment outcomes. HBV-specific cytotoxic T lymphocytes (CTLs) play an important role in HBV clearance. Many previous studies have focused on alcohol-induced impairments of the immune response. However, it is not clear whether alcohol alters the presentation of HBV peptide-major histocompatibility complex (MHC) class I complexes on infected hepatocytes resulting in escape of its recognition by CTLs. Hence, the focus of this study was to investigate the mechanisms by which ethanol metabolism affects the presentation of CTL epitope on HBV-infected hepatocytes. As demonstrated here, although continuous cell exposure to acetaldehyde-generating system (AGS) increased HBV load in HepG2.2.15 cells, it decreased the expression of HBV core peptide 18-27-human leukocyte antigen-A2complex (CTL epitope) on the cell surface. Moreover, we observed AGS-induced suppression of chymotrypsin- and trypsin-like proteasome activities necessary for peptide processing by proteasome as well as a decline in IFNγ-stimulated immunoproteasome (IPR) function and expression of PA28 activator and immunoproteasome subunits LMP7 and LMP2. Furthermore, IFNγ-induced activation of peptide-loading complex (PLC) components, such as transporter associated with antigen processing (TAP1) and tapasin, were suppressed by AGS. The attenuation of IPR and PLC activation was attributed to AGS-triggered impairment of IFNγ signaling in HepG2.2.15 cells. Collectively, all these downstream events reduced the display of HBV peptide-MHC class I complexes on the hepatocyte surface, which may suppress CTL activation and the recognition of CTL epitopes on HBV-expressing hepatocytes by immune cells, thereby leading to persistence of liver inflammation.NEW & NOTEWORTHY Our study shows that in HBV-expressing HepG2.2.15 cells, acetaldehyde alters HBV peptide processing by suppressing chymotrypsin- and trypsin-like proteasome activities and decreases IFNγ-stimulated immunoproteasome function and expression of PA28 activator and immunoproteasome subunits. It also suppresses IFNγ-induced activation of peptide-loading complex (PLC) components due to impairment of IFNγ signaling via the JAK-STAT1 pathway. These acetaldehyde-induced dysfunctions reduced the display of HBV peptide-MHC class I complexes on the hepatocyte surface, thereby leading to persistence of HBV infection.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Vjaceslav M Krutik
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Edward Makarov
- Department of Pharmacology and Experimental Neuroscience, Omaha, Nebraska
| | - Saumi Mathews
- Department of Pharmacology and Experimental Neuroscience, Omaha, Nebraska
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Carol A Casey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
19
|
Yang L, Yang C, Thomes PG, Kharbanda KK, Casey CA, McNiven MA, Donohue TM. Lipophagy and Alcohol-Induced Fatty Liver. Front Pharmacol 2019; 10:495. [PMID: 31143122 PMCID: PMC6521574 DOI: 10.3389/fphar.2019.00495] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
This review describes the influence of ethanol consumption on hepatic lipophagy, a selective form of autophagy during which fat-storing organelles known as lipid droplets (LDs) are degraded in lysosomes. During classical autophagy, also known as macroautophagy, all forms of macromolecules and organelles are sequestered in autophagosomes, which, with their cargo, fuse with lysosomes, forming autolysosomes in which the cargo is degraded. It is well established that excessive drinking accelerates intrahepatic lipid biosynthesis, enhances uptake of fatty acids by the liver from the plasma and impairs hepatic secretion of lipoproteins. All the latter contribute to alcohol-induced fatty liver (steatosis). Here, our principal focus is on lipid catabolism, specifically the impact of excessive ethanol consumption on lipophagy, which significantly influences the pathogenesis alcohol-induced steatosis. We review findings, which demonstrate that chronic ethanol consumption retards lipophagy, thereby exacerbating steatosis. This is important for two reasons: (1) Unlike adipose tissue, the liver is considered a fat-burning, not a fat-storing organ. Thus, under normal conditions, lipophagy in hepatocytes actively prevents lipid droplet accumulation, thereby maintaining lipostasis; (2) Chronic alcohol consumption subverts this fat-burning function by slowing lipophagy while accelerating lipogenesis, both contributing to fatty liver. Steatosis was formerly regarded as a benign consequence of heavy drinking. It is now recognized as the "first hit" in the spectrum of alcohol-induced pathologies that, with continued drinking, progresses to more advanced liver disease, liver failure, and/or liver cancer. Complete lipid droplet breakdown requires that LDs be digested to release their high-energy cargo, consisting principally of cholesteryl esters and triacylglycerols (triglycerides). These subsequently undergo lipolysis, yielding free fatty acids that are oxidized in mitochondria to generate energy. Our review will describe recent findings on the role of lipophagy in LD catabolism, how continuous heavy alcohol consumption affects this process, and the putative mechanism(s) by which this occurs.
Collapse
Affiliation(s)
- Li Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Paul G. Thomes
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Departments of Internal Medicine and of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K. Kharbanda
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Departments of Internal Medicine and of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Carol A. Casey
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Departments of Internal Medicine and of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mark A. McNiven
- Division of Gastroenterology and Hepatology, Department of Biochemistry and Molecular Biology, Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN, United States
| | - Terrence M. Donohue
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Departments of Internal Medicine and of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
20
|
Casas-Grajales S, Reyes-Gordillo K, Cerda-García-Rojas CM, Tsutsumi V, Lakshman MR, Muriel P. Rebaudioside A administration prevents experimental liver fibrosis: an in vivo and in vitro study of the mechanisms of action involved. J Appl Toxicol 2019; 39:1118-1131. [PMID: 30883860 DOI: 10.1002/jat.3797] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
Rebaudioside A (Reb A) is a diterpenoid isolated from the leaves of Stevia rebaudiana (Bertoni) that has been shown to possess pharmacological activity, including anti-inflammatory and antioxidant properties. However, the ability of Reb A to prevent liver injury has not been evaluated. Therefore, we aimed to study the potential of Reb A (20 mg/kg; two times daily intraperitoneally) to prevent liver injury induced by thioacetamide (TAA) administration (200 mg/kg; three times per week intraperitoneally). In addition, cocultures were incubated with either lipopolysaccharide or ethanol. Antifibrotic, antioxidant and immunological responses were evaluated. Chronic TAA administration produced considerable liver damage and distorted the liver parenchyma with the presence of prominent thick bands of collagen. In addition, TAA upregulated the expression of α-smooth muscle actin, transforming growth factor-β1, metalloproteinases 9, 2 and 13, and nuclear factor kappaB and downregulated nuclear erythroid factor 2. Reb A administration prevented all of these changes. In cocultured cells, Reb A prevented the upregulation of genes implicated in fibrotic and inflammatory processes when cells were exposed to ethanol and lipopolysaccharide. Altogether, our results suggest that Reb A prevents liver damage by blocking oxidative processes via upregulation of nuclear erythroid factor 2, exerts immunomodulatory effects by downregulating the nuclear factor-κB system and acts as an antifibrotic agent by maintaining collagen content.
Collapse
Affiliation(s)
- Sael Casas-Grajales
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico
| | - Karina Reyes-Gordillo
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Science, The George Washington University Medical Center, 2300 I St. NW, Washington, DC, 20052, USA.,Lipid Research Laboratory, VA Medical Center, 50 Irving St., Washington, DC, 20422, USA
| | - Carlos M Cerda-García-Rojas
- Department of Chemistry, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico
| | - M Raj Lakshman
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Science, The George Washington University Medical Center, 2300 I St. NW, Washington, DC, 20052, USA.,Lipid Research Laboratory, VA Medical Center, 50 Irving St., Washington, DC, 20422, USA
| | - Pablo Muriel
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico
| |
Collapse
|
21
|
Casas-Grajales S, Ramos-Tovar E, Chávez-Estrada E, Alvarez-Suarez D, Hernández-Aquino E, Reyes-Gordillo K, Cerda-García-Rojas CM, Camacho J, Tsutsumi V, Lakshman MR, Muriel P. Antioxidant and immunomodulatory activity induced by stevioside in liver damage: In vivo, in vitro and in silico assays. Life Sci 2019; 224:187-196. [PMID: 30890404 DOI: 10.1016/j.lfs.2019.03.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 01/16/2023]
Abstract
AIMS Stevioside is a diterpenoid obtained from the leaves of Stevia rebaudiana (Bertoni) that exhibits antioxidant, antifibrotic, antiglycemic and anticancer properties. Therefore, we aimed to study whether stevioside has beneficial effects in liver injury induced by long-term thioacetamide (TAA) administration and investigated the possible underlying molecular mechanism using in vivo, in vitro and in silico approaches. MAIN METHODS Liver injury was induced in male Wistar rats by TAA administration (200 mg/kg), intraperitoneally, three times per week. Rats received saline or stevioside (20 mg/kg) twice daily intraperitoneally. In addition, cocultures were incubated with either lipopolysaccharide or ethanol. Liver injury, antioxidant and immunological responses were evaluated. KEY FINDINGS Chronic TAA administration induced significant liver damage. In addition, TAA upregulated the protein expression of nuclear factor (NF)-κB, thus increasing the expression of proinflammatory cytokines and decreasing the antioxidant capacity of the liver through downregulation of nuclear erythroid factor 2 (Nrf2). Notably, stevioside administration prevented all of these changes. In vitro, stevioside prevented the upregulation of several genes implicated in liver inflammation when cocultured cells were incubated with lipopolysaccharide or ethanol. In silico assays using tumor necrosis factor receptor (TNFR)-1 and Toll-like receptor (TLR)-4-MD2 demonstrated that stevioside docks with TNFR1 and TLR4-MD2, thus promoting an antagonistic action against this proinflammatory mediator. SIGNIFICANCE Collectively, these data suggest that stevioside prevented liver damage through antioxidant activity by upregulating Nrf2 and immunomodulatory activity by blocking NF-κB signaling.
Collapse
Affiliation(s)
- Sael Casas-Grajales
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico
| | - Erika Ramos-Tovar
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico
| | - Esmeralda Chávez-Estrada
- Department of Chemistry, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico
| | - Diana Alvarez-Suarez
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico
| | - Erika Hernández-Aquino
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico
| | - Karina Reyes-Gordillo
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Science, The George Washington University Medical Center, 2300 I St NW, Washington, DC 20052, United States of America; Lipid Research Laboratory, VA Medical Center, 50 Irving St, Washington, DC 20422, United States of America
| | - Carlos M Cerda-García-Rojas
- Department of Chemistry, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico
| | - Javier Camacho
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico
| | - M Raj Lakshman
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Science, The George Washington University Medical Center, 2300 I St NW, Washington, DC 20052, United States of America; Lipid Research Laboratory, VA Medical Center, 50 Irving St, Washington, DC 20422, United States of America
| | - Pablo Muriel
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico.
| |
Collapse
|
22
|
Palma E, Ma X, Riva A, Iansante V, Dhawan A, Wang S, Ni HM, Sesaki H, Williams R, Ding WX, Chokshi S. Dynamin-1-Like Protein Inhibition Drives Megamitochondria Formation as an Adaptive Response in Alcohol-Induced Hepatotoxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:580-589. [PMID: 30553835 PMCID: PMC6436109 DOI: 10.1016/j.ajpath.2018.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/31/2018] [Revised: 10/18/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
Abstract
Despite the growing global burden of alcoholic liver diseases, therapeutic options are limited, and novel targets are urgently needed. Accumulating evidence suggests that mitochondria adapt in response to ethanol and formation of megamitochondria in the livers of patients is recognized as a hallmark of alcoholic liver diseases. The processes involved in ethanol-induced hepatic mitochondrial changes, the impact on mitochondria-shaping proteins, and the significance of megamitochondria formation remain unknown. In this study, we investigated the mitochondrial and cellular response to alcohol in hepatoma cell line VL-17A. The mitochondrial architecture rapidly changed after 3 or 14 days of ethanol exposure with double-pronged presentation of hyperfragmentation and megamitochondria, and cell growth was inhibited. Dynamin-1-like protein (Drp1) was identified as the main mediator driving these mitochondrial alterations, and its genetic inactivation was determined to foster megamitochondria development, preserving the capacity of the cells to grow despite alcohol toxicity. The role of Drp1 in mediating megamitochondria formation in mice with liver-specific inactivation of Drp1 was further confirmed. Finally, when these mice were fed with ethanol, the presentation of hepatic megamitochondria was exacerbated compared with wild type fed with the same diet. Ethanol-induced toxicity was also reduced. Our study demonstrates that megamitochondria formation is mediated by Drp1, and this phenomenon is a beneficial adaptive response during alcohol-induced hepatotoxicity.
Collapse
Affiliation(s)
- Elena Palma
- The Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Antonio Riva
- The Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Valeria Iansante
- Institute of Liver Studies, King's College London, London, United Kingdom
| | - Anil Dhawan
- Institute of Liver Studies, King's College London, London, United Kingdom
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roger Williams
- The Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Shilpa Chokshi
- The Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
23
|
Casas-Grajales S, Alvarez-Suarez D, Ramos-Tovar E, Dayana Buendía-Montaño L, Reyes-Gordillo K, Camacho J, Tsutsumi V, Lakshman MR, Muriel P. Stevioside inhibits experimental fibrosis by down-regulating profibrotic Smad pathways and blocking hepatic stellate cell activation. Basic Clin Pharmacol Toxicol 2019; 124:670-680. [PMID: 30561898 DOI: 10.1111/bcpt.13194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
Liver cirrhosis is associated with increased morbidity and mortality with important health and social consequences; however, an effective treatment has not been found yet. Previous reports have shown some beneficial effects of stevioside (SVT) in different diseases, but the ability of SVT to inhibit liver cirrhosis has not been reported. Therefore, we studied the potential of this diterpenoid to inhibit liver cirrhosis induced by thioacetamide, a model that shares many similarities with the human disease, and investigated the possible underlying molecular mechanism using in vivo and in vitro approaches. Cirrhosis was induced in male Wistar rats by chronic thioacetamide administration (200 mg/kg) intraperitoneally three times per week. Rats received saline or SVT (20 mg/kg) two times daily intraperitoneally. In addition, co-cultures were incubated with either lipopolysaccharide or ethanol. Liver fibrosis, hepatic stellate cells activation, metalloproteinases activity, canonical and non-canonical Smads pathway and expression of several profibrogenic genes were evaluated. Thioacetamide activated hepatic stellate cells and distorted the liver parenchyma with the presence of abundant thick bands of collagen. In addition, thioacetamide up-regulated the protein expression of α-smooth muscle actin, transforming growth factor-β1, metalloproteinases-9,-2 and -13 and overstimulate the canonical and non-canonical Smad pathways. SVT administration inhibited all of these changes. In vitro, SVT inhibited the up-regulation of several genes implicated in cirrhosis when cells were exposed to lipopolysaccharides or ethanol. We conclude that SVT inhibited liver damage by blocking hepatic stellate cells activation, down-regulating canonical and non-canonical profibrotic Smad pathways.
Collapse
Affiliation(s)
| | | | | | | | - Karina Reyes-Gordillo
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Science, The George Washington University Medical Center, Washington, District of Columbia.,Lipid Research Laboratory, VA Medical Center, Washington, District of Columbia
| | - Javier Camacho
- Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Mexico City, Mexico
| | - M Raj Lakshman
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Science, The George Washington University Medical Center, Washington, District of Columbia.,Lipid Research Laboratory, VA Medical Center, Washington, District of Columbia
| | - Pablo Muriel
- Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| |
Collapse
|
24
|
Naghdi S, Slovinsky WS, Madesh M, Rubin E, Hajnóczky G. Mitochondrial fusion and Bid-mediated mitochondrial apoptosis are perturbed by alcohol with distinct dependence on its metabolism. Cell Death Dis 2018; 9:1028. [PMID: 30301883 PMCID: PMC6177459 DOI: 10.1038/s41419-018-1070-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2017] [Revised: 06/29/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Environmental stressors like ethanol (EtOH) commonly target mitochondria to influence the cell’s fate. Recent literature supports that chronic EtOH exposure suppresses mitochondrial dynamics, central to quality control, and sensitizes mitochondrial permeability transition pore opening to promote cell death. EtOH-induced tissue injury is primarily attributed to its toxic metabolic products but alcoholism also impairs tissues that poorly metabolize EtOH. We embarked on studies to determine the respective roles of EtOH and its metabolites in mitochondrial fusion and tBid-induced mitochondrial apoptosis. We used HepG2 cells that do not metabolize EtOH and its engineered clone that expresses EtOH-metabolizing Cytochrome P450 E2 and alcohol dehydrogenase (VL-17A cells). We found that fusion impairment by prolonged EtOH exposure was prominent in VL-17A cells, probably owing to reactive oxygen species increase in the mitochondrial matrix. There was no change in fusion protein abundance, mitochondrial membrane potential or Ca2+ uptake. By contrast, prolonged EtOH exposure promoted tBid-induced outer mitochondrial membrane permeabilization and cell death only in HepG2 cells, owing to enhanced Bak oligomerization. Thus, mitochondrial fusion inhibition by EtOH is dependent on its metabolites, whereas sensitization to tBid-induced death is mediated by EtOH itself. This difference is of pathophysiological relevance because of the tissue-specific differences in EtOH metabolism.
Collapse
Affiliation(s)
- Shamim Naghdi
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - William S Slovinsky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Muniswamy Madesh
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Emanuel Rubin
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Arellanes-Robledo J, Reyes-Gordillo K, Ibrahim J, Leckey L, Shah R, Lakshman MR. Ethanol targets nucleoredoxin/dishevelled interactions and stimulates phosphatidylinositol 4-phosphate production in vivo and in vitro. Biochem Pharmacol 2018; 156:135-146. [PMID: 30125555 PMCID: PMC6297114 DOI: 10.1016/j.bcp.2018.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Nucleoredoxin (NXN) is a redox-regulating protein potentially targeted by reactive oxygen species (ROS). It regulates molecular pathways that participate in several key cellular processes. However, the role of NXN in the alcohol liver disease (ALD) redox regulation has not been fully understood. Here, we investigated the effects of ethanol and ethanol plus lipopolysaccharide, a two-hit liver injury model (Ethanol/LPS), on NXN/dishevelled (DVL) interaction and on DVL-dependent phosphoinositides production both in mouse liver and in a co-culture system consisting of human hepatic stellate cells (HSC) and ethanol metabolizing-VL17A human hepatocyte cells. Ethanol and two-hit model increased Nxn protein and mRNA expression, and 4-hydroxynonenal adducts. Two-hit model promoted Nxn nuclear translocation and Dvl/Phosphatidylinositol 4-kinase type-IIα (Pi4k2a) interaction ratio but surprisingly decreased Dvl protein and mRNA levels and reverted ethanol-induced Nxn/Dvl and Dvl/frizzled (Fzd) interaction ratios. Ethanol resulted in a significant increase of Dvl protein and mRNA expression, and decreased Nxn/Dvl interaction ratio but promoted the interaction of Dvl with Fzd and Pi4k2a; formation of this complex induced phosphatidylinositol 4-phosphate [PI(4)P] production. Ethanol and LPS treatments provoked similar alterations on NXN/DVL interaction and its downstream effect in HSC/VL17A co-culture system. Interestingly, ROS and glutathione levels as well as most of ethanol-induced alterations were modified by NXN overexpression in the co-culture system. In conclusion, two-hit model of ethanol exposure disrupts NXN/DVL homeostatic status to allow DVL/FZD/PI4K2A complex formation and stimulates PI(4)P production. These results provide a new mechanism showing that NXN also participates in the regulation of phosphoinositides production that is altered by ethanol during alcoholic liver disease progression.
Collapse
Affiliation(s)
- Jaime Arellanes-Robledo
- Lipid Research Laboratory, VA Medical Center, Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA; Laboratory of Hepatic Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; National Council of Science and Technology - CONACYT, CDMX, Mexico.
| | - Karina Reyes-Gordillo
- Lipid Research Laboratory, VA Medical Center, Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA.
| | - Joseph Ibrahim
- Lipid Research Laboratory, VA Medical Center, Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA
| | - Leslie Leckey
- Lipid Research Laboratory, VA Medical Center, Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA
| | - Ruchi Shah
- Lipid Research Laboratory, VA Medical Center, Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA
| | - M Raj Lakshman
- Lipid Research Laboratory, VA Medical Center, Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., USA
| |
Collapse
|
26
|
Massey VL, Qin L, Cabezas J, Caballeria J, Sancho-Bru P, Bataller R, Crews FT. TLR7-let-7 Signaling Contributes to Ethanol-Induced Hepatic Inflammatory Response in Mice and in Alcoholic Hepatitis. Alcohol Clin Exp Res 2018; 42:2107-2122. [PMID: 30103265 PMCID: PMC6282707 DOI: 10.1111/acer.13871] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Toll-like receptor 7 (TLR7) is an endosomal TLR that is activated by single-stranded RNA, including endogenous microRNAs (e.g., let-7b). Increased hepatic expression of TLRs, microRNAs, and inflammatory mediators is linked to ethanol (EtOH) exposure and to alcoholic liver disease (ALD). ALD invovles chronic hepatic inflammation that can progress to alcoholic hepatitis (AH), a particularly severe form of ALD. This study aimed to investigate TLR7 expression in patients with different liver disease phenotypes and in mouse liver following alcohol exposure. METHODS Hepatic mRNA expression was determined by RNA sequencing of liver tissue from patients with liver disease or normal liver tissue. Mice were exposed to subchronic EtOH followed by administration of the TLR7 agonist imiquimod. Primary human hepatocytes were exposed to EtOH or imiquimod in vitro. RESULTS RNAseq analysis revealed that hepatic expression of TLR7 and let-7b microRNA, an endogenous TLR7 ligand, was significantly increased in AH patients. Hepatic expression of TLR7 and let-7b positively correlated with hepatic IL-8 mRNA expression. In mice, EtOH increased hepatic TLR7 mRNA expression and enhanced imiquimod-induced expression of the pro-inflammatory mediators TNFα, MCP-1, and iNOS. In vitro, EtOH significantly increased hepatocyte TLR7 mRNA and the TLR7 agonist, imiquimod, induced hepatocyte expression of TNFα and IL-8 mRNA. EtOH also increased the release of let-7b in microvesicles from hepatocytes, suggesting that EtOH can increase the expression of both the receptor and its endogenous ligand. CONCLUSIONS These studies suggest that increased TLR7 signaling caused by increased expression of TLR7 and its endogenous ligand let-7b may contribute to the enhanced inflammatory response associated with AH.
Collapse
Affiliation(s)
- Veronica L Massey
- Bowles Center for Alcohol Studies, University of North Carolina Medical School, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Liya Qin
- Bowles Center for Alcohol Studies, University of North Carolina Medical School, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joaquin Cabezas
- Gastroenterology and Hepatology, Hospital Marques de Valdecilla, Research Institute Valdecilla, Santander, Spain
| | - Juan Caballeria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain.,Liver Unit, Hospital Clinic, Barcelona, Catalonia, Spain
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Ramon Bataller
- Bowles Center for Alcohol Studies, University of North Carolina Medical School, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina Medical School, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
27
|
Ethanol and C2 ceramide activate fatty acid oxidation in human hepatoma cells. Sci Rep 2018; 8:12923. [PMID: 30150688 PMCID: PMC6110824 DOI: 10.1038/s41598-018-31025-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2016] [Accepted: 08/04/2018] [Indexed: 02/07/2023] Open
Abstract
Obesogenic lipids and the sphingolipid ceramide have been implicated as potential cofactors in alcoholic liver disease (ALD) patients. However, the mechanisms by which these lipids modulate lipid trafficking in ethanol-treated human liver cells to promote steatosis, an early stage of ALD, are poorly understood. We measured fatty acid (FA) uptake, triglyceride export, FA synthesis and FA oxidation in human hepatoma (VL-17A) cells in response to ethanol and the exogenous lipids oleate, palmitate and C2 ceramide. We found that in combination with ethanol, both oleate and palmitate promote lipid droplet accumulation while C2 ceramide inhibits lipid droplet accumulation by enhancing FA oxidation. Further, using both a pharmacologic and siRNA approach to reduce peroxisome proliferator-activated receptors α (PPARα) gene expression, we demonstrate that C2 ceramide abrogates ethanol-mediated suppression of FA oxidation through an indirect PPARα mechanism. Together, these data suggest that lipids interact differentially with ethanol to modulate hepatocellular lipid droplet accumulation and may provide novel targets for preventing the earliest stage of alcoholic liver disease, alcoholic steatosis.
Collapse
|
28
|
Li X, Zhang Y, Jin Q, Xia KL, Jiang M, Cui BW, Wu YL, Song SZ, Lian LH, Nan JX. Liver kinase B1/AMP-activated protein kinase-mediated regulation by gentiopicroside ameliorates P2X7 receptor-dependent alcoholic hepatosteatosis. Br J Pharmacol 2018; 175:1451-1470. [PMID: 29338075 DOI: 10.1111/bph.14145] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Regulating P2X7 receptor-mediated activation of NLRP3 inflammasomes could be a therapeutic strategy to treat alcoholic hepatosteatosis. We investigated whether this process was modulated by gentiopicroside, the main active secoiridoid glycoside from Gentiana manshurica Kitagawa. EXPERIMENTAL APPROACH In vivo models of acute and chronic alcoholic hepatosteatosis were established by intragastrically administered ethanol or using chronic plus binge ethanol feeding of Lieber-DeCarli liquid diet to male C57BL/6 mice. In vitro, HepG2 cells were treated with ethanol. RAW 264.7 macrophages and murine bone marrow-derived macrophages (BMDMs) were stimulated with LPS and ATP. KEY RESULTS In both the acute and chronic alcohol-induced mouse hepatosteatosis models, gentiopicroside decreased serum aminotransferases and triglyceride accumulation. Up-regulated SREBP1, down-regulated PPARα and phosphorylated acetyl-CoA carboxylase caused by acute and chronic alcohol feeding were modulated by gentiopicroside, through the elevation of LKB1 and AMPK. Suppression of P2X7 receptor-NLRP3 activation by gentiopicroside inhibited IL-1β production. In ethanol-exposed HepG2 cells, gentiopicroside reduced lipogenesis and promoted lipid oxidation via activation of P2X7 receptor-NLRP3 inflammasomes. Genetic or pharmacological blockade of P2X7 receptors enhanced AMPK activity and reduced SREBP1 expression in ethanol-treated HepG2 cells. Gentiopicroside down-regulated P2X7 receptor-mediated inflammatory responses in LPS/ATP-stimulated RAW 264.7 macrophages and BMDMs. IL-1β from macrophages accelerated lipid accumulation in hepatocytes. Depleting macrophages by clodronate liposomes ameliorated alcoholic hepatosteatosis, and it was further alleviated by gentiopicroside. CONCLUSIONS AND IMPLICATIONS Activation of LKB1/AMPK signalling by gentiopicroside was mediated by the P2X7 receptor-NLRP3 inflammasome, suggesting the therapeutic value of blocking P2X7 receptors in the treatment of alcoholic hepatosteatosis.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Yu Zhang
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Quan Jin
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Kai-Li Xia
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Min Jiang
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Ben-Wen Cui
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Yan-Ling Wu
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Shun-Zong Song
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Li-Hua Lian
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Ji-Xing Nan
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China.,Clinical Research Center, Yanbian University Hospital, Yanji, Jilin Province, 133002, China
| |
Collapse
|
29
|
Liuzzi JP, Narayanan V, Doan H, Yoo C. Effect of zinc intake on hepatic autophagy during acute alcohol intoxication. Biometals 2018; 31:217-232. [PMID: 29392448 DOI: 10.1007/s10534-018-0077-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2017] [Accepted: 01/26/2018] [Indexed: 01/20/2023]
Abstract
Autophagy is a conserved mechanism that plays a housekeeping role by eliminating protein aggregates and damaged organelles. Recent studies have demonstrated that acute ethanol intoxication induces hepatic autophagy in mice. The effect of dietary zinc intake on hepatic autophagic flux during ethanol intoxication has not been evaluated using animal models. Herein, we investigated whether zinc deficiency and excess can affect autophagic flux in the liver in mice and in human hepatoma cells acutely exposed to ethanol. A mouse model of binge ethanol feeding was utilized to analyze the effect of low, adequate, and high zinc intake on hepatic autophagic flux during ethanol intoxication. Autophagic flux was inferred by analyzing LC3II/LC3I ratio, protein levels of p62/SQSTM1, Beclin1 and Atg7, and phosphorylation of 4EBP1. In addition, the degradation of the fusion protein LC3-GFP and the formation of autophagosomes and autolysosomes were evaluated in cells. Ethanol treatment stimulated autophagy in mice and cells. High zinc intake resulted in enhanced autophagy in mice exposed to ethanol. Conversely, zinc deficiency was consistently associated with impaired ethanol-induced autophagy in mice and cells. Zinc-deficient mice exhibited a high degree of ethanol-driven steatosis. Furthermore, zinc depletion increased apoptosis in cells exposed to ethanol. The results of this study suggest that adequate zinc intake is necessary for proper stimulation of autophagy by ethanol. Poor zinc status is commonly found among alcoholics and could likely contribute to faulty autophagy.
Collapse
Affiliation(s)
- Juan P Liuzzi
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW, 8ST, AHC5-325, Miami, FL, 33199, USA.
| | - Vijaya Narayanan
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW, 8ST, AHC5-325, Miami, FL, 33199, USA
| | - Huong Doan
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW, 8ST, AHC5-325, Miami, FL, 33199, USA
| | - Changwon Yoo
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| |
Collapse
|
30
|
Ganesan M, Tikhanovich I, Vangimalla SS, Dagur RS, Wang W, Poluektova LI, Sun Y, Mercer DF, Tuma D, Weinman SA, Kharbanda KK, Osna NA. Demethylase JMJD6 as a New Regulator of Interferon Signaling: Effects of HCV and Ethanol Metabolism. Cell Mol Gastroenterol Hepatol 2018; 5:101-112. [PMID: 29693039 PMCID: PMC5904050 DOI: 10.1016/j.jcmgh.2017.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/01/2017] [Accepted: 10/10/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Alcohol-induced progression of hepatitis C virus (HCV) infection is related to dysfunction of innate immunity in hepatocytes. Endogenously produced interferon (IFN)α induces activation of interferon-stimulated genes (ISGs) via triggering of the Janus kinase-signal transducer and activator of transcription 1 (STAT1) pathway. This activation requires protein methyltransferase 1-regulated arginine methylation of STAT1. Here, we aimed to study whether STAT1 methylation also depended on the levels of demethylase jumonji domain-containing 6 protein (JMJD6) and whether ethanol and HCV affect JMJD6 expression in hepatocytes. METHODS Huh7.5-CYP (RLW) cells and hepatocytes were exposed to acetaldehyde-generating system (AGS) and 50 mmol/L ethanol, respectively. JMJD6 messenger RNA and protein expression were measured by real-time polymerase chain reaction and Western blot. IFNα-activated cells either overexpressing JMJD6 or with knocked-down JMJD6 expression were tested for STAT1 methylation, ISG activation, and HCV RNA. In vivo studies have been performed on C57Bl/6 mice (expressing HCV structural proteins or not) or chimeric mice with humanized livers fed control or ethanol diets. RESULTS AGS exposure to cells up-regulated JMJD6 expression in RLW cells. These results were corroborated by ethanol treatment of primary hepatocytes. The promethylating agent betaine reversed the effects of AGS/ethanol. Similar results were obtained in vivo, when mice were fed control/ethanol with and without betaine supplementation. Overexpression of JMJD6 suppressed STAT1 methylation, IFNα-induced ISG activation, and increased HCV-RNA levels. In contrast, JMJD6 silencing enhanced STAT1 methylation, ISG stimulation by IFNα, and attenuated HCV-RNA expression in Huh7.5 cells. CONCLUSIONS We conclude that arginine methylation of STAT1 is suppressed by JMJD6. Both HCV and acetaldehyde increase JMJD6 levels, thereby impairing STAT1 methylation and innate immunity protection in hepatocytes exposed to the virus and/or alcohol.
Collapse
Key Words
- 4-MP, 4-methylpirazole
- ADH, alcohol dehydrogenase
- AGS, acetaldehyde-generating system
- AMI-1, protein arginine N-methyltransferase inhibitor
- Ach, acetaldehyde
- Alcohol
- BHMT, betaine-homocysteine-S-methyltransferase
- CYP2E1, cytochrome P450 2E1
- HCV
- HCV, hepatitis C virus
- IFN, interferon
- ISG, interferon-stimulated gene
- JAK-STAT, Janus kinase–STAT, signal transducer and activator of transcription
- JMJD6
- JMJD6, jumonji domain-containing 6 protein
- OA, okadaic acid
- OAS-1, 2’-5’-oligoadenylate synthetase-1
- OASL, 2’-5’-oligoadenylate synthetase-like protein
- PCR, polymerase chain reaction
- PP2A, protein phosphatase 2A
- PRMT1, protein methyl transferase 1
- RT, reverse-transcription
- SAM, S-adenosylmethionine
- STAT1
- TK-NOG, thymidine kinase transgene-NOD/Shi-scid/IL-2Rγnull mice
- cDNA, complementary DNA
- mRNA, messenger RNA
- siRNA, short interfering RNA
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska–Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Irina Tikhanovich
- Department of Internal Medicine, Liver Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Shiva Shankar Vangimalla
- Research Service, Veterans Affairs Nebraska–Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Raghubendra Singh Dagur
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Weimin Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Larisa I. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yimin Sun
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - David F. Mercer
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dean Tuma
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Steven A. Weinman
- Department of Internal Medicine, Liver Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska–Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska–Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Correspondence Address correspondence to: Natalia Osna, PhD, Veterans Affairs Medical Center/University of Nebraska Medical Center, 4101 Woolworth Avenue, Omaha, Nebraska 68105. fax: (402) 995-4600.
| |
Collapse
|
31
|
Doody EE, Groebner JL, Walker JR, Frizol BM, Tuma DJ, Fernandez DJ, Tuma PL. Ethanol metabolism by alcohol dehydrogenase or cytochrome P 450 2E1 differentially impairs hepatic protein trafficking and growth hormone signaling. Am J Physiol Gastrointest Liver Physiol 2017; 313:G558-G569. [PMID: 28864499 PMCID: PMC5814672 DOI: 10.1152/ajpgi.00027.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/19/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 01/31/2023]
Abstract
The liver metabolizes alcohol using alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1). Both enzymes metabolize ethanol into acetaldehyde, but CYP2E1 activity also results in the production of reactive oxygen species (ROS) that promote oxidative stress. We have previously shown that microtubules are hyperacetylated in ethanol-treated polarized, hepatic WIF-B cells and livers from ethanol-fed rats. We have also shown that enhanced protein acetylation correlates with impaired clathrin-mediated endocytosis, constitutive secretion, and nuclear translocation and that the defects are likely mediated by acetaldehyde. However, the roles of CYP2E1-generated metabolites and ROS in microtubule acetylation and these alcohol-induced impairments have not been examined. To determine if CYP2E1-mediated alcohol metabolism is required for enhanced acetylation and the trafficking defects, we coincubated cells with ethanol and diallyl sulfide (DAS; a CYP2E1 inhibitor) or N-acetyl cysteine (NAC; an antioxidant). Both agents failed to prevent microtubule hyperacetylation in ethanol-treated cells and also failed to prevent impaired secretion or clathrin-mediated endocytosis. Somewhat surprisingly, both DAS and NAC prevented impaired STAT5B nuclear translocation. Further examination of microtubule-independent steps of the pathway revealed that Jak2/STAT5B activation by growth hormone was prevented by DAS and NAC. These results were confirmed in ethanol-exposed HepG2 cells expressing only ADH or CYP2E1. Using quantitative RT-PCR, we further determined that ethanol exposure led to blunted growth hormone-mediated gene expression. In conclusion, we determined that alcohol-induced microtubule acetylation and associated defects in microtubule-dependent trafficking are mediated by ADH metabolism whereas impaired microtubule-independent Jak2/STAT5B activation is mediated by CYP2E1 activity.NEW & NOTEWORTHY Impaired growth hormone-mediated signaling is observed in ethanol-exposed hepatocytes and is explained by differential effects of alcohol dehydrogenase (ADH)- and cytochrome P450 2E1 (CYP2E1)-mediated ethanol metabolism on the Jak2/STAT5B pathway.
Collapse
Affiliation(s)
- Erin E. Doody
- 1Department of Biology, The Catholic University of America, Washington, District of Columbia;
| | - Jennifer L. Groebner
- 1Department of Biology, The Catholic University of America, Washington, District of Columbia;
| | - Jetta R. Walker
- 2Northern Virginia Community College, Alexandria, Virginia; and
| | - Brittnee M. Frizol
- 1Department of Biology, The Catholic University of America, Washington, District of Columbia;
| | - Dean J. Tuma
- 3Department of Internal Medicine, University of Nebraska, Omaha, Nebraska
| | | | - Pamela L. Tuma
- 1Department of Biology, The Catholic University of America, Washington, District of Columbia;
| |
Collapse
|
32
|
Wang L, Zhou J, Yan S, Lei G, Lee CH, Yin XM. Ethanol-triggered Lipophagy Requires SQSTM1 in AML12 Hepatic Cells. Sci Rep 2017; 7:12307. [PMID: 28951592 PMCID: PMC5614958 DOI: 10.1038/s41598-017-12485-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
Ethanol-induced hepatic lipophagy plays an important cytoprotective role against liver injury, but its mechanism is not fully determined. In the present study, ethanol-induced lipophagy was studied in an immortalized mouse hepatocyte line, AML12. We found that ethanol treatment elevated lipid content in these cells, which could be regulated by autophagy. To determine the potential mechanism, we investigated the role of a key adaptor molecule SQSTM1/p62. SQSTM1 can bind to LC3 on autophagosomes and ubiquitinated molecules on cargos, thus facilitating the autophagic engulfment of the cargo. We found that both LC3 and SQSTM1 could colocalize with lipid droplets (LDs) following ethanol treatment. Colocalization of LC3 with LDs was significantly inhibited by SQSTM1 knockdown, which also reduced ethanol-induced lipid elevation. In addition, increased ubiquitin signals were found to colocalize with SQSTM1 on LDs in response to ethanol. Moreover, the SQSTM1 signal was colocalized with that of perilipin1, a major protein on LDs. Finally, perilipin1 knockdown significantly altered ethanol-induced lipophagy. Taken together, these data support a model in which autophagosomes were directed to the LDs via SQSTM1, which bound to ubiquitinated proteins, possibly including perilipin 1, on LDs. This study provides a potential mechanistic explanation to how ethanol induces lipophagy in hepatocytes.
Collapse
Affiliation(s)
- Lin Wang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Jun Zhou
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center of Minimally Invasive Surgery, Xiangya 2nd Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Guangsheng Lei
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chao-Hung Lee
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
33
|
Williams B, Correnti J, Oranu A, Lin A, Scott V, Annoh M, Beck J, Furth E, Mitchell V, Senkal CE, Obeid L, Carr RM. A novel role for ceramide synthase 6 in mouse and human alcoholic steatosis. FASEB J 2017; 32:130-142. [PMID: 28864659 DOI: 10.1096/fj.201601142r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2016] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
Perilipin 2 (PLIN2) is a lipid-droplet protein that is up-regulated in alcoholic steatosis and associated with hepatic accumulation of ceramides, bioactive lipids implicated in alcoholic liver disease pathogenesis. The specific role of ceramide synthetic enzymes in the regulation of PLIN2 and promotion of hepatocellular lipid accumulation is not well understood. We examined the effects of pharmacologic ceramide synthesis inhibition on hepatic PLIN2 expression, steatosis, and glucose and lipid homeostasis in mice with alcoholic steatosis and in ethanol-incubated human hepatoma VL17A cells. In cells, pharmacologic inhibition of ceramide synthase reduced lipid accumulation by reducing PLIN2 RNA stability. The subtype ceramide synthase (CerS)6 was specifically up-regulated in experimental alcoholic steatosis in vivo and in vitro and was up-regulated in zone 3 hepatocytes in human alcoholic steatosis. In vivo ceramide reduction by inhibition of de novo ceramide synthesis reduced PLIN2 and hepatic steatosis in alcohol-fed mice, but only de novo synthesis inhibition, not sphingomyelin hydrolysis, improved glucose tolerance and dyslipidemia. These findings implicate CerS6 as a novel regulator of PLIN2 and suggest that ceramide synthetic enzymes may promote the earliest stage of alcoholic liver disease, alcoholic steatosis.-Williams, B., Correnti, J., Oranu, A., Lin, A., Scott, V., Annoh, M., Beck, J., Furth, E., Mitchell, V., Senkal, C. E., Obeid, L., Carr, R. M. A novel role for ceramide synthase 6 in mouse and human alcoholic steatosis.
Collapse
Affiliation(s)
- Bianca Williams
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jason Correnti
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amanke Oranu
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Annie Lin
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Victoria Scott
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maxine Annoh
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James Beck
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emma Furth
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Victoria Mitchell
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Can E Senkal
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA; and
| | - Lina Obeid
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA; and.,Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Rotonya M Carr
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
34
|
Sanchez AC, Li C, Andrews B, Asenjo JA, Samulski RJ. AAV Gene Therapy for Alcoholism: Inhibition of Mitochondrial Aldehyde Dehydrogenase Enzyme Expression in Hepatoma Cells. Hum Gene Ther 2017; 28:717-725. [PMID: 28578603 DOI: 10.1089/hum.2017.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
Most ethanol is broken down in the liver in two steps by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH2) enzymes, which metabolize down ethanol into acetaldehyde and then acetate. Some individuals from the Asian population who carry a mutation in the aldehyde dehydrogenase gene (ALDH2*2) cannot metabolize acetaldehyde as efficiently, producing strong effects, including facial flushing, dizziness, hypotension, and palpitations. This results in an aversion to alcohol intake and protection against alcoholism. The large prevalence of this mutation in the human population strongly suggests that modulation of ALDH2 expression by genetic technologies could result in a similar phenotype. scAAV2 vectors encoding ALDH2 small hairpin RNA (shRNA) were utilized to validate this hypothesis by silencing ALDH2 gene expression in human cell lines. Human cell lines HEK-293 and HepG2 were transduced with scAAV2/shRNA, showing a reduction in ALDH2 RNA and protein expression with the two viral concentration assayed (1 × 104 and 1 × 105 vg/cell) at two different time points. In both cell lines, ALDH2 RNA levels were reduced by 90% and protein expression was inhibited by 90% and 52%, respectively, 5 days post infection. Transduced HepG2 VL17A cells (ADH+) exposed to ethanol resulted in a 50% increase in acetaldehyde levels. These results suggest that gene therapy could be a useful tool for the treatment of alcoholism by knocking down ALDH2 expression using shRNA technology delivered by AAV vectors.
Collapse
Affiliation(s)
- Anamaria C Sanchez
- 1 Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile , Santiago, Chile
| | - Chengwen Li
- 2 Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina
| | - Barbara Andrews
- 1 Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile , Santiago, Chile
| | - Juan A Asenjo
- 1 Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile , Santiago, Chile
| | - R Jude Samulski
- 2 Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina
| |
Collapse
|
35
|
Megumi C, Muroyama K, Sasako H, Tsuge N. Preventive Activity of ar-Turmerone and Bisacurone Isolated from Turmeric Extract Against Ethanol-induced Hepatocyte Injury. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Affiliation(s)
- Chiaki Megumi
- Central Research & Development Institute, House Foods Group Inc
| | | | - Hiroshi Sasako
- Central Research & Development Institute, House Foods Group Inc
| | - Nobuaki Tsuge
- Central Research & Development Institute, House Foods Group Inc
| |
Collapse
|
36
|
Kumar SM, Haridoss M, Swaminathan K, Gopal RK, Clemens D, Dey A. The effects of changes in glutathione levels through exogenous agents on intracellular cysteine content and protein adduct formation in chronic alcohol-treated VL17A cells. Toxicol Mech Methods 2016; 27:128-135. [DOI: 10.1080/15376516.2016.1268229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/20/2022]
Affiliation(s)
- S. Mathan Kumar
- Life Science Division, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | - Madhumitha Haridoss
- Life Science Division, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | - Kavitha Swaminathan
- Life Science Division, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | - Ramesh Kumar Gopal
- Life Science Division, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | - Dahn Clemens
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska and Western Iowa Veterans Administration Medical Center, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aparajita Dey
- Life Science Division, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| |
Collapse
|
37
|
Ganesan M, Poluektova LY, Tuma DJ, Kharbanda KK, Osna NA. Acetaldehyde Disrupts Interferon Alpha Signaling in Hepatitis C Virus-Infected Liver Cells by Up-Regulating USP18. Alcohol Clin Exp Res 2016; 40:2329-2338. [PMID: 27716962 PMCID: PMC6800117 DOI: 10.1111/acer.13226] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2016] [Accepted: 08/30/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Alcohol consumption exacerbates the pathogenesis of hepatitis C virus (HCV) infection and worsens disease outcomes. The exact reasons are not clear yet, but they might be partially attributed to the ability of alcohol to further suppress the innate immunity. Innate immunity is known to be already decreased by HCV in liver cells. METHODS In this study, we aimed to explore the mechanisms of how alcohol metabolism dysregulates IFNα signaling (STAT1 phosphorylation) in HCV+ hepatoma cells. To this end, CYP2E1+ Huh7.5 cells were infected with HCV and exposed to the acetaldehyde (Ach) generating system (AGS). RESULTS Continuously produced Ach suppressed IFNα-induced STAT1 phosphorylation, but increased the level of a protease, USP18 (both measured by Western blot), which interferes with IFNα signaling. Induction of USP18 by Ach was confirmed in primary human hepatocyte cultures and in livers of ethanol-fed HCV transgenic mice. Silencing of USP18 by specific siRNA attenuated the pSTAT1 suppression by Ach. The mechanism by which Ach down-regulates pSTAT1 is related to an enhanced interaction between IFNαR2 and USP18 that finally dysregulates the cross talk between the IFN receptor on the cell surface and STAT1. Furthermore, Ach decreases ISGylation of STAT1 (protein conjugation of a small ubiquitin-like modifier, ISG15, Western blot), which preserves STAT1 activation. Suppressed ISGylation leads to an increase in STAT1 K48 polyubiquitination which allows pSTAT1 degrading by proteasome. CONCLUSIONS We conclude that Ach disrupts IFNα-induced STAT1 phosphorylation by the up-regulation of USP18 to block the innate immunity protection in HCV-infected liver cells, thereby contributing to HCV-alcohol pathogenesis. This, in part, may explain the mechanism of HCV-infection exacerbation/progression in alcohol-abusing patients.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dean J Tuma
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
38
|
Ganesan M, Natarajan SK, Zhang J, Mott JL, Poluektova LI, McVicker BL, Kharbanda KK, Tuma DJ, Osna NA. Role of apoptotic hepatocytes in HCV dissemination: regulation by acetaldehyde. Am J Physiol Gastrointest Liver Physiol 2016; 310:G930-40. [PMID: 27056722 PMCID: PMC6842882 DOI: 10.1152/ajpgi.00021.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/12/2016] [Accepted: 03/31/2016] [Indexed: 02/08/2023]
Abstract
Alcohol consumption exacerbates hepatitis C virus (HCV) pathogenesis and promotes disease progression, although the mechanisms are not quite clear. We have previously observed that acetaldehyde (Ach) continuously produced by the acetaldehyde-generating system (AGS), temporarily enhanced HCV RNA levels, followed by a decrease to normal or lower levels, which corresponded to apoptosis induction. Here, we studied whether Ach-induced apoptosis caused depletion of HCV-infected cells and what role apoptotic bodies (AB) play in HCV-alcohol crosstalk. In liver cells exposed to AGS, we observed the induction of miR-122 and miR-34a. As miR-34a has been associated with apoptotic signaling and miR-122 with HCV replication, these findings may suggest that cells with intensive viral replication undergo apoptosis. Furthermore, when AGS-induced apoptosis was blocked by a pan-caspase inhibitor, the expression of HCV RNA was not changed. AB from HCV-infected cells contained HCV core protein and the assembled HCV particle that infect intact hepatocytes, thereby promoting the spread of infection. In addition, AB are captured by macrophages to switch their cytokine profile to the proinflammatory one. Macrophages exposed to HCV(+) AB expressed more IL-1β, IL-18, IL-6, and IL-10 mRNAs compared with those exposed to HCV(-) AB. The generation of AB from AGS-treated HCV-infected cells even enhanced the induction of aforementioned cytokines. We conclude that HCV and alcohol metabolites trigger the formation of AB containing HCV particles. The consequent spread of HCV to neighboring hepatocytes via infected AB, as well as the induction of liver inflammation by AB-mediated macrophage activation potentially exacerbate the HCV infection course by alcohol and worsen disease progression.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sathish Kumar Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jinjin Zhang
- School of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Justin L Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Benita L McVicker
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dean J Tuma
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska;
| |
Collapse
|
39
|
Scheer MA, Schneider KJ, Finnigan RL, Maloney EP, Wells MA, Clemens DL. The Involvement of Acetaldehyde in Ethanol-Induced Cell Cycle Impairment. Biomolecules 2016; 6:biom6020017. [PMID: 27043646 PMCID: PMC4919912 DOI: 10.3390/biom6020017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2016] [Revised: 03/09/2016] [Accepted: 03/24/2016] [Indexed: 01/15/2023] Open
Abstract
Background: Hepatocytes metabolize the vast majority of ingested ethanol. This metabolic activity results in hepatic toxicity and impairs the ability of hepatocytes to replicate. Previous work by our group has shown that ethanol metabolism results in a G2/M cell cycle arrest. The intent of these studies was to discern the roles of acetaldehyde and reactive oxygen, two of the major by-products of ethanol metabolism, in the G2/M cell cycle arrest. Methods: To investigate the role of ethanol metabolites in the cell cycle arrest, VA-13 and VL-17A cells were used. These are recombinant Hep G2 cells that express alcohol dehydrogenase or alcohol dehydrogenase and cytochrome P450 2E1, respectively. Cells were cultured with or without ethanol, lacking or containing the antioxidants N-acetylcysteine (NAC) or trolox, for three days. Cellular accumulation was monitored by the DNA content of the cultures. The accumulation of the cyclin-dependent kinase, Cdc2 in the inactive phosphorylated form (p-Cdc2) and the cyclin-dependent kinase inhibitor p21 were determined by immunoblot analysis. Results: Cultures maintained in the presence of ethanol demonstrated a G2/M cell cycle arrest that was associated with a reduction in DNA content and increased levels of p-Cdc2 and p21, compared with cells cultured in its absence. Inclusion of antioxidants in the ethanol containing media was unable to rescue the cells from the cell cycle arrest or these ethanol metabolism-mediated effects. Additionally, culturing the cells in the presence of acetaldehyde alone resulted in increased levels of p-Cdc2 and p21. Conclusions: Acetaldehyde produced during ethanol oxidation has a major role in the ethanol metabolism-mediated G2/M cell cycle arrest, and the concurrent accumulation of p21 and p-Cdc2. Although reactive oxygen species are thought to have a significant role in ethanol-induced hepatocellular damage, they may have a less important role in the inability of hepatocytes to replace dead or damaged cells.
Collapse
Affiliation(s)
- Marc A Scheer
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Katrina J Schneider
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
- Nebraska and Western Iowa Veterans Administration Medical Center, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Rochelle L Finnigan
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Eamon P Maloney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Mark A Wells
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Dahn L Clemens
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
- Nebraska and Western Iowa Veterans Administration Medical Center, University of Nebraska Medical Center, Omaha, NE 68105, USA.
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| |
Collapse
|
40
|
Ethanol enhances cucurbitacin B-induced apoptosis by inhibiting cucurbitacin B-induced autophagy in LO2 hepatocytes. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0005-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
|
41
|
McKillop IH, Schrum LW, Thompson KJ. Role of alcohol in the development and progression of hepatocellular carcinoma. Hepat Oncol 2016; 3:29-43. [PMID: 30191025 PMCID: PMC6095421 DOI: 10.2217/hep.15.40] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant cause of cancer-related morbidity and mortality. Chronic, heavy ethanol consumption is a major risk for developing the worsening liver pathologies that culminate in hepatic cirrhosis, the leading risk factor for developing HCC. A significant body of work reports the biochemical and pathological consequences of ethanol consumption and metabolism during hepatocarcinogeneis. The systemic effects of ethanol means organ system interactions are equally important in understanding the initiation and progression of HCC within the alcoholic liver. This review aims to summarize the effects of ethanol-ethanol metabolism during the pathogenesis of alcoholic liver disease, the progression toward HCC and the importance of ethanol as a comorbid factor for HCC development.
Collapse
Affiliation(s)
- Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203 USA
| | - Laura W Schrum
- Department of Medicine, Carolinas Medical Center, Charlotte, NC 28203 USA
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203 USA
| |
Collapse
|
42
|
Petrosyan A, Cheng PW, Clemens DL, Casey CA. Downregulation of the small GTPase SAR1A: a key event underlying alcohol-induced Golgi fragmentation in hepatocytes. Sci Rep 2015; 5:17127. [PMID: 26607390 PMCID: PMC4660820 DOI: 10.1038/srep17127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Abstract
The hepatic asialoglycoprotein receptor (ASGP-R) is posttranslationally modified in the Golgi en route to the plasma membrane, where it mediates clearance of desialylated serum glycoproteins. It is known that content of plasma membrane-associated ASGP-R is decreased after ethanol exposure, although the mechanisms remain elusive. Previously, we found that formation of compact Golgi requires dimerization of the largest Golgi matrix protein giantin. We hypothesize that ethanol-impaired giantin function may be related to altered trafficking of ASGP-R. Here we report that in HepG2 cells expressing alcohol dehydrogenase and hepatocytes of ethanol-fed rats, ethanol metabolism results in Golgi disorganization. This process is initiated by dysfunction of SAR1A GTPase followed by altered COPII vesicle formation and impaired Golgi delivery of the protein disulfide isomerase A3 (PDIA3), an enzyme that catalyzes giantin dimerization. Additionally, we show that SAR1A gene silencing in hepatocytes mimics the effect of ethanol: dedimerization of giantin, arresting PDIA3 in the endoplasmic reticulum (ER) and large-scale alterations in Golgi architecture. Ethanol-induced Golgi fission has no effect on ER-to-Golgi transportation of ASGP-R, however, it results in its deposition in cis-medial-, but not trans-Golgi. Thus, alcohol-induced deficiency in COPII vesicle formation predetermines Golgi fragmentation which, in turn, compromises the Golgi-to-plasma membrane transportation of ASGP-R.
Collapse
Affiliation(s)
- Armen Petrosyan
- Department of Biochemistry and Molecular Biology, College of Medicine, Omaha, NE, USA
| | - Pi-Wan Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Omaha, NE, USA
- Nebraska Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| | - Dahn L. Clemens
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| | - Carol A. Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| |
Collapse
|
43
|
Ganesan M, Zhang J, Bronich T, Poluektova LI, Donohue TM, Tuma DJ, Kharbanda KK, Osna NA. Acetaldehyde accelerates HCV-induced impairment of innate immunity by suppressing methylation reactions in liver cells. Am J Physiol Gastrointest Liver Physiol 2015; 309:G566-77. [PMID: 26251470 PMCID: PMC6842870 DOI: 10.1152/ajpgi.00183.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/09/2015] [Accepted: 08/04/2015] [Indexed: 02/08/2023]
Abstract
Alcohol exposure worsens the course and outcomes of hepatitis C virus (HCV) infection. Activation of protective antiviral genes is induced by IFN-α signaling, which is altered in liver cells by either HCV or ethanol exposure. However, the mechanisms of the combined effects of HCV and ethanol metabolism in IFN-α signaling modulation are not well elucidated. Here, we explored a possibility that ethanol metabolism potentiates HCV-mediated dysregulation of IFN-α signaling in liver cells via impairment of methylation reactions. HCV-infected Huh7.5 CYP2E1(+) cells and human hepatocytes were exposed to acetaldehyde (Ach)-generating system (AGS) and stimulated with IFN-α to activate IFN-sensitive genes (ISG) via the Jak-STAT-1 pathway. We observed significant suppression of signaling events by Ach. Ach exposure decreased STAT-1 methylation via activation of protein phosphatase 2A and increased the protein inhibitor of activated STAT-1 (PIAS-1)-STAT-1 complex formation in both HCV(+) and HCV(-) cells, preventing ISG activation. Treatment with a promethylating agent, betaine, attenuated all examined Ach-induced defects. Ethanol metabolism-induced changes in ISGs are methylation related and confirmed by in vivo studies on HCV(+) transgenic mice. HCV- and Ach-induced impairment of IFN signaling temporarily increased HCV RNA levels followed by apoptosis of heavily infected cells. We concluded that Ach potentiates the suppressive effects of HCV on activation of ISGs attributable to methylation-dependent dysregulation of IFN-α signaling. A temporary increase in HCV RNA sensitizes the liver cells to Ach-induced apoptosis. Betaine reverses the inhibitory effects of Ach on IFN signaling and thus can be used for treatment of HCV(+) alcohol-abusing patients.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jinjin Zhang
- School of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tatiana Bronich
- School of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Larisa I Poluektova
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology and Experimental Neuroscience, Omaha, Nebraska
| | - Terrence M Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dean J Tuma
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska;
| |
Collapse
|
44
|
Abstract
Alcoholic liver disease (ALD) is the number one cause of liver failure worldwide; its management costs billions of healthcare dollars annually. Since the advent of the obesity epidemic, insulin resistance (IR) and diabetes have become common clinical findings in patients with ALD; and the development of IR predicts the progression from simple steatosis to cirrhosis in ALD patients. Both clinical and experimental data implicate the impairment of several mediators of insulin signaling in ALD, and experimental data suggest that insulin-sensitizing therapies improve liver histology. This review explores the contribution of impaired insulin signaling in ALD and summarizes the current understanding of the synergistic relationship between alcohol and nutrient excess in promoting hepatic inflammation and disease.
Collapse
Affiliation(s)
- Rotonya M Carr
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason Correnti
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Neuman MG, French SW, French BA, Seitz HK, Cohen LB, Mueller S, Osna NA, Kharbanda KK, Seth D, Bautista A, Thompson KJ, McKillop IH, Kirpich IA, McClain CJ, Bataller R, Nanau RM, Voiculescu M, Opris M, Shen H, Tillman B, Li J, Liu H, Thomes PG, Ganesan M, Malnick S. Alcoholic and non-alcoholic steatohepatitis. Exp Mol Pathol 2014; 97:492-510. [PMID: 25217800 PMCID: PMC4696068 DOI: 10.1016/j.yexmp.2014.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2014] [Accepted: 09/08/2014] [Indexed: 02/08/2023]
Abstract
This paper is based upon the "Charles Lieber Satellite Symposia" organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human immunodeficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible repair. We aim to (1) determine the immuno-pathology of alcohol-induced liver damage, (2) examine the role of genetics in the development of ASH, (3) propose diagnostic markers of ASH and NASH, (4) examine age differences, (5) develop common research tools to study alcohol-induced effects in clinical and pre-clinical studies, and (6) focus on factors that aggravate severity of organ-damage. The intention of these symposia is to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | - Helmut K Seitz
- Centre of Alcohol Research, University of Heidelberg and Department of Medicine (Gastroenterology and Hepatology), Salem Medical Centre, Heidelberg, Germany
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sebastian Mueller
- Centre of Alcohol Research, University of Heidelberg and Department of Medicine (Gastroenterology and Hepatology), Salem Medical Centre, Heidelberg, Germany
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Devanshi Seth
- Drug Health Services, Royal Prince Alfred Hospital, Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, NSW 2050, Australia; Faculty of Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Abraham Bautista
- Office of Extramural Activities, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine and Department of Pharmacology; Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine and Department of Pharmacology; Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Robley Rex Veterans Medical Center, Louisville, KY, USA
| | - Ramon Bataller
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Radu M Nanau
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, Ontario, Canada
| | - Mihai Voiculescu
- Division of Nephrology and Internal Medicine, Fundeni Clinical Institute and University of Medicine and Pharmacy, "Carol Davila", Bucharest, Romania
| | - Mihai Opris
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, Ontario, Canada; Family Medicine Clinic CAR, Bucharest, Romania
| | - Hong Shen
- Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Jun Li
- Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hui Liu
- Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Paul G Thomes
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Steve Malnick
- Department Internal Medicine, Kaplan Medical Centre and Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
46
|
Donohue TM, Thomes PG. Ethanol-induced oxidant stress modulates hepatic autophagy and proteasome activity. Redox Biol 2014; 3:29-39. [PMID: 25462063 PMCID: PMC4297932 DOI: 10.1016/j.redox.2014.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023] Open
Abstract
In this review, we describe research findings on the effects of alcohol exposure on two major catabolic systems in liver cells: the ubiquitin-proteasome system (UPS) and autophagy. These hydrolytic systems are not unique to liver cells; they exist in all eukaryotic tissues and cells. However, because the liver is the principal site of ethanol metabolism, it sustains the greatest damage from heavy drinking. Thus, the focus of this review is to specifically describe how ethanol oxidation modulates the activities of the UPS and autophagy and the mechanisms by which these changes contribute to the pathogenesis of alcohol-induced liver injury. Here, we describe the history and the importance of cellular hydrolytic systems, followed by a description of each catabolic pathway and the differential modulation of each by ethanol exposure. Overall, the evidence for an involvement of these catabolic systems in the pathogenesis of alcoholic liver disease is quite strong. It underscores their importance, not only as effective means of cellular recycling and eventual energy generation, but also as essential components of cellular defense.
Collapse
Affiliation(s)
- Terrence M Donohue
- Research Service (151), VA-Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, College of Medicine, USA; Department of Biochemistry and Molecular Biology, College of Medicine, USA; Department of Pathology and Microbiology, College of Medicine, USA; The Center for Environmental Health and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Paul G Thomes
- Research Service (151), VA-Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, College of Medicine, USA
| |
Collapse
|
47
|
Kumar SM, Swaminathan K, Clemens DL, Dey A. Modulation of GSH with exogenous agents leads to changes in glyoxalase 1 enzyme activity in VL-17A cells exposed to chronic alcohol plus high glucose. Food Funct 2014; 5:345-58. [PMID: 24352527 DOI: 10.1039/c3fo60354g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
Abstract
Gluthathione (GSH) is a major cellular antioxidant. The present study utilizing VL-17A cells exposed to chronic alcohol plus high glucose investigated the changes in oxidative stress, toxicity, and glyoxalase 1 activity as a detoxification pathway due to changes in GSH level through GSH supplementation with N-acetyl cysteine (NAC) or ursodeoxycholic acid (UDCA) and its depletion through buthionine sulfoximine (BSO) or diethyl maleate (DEM). Glyoxalase 1 plays an important role in detoxification of methylglyoxal which is formed as a precursor of advanced glycated end products formed due to high glucose mediated oxidative stress. Significant changes in glyoxalase 1 activity utilizing methylglyoxal or glyoxal as substrates occurred with NAC or UDCA or BSO or DEM supplementation in chronic alcohol plus high glucose treated VL-17A cells. NAC or UDCA administration in chronic alcohol plus high glucose treated VL-17A cells increased viability and decreased ROS levels, lipid peroxidation and 3-nitrotyrosine adduct formation. Similarly, GSH depletion with BSO or DEM had an opposite effect on the parameters in chronic alcohol plus high glucose treated VL-17A cells. In conclusion, modulation of GSH with NAC or UDCA or BSO or DEM leads to significant changes in oxidative stress, glyoxalase 1 enzyme activity and toxicity in chronic alcohol plus high glucose treated VL-17A cells.
Collapse
Affiliation(s)
- S Mathan Kumar
- Life Science Division, AU-KBC Research Centre, MIT Campus of Anna University, Chromepet, Chennai-600044, India.
| | | | | | | |
Collapse
|
48
|
Inhibitory effect of the ethyl acetate fraction from astringent persimmon on H2O2-induced oxidative stress in HepG2 cells. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0171-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/24/2022] Open
|
49
|
Groebner JL, Fernandez DJ, Tuma DJ, Tuma PL. Alcohol-induced defects in hepatic transcytosis may be explained by impaired dynein function. Mol Cell Biochem 2014; 397:223-33. [PMID: 25148871 DOI: 10.1007/s11010-014-2190-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2014] [Accepted: 08/13/2014] [Indexed: 01/10/2023]
Abstract
Alcoholic liver disease has been clinically well described, but the molecular mechanisms leading to hepatotoxicity have not been fully elucidated. Previously, we determined that microtubules are hyperacetylated and more stable in ethanol-treated WIF-B cells, VL-17A cells, liver slices, and in livers from ethanol-fed rats. From our recent studies, we believe that these modifications can explain alcohol-induced defects in microtubule motor-dependent protein trafficking including nuclear translocation of a subset of transcription factors. Since cytoplasmic dynein/dynactin is known to mediate both microtubule-dependent translocation and basolateral to apical/canalicular transcytosis, we predicted that transcytosis is impaired in ethanol-treated hepatic cells. We monitored transcytosis of three classes of newly synthesized canalicular proteins in polarized, hepatic WIF-B cells, an emerging model system for the study of liver disease. As predicted, canalicular delivery of all proteins tested was impaired in ethanol-treated cells. Unlike in control cells, transcytosing proteins were observed in discrete sub-canalicular puncta en route to the canalicular surface that aligned along acetylated microtubules. We further determined that the stalled transcytosing proteins colocalized with dynein/dynactin in treated cells. No changes in vesicle association were observed for either dynein or dynactin in ethanol-treated cells, but significantly enhanced dynein binding to microtubules was observed. From these results, we propose that enhanced dynein binding to microtubules in ethanol-treated cells leads to decreased motor processivity resulting in vesicle stalling and in impaired canalicular delivery. Our studies also importantly indicate that modulating cellular acetylation levels with clinically tolerated deacetylase agonists may be a novel therapeutic strategy for treating alcoholic liver disease.
Collapse
Affiliation(s)
- Jennifer L Groebner
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, NE, Washington, DC, 20064, USA
| | | | | | | |
Collapse
|
50
|
Autophagy in alcohol-induced multiorgan injury: mechanisms and potential therapeutic targets. BIOMED RESEARCH INTERNATIONAL 2014; 2014:498491. [PMID: 25140315 PMCID: PMC4124834 DOI: 10.1155/2014/498491] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/04/2014] [Accepted: 06/29/2014] [Indexed: 12/21/2022]
Abstract
Autophagy is a genetically programmed, evolutionarily conserved intracellular degradation pathway involved in the trafficking of long-lived proteins and cellular organelles to the lysosome for degradation to maintain cellular homeostasis. Alcohol consumption leads to injury in various tissues and organs including liver, pancreas, heart, brain, and muscle. Emerging evidence suggests that autophagy is involved in alcohol-induced tissue injury. Autophagy serves as a cellular protective mechanism against alcohol-induced tissue injury in most tissues but could be detrimental in heart and muscle. This review summarizes current knowledge about the role of autophagy in alcohol-induced injury in different tissues/organs and its potential molecular mechanisms as well as possible therapeutic targets based on modulation of autophagy.
Collapse
|