1
|
Ivanova OA, Predeus AV, Sorokina MY, Ignatieva EV, Bobkov DE, Sukhareva KS, Kostareva AA, Dmitrieva RI. LMNA R482L mutation causes impairments in C2C12 myoblasts subpopulations, alterations in metabolic reprogramming during differentiation, and oxidative stress. Sci Rep 2025; 15:5358. [PMID: 39948343 PMCID: PMC11825939 DOI: 10.1038/s41598-025-88219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
LMNA mutations causing classical familial partial lipodystrophy of Dunnigan type (FPLD2) usually affect residue R482. FPLD is a severe metabolic disorder that often leads to cardiovascular and skeletal muscle complications. How LMNA mutations affect the functional properties of skeletal muscles is still not well understood. In the present project, we investigated the LMNA-R482L mutation-specific alterations in a transgenic mouse C2C12 cell line of myoblasts. Using single-cell RNA sequencing we have studied transcriptional diversity of cultured in vitro C2C12 cells. The LMNA-R482L mutation induces changes in C2C12 cluster composition and increases the expression of genes related to connective tissue development, oxidative stress, stress defense, and autophagy in a population-specific manner. Bulk RNA-seq confirmed these results and revealed the dysregulation of carbohydrate metabolism in differentiated R482L myotubes that was supported by ATP production profile evaluation. The measurement of reactive oxygen species (ROS) levels and glutathione accumulation in myoblasts and myotubes indicates R482L mutation-related dysregulation in mechanisms that control ROS production and scavenging through antioxidant glutathione system. The increased accumulation of autophagy-related structures in R482L myoblasts was also shown. Overall, our experiments showed a connection between the redox status and metabolic alterations with skeletal muscle pathological phenotypes in cells bearing pathogenic LMNA mutation.
Collapse
Affiliation(s)
- Oksana A Ivanova
- Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia.
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia.
| | - Alexander V Predeus
- Bioinformatics Institute, 2A Kantemirovskaya St., Saint Petersburg, 194100, Russia
| | - Margarita Y Sorokina
- Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia
| | - Elena V Ignatieva
- Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia
| | - Danila E Bobkov
- Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., Saint Petersburg, 194064, Russia
| | - Kseniia S Sukhareva
- Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia
| | - Anna A Kostareva
- Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia
| | - Renata I Dmitrieva
- Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia.
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia.
| |
Collapse
|
2
|
Al Harake SN, Abedin Y, Hatoum F, Nassar NZ, Ali A, Nassar A, Kanaan A, Bazzi S, Azar S, Harb F, Ghadieh HE. Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities. Adipocyte 2024; 13:2403380. [PMID: 39329369 PMCID: PMC11445895 DOI: 10.1080/21623945.2024.2403380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Lipid droplets (LDs) are highly specialized energy storage organelles involved in the maintenance of lipid homoeostasis by regulating lipid flux within white adipose tissue (WAT). The physiological function of adipocytes and LDs can be compromised by mutations in several genes, leading to NEFA-induced lipotoxicity, which ultimately manifests as metabolic complications, predominantly in the form of dyslipidemia, ectopic fat accumulation, and insulin resistance. In this review, we delineate the effects of mutations and deficiencies in genes - CIDEC, PPARG, BSCL2, AGPAT2, PLIN1, LIPE, LMNA, CAV1, CEACAM1, and INSR - involved in lipid droplet metabolism and their associated pathophysiological impairments, highlighting their roles in the development of lipodystrophies and metabolic dysfunction.
Collapse
Affiliation(s)
- Sami N. Al Harake
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Yasamin Abedin
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Fatema Hatoum
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Nour Zahraa Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Ali Ali
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Aline Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Amjad Kanaan
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Samer Bazzi
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Sami Azar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| |
Collapse
|
3
|
Palomar-Gallego MA, Ramiro-Bargueño J, Cuerda-Galindo E, Linares-García-Valdecasas R, Gómez-Sánchez SM, Delcan J, Díaz-Gil G. An Experimental Murine Model to Study Lipoatrophia Semicircularis. Curr Issues Mol Biol 2024; 46:7986-7996. [PMID: 39194689 DOI: 10.3390/cimb46080472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Lipoatrophia semicircularis is a benign pathology characterized by subcutaneous tissue atrophy that affects the skin and related structures. Its etiology remains unclear; however, in the recent few years, it has been proposed that electrostatic charges could be a potential factor. Based on this hypothesis, the aim of this work is to study the cause-effect relation between electrostatic energy and LS, providing insights into the molecular mechanisms. For this purpose, an experimental murine model was created using obese mice. One group served as a control and the other groups involved charging clothes with varying connections to the ground: through the skin, through the clothes or not connected to the ground). Skin biopsies showed that the most significant lesions, including lipophagic granulomas with inflammatory infiltrate, were found in the first group (connected to the ground through the skin). Lipophagic reactions without an inflammatory infiltrate were observed in the other groups subjected to electrical discharges. In the control mice, no histological changes were observed. Oxidative processes were also measured in lower limbs tissue. Malondialdehyde levels significantly increased in the lower limbs after electrostatic discharges. However, the presence of ground through a wire attached to highly conductive clothes around the thigh significantly reduced the effect of electrostatic charges on lipid peroxidation. To our knowledge, this is the first study in which an experimental model has been used to reproduce LS induced by electrostatic energy, suggesting a cause-effect relationship between electrostatic charge and discharge with fat tissue lesion.
Collapse
Affiliation(s)
- María Angustias Palomar-Gallego
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
- Grupo de Investigación Emergente de Bases Anatómicas, Moleculares y del Desarrollo Humano de la Universidad Rey Juan Carlos (GAMDES), 28922 Alcorcón, Spain
| | - Julio Ramiro-Bargueño
- Department of Signal Theory, Communications and Telematic Systems and Computing, Universidad Rey Juan Carlos, 28942 Fuenlabrada, Spain
| | - Esther Cuerda-Galindo
- Private Practice Consultation Ber-Matologie, Albrechtstraße 50, 12167 Berlin, Germany
| | | | - Stella M Gómez-Sánchez
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
- Grupo de Investigación Emergente de Bases Anatómicas, Moleculares y del Desarrollo Humano de la Universidad Rey Juan Carlos (GAMDES), 28922 Alcorcón, Spain
| | - José Delcan
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
- Grupo de Investigación Emergente de Bases Anatómicas, Moleculares y del Desarrollo Humano de la Universidad Rey Juan Carlos (GAMDES), 28922 Alcorcón, Spain
| | - Gema Díaz-Gil
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
- Grupo de Investigación Emergente de Bases Anatómicas, Moleculares y del Desarrollo Humano de la Universidad Rey Juan Carlos (GAMDES), 28922 Alcorcón, Spain
| |
Collapse
|
4
|
Salvatori L, Magno S, Ceccarini G, Tozzi R, Contini S, Pelosini C, Santini F, Gnessi L, Mariani S. SIRT1 Serum Concentrations in Lipodystrophic Syndromes. Int J Mol Sci 2024; 25:4785. [PMID: 38732001 PMCID: PMC11084952 DOI: 10.3390/ijms25094785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Lipodystrophies (LDs) are rare, complex disorders of the adipose tissue characterized by selective fat loss, altered adipokine profile and metabolic impairment. Sirtuins (SIRTs) are class III NAD+-dependent histone deacetylases linked to fat metabolism. SIRT1 plays a critical role in metabolic health by deacetylating target proteins in tissue types including liver, muscle, and adipose. Circulating SIRT1 levels have been found to be reduced in obesity and increased in anorexia nervosa and patients experiencing weight loss. We evaluated circulating SIRT1 levels in relation to fat levels in 32 lipodystrophic patients affected by congenital or acquired LDs compared to non-LD subjects (24 with anorexia nervosa, 22 normal weight, and 24 with obesity). SIRT1 serum levels were higher in LDs than normal weight subjects (mean ± SEM 4.18 ± 0.48 vs. 2.59 ± 0.20 ng/mL) and subjects with obesity (1.7 ± 0.39 ng/mL), whereas they were close to those measured in anorexia nervosa (3.44 ± 0.46 ng/mL). Our findings show that within the LD group, there was no relationship between SIRT1 levels and the amount of body fat. The mechanisms responsible for secretion and regulation of SIRT1 in LD deserve further investigation.
Collapse
Affiliation(s)
- Luisa Salvatori
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy;
| | - Silvia Magno
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, 56124 Pisa, Italy (G.C.)
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, 56124 Pisa, Italy (G.C.)
| | - Rossella Tozzi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Savina Contini
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Caterina Pelosini
- Chemistry and Endocrinology Laboratory, University Hospital of Pisa, 56124 Pisa, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, 56124 Pisa, Italy (G.C.)
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
5
|
Jussila A, Zhang B, Kirti S, Atit R. Tissue fibrosis associated depletion of lipid-filled cells. Exp Dermatol 2024; 33:e15054. [PMID: 38519432 PMCID: PMC10977660 DOI: 10.1111/exd.15054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
Fibrosis is primarily described as the deposition of excessive extracellular matrix, but in many tissues it also involves a loss of lipid or lipid-filled cells. Lipid-filled cells are critical to tissue function and integrity in many tissues including the skin and lungs. Thus, loss or depletion of lipid-filled cells during fibrogenesis, has implications for tissue function. In some contexts, lipid-filled cells can impact ECM composition and stability, highlighting their importance in fibrotic transformation. Recent papers in fibrosis address this newly recognized fibrotic lipodystrophy phenomenon. Even in disparate tissues, common mechanisms are emerging to explain fibrotic lipodystrophy. These findings have implications for fibrosis in tissues composed of fibroblast and lipid-filled cell populations such as skin, lung, and liver. In this review, we will discuss the roles of lipid-containing cells, their reduction/loss during fibrotic transformation, and the mechanisms of that loss in the skin and lungs.
Collapse
Affiliation(s)
- Anna Jussila
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brian Zhang
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sakin Kirti
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Radhika Atit
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Khandayataray P, Samal D, Murthy MK. Arsenic and adipose tissue: an unexplored pathway for toxicity and metabolic dysfunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8291-8311. [PMID: 38165541 DOI: 10.1007/s11356-023-31683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Arsenic-contaminated drinking water can induce various disorders by disrupting lipid and glucose metabolism in adipose tissue, leading to insulin resistance. It inhibits adipocyte development and exacerbates insulin resistance, though the precise impact on lipid synthesis and lipolysis remains unclear. This review aims to explore the processes and pathways involved in adipogenesis and lipolysis within adipose tissue concerning arsenic-induced diabetes. Although arsenic exposure is linked to type 2 diabetes, the specific role of adipose tissue in its pathogenesis remains uncertain. The review delves into arsenic's effects on adipose tissue and related signaling pathways, such as SIRT3-FOXO3a, Ras-MAP-AP-1, PI(3)-K-Akt, endoplasmic reticulum stress proteins, CHOP10, and GPCR pathways, emphasizing the role of adipokines. This analysis relies on existing literature, striving to offer a comprehensive understanding of different adipokine categories contributing to arsenic-induced diabetes. The findings reveal that arsenic detrimentally impacts white adipose tissue (WAT) by reducing adipogenesis and promoting lipolysis. Epidemiological studies have hinted at a potential link between arsenic exposure and obesity development, with limited research suggesting a connection to lipodystrophy. Further investigations are needed to elucidate the mechanistic association between arsenic exposure and impaired adipose tissue function, ultimately leading to insulin resistance.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha, 752057, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Madhya Pradesh, 466001, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
7
|
Weng L, Tang WS, Wang X, Gong Y, Liu C, Hong NN, Tao Y, Li KZ, Liu SN, Jiang W, Li Y, Yao K, Chen L, Huang H, Zhao YZ, Hu ZP, Lu Y, Ye H, Du X, Zhou H, Li P, Zhao TJ. Surplus fatty acid synthesis increases oxidative stress in adipocytes and lnduces lipodystrophy. Nat Commun 2024; 15:133. [PMID: 38168040 PMCID: PMC10761979 DOI: 10.1038/s41467-023-44393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Adipocytes are the primary sites for fatty acid storage, but the synthesis rate of fatty acids is very low. The physiological significance of this phenomenon remains unclear. Here, we show that surplus fatty acid synthesis in adipocytes induces necroptosis and lipodystrophy. Transcriptional activation of FASN elevates fatty acid synthesis, but decreases NADPH level and increases ROS production, which ultimately leads to adipocyte necroptosis. We identify MED20, a subunit of the Mediator complex, as a negative regulator of FASN transcription. Adipocyte-specific male Med20 knockout mice progressively develop lipodystrophy, which is reversed by scavenging ROS. Further, in a murine model of HIV-associated lipodystrophy and a human patient with acquired lipodystrophy, ROS neutralization significantly improves metabolic disorders, indicating a causal role of ROS in disease onset. Our study well explains the low fatty acid synthesis rate in adipocytes, and sheds light on the management of acquired lipodystrophy.
Collapse
Affiliation(s)
- Li Weng
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Drug Clinical Trial Center, Shanghai Xuhui Central Hospital / Zhongshan-Xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wen-Shuai Tang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Drug Clinical Trial Center, Shanghai Xuhui Central Hospital / Zhongshan-Xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Wang
- School of Life Science, Anhui Medical University, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yingyun Gong
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changqin Liu
- Department of Endocrinology and Diabetes, the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Ni-Na Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ying Tao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Drug Clinical Trial Center, Shanghai Xuhui Central Hospital / Zhongshan-Xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kuang-Zheng Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Drug Clinical Trial Center, Shanghai Xuhui Central Hospital / Zhongshan-Xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shu-Ning Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wanzi Jiang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Li
- Department of Endocrinology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Li Chen
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Drug Clinical Trial Center, Shanghai Xuhui Central Hospital / Zhongshan-Xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Huang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Drug Clinical Trial Center, Shanghai Xuhui Central Hospital / Zhongshan-Xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Zheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ze-Ping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Youli Lu
- Shanghai Engineering Research Center of Phase I Clinical Research & Quality Consistency Evaluation for Drugs, Institute of Clinical Mass Spectrometry, Shanghai Academy of Experimental Medicine, Shanghai, China
| | - Haobin Ye
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Drug Clinical Trial Center, Shanghai Xuhui Central Hospital / Zhongshan-Xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingrong Du
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Drug Clinical Trial Center, Shanghai Xuhui Central Hospital / Zhongshan-Xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongwen Zhou
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Peng Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Drug Clinical Trial Center, Shanghai Xuhui Central Hospital / Zhongshan-Xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, School of life sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Tong-Jin Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Drug Clinical Trial Center, Shanghai Xuhui Central Hospital / Zhongshan-Xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, School of life sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Gasser M, Lenglet S, Bararpour N, Sajic T, Vaucher J, Wiskott K, Augsburger M, Fracasso T, Gilardi F, Thomas A. Arsenic induces metabolome remodeling in mature human adipocytes. Toxicology 2023; 500:153672. [PMID: 37956786 DOI: 10.1016/j.tox.2023.153672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Human lifetime exposure to arsenic through drinking water, food supply or industrial pollution leads to its accumulation in many organs such as liver, kidneys, lungs or pancreas but also adipose tissue. Recently, population-based studies revealed the association between arsenic exposure and the development of metabolic diseases such as obesity and type 2 diabetes. To shed light on the molecular bases of such association, we determined the concentration that inhibited 17% of cell viability and investigated the effects of arsenic acute exposure on adipose-derived human mesenchymal stem cells differentiated in vitro into mature adipocytes and treated with sodium arsenite (NaAsO2, 10 nM to 10 µM). Untargeted metabolomics and gene expression analyses revealed a strong dose-dependent inhibition of lipogenesis and lipolysis induction, reducing the cellular ability to store lipids. These dysregulations were emphasized by the inhibition of the cellular response to insulin, as shown by the perturbation of several genes and metabolites involved in the mentioned biological pathways. Our study highlighted the activation of an adaptive oxidative stress response with the strong induction of metallothioneins and increased glutathione levels in response to arsenic accumulation that could exacerbate the decreased insulin sensitivity of the adipocytes. Arsenic exposure strongly affected the expression of arsenic transporters, responsible for arsenic influx and efflux, and induced a pro-inflammatory state in adipocytes by enhancing the expression of the inflammatory interleukin 6 (IL6). Collectively, our data showed that an acute exposure to low levels of arsenic concentrations alters key adipocyte functions, highlighting its contribution to the development of insulin resistance and the pathogenesis of metabolic disorders.
Collapse
Affiliation(s)
- Marie Gasser
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland; Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sébastien Lenglet
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Nasim Bararpour
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tatjana Sajic
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland; Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julien Vaucher
- Service of Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Service of Internal Medicine, Fribourg Hospital and University of Fribourg, Fribourg, Switzerland
| | - Kim Wiskott
- Unit of Forensic Medicine, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Marc Augsburger
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Tony Fracasso
- Unit of Forensic Medicine, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Federica Gilardi
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland; Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Aurélien Thomas
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland; Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Viola LF, Valerio CM, Araujo-Neto JM, Santos FF, Matsuura F, Moreira RO, Godoy-Matos AF. Waist circumference is independently associated with liver steatosis and fibrosis in LMNA-related and unrelated Familial Partial Lipodystrophy women. Diabetol Metab Syndr 2023; 15:182. [PMID: 37679847 PMCID: PMC10483704 DOI: 10.1186/s13098-023-01156-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Lipodystrophies are a heterogeneous group of diseases characterized by the selective loss of subcutaneous adipose tissue and ectopic fat deposition in different organs, including the liver. This study aimed to determine the frequencies of liver steatosis (LS) and liver fibrosis (LF) in a sample of individuals with LMNA-related and unrelated Familial Partial Lipodystrophy. METHODS This cross-sectional study included 17 women with LMNA-related FPLD and 15 women with unrelated FPLD. LS and LF were assessed using transient elastography (TE) with FibroScan®. Anthropometric and biochemical variables were included in a multiple linear regression analysis to identify the variables that were independently related to liver disease. RESULTS Regarding the presence of LF, 22 (68.2%) women were classified as having non-significant fibrosis, and 10 (31.8%) were classified as having significant or severe fibrosis. Regarding LS, only six women (20.7%) were classified as having an absence of steatosis, and 23 (79.3%) had mild to severe steatosis. After multiple linear regression, waist circumference (but not age, body mass index, or waist-to-hip ratio) was found to be independently related to LS and LF. Among the biochemical variables, only triglyceride levels were independently related to LS but not LF. CONCLUSIONS In women with FPLD, visceral fat accumulation appears to be the most important determinant of liver disease, including LF, rather than fat scarcity in the lower limbs.
Collapse
Affiliation(s)
- Luiz F Viola
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione (IEDE), Rua Moncorvo Filho 90, Rio de Janeiro, CEP: 20211-340, Brazil.
- Federal University of São Paulo (UNIFESP), São Paulo, Brazil.
| | - Cynthia M Valerio
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione (IEDE), Rua Moncorvo Filho 90, Rio de Janeiro, CEP: 20211-340, Brazil
| | - João M Araujo-Neto
- Hospital Universitário Clementino Fraga Filho (HUCFF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabio F Santos
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione (IEDE), Rua Moncorvo Filho 90, Rio de Janeiro, CEP: 20211-340, Brazil
| | - Felipe Matsuura
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione (IEDE), Rua Moncorvo Filho 90, Rio de Janeiro, CEP: 20211-340, Brazil
| | - Rodrigo O Moreira
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione (IEDE), Rua Moncorvo Filho 90, Rio de Janeiro, CEP: 20211-340, Brazil
- Faculdade de Medicina do Centro Universitário Presidente Antônio Carlos (FAME/UNIPAC), Juiz de Fora, Brazil
| | - Amélio F Godoy-Matos
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione (IEDE), Rua Moncorvo Filho 90, Rio de Janeiro, CEP: 20211-340, Brazil
| |
Collapse
|
10
|
Araújo COD, Pedroso AP, Boldarine VT, Fernandes AMAP, Perez JJM, Montenegro RM, Montenegro APDR, de Carvalho AB, Fernandes VO, Oyama LM, Carvalho PO, Maia CSC, Bueno AA, Ribeiro EB, Telles MM. Plasma signatures of Congenital Generalized Lipodystrophy patients identified by untargeted lipidomic profiling are not changed after a fat-containing breakfast meal. Prostaglandins Leukot Essent Fatty Acids 2023; 196:102584. [PMID: 37573715 DOI: 10.1016/j.plefa.2023.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND The incapacity to store lipids in adipose tissue in Congenital Generalized Lipodystrophy (CGL) causes hypoleptinemia, increased appetite, ectopic fat deposition and lipotoxicity. CGL patients experience shortened life expectancy. The plasma lipidomic profile has not been characterized fully in CGL, nor has the extent of dietary intake in its modulation. The present work investigated the plasma lipidomic profile of CGL patients in comparison to eutrophic individuals at the fasted state and after a breakfast meal. METHOD Blood samples from 11 CGL patients and 10 eutrophic controls were collected after 12 h fasting (T0) and 90 min after an ad libitum fat-containing breakfast (T90). The lipidomic profile of extracted plasma lipids was characterized by non-target liquid chromatography mass spectrometry. RESULTS Important differences between groups were observed at T0 and at T90. Several molecular species of fatty acyls, glycerolipids, sphingolipids and glycerophospholipids were altered in CGL. All the detected fatty acyl molecular species, several diacylglycerols and one triacylglycerol species were upregulated in CGL. Among sphingolipids, one sphingomyelin and one glycosphingolipid species showed downregulation in CGL. Alterations in the glycerophospholipids glycerophosphoethanolamines, glycerophosphoserines and cardiolipins were more complex. Interestingly, when comparing T90 versus T0, the lipidomic profile in CGL did not change as intensely as it did for control participants. CONCLUSIONS The present study found profound alterations in the plasma lipidomic profile of complex lipids in CGL patients as compared to control subjects. A fat-containing breakfast meal did not appear to significantly influence the CGL profile observed in the fasted state. Our study may have implications for clinical practice, also aiding to a deeper comprehension of the role of complex lipids in CGL in view of novel therapeutic strategies.
Collapse
Affiliation(s)
- Camilla O D Araújo
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Amanda P Pedroso
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Valter T Boldarine
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Anna Maria A P Fernandes
- Postgraduate Program of Health Sciences, São Francisco University, Bragança Paulista, SP, Brazil
| | - José J M Perez
- Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, SP, Brazil
| | - Renan M Montenegro
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies - Hospital Universitário Walter Cantídio, Departamento de Medicina Clínica e Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza-Ceará, Brazil
| | - Ana Paula D R Montenegro
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies - Hospital Universitário Walter Cantídio, Departamento de Medicina Clínica e Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza-Ceará, Brazil
| | - Annelise B de Carvalho
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies - Hospital Universitário Walter Cantídio, Departamento de Medicina Clínica e Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza-Ceará, Brazil
| | - Virgínia O Fernandes
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies - Hospital Universitário Walter Cantídio, Departamento de Medicina Clínica e Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza-Ceará, Brazil
| | - Lila M Oyama
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Patrícia O Carvalho
- Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, SP, Brazil
| | - Carla S C Maia
- Departamento de Nutrição, Universidade Estadual do Ceará (UECE), Campus do Itaperi, Fortaleza, CE, Brazil
| | - Allain A Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, United Kingdom.
| | - Eliane B Ribeiro
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Mônica M Telles
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Abstract
Recent studies have demonstrated that extracellular vesicles (EVs) serve powerful and complex functions in metabolic regulation and metabolic-associated disease, although this field of research is still in its infancy. EVs are released into the extracellular space from all cells and carry a wide range of cargo including miRNAs, mRNA, DNA, proteins, and metabolites that have robust signaling effects in receiving cells. EV production is stimulated by all major stress pathways and, as such, has a role in both restoring homeostasis during stress and perpetuating disease. In metabolic regulation, the dominant stress signal is a lack of energy due to either nutrient deficits or damaged mitochondria from nutrient excess. This stress signal is termed "energetic stress," which triggers a robust and evolutionarily conserved response that engages major cellular stress pathways, the ER unfolded protein response, the hypoxia response, the antioxidant response, and autophagy. This article proposes the model that energetic stress is the dominant stimulator of EV release with a focus on metabolically important cells such as hepatocytes, adipocytes, myocytes, and pancreatic β-cells. Furthermore, this article will discuss how the cargo in stress-stimulated EVs regulates metabolism in receiving cells in both beneficial and detrimental ways. © 2023 American Physiological Society. Compr Physiol 13:5051-5068, 2023.
Collapse
Affiliation(s)
- Clair Crewe
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Jääskeläinen I, Petäistö T, Mirzarazi Dahagi E, Mahmoodi M, Pihlajaniemi T, Kaartinen MT, Heljasvaara R. Collagens Regulating Adipose Tissue Formation and Functions. Biomedicines 2023; 11:biomedicines11051412. [PMID: 37239083 DOI: 10.3390/biomedicines11051412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The globally increasing prevalence of obesity is associated with the development of metabolic diseases such as type 2 diabetes, dyslipidemia, and fatty liver. Excess adipose tissue (AT) often leads to its malfunction and to a systemic metabolic dysfunction because, in addition to storing lipids, AT is an active endocrine system. Adipocytes are embedded in a unique extracellular matrix (ECM), which provides structural support to the cells as well as participating in the regulation of their functions, such as proliferation and differentiation. Adipocytes have a thin pericellular layer of a specialized ECM, referred to as the basement membrane (BM), which is an important functional unit that lies between cells and tissue stroma. Collagens form a major group of proteins in the ECM, and some of them, especially the BM-associated collagens, support AT functions and participate in the regulation of adipocyte differentiation. In pathological conditions such as obesity, AT often proceeds to fibrosis, characterized by the accumulation of large collagen bundles, which disturbs the natural functions of the AT. In this review, we summarize the current knowledge on the vertebrate collagens that are important for AT development and function and include basic information on some other important ECM components, principally fibronectin, of the AT. We also briefly discuss the function of AT collagens in certain metabolic diseases in which they have been shown to play central roles.
Collapse
Affiliation(s)
- Iida Jääskeläinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Tiina Petäistö
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Elahe Mirzarazi Dahagi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Mahdokht Mahmoodi
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Mari T Kaartinen
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Ritva Heljasvaara
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
13
|
Ji C. Molecular Factors and Pathways of Hepatotoxicity Associated with HIV/SARS-CoV-2 Protease Inhibitors. Int J Mol Sci 2023; 24:ijms24097938. [PMID: 37175645 PMCID: PMC10178330 DOI: 10.3390/ijms24097938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Antiviral protease inhibitors are peptidomimetic molecules that block the active catalytic center of viral proteases and, thereby, prevent the cleavage of viral polyprotein precursors into maturation. They continue to be a key class of antiviral drugs that can be used either as boosters for other classes of antivirals or as major components of current regimens in therapies for the treatment of infections with human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, sustained/lifelong treatment with the drugs or drugs combined with other substance(s) often leads to severe hepatic side effects such as lipid abnormalities, insulin resistance, and hepatotoxicity. The underlying pathogenic mechanisms are not fully known and are under continuous investigation. This review focuses on the general as well as specific molecular mechanisms of the protease inhibitor-induced hepatotoxicity involving transporter proteins, apolipoprotein B, cytochrome P450 isozymes, insulin-receptor substrate 1, Akt/PKB signaling, lipogenic factors, UDP-glucuronosyltransferase, pregnane X receptor, hepatocyte nuclear factor 4α, reactive oxygen species, inflammatory cytokines, off-target proteases, and small GTPase Rab proteins related to ER-Golgi trafficking, organelle stress, and liver injury. Potential pharmaceutical/therapeutic solutions to antiviral drug-induced hepatic side effects are also discussed.
Collapse
Affiliation(s)
- Cheng Ji
- Research Center for Liver Disease, GI/Liver Division, Department of Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
14
|
Al-Reshed F, Sindhu S, Al Madhoun A, Bahman F, AlSaeed H, Akhter N, Malik MZ, Alzaid F, Al-Mulla F, Ahmad R. Low carbohydrate intake correlates with trends of insulin resistance and metabolic acidosis in healthy lean individuals. Front Public Health 2023; 11:1115333. [PMID: 37006572 PMCID: PMC10061153 DOI: 10.3389/fpubh.2023.1115333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Both obesity and a poor diet are considered major risk factors for triggering insulin resistance syndrome (IRS) and the development of type 2 diabetes mellitus (T2DM). Owing to the impact of low-carbohydrate diets, such as the keto diet and the Atkins diet, on weight loss in individuals with obesity, these diets have become an effective strategy for a healthy lifestyle. However, the impact of the ketogenic diet on IRS in healthy individuals of a normal weight has been less well researched. This study presents a cross-sectional observational study that aimed to investigate the effect of low carbohydrate intake in healthy individuals of a normal weight with regard to glucose homeostasis, inflammatory, and metabolic parameters. Methods The study included 120 participants who were healthy, had a normal weight (BMI 25 kg/m2), and had no history of a major medical condition. Self-reported dietary intake and objective physical activity measured by accelerometry were tracked for 7 days. The participants were divided into three groups according to their dietary intake of carbohydrates: the low-carbohydrate (LC) group (those consuming <45% of their daily energy intake from carbohydrates), the recommended range of carbohydrate (RC) group (those consuming 45-65% of their daily energy intake from carbohydrates), and the high-carbohydrate (HC) group (those consuming more than 65% of their daily energy intake from carbohydrates). Blood samples were collected for the analysis of metabolic markers. HOMA of insulin resistance (HOMA-IR) and HOMA of β-cell function (HOMA-β), as well as C-peptide levels, were used for the evaluation of glucose homeostasis. Results Low carbohydrate intake (<45% of total energy) was found to significantly correlate with dysregulated glucose homeostasis as measured by elevations in HOMA-IR, HOMA-β% assessment, and C-peptide levels. Low carbohydrate intake was also found to be coupled with lower serum bicarbonate and serum albumin levels, with an increased anion gap indicating metabolic acidosis. The elevation in C-peptide under low carbohydrate intake was found to be positively correlated with the secretion of IRS-related inflammatory markers, including FGF2, IP-10, IL-6, IL-17A, and MDC, but negatively correlated with IL-3. Discussion Overall, the findings of the study showed that, for the first time, low-carbohydrate intake in healthy individuals of a normal weight might lead to dysfunctional glucose homeostasis, increased metabolic acidosis, and the possibility of triggering inflammation by C-peptide elevation in plasma.
Collapse
Affiliation(s)
- Fatema Al-Reshed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fatemah Bahman
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Halemah AlSaeed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Nadeem Akhter
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Md Zubbair Malik
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fawaz Alzaid
- Institute Necker Enfants Malades (INEM), French Institute of Health and Medical Research (INSERM), Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| | - Fahd Al-Mulla
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
15
|
Advanced Oxidation Protein Products Contribute to Chronic-Kidney-Disease-Induced Adipose Inflammation through Macrophage Activation. Toxins (Basel) 2023; 15:toxins15030179. [PMID: 36977070 PMCID: PMC10059001 DOI: 10.3390/toxins15030179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Fat atrophy and adipose tissue inflammation can cause the pathogenesis of metabolic symptoms in chronic kidney disease (CKD). During CKD, the serum levels of advanced oxidation protein products (AOPPs) are elevated. However, the relationship between fat atrophy/adipose tissue inflammation and AOPPs has remained unknown. The purpose of this study was to investigate the involvement of AOPPs, which are known as uremic toxins, in adipose tissue inflammation and to establish the underlying molecular mechanism. In vitro studies involved co-culturing mouse-derived adipocytes (differentiated 3T3-L1) and macrophages (RAW264.7). In vivo studies were performed using adenine-induced CKD mice and AOPP-overloaded mice. Fat atrophy, macrophage infiltration and increased AOPP activity in adipose tissue were identified in adenine-induced CKD mice. AOPPs induced MCP-1 expression in differentiated 3T3-L1 adipocytes via ROS production. However, AOPP-induced ROS production was suppressed by the presence of NADPH oxidase inhibitors and the scavengers of mitochondria-derived ROS. A co-culturing system showed AOPPs induced macrophage migration to adipocytes. AOPPs also up-regulated TNF-α expression by polarizing macrophages to an M1-type polarity, and then induced macrophage-mediated adipose inflammation. In vitro data was supported by experiments using AOPP-overloaded mice. AOPPs contribute to macrophage-mediated adipose inflammation and constitute a potential new therapeutic target for adipose inflammation associated with CKD.
Collapse
|
16
|
Iizaka T, Kodama E, Mikura K, Iida T, Imai H, Hashizume M, Kigawa Y, Sugisawa C, Tadokoro R, Endo K, Otsuka F, Isoda M, Ebihara K, Ishibashi S, Nagasaka S. Clinical characteristics and efficacy of pioglitazone in a Japanese patient with familial partial lipodystrophy due to peroxisome proliferator-activated receptor γ gene mutation. Endocr J 2023; 70:69-76. [PMID: 36171144 DOI: 10.1507/endocrj.ej22-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Familial partial lipodystrophy (FPLD) 3 is a rare genetic disorder caused by peroxisome proliferator-activated receptor γ gene (PPARG) mutations. Most cases have been reported in Western patients. Here, we describe a first pedigree of FPLD 3 in Japanese. The proband was a 51-year-old woman. She was diagnosed with fatty liver at age 32 years, dyslipidemia at age 37 years, and diabetes mellitus at age 41 years. Her body mass index was 18.5 kg/m2, and body fat percentage was 19.2%. On physical examination, she had less subcutaneous fat in the upper limbs than in other sites. On magnetic resonance imaging, atrophy of subcutaneous adipose tissue was seen in the upper limbs and lower legs. Fasting serum C-peptide immunoreactivity was high (3.4 ng/mL), and the plasma glucose disappearance rate was low (2.07%/min) on an insulin tolerance test, both suggesting apparent insulin resistance. The serum total adiponectin level was low (2.3 μg/mL). Mild fatty liver was seen on abdominal computed tomography. On genetic analysis, a P495L mutation in PPARG was identified. The same mutation was also seen in her father, who had non-obese diabetes mellitus, and FPLD 3 was diagnosed. Modest increases in body fat and serum total adiponectin were seen with pioglitazone treatment. Attention should be paid to avoid overlooking lipodystrophy syndromes even in non-obese diabetic patients if they show features of insulin resistance.
Collapse
Affiliation(s)
- Toru Iizaka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Kanagawa 227-8501, Japan
| | - Eriko Kodama
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Kanagawa 227-8501, Japan
| | - Kentaro Mikura
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Kanagawa 227-8501, Japan
| | - Tatsuya Iida
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Kanagawa 227-8501, Japan
| | - Hideyuki Imai
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Kanagawa 227-8501, Japan
| | - Mai Hashizume
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Kanagawa 227-8501, Japan
| | - Yasuyoshi Kigawa
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Kanagawa 227-8501, Japan
| | - Chiho Sugisawa
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Kanagawa 227-8501, Japan
| | - Rie Tadokoro
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Kanagawa 227-8501, Japan
| | - Kei Endo
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Kanagawa 227-8501, Japan
| | - Fumiko Otsuka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Kanagawa 227-8501, Japan
| | - Masayo Isoda
- Division of Endocrinology and Metabolism, Jichi Medical University, Tochigi 329-0498, Japan
| | - Ken Ebihara
- Division of Endocrinology and Metabolism, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shoichiro Nagasaka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Kanagawa 227-8501, Japan
| |
Collapse
|
17
|
Renu K, Mukherjee AG, Wanjari UR, Vinayagam S, Veeraraghavan VP, Vellingiri B, George A, Lagoa R, Sattu K, Dey A, Gopalakrishnan AV. Misuse of Cardiac Lipid upon Exposure to Toxic Trace Elements-A Focused Review. Molecules 2022; 27:5657. [PMID: 36080424 PMCID: PMC9457865 DOI: 10.3390/molecules27175657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
Heavy metals and metalloids like cadmium, arsenic, mercury, and lead are frequently found in the soil, water, food, and atmosphere; trace amounts can cause serious health issues to the human organism. These toxic trace elements (TTE) affect almost all the organs, mainly the heart, kidney, liver, lungs, and the nervous system, through increased free radical formation, DNA damage, lipid peroxidation, and protein sulfhydryl depletion. This work aims to advance our understanding of the mechanisms behind lipid accumulation via increased free fatty acid levels in circulation due to TTEs. The increased lipid level in the myocardium worsens the heart function. This dysregulation of the lipid metabolism leads to damage in the structure of the myocardium, inclusive fibrosis in cardiac tissue, myocyte apoptosis, and decreased contractility due to mitochondrial dysfunction. Additionally, it is discussed herein how exposure to cadmium decreases the heart rate, contractile tension, the conductivity of the atrioventricular node, and coronary flow rate. Arsenic may induce atherosclerosis by increasing platelet aggregation and reducing fibrinolysis, as exposure interferes with apolipoprotein (Apo) levels, resulting in the rise of the Apo-B/Apo-A1 ratio and an elevated risk of acute cardiovascular events. Concerning mercury and lead, these toxicants can cause hypertension, myocardial infarction, and carotid atherosclerosis, in association with the generation of free radicals and oxidative stress. This review offers a complete overview of the critical factors and biomarkers of lipid and TTE-induced cardiotoxicity useful for developing future protective interventions.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sathishkumar Vinayagam
- Department of Biotechnology, PG Extension Centre, Periyar University, Dharmapuri 636701, Tamil Nadu, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
- Applied Molecular Biosciences Unit, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Kamaraj Sattu
- Department of Biotechnology, PG Extension Centre, Periyar University, Dharmapuri 636701, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
18
|
Lecoutre S, Lambert M, Drygalski K, Dugail I, Maqdasy S, Hautefeuille M, Clément K. Importance of the Microenvironment and Mechanosensing in Adipose Tissue Biology. Cells 2022; 11:cells11152310. [PMID: 35954152 PMCID: PMC9367348 DOI: 10.3390/cells11152310] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
The expansion of adipose tissue is an adaptive mechanism that increases nutrient buffering capacity in response to an overall positive energy balance. Over the course of expansion, the adipose microenvironment undergoes continual remodeling to maintain its structural and functional integrity. However, in the long run, adipose tissue remodeling, typically characterized by adipocyte hypertrophy, immune cells infiltration, fibrosis and changes in vascular architecture, generates mechanical stress on adipose cells. This mechanical stimulus is then transduced into a biochemical signal that alters adipose function through mechanotransduction. In this review, we describe the physical changes occurring during adipose tissue remodeling, and how they regulate adipose cell physiology and promote obesity-associated dysfunction in adipose tissue.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Mélanie Lambert
- Labex Inflamex, Université Sorbonne Paris Nord, INSERM, F-93000 Bobigny, France;
| | - Krzysztof Drygalski
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Isabelle Dugail
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet Hospital, C2-94, 14186 Stockholm, Sweden;
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR 7622), IBPS, Sorbonne Université, F-75005 Paris, France;
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
- Assistance Publique Hôpitaux de Paris, Nutrition Department, CRNH Ile-de-France, Pitié-Salpêtrière Hospital, F-75013 Paris, France
- Correspondence: or
| |
Collapse
|
19
|
Muscogiuri G, Docimo A, Colao A. An unusual case report of polycystic ovary syndrome. J Endocrinol Invest 2022; 45:1459-1460. [PMID: 35384600 DOI: 10.1007/s40618-022-01790-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/25/2022]
Affiliation(s)
- G Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Cattedra Unesco "educazione alla salute e allo sviluppo sostenibile", Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - A Docimo
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - A Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Cattedra Unesco "educazione alla salute e allo sviluppo sostenibile", Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| |
Collapse
|
20
|
Campos JTADM, Oliveira MSD, Soares LP, Medeiros KAD, Campos LRDS, Lima JG. DNA repair-related genes and adipogenesis: Lessons from congenital lipodystrophies. Genet Mol Biol 2022; 45:e20220086. [DOI: 10.1590/1678-4685-gmb-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
|
21
|
Zhou Y, Xu Z, Wang L, Ling D, Nong Q, Xie J, Zhu X, Shan T. Cold Exposure Induces Depot-Specific Alterations in Fatty Acid Composition and Transcriptional Profile in Adipose Tissues of Pigs. Front Endocrinol (Lausanne) 2022; 13:827523. [PMID: 35282453 PMCID: PMC8905645 DOI: 10.3389/fendo.2022.827523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cold exposure promotes fat oxidation and modulates the energy metabolism in adipose tissue through multiple mechanisms. However, it is still unclear about heat-generating capacity and lipid mobilization of different fat depots without functional mitochondrial uncoupling protein 1 (UCP1). In this study, we kept finishing pigs (lack a functional UCP1 gene) under cold (5-7°C) or room temperature (22-25°C) and determined the effects of overnight cold exposure on fatty acid composition and transcriptional profiles of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). And the plasma metabolomes of porcine was also studied by LC-MS-based untargeted metabolomics. We found that the saturated fatty acids (SFAs) content was decreased in SAT upon cold exposure. While in VAT, the relative content of lauric acid (C12:0), myristic acid (C14:0) and lignoceric acid (C24:0) were decreased without affecting total SFA content. RNA-seq results showed SAT possess active organic acid metabolism and energy mobilization upon cold exposure. Compared with SAT, cold-induced transcriptional changes were far less broad in VAT, and the differentially expressed genes (DEGs) were mainly enriched in fat cell differentiation and cell proliferation. Moreover, we found that the contents of organic acids like creatine, acamprosate, DL-3-phenyllactic acid and taurine were increased in plasma upon overnight cold treatment, suggesting that cold exposure induced lipid and fatty acid metabolism in white adipose tissue (WAT) might be regulated by functions of organic acids. These results provide new insights into the effects of short-term cold exposure on lipid metabolism in adipose tissues without functional UCP1.
Collapse
Affiliation(s)
- Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qiuyun Nong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jintang Xie
- Shandong Chunteng Food Co. Ltd., Zaozhuang, China
| | - Xiaodong Zhu
- Shandong Chunteng Food Co. Ltd., Zaozhuang, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Tizhong Shan,
| |
Collapse
|
22
|
Handali S, Rezaei M. Arsenic and weight loss: At a crossroad between lipogenesis and lipolysis. J Trace Elem Med Biol 2021; 68:126836. [PMID: 34385035 DOI: 10.1016/j.jtemb.2021.126836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/30/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]
Abstract
Arsenic is found in soil, food, water and earth crust. Arsenic exposure is associated with chronic diseases such as cancer, cardiovascular disease as well as diabetes. One of complex effects of arsenic is on weight gain or loss. Involvement of arsenic in both weight loss and gain signaling pathways has previously been reported; however, too little attention has been paid to its weight reducing effect. Animal studies exhibited a role of arsenic in weight loss. In this regard, arsenic interference with endocrine system, leptin and adiponectin hormones as well as thermogenesis is more evidence. Apparently, arsenic-induced weight lossis generally meditated by its interaction with thermogenesis. In this review we have discussed the irregularities in metabolic pathways induced by arsenic that can lead to weight loss.
Collapse
Affiliation(s)
- Somayeh Handali
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
23
|
Li X, Wang X, Park SK. Associations between rice consumption, arsenic metabolism, and insulin resistance in adults without diabetes. Int J Hyg Environ Health 2021; 237:113834. [PMID: 34488179 PMCID: PMC8454056 DOI: 10.1016/j.ijheh.2021.113834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/28/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023]
Abstract
Rice consumption is an important source of arsenic exposure. Little has known about the impact of rice consumption on arsenic metabolism, which is related to insulin resistance. In this study, we examined the associations between rice consumption and arsenic metabolism, and between arsenic metabolism and insulin resistance in non-diabetic U.S adults who participated in the National Health and Nutrition Examination Survey (NHANES) 2003-2016. Rice consumer was defined as ≥0.25 cups of cooked rice/day. HOMA2-IR was calculated using HOMA2 Calculator software based on participant's fasting glucose and insulin values. Urinary arsenic concentrations below limits of detection were imputed first, and then arsenic metabolism (the proportions of inorganic arsenic (iAs), monomethylarsonate (MMA), and dimethylarsinate (DMA) to their sum) were calculated (expressed as iAs%, MMA%, and DMA%). Using the leave-one-out approach, rice consumers compared with non-consumers had a 1.71% (95% CI: 1.12%, 2.29%) higher DMA% and lower MMA% when iAs% fixed; a 1.55% (95% CI: 0.45%, 2.66%) higher DMA% and lower iAs% when MMA% fixed; and a 1.62% (95% CI: 0.95%, 2.28%) higher iAs% and lower MMA% when DMA% fixed, in multivariable adjustment models. With every 10% decrease in MMA%, the geometric mean ratio of HOMA2-IR was 1.06 (95% CI: 1.03,1.08) and 1.05 (95% CI: 1.02, 1.09) when DMA% and iAs% was fixed, respectively; however, the associations were attenuated after adjusting for body mass index. In stratified analysis, we found that lower MMA% was associated with higher HOMA2-IR in participants with obesity: a 10% increase in iAs% with a 10% decrease in MMA% was associated with higher HOMA2-IR with the geometric mean ratio of 1.05 (95% CI: 1.01, 1.09). Our findings suggest that rice consumption may contribute to lower MMA% that was further associated with higher insulin resistance, especially in individuals with obesity. Future prospective studies are needed to confirm our results in different populations.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Xin Wang
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Sung Kyun Park
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Corvillo F, González-Sánchez L, López-Lera A, Arjona E, Ceccarini G, Santini F, Araújo-Vilar D, Brown RJ, Villarroya J, Villarroya F, Rodríguez de Córdoba S, Caballero T, Nozal P, López-Trascasa M. Complement Factor D (adipsin) Levels Are Elevated in Acquired Partial Lipodystrophy (Barraquer-Simons syndrome). Int J Mol Sci 2021; 22:ijms22126608. [PMID: 34205507 PMCID: PMC8234012 DOI: 10.3390/ijms22126608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 01/11/2023] Open
Abstract
Complement overactivation has been reported in most patients with Barraquer-Simons syndrome (BSS), a rare form of acquired partial lipodystrophy. Complement Factor D (FD) is a serine protease with a crucial role in the activation of the alternative pathway of the complement system, which is mainly synthesized by adipose tissue. However, its role in the pathogenesis of BSS has not been addressed. In this study, plasma FD concentration was measured in 13 patients with BSS, 20 patients with acquired generalized lipodystrophy, 22 patients with C3 glomerulopathy (C3G), and 50 healthy controls. Gene expression and immunohistochemistry studies were assayed using atrophied adipose tissue from a patient with BSS. We found significantly elevated FD levels in BSS cases compared with the remaining cohorts (p < 0.001). There were no significant differences in FD levels between sexes but FD was strongly and directly associated with age in BSS (r = 0.7593, p = 0.0036). A positive correlation between FD and C3 was seen in patients with C3G, characterized by decreased FD levels due to chronic C3 consumption, but no correlation was detected for BSS. Following mRNA quantification in the patient's adipose tissue, we observed decreased CFD and C3 but elevated C5 transcript levels. In contrast, the increased FD staining detected in the atrophied areas reflects the effects of persistent tissue damage on the adipose tissue, thus providing information on the ongoing pathogenic process. Our results suggest that FD could be a reliable diagnostic biomarker involved in the pathophysiology of BSS by promoting unrestrained local complement system activation in the adipose tissue environment.
Collapse
Affiliation(s)
- Fernando Corvillo
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, 28046 Madrid, Spain; (L.G.-S.); (A.L.-L.); (P.N.); (M.L.-T.)
- Center for Biomedical Network Research on Rare Diseases, 28029 Madrid, Spain; (E.A.); (S.R.d.C.); (T.C.)
- Correspondence: Correspondence: ; Tel.: +34-912-072-297
| | - Laura González-Sánchez
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, 28046 Madrid, Spain; (L.G.-S.); (A.L.-L.); (P.N.); (M.L.-T.)
- Center for Biomedical Network Research on Rare Diseases, 28029 Madrid, Spain; (E.A.); (S.R.d.C.); (T.C.)
| | - Alberto López-Lera
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, 28046 Madrid, Spain; (L.G.-S.); (A.L.-L.); (P.N.); (M.L.-T.)
- Center for Biomedical Network Research on Rare Diseases, 28029 Madrid, Spain; (E.A.); (S.R.d.C.); (T.C.)
| | - Emilia Arjona
- Center for Biomedical Network Research on Rare Diseases, 28029 Madrid, Spain; (E.A.); (S.R.d.C.); (T.C.)
- Department of Molecular Biomedicine, Margarita Salas Center for Biological Research, 28040 Madrid, Spain
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center at the Endocrinology Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 56126 Pisa, Italy; (G.C.); (F.S.)
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center at the Endocrinology Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 56126 Pisa, Italy; (G.C.); (F.S.)
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15703 Santiago de Compostela, Spain;
| | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20814, USA;
| | - Joan Villarroya
- Departament de Bioquimica I Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona, 08007 Barcelona, Catalonia, Spain; (J.V.); (F.V.)
- CIBER Fisiopatología de La Obesidad Y Nutrición, 28029 Madrid, Spain
| | - Francesc Villarroya
- Departament de Bioquimica I Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona, 08007 Barcelona, Catalonia, Spain; (J.V.); (F.V.)
- CIBER Fisiopatología de La Obesidad Y Nutrición, 28029 Madrid, Spain
| | - Santiago Rodríguez de Córdoba
- Center for Biomedical Network Research on Rare Diseases, 28029 Madrid, Spain; (E.A.); (S.R.d.C.); (T.C.)
- Department of Molecular Biomedicine, Margarita Salas Center for Biological Research, 28040 Madrid, Spain
| | - Teresa Caballero
- Center for Biomedical Network Research on Rare Diseases, 28029 Madrid, Spain; (E.A.); (S.R.d.C.); (T.C.)
- Department of Allergy, La Paz University Hospital, 28046 Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Pilar Nozal
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, 28046 Madrid, Spain; (L.G.-S.); (A.L.-L.); (P.N.); (M.L.-T.)
- Center for Biomedical Network Research on Rare Diseases, 28029 Madrid, Spain; (E.A.); (S.R.d.C.); (T.C.)
- Immunology Unit, La Paz University Hospital, 28046 Madrid, Spain
| | - Margarita López-Trascasa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, 28046 Madrid, Spain; (L.G.-S.); (A.L.-L.); (P.N.); (M.L.-T.)
- Department of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
25
|
Araújo de Melo Campos JT, Dantas de Medeiros JL, Cardoso de Melo ME, Alvares da Silva M, Oliveira de Sena M, Sales Craveiro Sarmento A, Fassarella Agnez Lima L, de Freitas Fregonezi GA, Gomes Lima J. Endoplasmic reticulum stress and muscle dysfunction in congenital lipodystrophies. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166120. [PMID: 33713793 DOI: 10.1016/j.bbadis.2021.166120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/17/2023]
Abstract
Lipodystrophy syndromes are a group of rare diseases related to the pathological impairment of adipose tissue and metabolic comorbidities, including dyslipidemia, diabetes, insulin resistance, hypoleptinemia, and hypoadiponectinemia. They can be categorized as partial or generalized according to the degree of fat loss, and inherited or acquired disorders, if they are associated with genetic mutations or are related to autoimmunity, respectively. Some types of lipodystrophies have been associated with changes in both redox and endoplasmic reticulum (ER) homeostasis as well as muscle dysfunction (MD). Although ER stress (ERS) has been related to muscle dysfunction (MD) in many diseases, there is no data concerning its role in lipodystrophies' muscle physiopathology. Here we focused on congenital lipodystrophies associated with ERS and MD. We also described recent advances in our understanding of the relationships among ERS, MD, and genetic lipodystrophies, highlighting the adiponectin-protective roles.
Collapse
Affiliation(s)
- Julliane Tamara Araújo de Melo Campos
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Jorge Luiz Dantas de Medeiros
- PneumoCardioVascular Lab/HUOL, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares and Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Maria Eduarda Cardoso de Melo
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Monique Alvares da Silva
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Matheus Oliveira de Sena
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Aquiles Sales Craveiro Sarmento
- Unidade de Laboratório de Análises Clínicas e Anatomia Patológica, Hospital Universitário de Lagarto (HUL)/UFS, Lagarto, SE, Brazil
| | - Lucymara Fassarella Agnez Lima
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Guilherme Augusto de Freitas Fregonezi
- PneumoCardioVascular Lab/HUOL, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares and Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Laboratório de Inovação Tecnológica em Reabilitação, Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Josivan Gomes Lima
- Departamento de Medicina Clínica, Hospital Universitário Onofre Lopes (HUOL)/UFRN, Natal, RN, Brazil
| |
Collapse
|
26
|
Al-Jaber H, Al-Mansoori L, Elrayess MA. GATA-3 as a Potential Therapeutic Target for Insulin Resistance and Type 2 Diabetes Mellitus. Curr Diabetes Rev 2021; 17:169-179. [PMID: 32628587 DOI: 10.2174/1573399816666200705210417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
Impaired adipogenesis plays an important role in the development of obesity-associated insulin resistance and type 2 diabetes as it leads to ectopic fat deposition. The anti-adipogenic transcription factor GATA-3 was identified as one of the potential molecular targets responsible for the impairment of adipogenesis. The expression of GATA-3 is higher in insulinresistant obese individuals compared to BMI-matched insulin-sensitive counterparts. Adipose tissue inflammation is a crucial mediator of this process. Hyperglycemia mediates the activation of the immune system, partially through upregulation of GATA- 3, causing exacerbation of the inflammatory state associated with obesity. This review discusses the evidence supporting the inhibition of GATA-3 as a useful therapeutic strategy in obesity-associated insulin resistance and type 2 diabetes, through up-regulation adipogenesis and amelioration of the immune response.
Collapse
Affiliation(s)
- Hend Al-Jaber
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | |
Collapse
|
27
|
Jin Y, Tan Y, Zhao P, Ren Z. SEIPIN: A Key Factor for Nuclear Lipid Droplet Generation and Lipid Homeostasis. Int J Mol Sci 2020; 21:ijms21218208. [PMID: 33147895 PMCID: PMC7663086 DOI: 10.3390/ijms21218208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
Lipid homeostasis is essential for normal cell physiology. Generally, lipids are stored in a lipid droplet (LD), a ubiquitous organelle consisting of a neutral lipid core and a single layer of phospholipid membrane. It is thought that LDs are generated from the endoplasmic reticulum and then released into the cytosol. Recent studies indicate that LDs can exist in the nucleus, where they play an important role in the maintenance of cell phospholipid homeostasis. However, the details of nuclear lipid droplet (nLD) generation have not yet been clearly characterized. SEIPIN is a nonenzymatic protein encoded by the Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) gene. It is associated with lipodystrophy diseases. Many recent studies have indicated that SEIPIN is essential for LDs generation. Here, we review much of this research in an attempt to explain the role of SEIPIN in nLD generation. From an integrative perspective, we conclude by proposing a theoretical model to explain how SEIPIN might participate in maintaining homeostasis of lipid metabolism.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
- Bio-Medical Center of Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
- Institute of Biomedical Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Pengxiang Zhao
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
- Bio-Medical Center of Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Correspondence:
| |
Collapse
|
28
|
Anguiano T, Sahu A, Qian B, Tang WY, Ambrosio F, Barchowsky A. Arsenic Directs Stem Cell Fate by Imparting Notch Signaling Into the Extracellular Matrix Niche. Toxicol Sci 2020; 177:494-505. [PMID: 32647881 DOI: 10.1093/toxsci/kfaa106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Compromise of skeletal muscle metabolism and composition may underlie the etiology of cardiovascular and metabolic disease risk from environmental arsenic exposures. We reported that arsenic impairs muscle maintenance and regeneration by inducing maladaptive mitochondrial phenotypes in muscle stem cells (MuSC), connective tissue fibroblasts (CTF), and myofibers. We also found that arsenic imparts a dysfunctional memory in the extracellular matrix (ECM) that disrupts the MuSC niche and is sufficient to favor the expansion and differentiation of fibrogenic MuSC subpopulations. To investigate the signaling mechanisms involved in imparting a dysfunctional ECM, we isolated skeletal muscle tissue and CTF from mice exposed to 0 or 100 μg/l arsenic in their drinking water for 5 weeks. ECM elaborated by arsenic-exposed CTF decreased myogenesis and increased fibrogenic/adipogenic MuSC subpopulations and differentiation. However, treating arsenic-exposed mice with SS-31, a mitochondrially targeted peptide that repairs the respiratory chain, reversed the arsenic-promoted CTF phenotype to one that elaborated an ECM supporting normal myogenic differentiation. SS-31 treatment also reversed arsenic-induced Notch1 expression, resulting in an improved muscle regeneration after injury. We found that persistent arsenic-induced CTF Notch1 expression caused the elaboration of dysfunctional ECM with increased expression of the Notch ligand DLL4. This DLL4 in the ECM was responsible for misdirecting MuSC myogenic differentiation. These data indicate that arsenic impairs muscle maintenance and regenerative capacity by targeting CTF mitochondria and mitochondrially directed expression of dysfunctional regulators in the stem cell niche. Therapies that restore muscle cell mitochondria may effectively treat arsenic-induced skeletal muscle dysfunction and compositional decline.
Collapse
Affiliation(s)
| | - Amrita Sahu
- Department of Physical Medicine and Rehabilitation
| | - Baoli Qian
- Department of Environmental and Occupational Health
| | - Wan-Yee Tang
- Department of Environmental and Occupational Health
| | - Fabrisia Ambrosio
- Department of Environmental and Occupational Health.,Department of Physical Medicine and Rehabilitation.,McGowan Institute for Regenerative Medicine.,Department of Bioengineering
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
29
|
Cheikhi A, Anguiano T, Lasak J, Qian B, Sahu A, Mimiya H, Cohen CC, Wipf P, Ambrosio F, Barchowsky A. Arsenic Stimulates Myoblast Mitochondrial Epidermal Growth Factor Receptor to Impair Myogenesis. Toxicol Sci 2020; 176:162-174. [PMID: 32159786 PMCID: PMC7357174 DOI: 10.1093/toxsci/kfaa031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Arsenic exposure impairs muscle metabolism, maintenance, progenitor cell differentiation, and regeneration following acute injury. Low to moderate arsenic exposures target muscle fiber and progenitor cell mitochondria to epigenetically decrease muscle quality and regeneration. However, the mechanisms for how low levels of arsenic signal for prolonged mitochondrial dysfunction are not known. In this study, arsenic attenuated murine C2C12 myoblasts differentiation and resulted in abnormal undifferentiated myoblast proliferation. Arsenic prolonged ligand-independent phosphorylation of mitochondrially localized epidermal growth factor receptor (EGFR), a major driver of proliferation. Treating cells with a selective EGFR kinase inhibitor, AG-1478, prevented arsenic inhibition of myoblast differentiation. AG-1478 decreased arsenic-induced colocalization of pY845EGFR with mitochondrial cytochrome C oxidase subunit II, as well as arsenic-enhanced mitochondrial membrane potential, reactive oxygen species generation, and cell cycling. All of the arsenic effects on mitochondrial signaling and cell fate were mitigated or reversed by addition of mitochondrially targeted agents that restored mitochondrial integrity and function. Thus, arsenic-driven pathogenesis in skeletal muscle requires sustained mitochondrial EGFR activation that promotes progenitor cell cycling and proliferation at the detriment of proper differentiation. Collectively, these findings suggest that the arsenic-activated mitochondrial EGFR pathway drives pathogenic signaling for impaired myoblast metabolism and function.
Collapse
Affiliation(s)
- Amin Cheikhi
- Division of Geriatric Medicine, Department of Medicine
- Department of Environmental and Occupational Health
- Department of Physical Medicine and Rehabilitation
| | | | - Jane Lasak
- Department of Physical Medicine and Rehabilitation
| | - Baoli Qian
- Department of Environmental and Occupational Health
| | - Amrita Sahu
- Department of Physical Medicine and Rehabilitation
| | | | | | | | - Fabrisia Ambrosio
- Department of Environmental and Occupational Health
- Department of Physical Medicine and Rehabilitation
- McGowan Institute for Regenerative Medicine
- Department of Bioengineering
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health
- Department of Bioengineering
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
30
|
Kim DH, Bang E, Arulkumar R, Ha S, Chung KW, Park MH, Choi YJ, Yu BP, Chung HY. Senoinflammation: A major mediator underlying age-related metabolic dysregulation. Exp Gerontol 2020; 134:110891. [PMID: 32114077 DOI: 10.1016/j.exger.2020.110891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
Chronic inflammation is a complex and unresolved inflammatory response with low-grade multivariable patterns that aggravate systemic pathophysiological conditions and the aging process. To redefine and delineate these age-related complex inflammatory phenomena at the molecular, cellular, and systemic levels, the concept of "Senoinflammation" was recently formulated. In this review, we describe the accumulated data on both the multiphase systemic inflammatory process and the cellular proinflammatory signaling pathway. We also describe the proinflammatory mechanisms underlying the metabolic molecular pathways in aging. Additionally, we review age-related lipid accumulation, the role of the inflammatory senescence-associated secretory phenotype (SASP), the involvement of cytokine/chemokine secretion, endoplasmic reticulum (ER) stress, insulin resistance, and autophagy. The last section of the review highlights the modulation of the senoinflammatory process by the anti-aging and anti-inflammatory action of calorie restriction (CR). Evidence from aging and CR research strongly suggests that SASP from senescent cells may be the major source of secreted cytokines and chemokines during aging. A better understanding of the mechanisms underpinning the senoinflammatory response and the mitigating role of CR will provide insights into the molecular mechanisms of chronic inflammation and aging for potential interventions.
Collapse
Affiliation(s)
- Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - EunJin Bang
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Radha Arulkumar
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Sugyeong Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyungsung University, Nam-gu, Busan 48434, Republic of Korea
| | - Min Hi Park
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Yeon Ja Choi
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
31
|
Changes in redox and endoplasmic reticulum homeostasis are related to congenital generalized lipodystrophy type 2. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158610. [PMID: 31917334 DOI: 10.1016/j.bbalip.2020.158610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/27/2022]
Abstract
CGL type 2 is a rare autosomal recessive syndrome characterized by an almost complete lack of body fat. CGL is caused by loss-of-function mutations in both alleles of the BSCL2 gene that codifies to seipin. Subjects often show hyperglycemia, decreased HDL-c, and hypoadiponectinemia. These laboratory findings are important triggers for changes in redox and ER homeostasis. Therefore, our aim was to investigate whether these intracellular mechanisms are associated with this syndrome. We collected blood from people from Northeastern Brazil with 0, 1, and 2 mutant alleles for the rs786205071 in the BSCL2 gene. Through the qPCR technique, we evaluated the expression of genes responsible for triggering the antioxidant response, DNA repair, and ER stress in leukocytes. Colorimetric tests were applied to quantify lipid peroxidation and to evaluate the redox status of glutathione, as well as to access the panorama of energy metabolism. Long extension PCR was performed to observe leukocyte mitochondrial DNA lesions, and the immunoblot technique to investigate plasma adiponectin concentrations. Subjects with the rs786205071 in both BSCL2 alleles showed increased transcription of NFE2L2, APEX1, and OGG1 in leukocytes, as well as high concentrations of malondialdehyde and the GSSG:GSH ratio in plasma. We also observed increase of mitochondrial DNA lesions and XBP1 splicing, as well as a decrease in adiponectin and HDL-c. Our data suggest the presence of lipid lesions due to changes in redox homeostasis in that group, associated with increased levels of mitochondrial DNA damage and transcriptional activation of genes involved with antioxidant response and DNA repair.
Collapse
|
32
|
Bagias C, Xiarchou A, Bargiota A, Tigas S. Familial Partial Lipodystrophy (FPLD): Recent Insights. Diabetes Metab Syndr Obes 2020; 13:1531-1544. [PMID: 32440182 PMCID: PMC7224169 DOI: 10.2147/dmso.s206053] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Lipodystrophies are a heterogeneous group of congenital or acquired disorders, characterized by partial or generalized loss of adipose tissue. Familial partial lipodystrophy (FPLD) presents with genetic and phenotypic variability with insulin resistance, hypertriglyceridemia and hepatic steatosis being the cardinal metabolic features. The severity of the metabolic derangements is in proportion with the degree of lipoatrophy. The underpinning pathogenetic mechanism is the limited capacity of adipose tissue to store lipids leading to lipotoxicity, low-grade inflammation, altered adipokine secretion and ectopic fat tissue accumulation. Advances in molecular genetics have led to the discovery of new genes and improved our knowledge of the regulation of adipose tissue biology. Diagnosis relies predominantly on clinical findings, such as abnormal fat tissue topography and signs of insulin resistance and is confirmed by genetic analysis. In addition to anthropometry and conventional imaging, new techniques such as color-coded imaging of fat depots allow more accurate assessment of the regional fat distribution and differentiation of lipodystrophic syndromes from common metabolic syndrome phenotype. The treatment of patients with lipodystrophy has proven to be challenging. The use of a human leptin analogue, metreleptin, has recently been approved in the management of FPLD with evidence suggesting improved metabolic profile, satiety, reproductive function and self-perception. Preliminary data on the use of glucagon-like peptide 1 receptor agonists (GLP1 Ras) and sodium-glucose co-transporter 2 (SGLT2) inhibitors in cases of FPLD have shown promising results with reduction in total insulin requirements and improvement in glycemic control. Finally, investigational trials for new therapeutic agents in the management of FPLD are underway.
Collapse
Affiliation(s)
- Christos Bagias
- Department of Endocrinology, University of Ioannina, Ioannina, Greece
| | - Angeliki Xiarchou
- Department of Endocrinology, University of Ioannina, Ioannina, Greece
| | | | - Stelios Tigas
- Department of Endocrinology, University of Ioannina, Ioannina, Greece
- Correspondence: Stelios Tigas Department of Endocrinology, University of Ioannina, Ioannina45110, GreeceTel +30 2651007800 Email
| |
Collapse
|
33
|
Auclair N, Patey N, Melbouci L, Ou Y, Magri-Tomaz L, Sané A, Garofalo C, Levy E, St-Pierre DH. Acylated Ghrelin and The Regulation of Lipid Metabolism in The Intestine. Sci Rep 2019; 9:17975. [PMID: 31784591 PMCID: PMC6884495 DOI: 10.1038/s41598-019-54265-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
Abstract
Acylated ghrelin (AG) is a gastrointestinal (GI) peptide mainly secreted by the stomach that promotes cytosolic lipid droplets (CLD) hypertrophy in adipose tissues and liver. However, the role of AG in the regulation of lipid metabolism in the intestine remains unexplored. This study aimed at determining whether AG influences CLD production and chylomicron (CM) secretion in the intestine. The effects of AG and oleic acid on CLD accumulation and CM secretion were first investigated in cultured Caco-2/15 enterocytes. Intestinal lipid metabolism was also studied in Syrian Golden Hamsters submitted to conventional (CD) or Western (WD) diets for 8 weeks and continuously administered with AG or physiological saline for the ultimate 2 weeks. In cultured Caco-2/15 enterocytes, CLD accumulation influenced CM secretion while AG reduced fatty acid uptake. In WD hamsters, continuous AG treatment amplified chylomicron output while reducing postprandial CLD accumulation in the intestine. The present study supports the intimate relationship between CLD accumulation and CM secretion in the intestine and it underlines the importance of further characterizing the mechanisms through which AG exerts its effects on lipid metabolism in the intestine.
Collapse
Affiliation(s)
- N Auclair
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, H3T 1C5, Quebec, Canada.,Department of Exercise Science, University of Quebec in Montreal (UQAM), Montreal, H2X 1Y4, Quebec, Canada
| | - N Patey
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, H3T 1C5, Quebec, Canada
| | - L Melbouci
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, H3T 1C5, Quebec, Canada.,Department of Exercise Science, University of Quebec in Montreal (UQAM), Montreal, H2X 1Y4, Quebec, Canada
| | - Y Ou
- Department of Exercise Science, University of Quebec in Montreal (UQAM), Montreal, H2X 1Y4, Quebec, Canada
| | - L Magri-Tomaz
- Department of Exercise Science, University of Quebec in Montreal (UQAM), Montreal, H2X 1Y4, Quebec, Canada
| | - A Sané
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, H3T 1C5, Quebec, Canada
| | - C Garofalo
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, H3T 1C5, Quebec, Canada
| | - E Levy
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, H3T 1C5, Quebec, Canada.,Department of Nutrition, University of Montreal, Montreal, H3T 1A8, Quebec, Canada.,Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, G1V 0A6, Quebec, Canada
| | - D H St-Pierre
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, H3T 1C5, Quebec, Canada. .,Department of Nutrition, University of Montreal, Montreal, H3T 1A8, Quebec, Canada. .,Department of Exercise Science, University of Quebec in Montreal (UQAM), Montreal, H2X 1Y4, Quebec, Canada. .,Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, G1V 0A6, Quebec, Canada.
| |
Collapse
|
34
|
Grewal S, Gubbi S, Fosam A, Sedmak C, Sikder S, Talluru H, Brown RJ, Muniyappa R. Metabolomic Analysis of the Effects of Leptin Replacement Therapy in Patients with Lipodystrophy. J Endocr Soc 2019; 4:bvz022. [PMID: 32010873 DOI: 10.1210/jendso/bvz022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Context and Objective Leptin treatment has dramatic clinical effects on glucose and lipid metabolism in leptin-deficient patients with lipodystrophy. Further elucidation of metabolic effects of exogenous leptin therapy will shed light on understanding leptin physiology in humans. Our objective was to utilize metabolomic profiling to examine the changes associated with administration of short-term metreleptin therapy in patients with lipodystrophy. Study Design We conducted a pre-post-treatment study in 19 patients (75% female) with varying forms of lipodystrophy (congenital generalized lipodystrophy, n = 10; acquired generalized lipodystrophy, n = 1; familial partial lipodystrophy, n = 8) who received daily subcutaneous metreleptin injections for a period of 16 to 23 weeks. A 3-hour oral glucose tolerance test and body composition measurements were conducted before and after the treatment period, and fasting blood samples were used for metabolomic profiling. The study outcome aimed at measuring changes in physiologically relevant metabolites before and after leptin therapy. Results Metabolomic analysis revealed changes in pathways involving branched-chain amino acid metabolism, fatty acid oxidation, protein degradation, urea cycle, tryptophan metabolism, nucleotide catabolism, vitamin E, and steroid metabolism. Fold changes in pre- to post-treatment metabolite levels indicated increased breakdown of fatty acids, branched chain amino acids proteins, and nucleic acids. Conclusions Leptin replacement therapy has significant effects on important metabolic pathways implicated in patients with lipodystrophy. Continued metabolomic studies may provide further insight into the mechanisms of action of leptin replacement therapy and provide novel biomarkers of lipodystrophy.Abbreviations: 1,5-AG, 1,5-anhydroglucitol; 11βHSD1, 11-β hydroxysteroid dehydrogenase 1; BCAA, branched-chain amino acid; FFA, free fatty acid; GC-MS, gas chromatography mass spectrometry; IDO, indoleamine 2,3-dioxygenase; IFN-γ, interferon-γ; m/z, mass to charge ratio; OGTT, oral glucose tolerance test; TDO, tryptophan 2,3-dioxygenase; TNF-α, tumor necrosis factor-α; UPLC-MS/MS, ultra-performance liquid chromatography-tandem mass spectrometry.
Collapse
Affiliation(s)
- Shivraj Grewal
- Diabetes, Endocrinology, and Obesity Branch, Clinical Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sriram Gubbi
- Diabetes, Endocrinology, and Obesity Branch, Clinical Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Andin Fosam
- Diabetes, Endocrinology, and Obesity Branch, Clinical Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Caroline Sedmak
- Diabetes, Endocrinology, and Obesity Branch, Clinical Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Shanaz Sikder
- Diabetes, Endocrinology, and Obesity Branch, Clinical Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Harsha Talluru
- Diabetes, Endocrinology, and Obesity Branch, Clinical Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Rebecca J Brown
- Diabetes, Endocrinology, and Obesity Branch, Clinical Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Ranganath Muniyappa
- Diabetes, Endocrinology, and Obesity Branch, Clinical Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
35
|
Briand N, Collas P. Laminopathy-causing lamin A mutations reconfigure lamina-associated domains and local spatial chromatin conformation. Nucleus 2019. [PMID: 29517398 PMCID: PMC5973257 DOI: 10.1080/19491034.2018.1449498] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The nuclear lamina contributes to the regulation of gene expression and to chromatin organization. Mutations in A-type nuclear lamins cause laminopathies, some of which are associated with a loss of heterochromatin at the nuclear periphery. Until recently however, little if any information has been provided on where and how lamin A interacts with the genome and on how disease-causing lamin A mutations may rearrange genome conformation. Here, we review aspects of nuclear lamin association with the genome. We highlight recent evidence of reorganization of lamin A-chromatin interactions in cellular models of laminopathies, and implications on the 3-dimensional rearrangement of chromatin in these models, including patient cells. We discuss how a hot-spot lipodystrophic lamin A mutation alters chromatin conformation and epigenetic patterns at an anti-adipogenic locus, and conclude with remarks on links between lamin A, Polycomb and the pathophysiology of laminopathies. The recent findings presented here collectively argue towards a deregulation of large-scale and local spatial genome organization by a subset of lamin A mutations causing laminopathies.
Collapse
Affiliation(s)
- Nolwenn Briand
- a Department of Molecular Medicine , Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Philippe Collas
- a Department of Molecular Medicine , Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo , Oslo , Norway.,b Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine , Oslo University Hospital , Oslo , Norway
| |
Collapse
|
36
|
Vigouroux C, Guénantin AC, Vatier C, Capel E, Le Dour C, Afonso P, Bidault G, Béréziat V, Lascols O, Capeau J, Briand N, Jéru I. Lipodystrophic syndromes due to LMNA mutations: recent developments on biomolecular aspects, pathophysiological hypotheses and therapeutic perspectives. Nucleus 2019; 9:235-248. [PMID: 29578370 PMCID: PMC5973242 DOI: 10.1080/19491034.2018.1456217] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in LMNA, encoding A-type lamins, are responsible for laminopathies including muscular dystrophies, lipodystrophies, and premature ageing syndromes. LMNA mutations have been shown to alter nuclear structure and stiffness, binding to partners at the nuclear envelope or within the nucleoplasm, gene expression and/or prelamin A maturation. LMNA-associated lipodystrophic features, combining generalized or partial fat atrophy and metabolic alterations associated with insulin resistance, could result from altered adipocyte differentiation or from altered fat structure. Recent studies shed some light on how pathogenic A-type lamin variants could trigger lipodystrophy, metabolic complications, and precocious cardiovascular events. Alterations in adipose tissue extracellular matrix and TGF-beta signaling could initiate metabolic inflexibility. Premature senescence of vascular cells could contribute to cardiovascular complications. In affected families, metabolic alterations occur at an earlier age across generations, which could result from epigenetic deregulation induced by LMNA mutations. Novel cellular models recapitulating adipogenic developmental pathways provide scalable tools for disease modeling and therapeutic screening.
Collapse
Affiliation(s)
- Corinne Vigouroux
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France.,b Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Laboratoire Commun de Biologie et Génétique Moléculaires , Paris , France.,c Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre National de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Diabétologie et Endocrinologie de la Reproduction , Paris , France
| | - Anne-Claire Guénantin
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France.,d Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus , Hinxton , UK
| | - Camille Vatier
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France.,c Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre National de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Diabétologie et Endocrinologie de la Reproduction , Paris , France
| | - Emilie Capel
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France
| | - Caroline Le Dour
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France
| | - Pauline Afonso
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France
| | - Guillaume Bidault
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France.,e University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital , Cambridge CB2 0QQ , UK
| | - Véronique Béréziat
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France
| | - Olivier Lascols
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France.,b Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Laboratoire Commun de Biologie et Génétique Moléculaires , Paris , France
| | - Jacqueline Capeau
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France
| | - Nolwenn Briand
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France.,f Department of Molecular Medicine , Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo , Blindern , Oslo , Norway
| | - Isabelle Jéru
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France.,b Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Laboratoire Commun de Biologie et Génétique Moléculaires , Paris , France
| |
Collapse
|
37
|
Pellegrini C, Columbaro M, Schena E, Prencipe S, Andrenacci D, Iozzo P, Angela Guzzardi M, Capanni C, Mattioli E, Loi M, Araujo-Vilar D, Squarzoni S, Cinti S, Morselli P, Giorgetti A, Zanotti L, Gambineri A, Lattanzi G. Altered adipocyte differentiation and unbalanced autophagy in type 2 Familial Partial Lipodystrophy: an in vitro and in vivo study of adipose tissue browning. Exp Mol Med 2019; 51:1-17. [PMID: 31375660 PMCID: PMC6802660 DOI: 10.1038/s12276-019-0289-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/04/2019] [Accepted: 04/16/2019] [Indexed: 01/29/2023] Open
Abstract
Type-2 Familial Partial Lipodystrophy is caused by LMNA mutations. Patients gradually lose subcutaneous fat from the limbs, while they accumulate adipose tissue in the face and neck. Several studies have demonstrated that autophagy is involved in the regulation of adipocyte differentiation and the maintenance of the balance between white and brown adipose tissue. We identified deregulation of autophagy in laminopathic preadipocytes before induction of differentiation. Moreover, in differentiating white adipocyte precursors, we observed impairment of large lipid droplet formation, altered regulation of adipose tissue genes, and expression of the brown adipose tissue marker UCP1. Conversely, in lipodystrophic brown adipocyte precursors induced to differentiate, we noticed activation of autophagy, formation of enlarged lipid droplets typical of white adipocytes, and dysregulation of brown adipose tissue genes. In agreement with these in vitro results indicating conversion of FPLD2 brown preadipocytes toward the white lineage, adipose tissue from FPLD2 patient neck, an area of brown adipogenesis, showed a white phenotype reminiscent of its brown origin. Moreover, in vivo morpho-functional evaluation of fat depots in the neck area of three FPLD2 patients by PET/CT analysis with cold stimulation showed the absence of brown adipose tissue activity. These findings highlight a new pathogenetic mechanism leading to improper fat distribution in lamin A-linked lipodystrophies and show that both impaired white adipocyte turnover and failure of adipose tissue browning contribute to disease. An abnormal distribution of fatty tissues associated with certain tissue disorders is driven by disrupted fat cell differentiation. Type 2 familial partial lipodystrophy (FPLD2) is a genetic condition that results in fat being lost from the limbs and accumulating in the face and neck. Giovanna Lattanzi at the National Research Council of Italy in Bologna and co-workers found that fat cell (adipocyte) precursors did not clearly differentiate into either of the two main fatty tissue types, brown or white, in FPLD2 patients. White adipocyte precursors exhibited impaired lipid formation and abnormal levels of brown tissue markers. Conversely, brown adipocyte precursors showed high lipid levels and increased autophagy, a natural process involving degradation and recycling of cellular components. The neck is normally where brown fat accumulates, but FPLD2 patients had adipocytes there displaying white fat characteristics.
Collapse
Affiliation(s)
- Camilla Pellegrini
- CNR - National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy
| | | | - Elisa Schena
- CNR - National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy.,IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sabino Prencipe
- CNR - National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy
| | - Davide Andrenacci
- CNR - National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy.,IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Patricia Iozzo
- CNR - National Research Council of Italy, Institute of Clinical Physiology, Pisa, Italy
| | - Maria Angela Guzzardi
- CNR - National Research Council of Italy, Institute of Clinical Physiology, Pisa, Italy
| | - Cristina Capanni
- CNR - National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy.,IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisabetta Mattioli
- CNR - National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy.,IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Loi
- CNR - National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy
| | - David Araujo-Vilar
- Department of Medicine, CIMUS Biomedical Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Stefano Squarzoni
- CNR - National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy.,IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, University of Ancona (UniversitàPolitecnicadelle Marche), Ancona, Italy.,Center of Obesity of University of Ancona, Ancona, Italy
| | - Paolo Morselli
- Plastic Surgery Unit, Department of Specialised, Experimental, and Diagnostic Medicine, Alma Mater Studiorum University of Bologna, S Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Laura Zanotti
- Endocrinology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Alessandra Gambineri
- Endocrinology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Giovanna Lattanzi
- CNR - National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy. .,IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
38
|
Craveiro Sarmento AS, Ferreira LC, Lima JG, de Azevedo Medeiros LB, Barbosa Cunha PT, Agnez-Lima LF, Galvão Ururahy MA, de Melo Campos JTA. The worldwide mutational landscape of Berardinelli-Seip congenital lipodystrophy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:30-52. [PMID: 31416577 DOI: 10.1016/j.mrrev.2019.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 11/26/2022]
Abstract
Berardinelli-Seip congenital lipodystrophy (BSCL) is a rare disease characterized by the near total absence of body fat at birth. BSCL etiology involves genetic variations in four different genes: AGPAT2, BSCL2, CAV1, and CAVIN1. The four different biochemical subtypes of the disease are distinguished depending on which gene is mutated. The diagnosis of lipodystrophy can be based on clinical criteria, but the gold standard remains genetic testing. Since many different mutations have already been correlated with the onset of the disease, the most indicative method is DNA sequencing. However, not all laboratories have the resources to perform sequencing. Thus, less expensive techniques that include narrow gene regions may be applied. In such cases, the target mutations to be tested must be carefully determined taking into account the frequency of the description of the mutations in the literature, the nationality of the patient, as well as their phenotype. This review considers the molecular basis of BSCL, including the manual count of the majority of mutations reported in the literature up to the year 2018. Ninety different genetic mutations in 332 cases were reported at different frequencies. Some mutations were distributed homogeneously and others were specific to geographic regions. Type 2 BSCL was mentioned most often in the literature (50.3% of the cases), followed by Type 1 (38.0%), Type 4 (10.2%), and Type 3 (1.5%). The mutations comprised frameshifts (34.4%), nonsense (26.6%), and missense (21.1%). The c.517dupA in the BSCL2 gene was the most frequent (13.3%), followed by c.589-2A>G in the AGPAT2 gene (11.5%), c.507_511delGTATC in the BSCL2 gene (9.7%), c.317-588del in the AGPAT2 gene (7.3%), and c.202C>T in the AGPAT2 gene (4.5%). This information should prove valuable for analysts in making decisions regarding the best therapeutic targets in a population-specific context, which will benefit patients and enable faster and less expensive treatment.
Collapse
Affiliation(s)
- Aquiles Sales Craveiro Sarmento
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Leonardo Capistrano Ferreira
- Instituto de Medicina Tropical, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Josivan Gomes Lima
- Departamento de Medicina Clínica, Hospital Universitário Onofre Lopes, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Lázaro Batista de Azevedo Medeiros
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | - Lucymara Fassarella Agnez-Lima
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Marcela Abbott Galvão Ururahy
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Julliane Tamara Araújo de Melo Campos
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
39
|
Elias CP, Antunes DE, Coelho MS, de Lima CL, Rassi N, de Melo APM, Amato AA. Evaluation of the hypothalamic-pituitary-adrenal axis in a case series of familial partial lipodystrophy. Diabetol Metab Syndr 2019; 11:1. [PMID: 30622652 PMCID: PMC6317180 DOI: 10.1186/s13098-018-0396-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/20/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Familial partial lipodystrophy (FPL) is a rare genetic disease characterized by body fat abnormalities that lead to insulin resistance (IR). Clinical conditions linked to milder IR, such as type 2 diabetes (T2D) and metabolic syndrome, are associated with abnormalities of the hypothalamic-pituitary-adrenal (HPA) axis, but little is known about its activity in FPL. METHODS Patients meeting the clinical criteria for FPL were subjected to anthropometric, biochemical and hormone analyses. A genetic study to identify mutations in the genes encoding peroxisome proliferator-activated receptor gamma (PPARγ) was performed. Polycystic ovary syndrome and hepatic steatosis were investigated, and the patient body compositions were analyzed via dual X-ray energy absorptiometry (DXA). The HPA axis was assessed via basal [cortisol, adrenocorticotrophic hormone (ACTH), cortisol binding globulin, nocturnal salivary cortisol and urinary free cortisol (UFC)] as well as dynamic suppression tests (cortisol post 0.5 mg and post 1 mg dexamethasone). RESULTS Six patients (five female and one male) aged 17 to 42 years were included. In DXA analyses, the fat mass ratio between the trunk and lower limbs (FMR) was > 1.2 in all phenotypes. One patient had a confirmed mutation in the PPARγ gene: a novel heterozygous substitution of p. Arg 212 Trp (c.634C>T) at exon 5. HPA sensitivity to glucocorticoid feedback was preserved in all six patients, and a trend towards lower basal serum cortisol, serum ACTH and UFC values was observed. CONCLUSIONS Our findings suggest that FPL is not associated with overt abnormalities in the HPA axis, despite a trend towards low-normal basal cortisol and ACTH values and lower UFC levels. These findings suggest that the extreme insulin resistance occurring in FPL may lead to a decrease in HPA axis activity without changing its sensitivity to glucocorticoid feedback, in contrast to the abnormalities in HPA axis function in T2D and common metabolic syndrome.
Collapse
Affiliation(s)
- Cecília Pacheco Elias
- Unit of Endocrinology, Hospital Alberto Rassi–General Hospital of Goiânia (HGG), Avenida Anhanguera, 6479 - St. Oeste, Goiânia, GO CEP 74120-080 Brazil
| | | | - Michella Soares Coelho
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasília (UnB), Brasília, Brazil
| | - Caroline Lourenço de Lima
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasília (UnB), Brasília, Brazil
| | - Nelson Rassi
- Unit of Endocrinology, Hospital Alberto Rassi–General Hospital of Goiânia (HGG), Avenida Anhanguera, 6479 - St. Oeste, Goiânia, GO CEP 74120-080 Brazil
| | | | - Angélica Amorim Amato
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasília (UnB), Brasília, Brazil
| |
Collapse
|
40
|
Jin Y, Tan Y, Chen L, Liu Y, Ren Z. Reactive Oxygen Species Induces Lipid Droplet Accumulation in HepG2 Cells by Increasing Perilipin 2 Expression. Int J Mol Sci 2018; 19:ijms19113445. [PMID: 30400205 PMCID: PMC6274801 DOI: 10.3390/ijms19113445] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the world's most common liver disease. The disease can develop liver fibrosis or even carcinomas from the initial hepatic steatosis, and this process is influenced by many factors. Reactive oxygen species (ROS), as potent oxidants in cells, have been reported previously to play an important role in the development of NAFLD progression via promoting neutral lipid accumulation. Here, we found that ROS can promote lipid droplet formation in hepatocytes by promoting perilipin2 (PLIN2) expression. First, we used different concentrations of hydrogen peroxide to treat HepG2 cells and found that the number of lipid droplets in the cells increased, however also that this effect was dose-independent. Then, the mRNA level of several lipid droplet-associated genes was detected with hydrogen peroxide treatment and the expression of PLIN2, PLIN5, and FSP27 genes was significantly up-regulated (p < 0.05). We overexpressed PLIN2 in HepG2 cells and found that the lipid droplets in the cells were markedly increased. Interference with PLIN2 inhibits ROS-induced lipid droplet formation, revealing that PLIN2 is a critical factor in this process. We subsequently analyzed the regulatory pathway and protein interaction network that is involved in PLIN2 and found that PLIN2 can regulate intracellular lipid metabolism through the PPARα/RXRA and CREB/CREBBP signaling pathways. The majority of the data indicated the correlation between hydrogen peroxide-induced PLIN2 and lipid droplet upregulation. In conclusion, ROS up-regulates the expression of PLIN2 in hepatocytes, whereas PLIN2 promotes the formation of lipid droplets resulting in lipid accumulation in liver tissues.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lupeng Chen
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yan Liu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
41
|
Hu L, He F, Huang M, Peng M, Zhou Z, Liu F, Dai YS. NFATc3 deficiency reduces the classical activation of adipose tissue macrophages. J Mol Endocrinol 2018; 61:79-89. [PMID: 30307161 DOI: 10.1530/jme-18-0070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear factors of activated T cells (NFAT) c3 have a prominent role in the regulation of proinflammatory factors in immune cells. The classically activated M1 macrophages are key players in the initiation and maintenance of adipose tissue (AT) inflammation. The role of NFATc3 in obesity and AT inflammation is unknown. We set out to determine how deficiency of NFATc3 effected macrophage polarization, inflammation and insulin resistance in visceral AT of high-fat diet (HFD)-fed mice. Nfatc3−/− and WT mice were fed a HFD for 8–17 weeks. Epididymal white AT (eWAT) F4/80(+) cells were characterized by fluorescence-activated cell sorting and quantitative RT-PCR. Results showed that Nfatc3−/− mice developed HFD-induced obesity similar to WT mice, but insulin sensitivity and glucose tolerance were improved, and liver fat accumulation was reduced in Nfatc3−/− mice compared to WT control mice. Moreover, M1 macrophage content and proinflammatory factors were reduced, whereas the alternatively activated M2 macrophage content was increased in eWAT of HFD-fed Nfatc3−/− mice compared to that of WT mice. In addition, eWAT insulin signaling was improved in HFD-fed Nfatc3−/− mice. Importantly, after bone-marrow-derived macrophages had been isolated from Nfatc3−/− mice and cultured in vitro, treatment of these cells with interferon-γ and lipopolysaccharide resulted in reduction of M1 inflammatory markers, suggesting that NFATc3 promoted M1 polarization by a cell-autonomous mechanism. The results demonstrated that NFATc3 played an important role in M1 macrophage polarization, AT inflammation and insulin resistance in response to obesity through transcriptional activation of proinflammatory genes.
Collapse
Affiliation(s)
- Li Hu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fengli He
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Melfeng Huang
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Melhua Peng
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yan-Shan Dai
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
42
|
Briand N, Cahyani I, Madsen-Østerbye J, Paulsen J, Rønningen T, Sørensen AL, Collas P. Lamin A, Chromatin and FPLD2: Not Just a Peripheral Ménage-à-Trois. Front Cell Dev Biol 2018; 6:73. [PMID: 30057899 PMCID: PMC6053905 DOI: 10.3389/fcell.2018.00073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
At the nuclear periphery, the genome is anchored to A- and B-type nuclear lamins in the form of heterochromatic lamina-associated domains. A-type lamins also associate with chromatin in the nuclear interior, away from the peripheral nuclear lamina. This nucleoplasmic lamin A environment tends to be euchromatic, suggesting distinct roles of lamin A in the regulation of gene expression in peripheral and more central regions of the nucleus. The hot-spot lamin A R482W mutation causing familial partial lipodystrophy of Dunnigan-type (FPLD2), affects lamin A association with chromatin at the nuclear periphery and in the nuclear interior, and is associated with 3-dimensional (3D) rearrangements of chromatin. Here, we highlight features of nuclear lamin association with the genome at the nuclear periphery and in the nuclear interior. We address recent data showing a rewiring of such interactions in cells from FPLD2 patients, and in adipose progenitor and induced pluripotent stem cell models of FPLD2. We discuss associated epigenetic and genome conformation changes elicited by the lamin A R482W mutation at the gene level. The findings argue that the mutation adversely impacts both global and local genome architecture throughout the nucleus space. The results, together with emerging new computational modeling tools, mark the start of a new era in our understanding of the 3D genomics of laminopathies.
Collapse
Affiliation(s)
- Nolwenn Briand
- Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Immunology and Transfusion Medicine, Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Inswasti Cahyani
- Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Julia Madsen-Østerbye
- Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jonas Paulsen
- Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Torunn Rønningen
- Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anita L Sørensen
- Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Immunology and Transfusion Medicine, Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
43
|
Ohno H, Matsuzaka T, Tang N, Sharma R, Motomura K, Shimura T, Satoh A, Han SI, Takeuchi Y, Aita Y, Iwasaki H, Yatoh S, Suzuki H, Sekiya M, Nakagawa Y, Sone H, Yahagi N, Yamada N, Higami Y, Shimano H. Transgenic Mice Overexpressing SREBP-1a in Male ob/ob Mice Exhibit Lipodystrophy and Exacerbate Insulin Resistance. Endocrinology 2018; 159:2308-2323. [PMID: 29668871 DOI: 10.1210/en.2017-03179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Abstract
Sterol regulatory element-binding protein (SREBP)-1a is a key transcription factor that activates the expression of genes involved in the synthesis of fatty acids, triglycerides (TGs), and cholesterol. Transgenic mice that overexpress the nuclear form of SREBP-1a under the control of the phosphoenolpyruvate carboxykinase promoter (Tg-1a) were previously shown to display a lipodystrophic phenotype characterized by enlarged and fatty livers, diminished peripheral white adipose tissue (WAT), and insulin resistance. In the current study, we crossed these Tg-1a mice with genetically obese (ob/ob) mice (Tg-1a;ob/ob) and examined change in fat distribution between liver and adipose tissues in severe obesity and mechanism underlying the lipodystrophic phenotype in mice with Tg-1a. Tg-1a;ob/ob mice developed more severe steatohepatitis but had reduced WAT mass and body weight compared with ob/ob mice. The reduction of WAT mass in Tg-1a and Tg-1a;ob/ob mice was accompanied by enhanced lipogenesis and lipid uptake in the liver, reduced plasma lipid levels, impaired adipocyte differentiation, reduced food intake, enhanced energy expenditure, and extended macrophage infiltration and fibrosis in WAT. Despite the improved glucose tolerance, Tg-1a;ob/ob mice showed severe peripheral insulin resistance. Adenoviral hepatic expression of SREBP-1a mimicked these phenotypes. The "fat steal"-like lipodystrophy phenotype of the Tg-1a;ob/ob model demonstrates that hepatic SREBP-1a activation has a strong impact on the partition of TG accumulation, resulting in adipose-tissue remodeling by inflammation and fibrosis and insulin resistance.
Collapse
Affiliation(s)
- Hiroshi Ohno
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Division of Energy Metabolism Research, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nie Tang
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rahul Sharma
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaori Motomura
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takuya Shimura
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Aoi Satoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Song-Iee Han
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinori Takeuchi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuichi Aita
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Iwasaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigeru Yatoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Suzuki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshimi Nakagawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Naoya Yahagi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nobuhiro Yamada
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
44
|
Xu S, Zhang X, Liu P. Lipid droplet proteins and metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1968-1983. [DOI: 10.1016/j.bbadis.2017.07.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
|
45
|
Renu K, Madhyastha H, Madhyastha R, Maruyama M, Arunachlam S, V.G. A. Role of arsenic exposure in adipose tissue dysfunction and its possible implication in diabetes pathophysiology. Toxicol Lett 2018; 284:86-95. [DOI: 10.1016/j.toxlet.2017.11.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 02/08/2023]
|
46
|
Braz NFT, Rocha NP, Vieira ÉLM, Gomez RS, Kakehasi AM, Teixeira AL. Body composition and adipokines plasma levels in patients with myasthenia gravis treated with high cumulative glucocorticoid dose. J Neurol Sci 2017; 381:169-175. [PMID: 28991674 DOI: 10.1016/j.jns.2017.08.3250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 11/17/2022]
Abstract
This study aimed to evaluate changes in body composition, i.e. overweight, obesity, fat accumulation and low lean body mass and plasma levels of adipokines in patients with MG. The study enrolled 80 patients with MG, and 62 controls. Body fat mass and body lean mass was analyzed by dual-energy X-ray absorptiometry technique (DXA). Plasma levels of leptin were analyzed by Luminex® and adiponectin and resistin were analyzed by ELISA. The mean age of patients with MG was 41.9years, with 13.5years of length of illness, and mean cumulative dose of glucocorticoids 38,123mg. Our results showed that the frequency of obesity is higher in MG patients than in controls, and patients with MG presented higher body fat mass, android body adiposity and total body fat than controls. MG patients presented lower levels of resistin and higher levels of leptin in comparison with controls. There were no differences in the plasma levels of adiponectin. Higher total body fat and lower body lean mass were associated with increased severity of MG symptoms. This result points to the relevance of estimation of body composition in planning long-term care of MG patients.
Collapse
Affiliation(s)
- Nayara Felicidade Tomaz Braz
- Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, UFMG, Belo Horizonte, Brazil
| | - Natalia Pessoa Rocha
- Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, UFMG, Belo Horizonte, Brazil
| | - Érica Leandro Marciano Vieira
- Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, UFMG, Belo Horizonte, Brazil
| | | | | | - Antonio Lucio Teixeira
- Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, UFMG, Belo Horizonte, Brazil; Neuromuscular Disease Clinic, University Hospital, UFMG, Belo Horizonte, Brazil.
| |
Collapse
|
47
|
Oldenburg A, Briand N, Sørensen AL, Cahyani I, Shah A, Moskaug JØ, Collas P. A lipodystrophy-causing lamin A mutant alters conformation and epigenetic regulation of the anti-adipogenic MIR335 locus. J Cell Biol 2017; 216:2731-2743. [PMID: 28751304 PMCID: PMC5584164 DOI: 10.1083/jcb.201701043] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/04/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in the Lamin A/C (LMNA) gene-encoding nuclear LMNA cause laminopathies, which include partial lipodystrophies associated with metabolic syndromes. The lipodystrophy-associated LMNA p.R482W mutation is known to impair adipogenic differentiation, but the mechanisms involved are unclear. We show in this study that the lamin A p.R482W hot spot mutation prevents adipogenic gene expression by epigenetically deregulating long-range enhancers of the anti-adipogenic MIR335 microRNA gene in human adipocyte progenitor cells. The R482W mutation results in a loss of function of differentiation-dependent lamin A binding to the MIR335 locus. This impairs H3K27 methylation and instead favors H3K27 acetylation on MIR335 enhancers. The lamin A mutation further promotes spatial clustering of MIR335 enhancer and promoter elements along with overexpression of the MIR355 gene after adipogenic induction. Our results link a laminopathy-causing lamin A mutation to an unsuspected deregulation of chromatin states and spatial conformation of an miRNA locus critical for adipose progenitor cell fate.
Collapse
Affiliation(s)
- Anja Oldenburg
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nolwenn Briand
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anita L Sørensen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Inswasti Cahyani
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Akshay Shah
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jan Øivind Moskaug
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.,Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway .,Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
48
|
Ajluni N, Meral R, Neidert AH, Brady GF, Buras E, McKenna B, DiPaola F, Chenevert TL, Horowitz JF, Buggs-Saxton C, Rupani AR, Thomas PE, Tayeh MK, Innis JW, Omary MB, Conjeevaram H, Oral EA. Spectrum of disease associated with partial lipodystrophy: lessons from a trial cohort. Clin Endocrinol (Oxf) 2017; 86:698-707. [PMID: 28199729 PMCID: PMC5395301 DOI: 10.1111/cen.13311] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/18/2017] [Accepted: 02/10/2017] [Indexed: 12/29/2022]
Abstract
CONTEXT Partial lipodystrophy (PL) is associated with metabolic co-morbidities but may go undiagnosed as the disease spectrum is not fully described. OBJECTIVE The objective of the study was to define disease spectrum in PL using genetic, clinical (historical, morphometric) and laboratory characteristics. DESIGN Cross-sectional evaluation. PARTICIPANTS Twenty-three patients (22 with familial, one acquired, 78·3% female, aged 12-64 years) with PL and non-alcoholic fatty liver disease (NAFLD). MEASUREMENTS Genetic, clinical and laboratory characteristics, body composition indices, liver fat content by magnetic resonance imaging (MRI), histopathological and immunofluorescence examinations of liver biopsies. RESULTS Seven patients displayed heterozygous pathogenic variants in LMNA. Two related patients had a heterozygous, likely pathogenic novel variant of POLD1 (NM002691·3: c.3199 G>A; p.E1067K). Most patients had high ratios (>1·5) of percentage fat trunk to percentage fat legs (FMR) when compared to reference normals. Liver fat quantified using MR Dixon method was high (11·3 ± 6·3%) and correlated positively with haemoglobin A1c and triglycerides while leg fat by dual-energy X-ray absorptiometry (DEXA) correlated negatively with triglycerides. In addition to known metabolic comorbidities; chronic pain (78·3%), hypertension (56·5%) and mood disorders (52·2%) were highly prevalent. Mean NAFLD Activity Score (NAS) was 5 ± 1 and 78·3% had fibrosis. LMNA-immunofluorescence staining from select patients (including one with the novel POLD1 variant) showed a high degree of nuclear atypia and disorganization. CONCLUSIONS Partial lipodystrophy is a complex multi-system disorder. Metabolic parameters correlate negatively with extremity fat and positively with liver fat. DEXA-based FMR may prove useful as a diagnostic tool. Nuclear disorganization and atypia may be a common biomarker even in the absence of pathogenic variants in LMNA.
Collapse
Affiliation(s)
- Nevin Ajluni
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Rasimcan Meral
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Adam H. Neidert
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Graham F. Brady
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Eric Buras
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Barbara McKenna
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Frank DiPaola
- Division of Pediatric Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Colleen Buggs-Saxton
- Pediatric Endocrinology, Children’s Hospital of Michigan, Wayne School of Medicine, Detroit, MI, USA
| | - Amit R. Rupani
- Departments of Pediatrics and Communicable Diseases and Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Peedikayil E. Thomas
- Departments of Pediatrics and Communicable Diseases and Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Marwan K. Tayeh
- Departments of Pediatrics and Communicable Diseases and Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey W. Innis
- Departments of Pediatrics and Communicable Diseases and Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - M. Bishr Omary
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Hari Conjeevaram
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Elif A. Oral
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Castro JP, Grune T, Speckmann B. The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction. Biol Chem 2016; 397:709-24. [DOI: 10.1515/hsz-2015-0305] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/08/2016] [Indexed: 12/11/2022]
Abstract
Abstract
White adipose tissue (WAT) is actively involved in the regulation of whole-body energy homeostasis via storage/release of lipids and adipokine secretion. Current research links WAT dysfunction to the development of metabolic syndrome (MetS) and type 2 diabetes (T2D). The expansion of WAT during oversupply of nutrients prevents ectopic fat accumulation and requires proper preadipocyte-to-adipocyte differentiation. An assumed link between excess levels of reactive oxygen species (ROS), WAT dysfunction and T2D has been discussed controversially. While oxidative stress conditions have conclusively been detected in WAT of T2D patients and related animal models, clinical trials with antioxidants failed to prevent T2D or to improve glucose homeostasis. Furthermore, animal studies yielded inconsistent results regarding the role of oxidative stress in the development of diabetes. Here, we discuss the contribution of ROS to the (patho)physiology of adipocyte function and differentiation, with particular emphasis on sources and nutritional modulators of adipocyte ROS and their functions in signaling mechanisms controlling adipogenesis and functions of mature fat cells. We propose a concept of ROS balance that is required for normal functioning of WAT. We explain how both excessive and diminished levels of ROS, e.g. resulting from over supplementation with antioxidants, contribute to WAT dysfunction and subsequently insulin resistance.
Collapse
|
50
|
Barathikannan K, Venkatadri B, Khusro A, Al-Dhabi NA, Agastian P, Arasu MV, Choi HS, Kim YO. Chemical analysis of Punica granatum fruit peel and its in vitro and in vivo biological properties. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:264. [PMID: 27476116 PMCID: PMC4967515 DOI: 10.1186/s12906-016-1237-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/21/2016] [Indexed: 11/24/2022]
Abstract
Background The medical application of pomegranate fruits and its peel is attracted human beings. The aim of the present study was to evaluate the in vitro α-Glucosidase inhibition, antimicrobial, antioxidant property and in vivo anti-hyperglycemic activity of Punica granatum (pomegranate) fruit peel extract using Caenorhabditis elegans. Methods Various invitro antioxidant activity of fruit peel extracts was determined by standard protocol. Antibacterial and antifungal activities were determined using disc diffusion and microdilution method respectively. Anti-hyperglycemic activity of fruit peel was observed using fluorescence microscope for in vivo study. Results The ethyl acetate extract of P. granatum fruit peel (PGPEa) showed α-Glucosidase inhibition upto 50 % at the concentration of IC50 285.21 ± 1.9 μg/ml compared to hexane and methanol extracts. The total phenolic content was highest (218.152 ± 1.73 mg of catechol equivalents/g) in ethyl acetate extract. PGPEa showed more scavenging activity on 2,2-diphenyl-picrylhydrazyl (DPPH) with IC50 value 302.43 ± 1.9 μg/ml and total antioxidant activity with IC50 294.35 ± 1.68 μg/ml. PGPEa also showed a significant effecton lipid peroxidation IC50 208.62 ± 1.68 μg/ml, as well as high reducing power. Among the solvents extracts tested, ethyl acetate extract of fruit peel showed broad spectrum of antimicrobial activity. Ethyl acetate extract supplemented C.elegans worms showed inhibition of lipid accumulation similar to acarbose indicating good hypoglycemic activity. The normal worms compared to test (ethyl acetate extract supplemented) showed the highest hypoglycaemic activity by increasing the lifespan of the worms. GC-MS analysis of PGPEa showed maximum amount of 5-hydroxymethylfurfural and 4-fluorobenzyl alcohol (48.59 %). Conclusion In the present investigation we observed various biological properties of pomegranate fruit peel. The results clearly indicated that pomegranate peel extract could be used in preventing the incidence of long term complication of diabetics.
Collapse
|