1
|
Wang T, Li H, Li Y, Li M, Zhao H, Zhang W, Zhao T, Wang Y, Wang J, Wang J. Selenomethionine supplementation mitigates fluoride-induced liver apoptosis and inflammatory reactions by blocking Parkin-mediated mitophagy in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175458. [PMID: 39142410 DOI: 10.1016/j.scitotenv.2024.175458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
As an environmental pollutant, fluoride-induced liver damage is directly linked to mitochondrial alteration and oxidative stress. Selenium's antioxidant capacity has been shown to alleviate liver damage. Emerging research proves that E3 ubiquitin ligase Park2 (Parkin)-mediated mitophagy may be a therapeutic target for fluorosis. The current study explored the effect of diverse selenium sources on fluoride-caused liver injury and the role of Parkin-mediated mitophagy in this intervention process. Therefore, this study established a fluoride-different selenium sources co-intervention wild-type (WT) mouse model and a fluoride-optimum selenium sources co-intervention Parkin gene knockout (Parkin-/-) mouse model. Our results show that selenomethionine (SeMet) is the optimum selenium supplementation form for mice suffering from fluorosis when compared to sodium selenite and chitosan nano‑selenium because mice from the F-SeMet group showed more closely normal growth and development levels of liver function, antioxidant capacity, and anti-inflammatory ability. Explicitly, SeMet ameliorated liver inflammation and cell apoptosis in fluoride-toxic mice, accomplished through downregulating the mRNA and protein expression levels associated with mitochondrial fusion and fission, mitophagy, apoptosis, inflammatory signalling pathway of nuclear factor-kappa B (NF-κB), reducing the protein expression levels of PARKIN, PTEN-induced putative kinase1 (PINK1), SQSTM1/p62 (P62), microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate specific proteinase 3 (CASPAS3), as well as restraining the content of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and interferon-γ (IFN-γ). The Parkin-/- showed comparable positive effects to the SeMet in the liver of fluorosis mice. The structure of the mitochondria, mRNA, protein expression levels, and the content of proinflammatory factors in mice from the FParkin-/- and F + SeMetParkin-/- groups closely resembled those in the F + SeMetWT group. Overall, the above results indicated that SeMet could alleviate fluoride-triggered inflammation and apoptosis in mice liver via blocking Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Tianyu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Haojei Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Yuanyuan Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Meng Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Hui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Wenhui Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Tianrui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Yinghui Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China.
| |
Collapse
|
2
|
Long C, Yin XF, Sheng XH, Wang XG, Xiao LF, Qi XL. Dietary alpha-linolenic acid supplementation enhances semen quality, antioxidant capacity, and sperm survival in aging breeder roosters. Poult Sci 2024; 103:104252. [PMID: 39353326 PMCID: PMC11472602 DOI: 10.1016/j.psj.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024] Open
Abstract
Aging in breeder roosters is often accompanied by a decline in semen quality, negatively impacting reproductive performance. This study aimed to investigate the effect of dietary alpha-linolenic acid (ALA), an essential omega-3 polyunsaturated fatty acid, on semen quality, antioxidant capacity, and sperm survival in aging breeder roosters. Roosters were divided into 4 groups and fed diets supplemented with 0%, 0.5%, 1%, and 2% ALA for 6 wk. Results indicated significant improvements in semen volume, sperm viability, and sperm density in ALA-supplemented groups compared to the control (P < 0.05). The 1% ALA group exhibited the most notable enhancements in sperm viability and density. Additionally, ALA supplementation increased the activities of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and reduced malondialdehyde (MDA) levels, indicating enhanced antioxidant capacity (P < 0.05). Furthermore, ALA improved mitochondrial membrane potential (MMP) and reduced early and late sperm apoptosis, with the 2% ALA group showing the highest MMP and the lowest ROS-positive rate (P < 0.05). These findings suggest that dietary ALA supplementation enhances semen quality and antioxidant defenses, and mitigates oxidative stress, thus supporting the reproductive health of aging breeder roosters. This study underscores the potential of ALA as a dietary strategy to improve reproductive efficiency in poultry production.
Collapse
Affiliation(s)
- Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Xiao-Feng Yin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xi-Hui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiang-Guo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Long-Fei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 102206, China.
| |
Collapse
|
3
|
Wei X, Zou H, Zhang T, Huo Y, Yang J, Wang Z, Li Y, Zhao J. Gestational Diabetes Mellitus: What Can Medical Nutrition Therapy Do? Nutrients 2024; 16:1217. [PMID: 38674907 PMCID: PMC11055016 DOI: 10.3390/nu16081217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the common complications during pregnancy. Numerous studies have shown that GDM is associated with a series of adverse effects on both mothers and offspring. Due to the particularity of pregnancy, medical nutrition treatment is considered to be the first choice for the treatment of GDM. This contribution reviews the research progress of medical nutrition treatment in GDM, summarizes the international recommendations on the intake of various nutrients and the influence of nutrients on the prevalence of GDM, and the improvement effect of nutritional intervention on it, in order to provide references for research in related fields of GDM and the targeted development of enteral nutrition.
Collapse
Affiliation(s)
- Xiaoyi Wei
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (X.W.); (H.Z.); (T.Z.); (Y.H.); (Y.L.)
| | - Hong Zou
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (X.W.); (H.Z.); (T.Z.); (Y.H.); (Y.L.)
| | - Tingting Zhang
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (X.W.); (H.Z.); (T.Z.); (Y.H.); (Y.L.)
| | - Yanling Huo
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (X.W.); (H.Z.); (T.Z.); (Y.H.); (Y.L.)
| | - Jianzhong Yang
- Sunline Research Laboratories, Jiangsu Sunline Deep Sea Fishery Co., Ltd., Lianyungang 222042, China; (J.Y.); (Z.W.)
| | - Zhi Wang
- Sunline Research Laboratories, Jiangsu Sunline Deep Sea Fishery Co., Ltd., Lianyungang 222042, China; (J.Y.); (Z.W.)
| | - Yu Li
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (X.W.); (H.Z.); (T.Z.); (Y.H.); (Y.L.)
| | - Jiuxiang Zhao
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (X.W.); (H.Z.); (T.Z.); (Y.H.); (Y.L.)
| |
Collapse
|
4
|
de Oliveira AS, Convento MB, Razvickas CV, Castino B, Leme AM, da Silva Luiz R, da Silva WH, da Glória MA, Guirão TP, Bondan E, Schor N, Borges FT. The Nephroprotective Effects of the Allogeneic Transplantation with Mesenchymal Stromal Cells Were Potentiated by ω3 Stimulating Up-Regulation of the PPAR-γ. Pharmaceuticals (Basel) 2023; 16:1484. [PMID: 37895955 PMCID: PMC10610511 DOI: 10.3390/ph16101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) obtained from bone marrow are a promising tool for regenerative medicine, including kidney diseases. A step forward in MSCs studies is cellular conditioning through specific minerals and vitamins. The Omega-3 fatty acids (ω3) are essential in regulating MSCs self-renewal, cell cycle, and survival. The ω3 could act as a ligand for peroxisome proliferator-activated receptor gamma (PPAR-γ). This study aimed to demonstrate that ω3 supplementation in rats could lead to the up-regulation of PPAR-γ in the MSCs. The next step was to compare the effects of these MSCs through allogeneic transplantation in rats subjected to unilateral ureteral obstruction (UUO). Independent of ω3 supplementation in the diet of the rats, the MSCs in vitro conserved differentiation capability and phenotypic characteristics. Nevertheless, MSCs obtained from the rats supplemented with ω3 stimulated an increase in the expression of PPAR-γ. After allogeneic transplantation in rats subjected to UUO, the ω3 supplementation in the rats enhanced some nephroprotective effects of the MSCs through a higher expression of antioxidant enzyme (SOD-1), anti-inflammatory marker (IL-10), and lower expression of the inflammatory marker (IL-6), and proteinuria.
Collapse
Affiliation(s)
- Andreia Silva de Oliveira
- Translational Medicine Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil;
| | - Márcia Bastos Convento
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Clara Versolato Razvickas
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Bianca Castino
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil;
| | - Ala Moana Leme
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Rafael da Silva Luiz
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Wesley Henrique da Silva
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Maria Aparecida da Glória
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Tatiana Pinotti Guirão
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Eduardo Bondan
- Graduate Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, Brazil;
| | - Nestor Schor
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Fernanda Teixeira Borges
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil;
| |
Collapse
|
5
|
Carvajal F, Sánchez-Gil A, Cardona D, Rincón-Cervera MA, Lerma-Cabrera JM. The Effect of Very-Long-Chain n-3 Polyunsaturated Fatty Acids in the Central Nervous System and Their Potential Benefits for Treating Alcohol Use Disorder: Reviewing Pre-Clinical and Clinical Data. Nutrients 2023; 15:2993. [PMID: 37447319 DOI: 10.3390/nu15132993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Alcohol use poses a significant global health concern, leading to serious physical and socioeconomic issues worldwide. The current treatment options for problematic alcohol consumption are limited, leading to the exploration of alternative approaches, such as nutraceuticals. One promising target is very-long-chain n-3 polyunsaturated fatty acids (VLC n-3 PUFAs). This review aims to compile the most relevant pre-clinical and clinical evidence on the effect of VLC n-3 PUFAs on alcohol use disorders and related outcomes. The findings suggest that VLC n-3 PUFAs may alleviate the physiological changes induced by alcohol consumption, including neuroinflammation and neurotransmitter dysregulation. Additionally, they can reduce withdrawal symptoms, improve mood, and reduce stress level, all of which are closely associated with problematic alcohol consumption. However, more research is required to fully understand the precise mechanisms by which VLC n-3 PUFAs exert their function. Furthermore, PUFAs should not be considered a standalone solution, but as a complement to other therapeutic approaches. Although preliminary evidence supports the potential therapeutic effect of VLC n-3 PUFAs on problematic alcohol consumption, additional research is needed to validate these findings and determine the optimal use of PUFAs as part of a comprehensive approach to the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Francisca Carvajal
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| | - Ainhoa Sánchez-Gil
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| | - Diana Cardona
- Health Research Center, University of Almeria, 04120 Almeria, Spain
- Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
| | - Miguel Angel Rincón-Cervera
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain
- Institute of Nutrition and Food Technology, University of Chile, Santiago 830490, Chile
| | - Jose Manuel Lerma-Cabrera
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| |
Collapse
|
6
|
Liu W, Wang Y, Wang T, Wang L, Hu S, Tian D. A versatile AIE probe with mitochondria targeting for dual-channel detection of superoxide anion and viscosity. Anal Chim Acta 2023; 1253:341099. [PMID: 36965989 DOI: 10.1016/j.aca.2023.341099] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Abnormal viscosity and excessive superoxide anion (O2•-) levels in living cells often cause a series of biological dysfunction and oxidative damage. However, a great challenge remains in quickly and conveniently detecting the viscosity and O2•- levels in living cells. Herein, we fabricated a versatile aggregation-induced emission (AIE) probe with mitochondria targeting, DTPB, for dual-imaging of viscosity and O2•- level in living cells with two different channels. The obtained DTPB contained a diphenyl phosphinic acid unit responsive to O2•-, a unit with twisted intramolecular charge trans (TICT) function responsive to viscosity, and a pyridine cation unit with mitochondria targeting. The results showed that DTPB exhibited a remarkable response to viscosity with a near-infrared emission peak at 671 nm and was highly sensitive to O2•- levels with an emission peak at 587 nm. The dual-channel probe has great application prospects in the visual diagnosis of cancer and related diseases.
Collapse
Affiliation(s)
- Wei Liu
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, PR China
| | - Yan Wang
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, PR China
| | - Tengfei Wang
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, PR China
| | - Liwen Wang
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, PR China
| | - Sheng Hu
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, PR China
| | - Dating Tian
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, PR China.
| |
Collapse
|
7
|
Zhao W, Jing X, Wang T, Zhang F. Glutamine Deprivation Synergizes the Anticancer Effects of Cold Atmospheric Plasma on Esophageal Cancer Cells. Molecules 2023; 28:molecules28031461. [PMID: 36771124 PMCID: PMC9919221 DOI: 10.3390/molecules28031461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Esophageal cancer is a highly aggressive malignancy with a low response to standard anti-cancer therapies. There is an unmet need to develop new therapeutic strategies to improve the clinical outcomes of current treatments. Cold atmospheric plasma (CAP) is a promising approach for cancer treatment, and has displayed anticancer efficacy in multiple preclinical models. Recent studies have shown that the efficacy of CAP is positively correlated with intracellular reactive oxygen species (ROS) levels. This suggests that aggressively increasing intracellular ROS levels has the potential to further improve CAP-mediated anticancer efficacy. Glutamine plays an important role in cellular ROS scavenging after being converted to glutathione (GSH, a well-described antioxidant) under physiological conditions, so reducing intracellular glutamine levels seems to be a promising strategy. To test this hypothesis, we treated esophageal cancer cells with CAP while controlling the supply of glutamine. The results showed that glutamine did affect the anticancer effect of CAP, and the combination of CAP stimulation and glutamine deprivation significantly inhibited the proliferation of esophageal cancer cells compared to the control group (p < 0.05). Furthermore, flow cytometric analysis documented a significant increase in more than 10% in apoptosis and necrosis of esophageal cancer cells after this synergistic treatment compared to the control group (p < 0.05). Thus, these results provide the first direct evidence that the biological function of CAP can be modulated by glutamine levels and that combined CAP stimulation and glutamine deprivation represent a promising strategy for the future treatment of esophageal cancer.
Collapse
Affiliation(s)
- Wei Zhao
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xumiao Jing
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Wang
- College of Nursing and Health, Zhengzhou University, Zhengzhou 450001, China
- Telethon Kids Institute, Perth, WA 6872, Australia
- School of Medicine, University of Western Australia, Perth, WA 6872, Australia
- Correspondence: (T.W.); (F.Z.)
| | - Fengqiu Zhang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (T.W.); (F.Z.)
| |
Collapse
|
8
|
Complement induces podocyte pyroptosis in membranous nephropathy by mediating mitochondrial dysfunction. Cell Death Dis 2022; 13:281. [PMID: 35351877 PMCID: PMC8964685 DOI: 10.1038/s41419-022-04737-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 12/23/2022]
Abstract
Podocyte damage mediated by in situ complement activation in the glomeruli is a key factor in the pathogenesis of membranous nephropathy (MN), but the molecular mechanism has not been fully elucidated. Pyroptosis is a special type of programmed cell death, mediate inflammatory response and induce tissue injury. However, it is not clear whether pyroptosis is involved in the development and progression of MN. Here, we report that pyroptosis plays an important role in promoting podocyte injury in MN. We first observed the occurrence of pyroptosis in the kidneys of MN patients and validated that complement stimulation triggered pyroptosis in podocytes and that inhibiting pyroptosis reversed complement-induced podocyte damage in vitro. In addition, stimulation of complement caused mitochondrial depolarization and reactive oxygen species (ROS) production in podocytes, and inhibition of ROS reversed complement-induced pyroptosis in podocytes. Interestingly, inhibition of pyroptosis in turn partially alleviated these effects. Furthermore, we also found the involvement of pyroptosis in the kidneys of passive Heymann nephritis (PHN) rats, and inhibitors of pyroptosis-related molecules relieved PHN-induced kidney damage in vivo. Our findings demonstrate that pyroptosis plays a critical role in complement-induced podocyte damage in MN and mitochondrial dysfunction is an important mechanism underlying this process. It provides new insight that pyroptosis may serve as a novel therapeutic target for MN treatment in future studies.
Collapse
|
9
|
Elovl2-Ablation Leads to Mitochondrial Membrane Fatty Acid Remodeling and Reduced Efficiency in Mouse Liver Mitochondria. Nutrients 2022; 14:nu14030559. [PMID: 35276915 PMCID: PMC8838343 DOI: 10.3390/nu14030559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/02/2023] Open
Abstract
The fatty acid elongase elongation of very long-chain fatty acids protein 2 (ELOVL2) controls the elongation of polyunsaturated fatty acids (PUFA) producing precursors for omega-3, docosahexaenoic acid (DHA), and omega-6, docosapentaenoic acid (DPAn-6) in vivo. Expectedly, Elovl2-ablation drastically reduced the DHA and DPAn-6 in liver mitochondrial membranes. Unexpectedly, however, total PUFAs levels decreased further than could be explained by Elovl2 ablation. The lipid peroxidation process was not involved in PUFAs reduction since malondialdehyde-lysine (MDAL) and other oxidative stress biomarkers were not enhanced. The content of mitochondrial respiratory chain proteins remained unchanged. Still, membrane remodeling was associated with the high voltage-dependent anion channel (VDAC) and adenine nucleotide translocase 2 (ANT2), a possible reflection of the increased demand on phospholipid transport to the mitochondria. Mitochondrial function was impaired despite preserved content of the respiratory chain proteins and the absence of oxidative damage. Oligomycin-insensitive oxygen consumption increased, and coefficients of respiratory control were reduced by 50%. The mitochondria became very sensitive to fatty acid-induced uncoupling and permeabilization, where ANT2 is involved. Mitochondrial volume and number of peroxisomes increased as revealed by transmission electron microscopy. In conclusion, the results imply that endogenous DHA production is vital for the normal function of mouse liver mitochondria and could be relevant not only for mice but also for human metabolism.
Collapse
|
10
|
Nicolson GL, Ferreira de Mattos G, Ash M, Settineri R, Escribá PV. Fundamentals of Membrane Lipid Replacement: A Natural Medicine Approach to Repairing Cellular Membranes and Reducing Fatigue, Pain, and Other Symptoms While Restoring Function in Chronic Illnesses and Aging. MEMBRANES 2021; 11:944. [PMID: 34940446 PMCID: PMC8707623 DOI: 10.3390/membranes11120944] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Membrane Lipid Replacement (MLR) uses natural membrane lipid supplements to safely replace damaged, oxidized lipids in membranes in order to restore membrane function, decrease symptoms and improve health. Oral MLR supplements contain mixtures of cell membrane glycerolphospholipids, fatty acids, and other lipids, and can be used to replace and remove damaged cellular and intracellular membrane lipids. Membrane injury, caused mainly by oxidative damage, occurs in essentially all chronic and acute medical conditions, including cancer and degenerative diseases, and in normal processes, such as aging and development. After ingestion, the protected MLR glycerolphospholipids and other lipids are dispersed, absorbed, and internalized in the small intestines, where they can be partitioned into circulating lipoproteins, globules, liposomes, micelles, membranes, and other carriers and transported in the lymphatics and blood circulation to tissues and cellular sites where they are taken in by cells and partitioned into various cellular membranes. Once inside cells, the glycerolphospholipids and other lipids are transferred to various intracellular membranes by lipid carriers, globules, liposomes, chylomicrons, or by direct membrane-membrane interactions. The entire process appears to be driven by 'bulk flow' or mass action principles, where surplus concentrations of replacement lipids can stimulate the natural exchange and removal of damaged membrane lipids while the replacement lipids undergo further enzymatic alterations. Clinical studies have demonstrated the advantages of MLR in restoring membrane and organelle function and reducing fatigue, pain, and other symptoms in chronic illness and aging patients.
Collapse
Affiliation(s)
- Garth L. Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay;
| | - Michael Ash
- Clinical Education, Newton Abbot, Devon TQ12 4SG, UK;
| | | | - Pablo V. Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain;
| |
Collapse
|
11
|
Doğan B, Kemer Doğan ES. The Effects of Omega‐3 Supplementation on Serum Oxidative Stress Parameters in Experimental Periodontitis in an Animal Model. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Burak Doğan
- Department of Periodontology, Faculty of Dentistry Hatay Mustafa Kemal University Hatay 31001 Turkey
| | - Esra Sinem Kemer Doğan
- Department of Periodontology, Faculty of Dentistry Hatay Mustafa Kemal University Hatay 31001 Turkey
| |
Collapse
|
12
|
White-Springer SH, Vineyard KR, Kivipelto J, Warren LK. Dietary omega-3 fatty acid supplementation does not impair vitamin E status or promote lipid peroxidation in growing horses. J Anim Sci 2021; 99:6291805. [PMID: 34228797 DOI: 10.1093/jas/skab177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Omega-3 (n-3; ω-3) fatty acids (FA) are often included in the diet for their potential health benefits. However, because oxidative potential is increased with the degree of unsaturation in vitro, polyunsaturated FA such as eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) may be at increased risk of lipid peroxidation. We aimed to determine the effects of dietary n-3 FA supplementation on antioxidant status and lipid peroxidation in yearling horses. Quarter Horses (mean ± SEM; 14.6 ± 0.2 mo) were randomly assigned to receive no n-3 FA supplementation (CON; n = 6) or 60 mg n-3/kg body weight from milled flaxseed (FLAX; n = 6) or encapsulated fish oil (FISH; n = 6). All horses received a basal diet of mixed grain concentrate fed individually at 1.5% body weight (dry matter basis) and ad libitum bahiagrass pasture forage. Blood samples were obtained before and after 70 d of supplementation to evaluate vitamin E, selenium, lipids, antioxidant status, and oxidative stress. Data were analyzed using a mixed model ANOVA with repeated measures. Supplementation with n-3 FA did not reduce serum vitamin E or Se and, in fact, elevated (P ≤ 0.0003) vitamin E status in FISH horses. At day 70, serum triglycerides were lower in FISH and FLAX horses than CON horses (P ≤ 0.02) and F2-isoprostanes were lower in FISH than CON horses (P = 0.0002). Dietary n-3 FA had no effect on cholesterol, reduced and oxidized glutathione, glutathione peroxidase, and thiobarbituric acid-reactive substances. In growing horses fed to meet their vitamin E requirements, supplementation with 60 mg n-3/kg body weight did not negatively affect vitamin E status or promote lipid peroxidation. Elevated vitamin E status in horses fed FISH, coupled with lower serum F2-isoprostanes, further suggest that the longer-chain, highly unsaturated n-3 FA, EPA and DHA, may actually attenuate lipid peroxidation.
Collapse
Affiliation(s)
| | - Kelly R Vineyard
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jan Kivipelto
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Lori K Warren
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
13
|
Fazelian S, Moradi F, Agah S, Hoseini A, Heydari H, Morvaridzadeh M, Omidi A, Pizarro AB, Ghafouri A, Heshmati J. Effect of omega-3 fatty acids supplementation on cardio-metabolic and oxidative stress parameters in patients with chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol 2021; 22:160. [PMID: 33933009 PMCID: PMC8088683 DOI: 10.1186/s12882-021-02351-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
Background Omega-3 fatty acids (FAs) have been suggested as a beneficial supplement in chronic kidney disease (CKD) patients, but the results of randomized clinical trials (RCTs) are controversial. We conducted a systematic review and meta-analysis to evaluate all the RCTs about the impact of omega-3 FAs supplementation on cardiometabolic outcomes and oxidative stress parameters in patients with CKD. Methods We performed a systematic database search in PubMed/MEDLINE, EMBASE, Scopus, Web of Science, and Cochrane Central, up to May 2020. We included all placebo-controlled randomized trials that assessed the effect of omega-3 FAs supplementation on any cardiometabolic outcomes: blood pressure, total cholesterol (TC), low-density lipoprotein (LDL) and high-density lipoprotein (HDL) or triglycerides (TG) and oxidative stress parameters. Data were pooled using DerSimonian–Laird’s random-effects model. Results Finally, thirteen articles met the inclusion criteria for this review omega-3 FAs supplementation significantly decrease TC (SMD: -0.26; 95% CI: − 0.51, − 0.02; I2 = 52.7%), TG (SMD: -0.22; 95% CI: − 0.43, − 0.02; I2 = 36.0%) and Malondialdehyde (MDA) levels (SMD: -0.91; 95% CI: − 1.29, − 0.54; I2 = 00.0%) and also significantly increase superoxide dismutase (SOD) (SMD: 0.58; 95% CI: 0.27, 0.90; I2 = 00.0%) and Glutathione peroxidase (GPx) (SMD: 0.50; 95% CI: 0.14, 0.86; I2 = 00.0%) activities. However our results show that omega-3 FAs supplementation have no significant effects on HDL, LDL and blood pressure. Conclusion This systematic review and meta-analysis supports current evidence for the clinical benefit of omega-3 FAs intake to improve cardiometabolic parameters in CKD patients. However, well-designed RCTs still needed to provide a conclusive picture in this field. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-021-02351-9.
Collapse
Affiliation(s)
- Siavash Fazelian
- Clinical Research Development Unit, Ayatollah Kashani Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Moradi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akramsadat Hoseini
- Department of Education and Health Promotion,School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hafez Heydari
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Farabi Hospital, Faculty of Nutrition Sciences and Food Technology, Postal Code: 6715847141, Isar Square, Kermanshah, Iran
| | - Amirhosein Omidi
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Farabi Hospital, Faculty of Nutrition Sciences and Food Technology, Postal Code: 6715847141, Isar Square, Kermanshah, Iran
| | | | - Atie Ghafouri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Farabi Hospital, Faculty of Nutrition Sciences and Food Technology, Postal Code: 6715847141, Isar Square, Kermanshah, Iran.
| |
Collapse
|
14
|
Pérez-Pérez A, Vilariño-García T, Guadix P, Dueñas JL, Sánchez-Margalet V. Leptin and Nutrition in Gestational Diabetes. Nutrients 2020; 12:E1970. [PMID: 32630697 PMCID: PMC7400219 DOI: 10.3390/nu12071970] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Leptin is highly expressed in the placenta, mainly by trophoblastic cells, where it has an important autocrine trophic effect. Moreover, increased leptin levels are found in the most frequent pathology of pregnancy: gestational diabetes, where leptin may mediate the increased size of the placenta and the fetus, which becomes macrosomic. In fact, leptin mediates the increased protein synthesis, as observed in trophoblasts from gestational diabetic subjects. In addition, leptin seems to facilitate nutrients transport to the fetus in gestational diabetes by increasing the expression of the glycerol transporter aquaporin-9. The high plasma leptin levels found in gestational diabetes may be potentiated by leptin resistance at a central level, and obesity-associated inflammation plays a role in this leptin resistance. Therefore, the importance of anti-inflammatory nutrients to modify the pathology of pregnancy is clear. In fact, nutritional intervention is the first-line approach for the treatment of gestational diabetes mellitus. However, more nutritional intervention studies with nutraceuticals, such as polyphenols or polyunsaturated fatty acids, or nutritional supplementation with micronutrients or probiotics in pregnant women, are needed in order to achieve a high level of evidence. In this context, the Mediterranean diet has been recently found to reduce the risk of gestational diabetes in a multicenter randomized trial. This review will focus on the impact of maternal obesity on placental inflammation and nutrients transport, considering the mechanisms by which leptin may influence maternal and fetal health in this setting, as well as its role in pregnancy pathologies.
Collapse
Affiliation(s)
- Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immnology, School of Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain;
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, and Immnology, School of Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain;
| | - Pilar Guadix
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.G.); (J.L.D.)
| | - José L. Dueñas
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.G.); (J.L.D.)
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immnology, School of Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain;
| |
Collapse
|
15
|
Seifi K, Rezaei M, Yansari AT, Zamiri MJ, Riazi GH, Heidari R. Short chain fatty acids may improve hepatic mitochondrial energy efficiency in heat stressed-broilers. J Therm Biol 2020; 89:102520. [PMID: 32364974 DOI: 10.1016/j.jtherbio.2020.102520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/16/2019] [Accepted: 01/10/2020] [Indexed: 01/10/2023]
Abstract
The present study was conducted to investigate the effects of four dietary fat types and two environmental temperatures on the hepatic mitochondrial energetic in male broilers exposed to heat stress. The birds were kept in two separate rooms at 24 °C or 36 °C from 32 to 42 d of age with four experimental groups in each room. The birds fed on the diets supplemented containing rich sources of long-chain saturated fatty acids (beef tallow), middle-length-chain saturated FA (coconut oil), monounsaturated FA (olive oil), or polyunsaturated FA (soybean oil) for ten days. At 36 °C, the highest body weight and lowest feed conversion ratio were recorded in the birds fed on the diets supplemented with coconut oil or beef tallow. Temperature and fat type significantly affected the activities of the mitochondrial electron transport chain complexes (P < 0.01). There was a significant interaction between the temperature and fat type (P < 0.01). Generally, electron transport chain complexes I-V enzymatic activities were decreased at 36 °C. The coconut oil-fed birds showed the highest complex I activity at both temperatures. The beef tallow-fed broilers showed the lowest complex II activity at 24 °C. In birds exposed to 36 °C, complex II activity was higher for birds fed saturated coconut oil or beef tallow than those feeding the unsaturated olive oil or soybean oil-supplemented diets. At 24 °C, the highest and lowest complex III activities were recorded for the coconut oil- and beef tallow-supplemented diets, respectively. At 36 °C, the activity of complex III was coconut oil > beef tallow > olive oil > soybean oil. At 24 °C, complex IV activity was highest in coconut oil- or soybean oil-fed broilers; and at 36 °C, complex IV showed the lowest activity in soybean oil-fed birds. The highest complex IV activity was observed in coconut oil-fed chickens followed by olive oil-fed and beef tallow-fed birds, respectively. At 24 or 36 °C, the highest and lowest complex V activity was observed in coconut oil-fed and soybean oil-fed chickens, respectively. ATP concentration and mitochondrial membrane potential were in the order of coconut oil > beef tallow > olive oil > soybean oil at both temperatures. Temperature and fat type significantly affected the avANT mRNA concentration. Exposure of broilers to 36 °C generally decreased the mRNA expression of avANT, with beef tallow- or coconut oil-supplemented birds showing a lower avANT mRNA expression than those receiving olive oil- or soybean oil-supplemented diets. These findings provide further information on the use of fat sources in the diet of heat stressed-broilers.
Collapse
Affiliation(s)
- Kazem Seifi
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Sciences University, Sari, Iran.
| | - Mansour Rezaei
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Sciences University, Sari, Iran
| | - Asad Teimouri Yansari
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Sciences University, Sari, Iran
| | - Mohammad Javad Zamiri
- Department of Animal Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Liu R, Chen L, Wang Y, Zhang G, Cheng Y, Feng Z, Bai X, Liu J. High ratio of ω-3/ω-6 polyunsaturated fatty acids targets mTORC1 to prevent high-fat diet-induced metabolic syndrome and mitochondrial dysfunction in mice. J Nutr Biochem 2020; 79:108330. [PMID: 32179408 DOI: 10.1016/j.jnutbio.2019.108330] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/29/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
Adjusting ω-3/ω-6 polyunsaturated fatty acids (PUFAs) ratio in high-fat diet is one potential mean to improve metabolic syndrome; however, underlying mechanisms remain unclear. Four groups of mice were fed 60% kcal diets with saturated fatty acids, three different ω-3/ω-6 PUFAs ratios (low, middle and high) for 12 weeks, respectively. Body weight, atherosclerosis marker, insulin signal index and level of lipid accumulation in liver were significantly lowered in High group compared with saturated fatty acids group and Low group at week 12. Expressions of p-mTOR and raptor were inhibited by high ω-3 PUFAs. Importantly, ω-3 PUFAs intake up-regulated mitochondrial electron transport chain and tricarboxylic acid cycle pathway through metabolomics analysis in liver. Mitochondrial complexes activities were raised, fumaric acid was reduced and oxidative stress was alleviated in High group. We conclude that consuming long-term high-fat diet with same calories but high ω-3/ω-6 PUFAs ratio relieves metabolic syndrome by regulating mTORC1 pathway to enhance mitochondrial function.
Collapse
Affiliation(s)
- Run Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Lei Chen
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Yan Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Guanfei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Ying Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China.
| |
Collapse
|
17
|
Le J, Lei X, Ren Y, Li Z, Tu H, Ding F, Yi X, Zhou Y, Liu Q, Zhang S. Exogenous oestradiol benzoate induces male mice azoospermia through modulation of oxidative stress and testicular metabolic cooperation. Mol Med Rep 2019; 19:4955-4963. [PMID: 31059031 DOI: 10.3892/mmr.2019.10169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/20/2019] [Indexed: 11/06/2022] Open
Abstract
In most cases, exogenous oestradiol benzoate (EB) inhibits spermatogenesis, however, the mechanism underlying this process has not been fully elucidated. The present study investigated the effect of EB on redox equilibrium and glycometabolism in mouse testes. Male Kunming mice were divided into 3 groups and injected with 0, 5 and 10 mg/kg EB, respectively. Histological analysis revealed no sperm and far fewer spermatogenic cells in the testes of EB‑treated mice. Additionally, transmission electron microscopy revealed that mitochondria in Sertoli cells were transformed to vacuoles with irregular cristae in the EB‑treated group. EB also significantly decreased the activities and mRNA expression of catalase, superoxide dismutase, and glutathione peroxidase and increased the activity of nitric oxide synthase and nitric oxide concentration in the testes compared with the control. These results indicated that oxidative damage was caused by EB treatment. With regard to glycometabolism, ATP content and activities of hexokinase and pyruvate kinase were significantly reduced in the EB‑treated group. Although glucose and pyruvate concentrations were significantly increased by EB treatment, levels of lactate, the main energy source of spermatogenic cells, were unchanged. Monocarboxylate transporter 2 (MCT2) and MCT4, which are responsible for lactate transportation, were downregulated by EB. In conclusion, the results of the present study indicated that azoospermia induced by EB in male mice was associated with oxidative damage and the disorder of testicular metabolic cooperation.
Collapse
Affiliation(s)
- Jianghua Le
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Xiaocan Lei
- Department of Histology and Embryology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Yanping Ren
- Department of Histology and Embryology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Zhipeng Li
- State Key Laboratory for Conversation and Utilization of Subtropical Agro‑Bioresources, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Haoyan Tu
- Department of Histology and Embryology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Fangya Ding
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Xiaodong Yi
- Department of Histology and Embryology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Yi Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Qingyou Liu
- State Key Laboratory for Conversation and Utilization of Subtropical Agro‑Bioresources, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
18
|
Vázquez L, Corzo-Martínez M, Arranz-Martínez P, Barroso E, Reglero G, Torres C. Bioactive Lipids. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-78030-6_58] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Nadjar A. Role of metabolic programming in the modulation of microglia phagocytosis by lipids. Prostaglandins Leukot Essent Fatty Acids 2018; 135:63-73. [PMID: 30103935 DOI: 10.1016/j.plefa.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023]
Abstract
Microglia phagocytosis is an essential process to maintain lifelong brain homeostasis and clear potential toxic factors from the neuropil. Microglia can engulf cells or part of cells through the expression of specific receptors at their surface and activation of downstream signaling pathways to engulf material. Microglia phagocytosis is finely regulated and is under the dependence of many factors, including environmental cues such as dietary lipids. Yet, the molecular mechanisms implicated are still largely unknown. The present publication is a 'hypothesis review', assessing the possibility that lipid-mediated modulation of phagocytosis occurs by affecting bioenergetic pathways within microglia. I assess our present knowledge and the elements that allow drawing such hypothesis. I also list some of the important gaps in the literature that need to be filled in. I also consider opportunities for future therapeutic target including nutritional interventions.
Collapse
Affiliation(s)
- A Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; University Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France.
| |
Collapse
|
20
|
Tang CH, Lin CY, Sun PP, Lee SH, Wang WH. Modeling the effects of Irgarol 1051 on coral using lipidomic methodology for environmental monitoring and assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:571-578. [PMID: 29426181 DOI: 10.1016/j.scitotenv.2018.01.276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/27/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
Coral is commonly selected as a bioindicator of detecting a variety of adverse factors such as photosystem II herbicide Irgarol 1051, through measuring pan-type biomarkers. To improve the effectiveness of biomonitoring, omic technologies have recently been applied to model the systemic changes in an organism. Membrane lipids create a dynamic cell structure based on the physiological state, which offers a distinct lipid profile to specifically detect environmental threats and assess the associated health risk. To demonstrate the potential of a lipidomic methodology for biomonitoring, the glycerophosphocholine (GPC) profiles of the coral Seriatopora caliendrum were observed during 3 days of Irgarol (0.1-2.0 μg/L) exposure. The lipid profile variations were modeled based on the Irgarol dose and the coral photoinhibition levels to develop an excellent quantitative model. The predominant changes correlated with the photoinhibition, decreasing the lyso-GPCs and GPCs with lower unsaturated chains and increasing GPCs with highly polyunsaturated chains, can be related to the consequence of blocking the photosynthetic electron flow based on the associated physiological roles. Other dose-specific lipid changes led to the partial exchange of PC(O-16:0/20:5) for PC(16,0/20:5) as a first-line response to counteract the membrane opening caused by Irgarol. Increased levels of the GPCs with 20:4 or 22:6 chains, which can promote mitochondrial functionality, confirmed an elevated respiration level in the coral exposed to Irgarol levels of >0.5 μg/L. Notably, plasmanylcholines with 20:4 or 22:6 chains and phosphatidylcholines with 22:6 or 22:5 chains, which can alter their membrane material properties to mitigate organelle pre-swelling and swelling in different ways, formed in the coral exposed to the 0.5 and 2.0 μg/L Irgarol levels. Such coral adaptations further predict the health risks associated with altered physiological conditions. In this study, the lipidomic methodology is demonstrated as a potential tool for environmental monitoring and assessment.
Collapse
Affiliation(s)
- Chuan-Ho Tang
- National Museum of Marine Biology and Aquarium, Department of Biology, Pingtung 944, Taiwan; Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
| | - Ching-Yu Lin
- Institute of Environmental Health, National Taiwan University, Taipei City 100, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 811, Taiwan
| | - Shu-Hui Lee
- Central of General Education, National Kaohsiung Marine University, Kaohsiung 811, Taiwan
| | - Wei-Hsien Wang
- National Museum of Marine Biology and Aquarium, Department of Biology, Pingtung 944, Taiwan; Department of Marine Biotechnology and Resources and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
21
|
Pollard AK, Ortori CA, Stöger R, Barrett DA, Chakrabarti L. Mouse mitochondrial lipid composition is defined by age in brain and muscle. Aging (Albany NY) 2017; 9:986-998. [PMID: 28325886 PMCID: PMC5391243 DOI: 10.18632/aging.101204] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/12/2017] [Indexed: 01/22/2023]
Abstract
Functionality of the lipid rich mitochondrial organelle declines with increased age. Recent advances in lipidomic technologies allowed us to perform a global characterisation of lipid composition in two different tissue types and age ranges. Ultra-high performance liquid chromatography coupled with high resolution mass spectrometry was used to establish and compare mitochondrial lipidomes of brain and skeletal muscle from young (4-11 weeks old) and middle age (78 weeks old) healthy mice. In middle age the brain mitochondria had reduced levels of fatty acids, particularly polyunsaturated fatty acids, while skeletal muscle mitochondria had a decreased abundance of phosphatidylethanolamine, but a pronounced increase of triglyceride levels. Reduced levels of phosphatidylethanolamines are known to decrease mitochondrial membrane fluidity and are connected with accelerated ageing. In mitochondria from skeletal muscle we propose that increased age causes a metabolic shift in the conversion of diacylglycerol so that triglycerides predominate compared with phosphatidylethanolamines. This is the first time mitochondrial lipid content in normal healthy mammalian ageing brain and muscle has been catalogued in such detail across all lipid classes. We identify distinct mitochondrial lipid signatures that change with age, revealing tissue-specific lipid pathways as possible targets to ameliorate ageing-related mitochondrial decline.
Collapse
Affiliation(s)
- Amelia K Pollard
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Catharine A Ortori
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Reinhard Stöger
- Division of Animal Science, School of Biosciences, University of Nottingham, LE12 5RD, UK
| | - David A Barrett
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| |
Collapse
|
22
|
Schüller ÁK, Mena Canata DA, Hackenhaar FS, Engers VK, Heemann FM, Putti JS, Salomon TB, Benfato MS. Effects of lipoic acid and n-3 long-chain polyunsaturated fatty acid on the liver ovariectomized rat model of menopause. Pharmacol Rep 2017; 70:263-269. [PMID: 29475009 DOI: 10.1016/j.pharep.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bilateral ovariectomy is an experimental model used to analyse the effects of menopause and develop strategies to mitigate the deleterious effects of this condition. Supplementation of the diet with antioxidants has been used to reduce potential oxidative stress caused by menopause. The purpose of the study was to analyse the effects of α-lipoic acid (LA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), dietary supplementation on oxidative stress in the livers of ovariectomized rats. METHODS In this study, we evaluated the effect of dietary supplementation with LA, DHA and EPA for a period of 16 weeks on oestrogen levels and oxidative stress biomarkers in the livers of ovariectomized 25 three-month-old rats. RESULTS Serum oestrogen levels were lower after ovariectomy but were not altered by dietary treatments. LA was capable of acting in the liver, recovering the activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase, and reducing protein oxidative damage. Moreover, LA supplementation reduced nitrite and nitrate levels. DHA and EPA recovered the antioxidant activity of cytosolic and mitochondrial superoxide dismutase, decreasing protein oxidation. Protection against lipid oxidation differed between treatments. The DHA-treated group showed increased levels of the lipid peroxidation biomarker malondialdehyde compared to the ovariectomized group. However, malondialdehyde levels were not altered by EPA treatment. CONCLUSIONS The results suggest that the antioxidant response varies among evaluated supplementations and all supplements were able to alter enzymatic and non-enzymatic antioxidants in the livers of ovariectomized rats. DHA presented the most evident antioxidant effect, decreasing protein and lipid damage.
Collapse
Affiliation(s)
- Ártur Krumberg Schüller
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego Antonio Mena Canata
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Schäfer Hackenhaar
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa Krüger Engers
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Maciel Heemann
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jordana Salete Putti
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago Boeira Salomon
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mara Silveira Benfato
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
23
|
Nicolson GL, Ash ME. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1704-1724. [PMID: 28432031 DOI: 10.1016/j.bbamem.2017.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022]
Abstract
Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, California 92649, USA.
| | - Michael E Ash
- Clinical Education, Newton Abbot, Devon, TQ12 4SG, UK
| |
Collapse
|
24
|
Al-Gubory KH, Blachier F, Faure P, Garrel C. Pomegranate peel extract decreases small intestine lipid peroxidation by enhancing activities of major antioxidant enzymes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3462-3468. [PMID: 26564426 DOI: 10.1002/jsfa.7529] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/30/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Pomegranate peel extract (PPE) contains several compounds with antioxidative properties. PPE added to foods may interact with endogenous antioxidants and promote health. However, little is known about the biochemical mechanisms by which PPE exerts their actions on tissues of biological systems in vivo. The purpose of this study was to determine the effects of PPE on activities of antioxidant enzymes. Mice were used to investigate the effects of PPE on plasma levels of malondialdehyde (MDA), tissue MDA content and activities of superoxide dismutase 1 (SOD1), SOD2 and glutathione peroxidase (GPX) in the small intestine, liver and skeletal muscle - different tissues involved in the digestion, absorption and metabolism of dietary nutrients. Control mice were fed a standard diet, whereas treated mice were fed for 40 days with the standard diet containing 5% or 10% PPE. RESULTS Mice fed the 10% PPE diet exhibited lower plasma MDA concentrations, reduced content of MDA in the small intestine and liver and higher levels of SOD1 and GPX activities in the small intestine compared to mice fed the control diet. CONCLUSIONS These findings demonstrate that intake of PPE in diet attenuates small intestine lipid peroxidation and strengthens the first line of small intestine antioxidant defense by enhancing enzymatic antioxidative pathways. PPE is worthy of further study as a therapeutic approach to prevent peroxidative stress-induced gut pathogenesis. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaïs H Al-Gubory
- INRA, UMR1198 Biologie du Développement et Reproduction, Département de Physiologie Animale et Systèmes D'Elevage, 78350, Jouy-en-Josas, France
| | - François Blachier
- INRA, UMR 914, Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, 75005, Paris, France
| | - Patrice Faure
- Unité de Biochimie Hormonale et Nutritionnelle, Centre Hospitalier Universitaire de Grenoble, Département de Biologie - Toxicologie - Pharmacologie, 38043, Grenoble cedex 9, France
| | - Catherine Garrel
- Unité de Biochimie Hormonale et Nutritionnelle, Centre Hospitalier Universitaire de Grenoble, Département de Biologie - Toxicologie - Pharmacologie, 38043, Grenoble cedex 9, France
| |
Collapse
|
25
|
Al-Gubory KH, Garrel C. Sex-specific divergence of antioxidant pathways in fetal brain, liver, and skeletal muscles. Free Radic Res 2016; 50:366-73. [PMID: 26765668 DOI: 10.3109/10715762.2015.1130224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sex-specific divergence of antioxidant pathways in fetal organs of opposite-sex twin is unknown and remains urgently in need of investigation. Such study faces many challenges, mainly the ethical impossibility of obtaining human fetal organs. Opposite-sex sheep twins represent a unique model for studying a sex dimorphism for antioxidant systems. The activity of total superoxide dismutase (SOD), SOD1, SOD2, glutathione peroxidase (GPX), glutathione reductase (GR) and catalase (CAT), the content of total glutathione, reduced glutathione (GSH), and oxidized glutathione (GSSG) were measured in brain, lung, liver, kidney, and skeletal muscles of female and male fetuses collected from sheep twin pregnancies at day 65 of gestation. Lipid peroxidation was assessed by measuring melondialdehyde (MDA) tissue content. Male brain has greater total SOD and SOD1 activities than female brain. Female liver has greater SOD2 activity than male liver. Male liver has greater GR activity than female liver. Male liver has higher total GSH and GSSG content than female liver. Male skeletal muscles have higher total GSH, GSH, and GSSG content than female skeletal muscles. Female brain and liver have higher MDA content than male brain and liver. This is the first report of a sex dimorphism for fetal organ antioxidative pathways. Brain, liver, and skeletal muscles of male and female fetuses display distinct antioxidant pathways. Such sexually dimorphic responses to early life oxidative stress might be involved in the sex-related difference in fetal development that may have a long-term effect on offspring. Our study urges researchers to take into consideration the importance of sex as a biologic variable in their investigations.
Collapse
Affiliation(s)
- Kaïs H Al-Gubory
- a INRA, UMR1198 Biologie Du Développement Et Reproduction , Département De Physiologie Animale Et Systèmes D'elevage , Jouy-en-Josas , France
| | - Catherine Garrel
- b Département De Biologie - Toxicologie - Pharmacologie , Unité De Biochimie Hormonale Et Nutritionnelle, Centre Hospitalier Universitaire De Grenoble , Grenoble Cedex , France
| |
Collapse
|
26
|
Behling CS, Andrade AS, Putti JS, Mahl CD, Hackenhaar FS, da Silva ACA, e Silva MNC, Salomon TB, dos Santos CEI, Dias JF, Benfato MS. Treatment of oxidative stress in brain of ovariectomized rats with omega-3 and lipoic acid. Mol Nutr Food Res 2015; 59:2547-55. [DOI: 10.1002/mnfr.201500338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/07/2015] [Accepted: 08/12/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Camile S. Behling
- Department of Biophysics; Program of Cellular and Molecular Biology; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Alexey S. Andrade
- Department of Biophysics; Program of Cellular and Molecular Biology; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Jordana S. Putti
- Department of Biophysics; Program of Cellular and Molecular Biology; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Camila D. Mahl
- Department of Biophysics; Program of Cellular and Molecular Biology; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Fernanda S. Hackenhaar
- Department of Biophysics; Program of Cellular and Molecular Biology; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Ana Carolina A. da Silva
- Department of Biophysics; Program of Cellular and Molecular Biology; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Mélany Natuane C. e Silva
- Department of Biophysics; Program of Cellular and Molecular Biology; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Tiago B. Salomon
- Department of Biophysics; Program of Cellular and Molecular Biology; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Carla E. I. dos Santos
- Ion Implantation Laboratory; Institute of Physics; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Johnny F. Dias
- Ion Implantation Laboratory; Institute of Physics; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Mara S. Benfato
- Department of Biophysics; Program of Cellular and Molecular Biology; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| |
Collapse
|
27
|
Venturini D, Simão ANC, Urbano MR, Dichi I. Effects of extra virgin olive oil and fish oil on lipid profile and oxidative stress in patients with metabolic syndrome. Nutrition 2015; 31:834-40. [DOI: 10.1016/j.nut.2014.12.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/12/2014] [Accepted: 12/08/2014] [Indexed: 12/14/2022]
|
28
|
Yu L, Fink BD, Herlein JA, Oltman CL, Lamping KG, Sivitz WI. Dietary fat, fatty acid saturation and mitochondrial bioenergetics. J Bioenerg Biomembr 2014; 46:33-44. [PMID: 24121995 DOI: 10.1007/s10863-013-9530-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/20/2013] [Indexed: 12/15/2022]
Abstract
Fat intake alters mitochondrial lipid composition which can affect function. We used novel methodology to assess bioenergetics, including simultaneous ATP and reactive oxygen species (ROS) production, in liver and heart mitochondria of C57BL/6 mice fed diets of variant fatty acid content and saturation. Our methodology allowed us to clamp ADP concentration and membrane potential (ΔΨ) at fixed levels. Mice received a control diet for 17–19 weeks, a high-fat (HF) diet (60% lard) for 17–19 weeks, or HF for 12 weeks followed by 6–7 weeks of HF with 50% of fat as menhaden oil (MO) which is rich in n-3 fatty acids. ATP production was determined as conversion of 2-deoxyglucose to 2-deoxyglucose phosphate by NMR spectroscopy. Respiration and ATP production were significantly reduced at all levels of ADP and resultant clamped ΔΨ in liver mitochondria from mice fed HF compared to controls. At given ΔΨ, ROS production per mg mitochondrial protein, per unit respiration, or per ATP generated were greater for liver mitochondria of HF-fed mice compared to control or MO-fed mice. Moreover, these ROS metrics began to increase at a lower ΔΨ threshold. Similar, but less marked, changes were observed in heart mitochondria of HF-fed mice compared to controls. No changes in mitochondrial bioenergetics were observed in studies of separate mice fed HF versus control for only 12 weeks. In summary, HF feeding of sufficient duration impairs mitochondrial bioenergetics and is associated with a greater ROS “cost” of ATP production compared to controls. These effects are, in part, mitigated by MO.
Collapse
|
29
|
Samokhvalov V, Zlobine I, Jamieson KL, Jurasz P, Chen C, Lee KSS, Hammock BD, Seubert JM. PPARδ signaling mediates the cytotoxicity of DHA in H9c2 cells. Toxicol Lett 2014; 232:10-20. [PMID: 25300478 DOI: 10.1016/j.toxlet.2014.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/28/2022]
Abstract
Docosahexaenoic acid (22:6n3, DHA) is an n-3 polyunsaturated fatty acid (PUFA) known to affect numerous biological functions. While DHA possesses many properties that impact cell survival such as suppressing cell growth and inducing apoptosis, the exact molecular and cellular mechanism(s) remain unknown. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors that regulate many cell pathways including cell death. As DHA acts as a ligand to PPARs the aim of this study was to examine the involvement of PPARδ in DHA-mediated cytotoxicity toward H9c2 cells. Treatment with DHA (100μM) resulted in a significant decline in cell viability, cellular metabolic activity and total antioxidant capacity coinciding with increased total proteasome activities and activity of released lactate dehydrogenase (LDH). No changes in reactive oxygen species (ROS) production or accumulation of lipid peroxidation products were observed but DHA promoted apoptotic cell death as detected by flow cytometry, increased caspase-3 activity and decreased phosphorylation of Akt. Importantly, DHA enhanced PPARδ DNA binding activity in H9c2 cells strongly signifying that the cytotoxic effect of DHA might be mediated via PPARδ signaling. Co-treatment with the selective PPARδ antagonist GSK 3787 (1μM) abolished the cytotoxic effects of DHA in H9c2 cells. Cytotoxic effects of DHA were attenuated by co-treatment with myriocin, a selective inhibitor of serine palmitoyl transferase (SPT), preventing de novo ceramide biosynthesis. LC/MS analysis revealed that treatment with DHA resulted in the accumulation of ceramide, which was blocked by GSK 3787. Interestingly, inhibition of cytochrome P450 (CYP) oxidase with MS-PPOH (50μM) abolished DHA-mediated cytotoxicity suggesting downstream metabolites as the active mediators. We further demonstrate that CYP oxidase metabolites of DHA, methyl epoxy docosapentaenoate (EDP methyl esters, 1μM) (mix 1:1:1:1:1:1; 4,5-, 7,8-, 10,11-, 13,14-, 16,17- and 19,20-EDP methyl esters) and 19,20-EDP cause cytotoxicity via activation of PPARδ signaling leading to increased levels of intracellular ceramide. These results illustrate novel pathways for DHA-induced cytotoxicity that suggest an important role for CYP-derived metabolites, EDPs.
Collapse
Affiliation(s)
- Victor Samokhvalov
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Igor Zlobine
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kristi L Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Christopher Chen
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kin Sing Stephen Lee
- Department of Entomology and Nematology, University of California, Davis, CA, USA; UCD Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, CA, USA; UCD Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
30
|
Matravadia S, Herbst EAF, Jain SS, Mutch DM, Holloway GP. Both linoleic and α-linolenic acid prevent insulin resistance but have divergent impacts on skeletal muscle mitochondrial bioenergetics in obese Zucker rats. Am J Physiol Endocrinol Metab 2014; 307:E102-14. [PMID: 24844257 DOI: 10.1152/ajpendo.00032.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The therapeutic use of polyunsaturated fatty acids (PUFA) in preserving insulin sensitivity has gained interest in recent decades; however, the roles of linoleic acid (LA) and α-linolenic acid (ALA) remain poorly understood. We investigated the efficacy of diets enriched with either LA or ALA on attenuating the development of insulin resistance (IR) in obesity. Following a 12-wk intervention, LA and ALA both prevented the shift toward an IR phenotype and maintained muscle-specific insulin sensitivity otherwise lost in obese control animals. The beneficial effects of ALA were independent of changes in skeletal muscle mitochondrial content and oxidative capacity, as obese control and ALA-treated rats showed similar increases in these parameters. However, ALA increased the propensity for mitochondrial H2O2 emission and catalase content within whole muscle and reduced markers of oxidative stress (4-HNE and protein carbonylation). In contrast, LA prevented changes in markers of mitochondrial content, respiratory function, H2O2 emission, and oxidative stress in obese animals, thereby resembling levels seen in lean animals. Together, our data suggest that LA and ALA are efficacious in preventing IR but have divergent impacts on skeletal muscle mitochondrial content and function. Moreover, we propose that LA has value in preserving insulin sensitivity in the development of obesity, thereby challenging the classical view that n-6 PUFAs are detrimental.
Collapse
Affiliation(s)
- Sarthak Matravadia
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Eric A F Herbst
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Swati S Jain
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
31
|
Jones ML, Mark PJ, Waddell BJ. Maternal dietary omega-3 fatty acids and placental function. Reproduction 2014; 147:R143-52. [PMID: 24451224 DOI: 10.1530/rep-13-0376] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The developing fetus requires substantial amounts of fatty acids to support rapid cellular growth and activity. Although the fatty acid composition delivered to the fetus is largely determined by maternal circulating levels, the placenta preferentially transfers physiologically important long-chain polyunsaturated fatty acids (LC-PUFAs), particularly omega-3 (n-3) PUFAs. Maternal dietary supplementation with n-3 PUFAs during pregnancy has been shown to increase gestation length, enhance fetal growth, and reduce the risk of pregnancy complications, although the precise mechanisms governing these effects remain uncertain. Omega-3 PUFAs are involved in several physiological pathways which could account for these effects, including anti-inflammatory, pro-resolving, and anti-oxidative pathways. Recent studies have shown that maternal dietary n-3 PUFA supplementation during rat pregnancy can reduce placental oxidative damage and increase placental levels of pro-resolving mediators, effects associated with enhanced fetal and placental growth. Because several placental disorders, such as intrauterine growth restriction, preeclampsia, and gestational diabetes mellitus, are associated with heightened placental inflammation and oxidative stress, there is considerable interest in the potential for dietary n-3 PUFAs as a therapeutic intervention for these disorders. In this study, we review the impact of dietary n-3 PUFAs on placental function, with particular focus on placental inflammation, inflammatory resolution, and oxidative stress.
Collapse
Affiliation(s)
- Megan L Jones
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia
| | | | | |
Collapse
|
32
|
Forbes-Hernández TY, Giampieri F, Gasparrini M, Mazzoni L, Quiles JL, Alvarez-Suarez JM, Battino M. The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol 2014; 68:154-82. [PMID: 24680691 DOI: 10.1016/j.fct.2014.03.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/09/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential organelles for cellular integrity and functionality maintenance and their imparement is implicated in the development of a wide range of diseases, including metabolic, cardiovascular, degenerative and hyperproliferative pathologies. The identification of different compounds able to interact with mitochondria for therapeutic purposes is currently becoming of primary importance. Indeed, it is well known that foods, particularly those of vegetable origin, present several constituents with beneficial effects on health. This review summarizes and updates the most recent findings concerning the mechanisms through which different dietary compounds from plant foods affect mitochondria functionality in healthy and pathological in vitro and in vivo models, paying particular attention to the pathways involved in mitochondrial biogenesis and apoptosis.
Collapse
Affiliation(s)
- Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Francesca Giampieri
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Luca Mazzoni
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Spain
| | - José M Alvarez-Suarez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy; Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy.
| |
Collapse
|
33
|
Kim SC, Lee JR, Park SJ. Role of 6-shogaol in tert -butyl hydroperoxide-induced apoptosis of HepG2 cells. Pharmacology 2014; 93:137-44. [PMID: 24662601 DOI: 10.1159/000360090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/28/2014] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the protective effects of 6-shogaol on tert-butyl hydroperoxide (tBHP)-induced oxidative stress leading to apoptosis in human hepatoma cell line HepG2. The cells were exposed to tBHP (100 μmol/l) after pretreatment with 6-shogaol (2.5 and 5 μmol/l), and then cell viability was measured. 6-Shogaol fully prevented HepG2 cell death caused by tBHP. Treatment of tBHP resulted in apoptotic cell death as assessed by TUNEL assay and the expression of apoptosis regulator proteins, Bcl-2 family, caspases and cytochrome c. Cells treated with 6-shogaol showed rapid reduction of apoptosis by restoring these markers of apoptotic cells. In addition, 6-shogaol significantly recovered disruption of mitochondrial membrane potential as a start sign of hepatic apoptosis induced by oxidative stress. In line with this observation, antioxidative 6-shogaol inhibited generation of reactive oxygen species and depletion of reduced glutathione in tBHP-stimulated HepG2 cells. Taken together, these results for the first time showed antioxidative and antiapoptotic activities of 6-shogaol in tBHP-treated hepatoma HepG2 cells, suggesting that 6-shogaol could be beneficial in hepatic disorders caused by oxidative stress.
Collapse
Affiliation(s)
- Sang Chan Kim
- Medical Research Center for Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University, Gyeongsan, South Korea
| | | | | |
Collapse
|
34
|
Lapointe J. Mitochondria as promising targets for nutritional interventions aiming to improve performance and longevity of sows. J Anim Physiol Anim Nutr (Berl) 2014; 98:809-21. [DOI: 10.1111/jpn.12160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/05/2013] [Indexed: 12/11/2022]
Affiliation(s)
- J. Lapointe
- Dairy and Swine R & D Centre; Agriculture and Agri-Food Canada; Sherbrooke QC Canada
| |
Collapse
|
35
|
Nicolson GL, Ash ME. Lipid Replacement Therapy: a natural medicine approach to replacing damaged lipids in cellular membranes and organelles and restoring function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1657-79. [PMID: 24269541 DOI: 10.1016/j.bbamem.2013.11.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/30/2013] [Accepted: 11/09/2013] [Indexed: 12/14/2022]
Abstract
Lipid Replacement Therapy, the use of functional oral supplements containing cell membrane phospholipids and antioxidants, has been used to replace damaged, usually oxidized, membrane glycerophospholipids that accumulate during aging and in various clinical conditions in order to restore cellular function. This approach differs from other dietary and intravenous phospholipid interventions in the composition of phospholipids and their defense against oxidation during storage, ingestion, digestion and uptake as well as the use of protective molecules that noncovalently complex with phospholipid micelles and prevent their enzymatic and bile disruption. Once the phospholipids have been taken in by transport processes, they are protected by several natural mechanisms involving lipid receptors, transport and carrier molecules and circulating cells and lipoproteins until their delivery to tissues and cells where they can again be transferred to intracellular membranes by specific and nonspecific transport systems. Once delivered to membrane sites, they naturally replace and stimulate removal of damaged membrane lipids. Various chronic clinical conditions are characterized by membrane damage, mainly oxidative but also enzymatic, resulting in loss of cellular function. This is readily apparent in mitochondrial inner membranes where oxidative damage to phospholipids like cardiolipin and other molecules results in loss of trans-membrane potential, electron transport function and generation of high-energy molecules. Recent clinical trials have shown the benefits of Lipid Replacement Therapy in restoring mitochondrial function and reducing fatigue in aged subjects and patients with a variety of clinical diagnoses that are characterized by loss of mitochondrial function and include fatigue as a major symptom. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92649, USA.
| | - Michael E Ash
- Clinical Education, Newton Abbot, Devon TQ12 4SG, UK
| |
Collapse
|
36
|
Mendelsohn AR, Larrick JW. Trade-Offs Between Anti-Aging Dietary Supplementation and Exercise. Rejuvenation Res 2013; 16:419-26. [DOI: 10.1089/rej.2013.1484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Andrew R. Mendelsohn
- Panorama Research Institute and Regenerative Sciences Institute, Sunnyvale, California
| | - James W. Larrick
- Panorama Research Institute and Regenerative Sciences Institute, Sunnyvale, California
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) may be related to a number of chronic metabolic abnormalities, including metabolic syndrome. This review presents an update on the effects of n-3 PUFAs on risk factors of metabolic syndrome, especially adipose tissue inflammation, oxidative stress and underlying mechanisms of these effects. RECENT FINDINGS Anti-inflammatory actions of n-3 PUFAs are thought to be mediated by the formation of their active metabolites (eicosanoids and other lipid mediators) as well as their regulation of the production of inflammatory mediators (e.g., adipocytokines, cytokines) and immune cell infiltration into adipose tissue. n-3 PUFAs mediate these effects by modulating several pathways, such as those involving nuclear factor-κB, peroxisome proliferator-activated receptors and Toll-like receptors. The antioxidative effects of n-3 PUFAs in adipocytes appear to inhibit reactive oxygen species production and alter mitochondrial function. SUMMARY This review summarizes the evidence for beneficial effects of n-3 PUFAs on adipose tissue inflammation and oxidative stress. More studies are necessary to investigate the mechanisms underlying these effects and to relate this topic to human health.
Collapse
Affiliation(s)
- Chaonan Fan
- Key Laboratory of Major Disease in Children and National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|