1
|
Maiti G, Frikeche J, Loomis C, Chakravarti S. Paracrine regulations of IFN-γ secreting CD4 + T cells by lumican and biglycan are protective in allergic contact dermatitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.20.619307. [PMID: 39484444 PMCID: PMC11526879 DOI: 10.1101/2024.10.20.619307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The extracellular matrix (ECM) is known to regulate innate immune cells but its role in T cell functions is poorly understood. Here, we show a protective role for ECM proteoglycans, lumican and biglycan in hapten-induced contact dermatitis that is achieved through limiting proinflammatory CD4 + T cells. Lumican and biglycan-null mice develop significant inflammation with greater numbers of CD4 + T cells in hapten-challenged ear pinnae, while their draining lymph nodes show increased T-bet-STAT1 signaling, Th1 commitment, and IFN-γ secreting CD4 + T cell proliferation. Wild type mouse lymph node fibroblastic reticular cells secrete lumican, biglycan and decorin, a related proteoglycan, while none are expressed by naive or activated T cells. In vitro , lumican and biglycan co-localize with LFA-1 on T cell surfaces, and all three proteoglycans suppress LFA-1 mediated T cell activation. Overall, this study elucidates a novel paracrine regulation of Th1 cells by ECM proteoglycans to limit inflammation and tissue damage.
Collapse
|
2
|
Kemberi M, Minns AF, Santamaria S. Soluble Proteoglycans and Proteoglycan Fragments as Biomarkers of Pathological Extracellular Matrix Remodeling. PROTEOGLYCAN RESEARCH 2024; 2:e70011. [PMID: 39600538 PMCID: PMC11587194 DOI: 10.1002/pgr2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Proteoglycans and their proteolytic fragments diffuse into biological fluids such as plasma, serum, urine, or synovial fluid, where they can be detected by antibodies or mass-spectrometry. Neopeptides generated by the proteolysis of proteoglycans are recognized by specific neoepitope antibodies and can act as a proxy for the activity of certain proteases. Proteoglycan and proteoglycan fragments can be potentially used as prognostic, diagnostic, or theragnostic biomarkers for several diseases characterized by dysregulated extracellular matrix remodeling such as osteoarthritis, rheumatoid arthritis, atherosclerosis, thoracic aortic aneurysms, central nervous system disorders, viral infections, and cancer. Here, we review the main mechanisms accounting for the presence of soluble proteoglycans and their fragments in biological fluids, their potential application as diagnostic, prognostic, or theragnostic biomarkers, and highlight challenges and opportunities ahead of their clinical translation.
Collapse
Affiliation(s)
- Marsioleda Kemberi
- Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonEnglandUK
| | - Alexander F. Minns
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| | - Salvatore Santamaria
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| |
Collapse
|
3
|
Ramírez Medina CR, Ali I, Baricevic-Jones I, Saleem MA, Whetton AD, Kalra PA, Geifman N. Evaluation of a proteomic signature coupled with the kidney failure risk equation in predicting end stage kidney disease in a chronic kidney disease cohort. Clin Proteomics 2024; 21:34. [PMID: 38762513 PMCID: PMC11102163 DOI: 10.1186/s12014-024-09486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/25/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND The early identification of patients at high-risk for end-stage renal disease (ESRD) is essential for providing optimal care and implementing targeted prevention strategies. While the Kidney Failure Risk Equation (KFRE) offers a more accurate prediction of ESRD risk compared to static eGFR-based thresholds, it does not provide insights into the patient-specific biological mechanisms that drive ESRD. This study focused on evaluating the effectiveness of KFRE in a UK-based advanced chronic kidney disease (CKD) cohort and investigating whether the integration of a proteomic signature could enhance 5-year ESRD prediction. METHODS Using the Salford Kidney Study biobank, a UK-based prospective cohort of over 3000 non-dialysis CKD patients, 433 patients met our inclusion criteria: a minimum of four eGFR measurements over a two-year period and a linear eGFR trajectory. Plasma samples were obtained and analysed for novel proteomic signals using SWATH-Mass-Spectrometry. The 4-variable UK-calibrated KFRE was calculated for each patient based on their baseline clinical characteristics. Boruta machine learning algorithm was used for the selection of proteins most contributing to differentiation between patient groups. Logistic regression was employed for estimation of ESRD prediction by (1) proteomic features; (2) KFRE; and (3) proteomic features alongside KFRE. RESULTS SWATH maps with 943 quantified proteins were generated and investigated in tandem with available clinical data to identify potential progression biomarkers. We identified a set of proteins (SPTA1, MYL6 and C6) that, when used alongside the 4-variable UK-KFRE, improved the prediction of 5-year risk of ESRD (AUC = 0.75 vs AUC = 0.70). Functional enrichment analysis revealed Rho GTPases and regulation of the actin cytoskeleton pathways to be statistically significant, inferring their role in kidney function and the pathogenesis of renal disease. CONCLUSIONS Proteins SPTA1, MYL6 and C6, when used alongside the 4-variable UK-KFRE achieve an improved performance when predicting a 5-year risk of ESRD. Specific pathways implicated in the pathogenesis of podocyte dysfunction were also identified, which could serve as potential therapeutic targets. The findings of our study carry implications for comprehending the involvement of the Rho family GTPases in the pathophysiology of kidney disease, advancing our understanding of the proteomic factors influencing susceptibility to renal damage.
Collapse
Affiliation(s)
- Carlos Raúl Ramírez Medina
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - Ibrahim Ali
- Salford Royal Hospital, Northern Care Alliance Foundation NHS Trust, Salford, UK
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - Ivona Baricevic-Jones
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Salford Royal Hospital, Northern Care Alliance Foundation NHS Trust, Salford, UK
| | - Moin A Saleem
- Bristol Renal and Children's Renal Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anthony D Whetton
- Veterinary Health Innovation Engine (vHive), Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Philip A Kalra
- Salford Royal Hospital, Northern Care Alliance Foundation NHS Trust, Salford, UK
| | - Nophar Geifman
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
4
|
Miguez PA, Bash E, Musskopf ML, Tuin SA, Rivera-Concepcion A, Chapple ILC, Liu J. Control of tissue homeostasis by the extracellular matrix: Synthetic heparan sulfate as a promising therapeutic for periodontal health and bone regeneration. Periodontol 2000 2024; 94:510-531. [PMID: 37614159 PMCID: PMC10891305 DOI: 10.1111/prd.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Proteoglycans are core proteins associated with carbohydrate/sugar moieties that are highly variable in disaccharide composition, which dictates their function. These carbohydrates are named glycosaminoglycans, and they can be attached to proteoglycans or found free in tissues or on cell surfaces. Glycosaminoglycans such as hyaluronan, chondroitin sulfate, dermatan sulfate, keratan sulfate, and heparin/heparan sulfate have multiple functions including involvement in inflammation, immunity and connective tissue structure, and integrity. Heparan sulfate is a highly sulfated polysaccharide that is abundant in the periodontium including alveolar bone. Recent evidence supports the contention that heparan sulfate is an important player in modulating interactions between damage associated molecular patterns and inflammatory receptors expressed by various cell types. The structure of heparan sulfate is reported to dictate its function, thus, the utilization of a homogenous and structurally defined heparan sulfate polysaccharide for modulation of cell function offers therapeutic potential. Recently, a chemoenzymatic approach was developed to allow production of many structurally defined heparan sulfate carbohydrates. These oligosaccharides have been studied in various pathological inflammatory conditions to better understand their function and their potential application in promoting tissue homeostasis. We have observed that specific size and sulfation patterns can modulate inflammation and promote tissue maintenance including an anabolic effect in alveolar bone. Thus, new evidence provides a strong impetus to explore heparan sulfate as a potential novel therapeutic agent to treat periodontitis, support alveolar bone maintenance, and promote bone formation.
Collapse
Affiliation(s)
- PA Miguez
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - E Bash
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ML Musskopf
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - SA Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - A Rivera-Concepcion
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ILC Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham’s NIHR BRC in Inflammation Research, University of Birmingham and Birmingham Community Health Foundation Trust, Birmingham UK Iain Chapple
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Xie C, Schaefer L, Iozzo RV. Global impact of proteoglycan science on human diseases. iScience 2023; 26:108095. [PMID: 37867945 PMCID: PMC10589900 DOI: 10.1016/j.isci.2023.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Karabay Akgul O, Ekiz-Yilmaz T. Involvement of small leucine-rich proteoglycans and telocytes in thin and thick human endometrium: immunohistochemical and ultrastructural examination. Ultrastruct Pathol 2023; 47:484-494. [PMID: 37840262 DOI: 10.1080/01913123.2023.2270660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Thin endometrium, defined as an endometrial thickness of less than 7 mm during the late follicular phase, is a common cause of frequent cancelation of embryo transfers or recurrent implantation failure during assisted reproductive treatment. Small proteoglycans regulate intracellular signaling cascades by bridging other matrix molecules and tissue elements, affecting cell proliferation, adhesion, migration, and cytokine concentration. The aim of the study is to investigate the role of small leucine-rich proteoglycans in the pathogenesis of thin and thick human endometrium and their differences from normal endometrium in terms of fine structure properties. Normal, thin, and thick endometrial samples were collected, and small leucine-rich proteoglycans (SLRPs), decorin, lumican, biglycan, and fibromodulin immunoreactivities were comparatively analyzed immunohistochemically. The data were compared statistically. Moreover, ultrastructural differences among the groups were evaluated by transmission electron microscopy. The immunoreactivities of decorin, lumican, and biglycan were higher in the thin endometrial glandular epithelium and stroma compared to the normal and thick endometrium (p < .001). Fibromodulin immunoreactivity was also higher in the thin endometrial glandular epithelium than in the normal and thick endometrium (p < .001). However, there was no statistical difference in the stroma among the groups. Ultrastructural features were not profoundly different among cases. Telocytes, however, were not seen in the thin endometrium in contrast to normal and thin endometrial tissues. These findings suggest a possible role of changes in proteoglycan levels in the pathogenesis of thin endometrium.
Collapse
Affiliation(s)
- Ozlem Karabay Akgul
- Department of Obstetrics and Gynecology, University of Health Sciences, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Tugba Ekiz-Yilmaz
- Department of Histology and Embryology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
7
|
Maiti G, Ashworth S, Choi T, Chakravarti S. Molecular cues for immune cells from small leucine-rich repeat proteoglycans in their extracellular matrix-associated and free forms. Matrix Biol 2023; 123:48-58. [PMID: 37793508 PMCID: PMC10841460 DOI: 10.1016/j.matbio.2023.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
In this review we highlight emerging immune regulatory functions of lumican, keratocan, fibromodulin, biglycan and decorin, which are members of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). These SLRPs have been studied extensively as collagen-fibril regulatory structural components of the skin, cornea, bone and cartilage in homeostasis. However, SLRPs released from a remodeling ECM, or synthesized by activated fibroblasts and immune cells contribute to an ECM-free pool in tissues and circulation, that may have a significant, but poorly understood foot print in inflammation and disease. Their molecular interactions and the signaling networks they influence also require investigations. Here we present studies on the leucine-rich repeat (LRR) motifs of SLRP core proteins, their evolutionary and functional relationships with other LRR pathogen recognition receptors, such as the toll-like receptors (TLRs) to bring some molecular clarity in the immune regulatory functions of SLRPs. We discuss molecular interactions of fragments and intact SLRPs, and how some of these interactions are likely modulated by glycosaminoglycan side chains. We integrate findings on molecular interactions of these SLRPs together with what is known about their presence in circulation and lymph nodes (LN), which are important sites of immune cell regulation. Recent bulk and single cell RNA sequencing studies have identified subsets of stromal reticular cells that express these SLRPs within LNs. An understanding of the cellular source, molecular interactions and signaling consequences will lead to a fundamental understanding of how SLRPs modulate immune responses, and to therapeutic tools based on these SLRPs in the future.
Collapse
Affiliation(s)
- George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Sean Ashworth
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Tansol Choi
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States; Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States.
| |
Collapse
|
8
|
Zhang J, Zhao Y, Gong N. XBP1 Modulates the Aging Cardiorenal System by Regulating Oxidative Stress. Antioxidants (Basel) 2023; 12:1933. [PMID: 38001786 PMCID: PMC10669121 DOI: 10.3390/antiox12111933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic-region leucine zipper (bZIP) transcription factor. Over recent years, the powerful biological functions of XBP1 in oxidative stress have been gradually revealed. When the redox balance remains undisturbed, oxidative stress plays a role in physiological adaptations and signal transduction. However, during the aging process, increased cellular senescence and reduced levels of endogenous antioxidants cause an oxidative imbalance in the cardiorenal system. Recent studies from our laboratory and others have indicated that these age-related cardiorenal diseases caused by oxidative stress are guided and controlled by a versatile network composed of diversified XBP1 pathways. In this review, we describe the mechanisms that link XBP1 and oxidative stress in a range of cardiorenal disorders, including mitochondrial instability, inflammation, and alterations in neurohumoral drive. Furthermore, we propose that differing degrees of XBP1 activation may cause beneficial or harmful effects in the cardiorenal system. Gaining a comprehensive understanding of how XBP1 exerts influence on the aging cardiorenal system by regulating oxidative stress will enhance our ability to provide new directions and strategies for cardiovascular and renal safety outcomes.
Collapse
Affiliation(s)
- Ji Zhang
- Anhui Province Key Laboratory of Genitourinary Diseases, Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Hefei 230022, China;
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yuanyuan Zhao
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Nianqiao Gong
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
9
|
Lassé M, El Saghir J, Berthier CC, Eddy S, Fischer M, Laufer SD, Kylies D, Hutzfeldt A, Bonin LL, Dumoulin B, Menon R, Vega-Warner V, Eichinger F, Alakwaa F, Fermin D, Billing AM, Minakawa A, McCown PJ, Rose MP, Godfrey B, Meister E, Wiech T, Noriega M, Chrysopoulou M, Brandts P, Ju W, Reinhard L, Hoxha E, Grahammer F, Lindenmeyer MT, Huber TB, Schlüter H, Thiel S, Mariani LH, Puelles VG, Braun F, Kretzler M, Demir F, Harder JL, Rinschen MM. An integrated organoid omics map extends modeling potential of kidney disease. Nat Commun 2023; 14:4903. [PMID: 37580326 PMCID: PMC10425428 DOI: 10.1038/s41467-023-39740-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/27/2023] [Indexed: 08/16/2023] Open
Abstract
Kidney organoids are a promising model to study kidney disease, but their use is constrained by limited knowledge of their functional protein expression profile. Here, we define the organoid proteome and transcriptome trajectories over culture duration and upon exposure to TNFα, a cytokine stressor. Older organoids increase deposition of extracellular matrix but decrease expression of glomerular proteins. Single cell transcriptome integration reveals that most proteome changes localize to podocytes, tubular and stromal cells. TNFα treatment of organoids results in 322 differentially expressed proteins, including cytokines and complement components. Transcript expression of these 322 proteins is significantly higher in individuals with poorer clinical outcomes in proteinuric kidney disease. Key TNFα-associated protein (C3 and VCAM1) expression is increased in both human tubular and organoid kidney cell populations, highlighting the potential for organoids to advance biomarker development. By integrating kidney organoid omic layers, incorporating a disease-relevant cytokine stressor and comparing with human data, we provide crucial evidence for the functional relevance of the kidney organoid model to human kidney disease.
Collapse
Affiliation(s)
- Moritz Lassé
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jamal El Saghir
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Celine C Berthier
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Sean Eddy
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Matthew Fischer
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Sandra D Laufer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arvid Hutzfeldt
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Bernhard Dumoulin
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Virginia Vega-Warner
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Felix Eichinger
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Fadhl Alakwaa
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Damian Fermin
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Anja M Billing
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Akihiro Minakawa
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Phillip J McCown
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Michael P Rose
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Bradley Godfrey
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Elisabeth Meister
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mercedes Noriega
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Paul Brandts
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wenjun Ju
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Linda Reinhard
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Laura H Mariani
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fatih Demir
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jennifer L Harder
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA.
| | - Markus M Rinschen
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Aarhus Institute of Advanced Studies (AIAS), Aarhus, Denmark.
| |
Collapse
|
10
|
Yu L, Li G, Jin S, Su J, Li S. Identification of the core genes in Randall's plaque of kidney stone and immune infiltration with WGCNA network. Front Genet 2023; 14:1048919. [PMID: 36816033 PMCID: PMC9931196 DOI: 10.3389/fgene.2023.1048919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Background: Randall's plaque is regarded as the precursor lesion of lithiasis. However, traditional bioinformatic analysis is limited and ignores the relationship with immune response. To investigate the underlying calculi formation mechanism, we introduced innovative algorithms to expand our understanding of kidney stone disease. Methods: We downloaded the GSE73680 series matrix from the Gene Expression Omnibus (GEO) related to CaOx formation and excluded one patient, GSE116860. In the RStudio (R version 4.1.1) platform, the differentially expressed genes (DEGs) were identified with the limma package for GO/KEGG/GSEA analysis in the clusterProfiler package. Furthermore, high-correlated gene co-expression modules were confirmed by the WGCNA package to establish a protein-protein interaction (PPI) network. Finally, the CaOx samples were processed by the CIBERSORT algorithm to anchor the key immune cells group and verified in the validation series matrix GSE117518. Results: The study identified 840 upregulated and 1065 downregulated genes. The GO/KEGG results revealed fiber-related or adhesion-related terms and several pathways in addition to various diseases identified from the DO analysis. Moreover, WGCNA selected highly correlated modules to construct a PPI network. Finally, 16 types of immune cells are thought to participate in urolithiasis pathology and are related to hub genes in the PPI network that are proven significant in the validation series matrix GSE117518. Conclusion: Randall's plaque may relate to genes DCN, LUM, and P4HA2 and M2 macrophages and resting mast immune cells. These findings could serve as potential biomarkers and provide new research directions.
Collapse
Affiliation(s)
- Lingyun Yu
- Department of Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Gefei Li
- Department of Cardiovascular Surgery, Shenzhen, Guangdong, China
| | - Shiyao Jin
- Department of Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Jiahong Su
- Department of Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Shoulin Li
- Department of Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China,*Correspondence: Shoulin Li,
| |
Collapse
|
11
|
Garantziotis S, Savani RC. Proteoglycans in Toll-like receptor responses and innate immunity. Am J Physiol Cell Physiol 2022; 323:C202-C214. [PMID: 35675639 DOI: 10.1152/ajpcell.00088.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) is an active and dynamic feature of tissues that not only provides gross structure but also plays key roles in cellular responses. The ever-changing microenvironment responds dynamically to cellular and external signals, and in turn influences cell fate, tissue development, and response to environmental injury or microbial invasion. It is therefore paramount to understand how the ECM components interact with each other, the environment and cells, and how they mediate their effects. Among the ECM components that have recently garnered increased attention, proteoglycans (PGs) deserve special note. Recent evidence strongly suggests that they play a crucial role both in health maintenance and disease development. In particular, proteoglycans dictate whether homeostasis or cell death will result from a given injury, by triggering and modulating activation of the innate immune system, via a conserved array of receptors that recognize exogenous (infectious) or endogenous (tissue damage) molecular patterns. Innate immune activation by proteoglycans has important implications for the understanding of cell-matrix interactions in health and disease. In this review, we will summarize the current state of knowledge of innate immune signaling by proteoglycans, discuss the implications, and explore future directions to define progress in this area of extracellular matrix biology.
Collapse
Affiliation(s)
- Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Rashmin C Savani
- Division of Neonatal-Perinatal Medicine, Center for Pulmonary & Vascular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
12
|
Sarrand J, Baglione L, Parisis D, Soyfoo M. The Involvement of Alarmins in the Pathogenesis of Sjögren's Syndrome. Int J Mol Sci 2022; 23:ijms23105671. [PMID: 35628481 PMCID: PMC9145074 DOI: 10.3390/ijms23105671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 02/01/2023] Open
Abstract
Sjögren’s syndrome (SS) is a chronic autoimmune disease that affects exocrine glands, primarily the salivary and lachrymal glands. It is characterized by lymphoplasmacytic infiltration of the glandular tissues, ultimately leading to their dysfunction and destruction. Besides classic dry eyes and dry mouth defined as sicca syndrome, patients affected by the disease also typically display symptoms such as fatigue, pain and in more than 50% of cases, systemic manifestations such as arthritis, interstitial lung involvement, neurological involvement and an increased risk of lymphoma. The pathophysiological mechanisms underlying SS still remain elusive. The crucial role of innate immunity has been advocated in recent years regarding the pathogenesis of pSS, especially in the initiation and progression toward autoimmunity. Alarmins are endogenous molecules that belong to the large family of damage associated molecular pattern (DAMP). Alarmins are rapidly released, ensuing cell injury and interacting with pattern recognition receptors (PRR) such as toll-like receptors (TLR) to recruit and activate cells of the innate immune system and to promote adaptive immunity responses. This review highlights the current knowledge of various alarmins and their role in the pathogenesis of pSS.
Collapse
Affiliation(s)
- Julie Sarrand
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (J.S.); (L.B.); (D.P.)
| | - Laurie Baglione
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (J.S.); (L.B.); (D.P.)
| | - Dorian Parisis
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (J.S.); (L.B.); (D.P.)
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad Soyfoo
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (J.S.); (L.B.); (D.P.)
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Correspondence:
| |
Collapse
|
13
|
Meester JAN, De Kinderen P, Verstraeten A, Loeys BL. The role of biglycan in the healthy and thoracic aneurysmal aorta. Am J Physiol Cell Physiol 2022; 322:C1214-C1222. [PMID: 35476501 DOI: 10.1152/ajpcell.00036.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The class I small leucine-rich proteoglycan biglycan is a crucial structural extracellular matrix component that interacts with a wide range of extracellular matrix molecules. In addition, biglycan is involved in sequestering growth factors such as TGF-β and BMPs and thereby regulating pathway activity. Biglycan consists of a 42-kDa core protein linked to two glycosaminoglycan side chains and both are involved in protein interactions. Biglycan is encoded by the BGN gene located on the X-chromosome and is expressed in various tissues, including vascular tissue, skin, brain, kidney lung, the immune system and the musculoskeletal system. Although an increasing amount of data on the biological function of biglycan in the vasculature has been produced, its role in thoracic aortic aneurysms is still not fully elucidated. This review focusses on the role of biglycan in the healthy thoracic aorta and the development of thoracic aortic aneurysm and dissections in both mice and humans.
Collapse
Affiliation(s)
- Josephina A N Meester
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Pauline De Kinderen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart L Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Biglycan Promotes Cancer Stem Cell Properties, NFκB Signaling and Metastatic Potential in Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14020455. [PMID: 35053617 PMCID: PMC8773822 DOI: 10.3390/cancers14020455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Breast cancer stem cells (BCSCs) are a small sub-population of cells within tumors with high metastatic potential. We identified biglycan (BGN) as a prospective molecular target in BCSCs that regulates the aggressive phenotypes of these cells. These findings establish a foundation for the development of therapeutics against BGN to eliminate BCSCs and prevent metastatic breast cancer. Abstract It is a major challenge to treat metastasis due to the presence of heterogenous BCSCs. Therefore, it is important to identify new molecular targets and their underlying molecular mechanisms in various BCSCs to improve treatment of breast cancer metastasis. Here, we performed RNA sequencing on two distinct co-existing BCSC populations, ALDH+ and CD29hi CD61+ from PyMT mammary tumor cells and detected upregulation of biglycan (BGN) in these BCSCs. Genetic depletion of BGN reduced BCSC proportions and tumorsphere formation. Furthermore, BCSC associated aggressive traits such as migration and invasion were significantly reduced by depletion of BGN. Glycolytic and mitochondrial metabolic assays also revealed that BCSCs exhibited decreased metabolism upon loss of BGN. BCSCs showed decreased activation of the NFκB transcription factor, p65, and phospho-IκB levels upon BGN ablation, indicating regulation of NFκB pathway by BGN. To further support our data, we also characterized CD24−/CD44+ BCSCs from human luminal MCF-7 breast cancer cells. These CD24−/CD44+ BCSCs similarly exhibited reduced tumorigenic phenotypes, metabolism and attenuation of NFκB pathway after knockdown of BGN. Finally, loss of BGN in ALDH+ and CD29hi CD61+ BCSCs showed decreased metastatic potential, suggesting BGN serves as an important therapeutic target in BCSCs for treating metastasis of breast cancer.
Collapse
|
15
|
Deng Z, Ren Y, Park MS, Kim HKW. Damage associated molecular patterns in necrotic femoral head inhibit osteogenesis and promote fibrogenesis of mesenchymal stem cells. Bone 2022; 154:116215. [PMID: 34571205 PMCID: PMC8671337 DOI: 10.1016/j.bone.2021.116215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023]
Abstract
In Legg-Calvé-Perthes disease (LCPD), a loss of blood supply to the juvenile femoral head leads to extensive cell death and release of damage-associated molecular patterns (DAMPs). Over time chronic inflammatory repair process is observed with impaired bone regeneration. Increased fibrous tissue and adipose tissue are seen in the marrow space with decreased osteogenesis in a piglet model of LCPD, suggesting inhibition of osteoblastic differentiation and stimulation of fibroblastic and adipogenic differentiation of mesenchymal stem cell (MSC) during the healing process. Little is known about the DAMPs present in the necrotic femoral head and their effects on MSC differentiation. The purpose of this study was to characterize the DAMPs present in the femoral head following ischemic osteonecrosis and to determine their effects on MSC differentiation. Necrotic femoral heads were flushed with saline at 48 h, 2 weeks and 4 weeks following the induction of ischemic osteonecrosis in piglets to obtain necrotic bone fluid (NBF). Western blot analysis of the NBF revealed the presence of prototypic DAMP, high mobility group box 1 (HMGB1), and other previously described DAMPs: biglycan, 4-hydroxynonenal (4-HNE), and receptor activator of NF-κB ligand (RANKL). ELISA of the NBF revealed increasing levels of inflammatory cytokines IL1β, IL6 and TNFα with the temporal progression of osteonecrosis. To determine the effects of NBF on MSC differentiation, we cultured primary porcine MSCs with NBF obtained by in vivo necrotic bone flushing method. NBF inhibited osteoblastic differentiation of MSCs with significantly decreased OSX expression (p = 0.008) and Von Kossa/Alizarin Red staining for mineralization. NBF also significantly increased the expression of proliferation markers Ki67 (p = 0.03) and PCNA (p < 0.0001), and fibrogenic markers Vimentin (p = 0.02) and Fibronectin (p = 0.04). Additionally, NBF treated MSC cells showed significantly elevated RANKL/OPG secretion ratio (p = 0.003) and increased expression of inflammatory cytokines IL1β (p = 0.006) and IL6 (p < 0.0001). To specifically assess the role of DAMPs in promoting the fibrogenesis, we treated porcine fibroblasts with artificial NBF produced by bone freeze-thaw method. We found increased fibroblastic cell proliferation in an NBF dose-dependent manner. Lastly, we studied the effect of HMGB1, a prototypic DAMP, and found that HMGB1 partially contributes to MSC proliferation and fibrogenesis. In summary, our findings show that DAMPs and the inflammatory cytokines present in the necrotic femoral head inhibit osteogenesis and promote fibrogenesis of MSCs, potentially contributing to impaired bone regeneration following ischemic osteonecrosis as observed in LCPD.
Collapse
Affiliation(s)
- Zhuo Deng
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX, USA
| | - Yinshi Ren
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX, USA; Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Sung Park
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX, USA
| | - Harry K W Kim
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX, USA; Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
16
|
Watanabe H, Martini AG, Brown EA, Liang X, Medrano S, Goto S, Narita I, Arend LJ, Sequeira-Lopez MLS, Gomez RA. Inhibition of the renin-angiotensin system causes concentric hypertrophy of renal arterioles in mice and humans. JCI Insight 2021; 6:e154337. [PMID: 34762601 PMCID: PMC8783690 DOI: 10.1172/jci.insight.154337] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Inhibitors of the renin-angiotensin system (RAS) are widely used to treat hypertension. Using mice harboring fluorescent cell lineage tracers, single-cell RNA-Seq, and long-term inhibition of RAS in both mice and humans, we found that deletion of renin or inhibition of the RAS leads to concentric thickening of the intrarenal arteries and arterioles. This severe disease was caused by the multiclonal expansion and transformation of renin cells from a classical endocrine phenotype to a matrix-secretory phenotype: the cells surrounded the vessel walls and induced the accumulation of adjacent smooth muscle cells and extracellular matrix, resulting in blood flow obstruction, focal ischemia, and fibrosis. Ablation of the renin cells via conditional deletion of β1 integrin prevented arteriolar hypertrophy, indicating that renin cells are responsible for vascular disease. Given these findings, prospective morphological studies in humans are necessary to determine the extent of renal vascular damage caused by the widespread use of inhibitors of the RAS.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Alexandre G. Martini
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Evan A. Brown
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Xiuyin Liang
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Silvia Medrano
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Lois J. Arend
- Department of Pathology, Johns Hopkins University and Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Maria Luisa S. Sequeira-Lopez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - R. Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
17
|
Diehl V, Huber LS, Trebicka J, Wygrecka M, Iozzo RV, Schaefer L. The Role of Decorin and Biglycan Signaling in Tumorigenesis. Front Oncol 2021; 11:801801. [PMID: 34917515 PMCID: PMC8668865 DOI: 10.3389/fonc.2021.801801] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
The complex and adaptive nature of malignant neoplasm constitute a major challenge for the development of effective anti-oncogenic therapies. Emerging evidence has uncovered the pivotal functions exerted by the small leucine-rich proteoglycans, decorin and biglycan, in affecting tumor growth and progression. In their soluble forms, decorin and biglycan act as powerful signaling molecules. By receptor-mediated signal transduction, both proteoglycans modulate key processes vital for tumor initiation and progression, such as autophagy, inflammation, cell-cycle, apoptosis, and angiogenesis. Despite of their structural homology, these two proteoglycans interact with distinct cell surface receptors and thus modulate distinct signaling pathways that ultimately affect cancer development. In this review, we summarize growing evidence for the complex roles of decorin and biglycan signaling in tumor biology and address potential novel therapeutic implications.
Collapse
Affiliation(s)
- Valentina Diehl
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Lisa Sophie Huber
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Member of the German Center for Lung Research, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| |
Collapse
|
18
|
Plasma Levels of Decorin Increased in Patients during the Progression of Breast Cancer. J Clin Med 2021; 10:jcm10235530. [PMID: 34884232 PMCID: PMC8658155 DOI: 10.3390/jcm10235530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Decorin (DCN), an extracellular matrix proteoglycan found in tumor surrounding tissues, is a natural inhibitor of tumor cell proliferation and invasion. We conducted a cross-sectional observation study to evaluate the association of the pathological stage with the levels of DCN in plasma or tumor surrounding tissue. Among 118 patients who underwent breast surgery, 35 were designated as carcinoma in situ (Stage 0), 39 were Stage I, and 44 were Stage II or III. The stromal expression of DCN was quantified using a semiquantitative digital image analysis after immunohistochemical staining. The concentration of DCN was evaluated with a specific ELISA. As we have previously shown, stromal DCN expression was attenuated in the patients with Stage I, whereas stromal and plasma DCN was elevated paradoxically in those with Stage II/III. The elevated plasma DCN is an independent predictive factor of Stage II/III by the multivariate logistic regression analysis. The plasma level of DCN was negatively correlated with stromal DCN expression only in patients with advanced disease (Stage II/III). The plasma level of DCN could become a useful biomarker for patients in the advanced stages. Extensive studies and further assessments are warranted for evaluating the prognostic significance and tumor characteristics to understand the clinical significances of stromal and systemic DCN.
Collapse
|
19
|
Appunni S, Rubens M, Ramamoorthy V, Anand V, Khandelwal M, Sharma A. Biglycan: an emerging small leucine-rich proteoglycan (SLRP) marker and its clinicopathological significance. Mol Cell Biochem 2021; 476:3935-3950. [PMID: 34181183 DOI: 10.1007/s11010-021-04216-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022]
Abstract
Extracellular matrix (ECM) plays an important role in the structural organization of tissue and delivery of external cues to the cell. Biglycan, a class I small leucine-rich proteoglycans (SLRP), is a key component of the ECM that participates in scaffolding the collagen fibrils and mediates cell signaling. Dysregulation of biglycan expression can result in wide range of clinical conditions such as metabolic disorder, inflammatory disorder, musculoskeletal defects and malignancies. In this review, we aim to update our current understanding regarding the link between altered expression of biglycan and different clinicopathological states. Biglycan interacts with toll like receptors (TLR)-2 and TLR-4 on the immune cells which initiates inflammation and aggravates inflammatory disorders. ECM unbound soluble biglycan acts as a DAMP (danger associated molecular pattern) resulting in sterile inflammation. Dysregulation of biglycan expression is also observed in inflammatory metabolic conditions such as atherosclerosis and obesity. In cancer, high-biglycan expression facilitates tumor growth, invasion and metastasis which is associated with poor clinical outcome. As a pivotal structural component of the ECM, biglycan strengthens the musculoskeletal system and its absence is associated with musculoskeletal defects. Thus, SLRP biglycan is a potential marker which is significantly altered in different clinicopathological states.
Collapse
Affiliation(s)
- Sandeep Appunni
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110 029, India
- Government Medical College, Kozhikode, Kerala, India
| | | | | | | | - Madhuram Khandelwal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110 029, India.
| |
Collapse
|
20
|
Maiti G, Frikeche J, Lam CYM, Biswas A, Shinde V, Samanovic M, Kagan JC, Mulligan MJ, Chakravarti S. Matrix lumican endocytosed by immune cells controls receptor ligand trafficking to promote TLR4 and restrict TLR9 in sepsis. Proc Natl Acad Sci U S A 2021; 118:e2100999118. [PMID: 34215697 PMCID: PMC8271568 DOI: 10.1073/pnas.2100999118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Infections and inflammation are profoundly influenced by the extracellular matrix (ECM), but their molecular underpinnings are ill defined. Here, we demonstrate that lumican, an ECM protein normally associated with collagens, is elevated in sepsis patients' blood, while lumican-null mice resolve polymicrobial sepsis poorly, with reduced bacterial clearance and greater body weight loss. Secreted by activated fibroblasts, lumican promotes Toll-like receptor (TLR) 4 response to bacterial lipopolysaccharides (LPS) but restricts nucleic acid-specific TLR9 in macrophages and dendritic cells. The underlying mechanism involves lumican attachment to the common TLR coreceptor CD14 and caveolin 1 (Cav1) in lipid rafts on immune cell surfaces via two epitopes, which may be cryptic in collagen-associated lumican. The Cav1 binding epitope alone is sufficient for cell surface enrichment of Cav1, while both are required for lumican to increase cell surface TLR4, CD14, and proinflammatory cytokines in response to LPS. Endocytosed lumican colocalizes with TLR4 and LPS and promotes endosomal induction of type I interferons. Lumican-null macrophages show elevated TLR9 in signal-permissive endolysosomes and increased response, while wild types show lumican colocalization with CpG DNA but not TLR9, consistent with a ligand sequestering, restrictive role for lumican in TLR9 signaling. In vitro, lumican competes with CD14 to bind CpG DNA; biglycan, a lumican paralog, also binds CpG DNA and suppresses TLR9 response. Thus, lumican and other ECM proteins, synthesized de novo or released from collagen association during ECM remodeling, may be internalized by immune cells to regulate their transcriptional programs and effector responses that may be harnessed in future therapeutics.
Collapse
Affiliation(s)
- George Maiti
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10016
| | - Jihane Frikeche
- Division of Preclinical Pharmacology and Safety, Sangamo Therapeutics, Valbonne 06560, France
| | - Carly Yuen-Man Lam
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10016
| | - Asim Biswas
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10016
| | - Vishal Shinde
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10016
| | - Marie Samanovic
- Langone Vaccine Center, New York University, New York, NY 10016
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Mark J Mulligan
- Langone Vaccine Center, New York University, New York, NY 10016
| | - Shukti Chakravarti
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10016;
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
21
|
Biglycan: A regulator of hepatorenal inflammation and autophagy. Matrix Biol 2021; 100-101:150-161. [PMID: 34118408 DOI: 10.1016/j.matbio.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
|
22
|
Morimoto H, Hida Y, Maishi N, Nishihara H, Hatanaka Y, Li C, Matsuno Y, Nakamura T, Hirano S, Hida K. Biglycan, tumor endothelial cell secreting proteoglycan, as possible biomarker for lung cancer. Thorac Cancer 2021; 12:1347-1357. [PMID: 33709550 PMCID: PMC8088962 DOI: 10.1111/1759-7714.13907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES In lung cancer, surgery remains the most curative treatment and limited resection is beneficial for patients with low cardiopulmonary function and low malignancy tumors. However, there are no biomarkers of low malignancy to select candidates for limited resection without compromising the outcome of treatments. Recently we identified biglycan (BGN) as a tumor endothelial cell (TEC) marker that is associated with tumor progression in various cancers. In this study, we analyzed the association between BGN expression in TECs in lung cancer and cancer progression in patients. MATERIALS AND METHODS First, we performed immunohistochemistry of BGN with resected lung tumor tissues of 155 patients who had undergone thoracic surgery and analyzed the correlation between BGN-positive vessel density in primary lung tumors and clinicopathological factors. Second, we measured the BGN levels in preoperative serum of other 46 patients with lung cancer by ELISA, and analyzed the correlation between BGN expression in tumor tissues and blood BGN levels. RESULTS High BGN expression in the TECs was significantly associated with T factor, and was a significant negative predictor. BGN levels in preoperative serum of 46 patients with lung cancer was significantly correlated with BGN expression in the TECs. Preoperative serum BGN level was significantly lower in healthy volunteers and less invasive adenocarcinoma than in invasive adenocarcinoma and other lung carcinomas. These results suggest that low BGN level in preoperative serum in patients with lung cancer might indicate low malignancy. CONCLUSIONS BGN can be a potential biomarker for lung cancer.
Collapse
Affiliation(s)
- Hirofumi Morimoto
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan.,Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Cong Li
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Toru Nakamura
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| |
Collapse
|
23
|
Hasturk H, Steed D, Tosun E, Martins M, Floros C, Nguyen D, Stephens D, Cugini M, Starr J, Van Dyke TE. Use of amnion-derived cellular cytokine solution for the treatment of gingivitis: A 2-week safety, dose-ranging, proof-of-principle randomized trial. J Periodontol 2021; 92:1317-1328. [PMID: 33586783 PMCID: PMC8518950 DOI: 10.1002/jper.20-0800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/13/2022]
Abstract
Background A 6‐week Phase I clinical trial was performed to primarily evaluate the safety and secondarily determine the preliminary efficacy of a novel biological solution, ST266, comprised of a mixture of cytokines, growth factors, nucleic acids, and lipids secreted by cultured amnion‐derived multipotent progenitor cells on gingival inflammation. Methods Fifty‐four adults with gingivitis/periodontitis were randomly assigned to 1X ST266 or diluted 0.3X ST266 or saline topically applied on facial/lingual gingiva (20 µL/tooth). Safety was assessed through oral soft/hard tissue exam, adverse events, and routine laboratory tests. Efficacy was assessed by modified gingival index (MGI), bleeding on probing, plaque index, probing depth (PD), and clinical attachment level (CAL). Assessments were performed on day 0, 8, 12, and 42. ST266 and saline applied daily starting at day 0 through day 12 except weekend days. Plasma was analyzed for safety and proinflammatory cytokines, interleukin (IL)‐1β, IL‐6, tumor necrosis factor‐alpha, and interferon gamma. Gingival crevicular fluid (GCF) was analyzed for the same cytokines. Subgingival plaque was primarily analyzed by checkerboard DNA‐DNA hybridization. Comparisons with saline were modeled through a generalized estimating equations method adjusting for baseline. Results No safety concern was found related to ST266. Statistically significant reduction in MGI was noted at day 42 by 1X ST266 compared with saline (P = 0.044). PD and CAL were reduced by both doses of ST266 at day 42 (P <0.01) and by 1X ST266 at day 12 (P <0.05). GCF IL‐1β and IL‐6 levels were reduced by both doses of ST266 at day 12 (P <0.05, P <0.01, respectively). IL‐6 was also significantly reduced in plasma of both ST266 groups (P <0.05). Significant reductions in red complex bacteria were detected in both ST266 doses. Conclusions In this “first in human oral cavity” study, topical ST266 was safe and effective in reducing gingival inflammation in 6 weeks. Longitudinal studies with large sample sizes are warranted to assess the therapeutic value of this novel host modulatory compound in the treatment of periodontal diseases.
Collapse
Affiliation(s)
- Hatice Hasturk
- The Forsyth Institute, Center for Clinical and Translational Research, Cambridge, MA
| | | | - Emre Tosun
- The Forsyth Institute, Center for Clinical and Translational Research, Cambridge, MA
| | - Melissa Martins
- The Forsyth Institute, Center for Clinical and Translational Research, Cambridge, MA
| | - Constantinos Floros
- The Forsyth Institute, Center for Clinical and Translational Research, Cambridge, MA
| | - Daniel Nguyen
- The Forsyth Institute, Center for Clinical and Translational Research, Cambridge, MA
| | - Danielle Stephens
- The Forsyth Institute, Center for Clinical and Translational Research, Cambridge, MA
| | - Maryann Cugini
- The Forsyth Institute, Center for Clinical and Translational Research, Cambridge, MA
| | - Jacqueline Starr
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA
| | - Thomas E Van Dyke
- The Forsyth Institute, Center for Clinical and Translational Research, Cambridge, MA
| |
Collapse
|
24
|
Lambert C, Zappia J, Sanchez C, Florin A, Dubuc JE, Henrotin Y. The Damage-Associated Molecular Patterns (DAMPs) as Potential Targets to Treat Osteoarthritis: Perspectives From a Review of the Literature. Front Med (Lausanne) 2021; 7:607186. [PMID: 33537330 PMCID: PMC7847938 DOI: 10.3389/fmed.2020.607186] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
During the osteoarthritis (OA) process, activation of immune systems, whether innate or adaptive, is strongly associated with low-grade systemic inflammation. This process is initiated and driven in the synovial membrane, especially by synovium cells, themselves previously activated by damage-associated molecular patterns (DAMPs) released during cartilage degradation. These fragments exert their biological activities through pattern recognition receptors (PRRs) that, as a consequence, induce the activation of signaling pathways and beyond the release of inflammatory mediators, the latter contributing to the vicious cycle between cartilage and synovial membrane. The primary endpoint of this review is to provide the reader with an overview of these many molecules categorized as DAMPs and the contribution of the latter to the pathophysiology of OA. We will also discuss the different strategies to control their effects. We are convinced that a better understanding of DAMPs, their receptors, and associated pathological mechanisms represents a decisive issue for degenerative joint diseases such as OA.
Collapse
Affiliation(s)
- Cécile Lambert
- MusculoSKeletal Innovative Research Lab, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
| | - Jérémie Zappia
- MusculoSKeletal Innovative Research Lab, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
| | - Christelle Sanchez
- MusculoSKeletal Innovative Research Lab, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
| | - Antoine Florin
- MusculoSKeletal Innovative Research Lab, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium
| | - Jean-Emile Dubuc
- Orthopaedic Department, University Clinics St. Luc, Brussels, Belgium
| | - Yves Henrotin
- MusculoSKeletal Innovative Research Lab, University of Liège, Institute of Pathology, CHU Sart-Tilman, Liège, Belgium.,Physical Therapy and Rehabilitation Department, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| |
Collapse
|
25
|
Extracellular Matrix Remodeling in Chronic Liver Disease. CURRENT TISSUE MICROENVIRONMENT REPORTS 2021; 2:41-52. [PMID: 34337431 PMCID: PMC8300084 DOI: 10.1007/s43152-021-00030-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF THE REVIEW This review aims to summarize the current knowledge of the extracellular matrix remodeling during hepatic fibrosis. We discuss the diverse interactions of the extracellular matrix with hepatic cells and the surrounding matrix in liver fibrosis, with the focus on the molecular pathways and the mechanisms that regulate extracellular matrix remodeling. RECENT FINDINGS The extracellular matrix not only provides structure and support for the cells, but also controls cell behavior by providing adhesion signals and by acting as a reservoir of growth factors and cytokines. SUMMARY Hepatic fibrosis is characterized by an excessive accumulation of extracellular matrix. During fibrogenesis, the natural remodeling process of the extracellular matrix varies, resulting in the excessive accumulation of its components, mainly collagens. Signals released by the extracellular matrix induce the activation of hepatic stellate cells, which are the major source of extracellular matrix and most abundant myofibroblasts in the liver. GRAPHICAL ABSTRACT
Collapse
|
26
|
Zeng-Brouwers J, Pandey S, Trebicka J, Wygrecka M, Schaefer L. Communications via the Small Leucine-rich Proteoglycans: Molecular Specificity in Inflammation and Autoimmune Diseases. J Histochem Cytochem 2020; 68:887-906. [PMID: 32623933 PMCID: PMC7708667 DOI: 10.1369/0022155420930303] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a highly regulated biological response of the immune system that is triggered by assaulting pathogens or endogenous alarmins. It is now well established that some soluble extracellular matrix constituents, such as small leucine-rich proteoglycans (SLRPs), can act as danger signals and trigger aseptic inflammation by interacting with innate immune receptors. SLRP inflammatory signaling cascade goes far beyond its canonical function. By choosing specific innate immune receptors, coreceptors, and adaptor molecules, SLRPs promote a switch between pro- and anti-inflammatory signaling, thereby determining disease resolution or chronification. Moreover, by orchestrating signaling through various receptors, SLRPs fine-tune inflammation and, despite their structural homology, regulate inflammatory processes in a molecule-specific manner. Hence, the overarching theme of this review is to highlight the molecular and functional specificity of biglycan-, decorin-, lumican-, and fibromodulin-mediated signaling in inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Sony Pandey
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
27
|
McQuitty CE, Williams R, Chokshi S, Urbani L. Immunomodulatory Role of the Extracellular Matrix Within the Liver Disease Microenvironment. Front Immunol 2020; 11:574276. [PMID: 33262757 PMCID: PMC7686550 DOI: 10.3389/fimmu.2020.574276] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease when accompanied by underlying fibrosis, is characterized by an accumulation of extracellular matrix (ECM) proteins and chronic inflammation. Although traditionally considered as a passive and largely architectural structure, the ECM is now being recognized as a source of potent damage-associated molecular pattern (DAMP)s with immune-active peptides and domains. In parallel, the ECM anchors a range of cytokines, chemokines and growth factors, all of which are capable of modulating immune responses. A growing body of evidence shows that ECM proteins themselves are capable of modulating immunity either directly via ligation with immune cell receptors including integrins and TLRs, or indirectly through release of immunoactive molecules such as cytokines which are stored within the ECM structure. Notably, ECM deposition and remodeling during injury and fibrosis can result in release or formation of ECM-DAMPs within the tissue, which can promote local inflammatory immune response and chemotactic immune cell recruitment and inflammation. It is well described that the ECM and immune response are interlinked and mutually participate in driving fibrosis, although their precise interactions in the context of chronic liver disease are poorly understood. This review aims to describe the known pro-/anti-inflammatory and fibrogenic properties of ECM proteins and DAMPs, with particular reference to the immunomodulatory properties of the ECM in the context of chronic liver disease. Finally, we discuss the importance of developing novel biotechnological platforms based on decellularized ECM-scaffolds, which provide opportunities to directly explore liver ECM-immune cell interactions in greater detail.
Collapse
Affiliation(s)
- Claire E. McQuitty
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Luca Urbani
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
28
|
Sabapathy V, Venkatadri R, Dogan M, Sharma R. The Yin and Yang of Alarmins in Regulation of Acute Kidney Injury. Front Med (Lausanne) 2020; 7:441. [PMID: 32974364 PMCID: PMC7472534 DOI: 10.3389/fmed.2020.00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is a major clinical burden affecting 20 to 50% of hospitalized and intensive care patients. Irrespective of the initiating factors, the immune system plays a major role in amplifying the disease pathogenesis with certain immune cells contributing to renal damage, whereas others offer protection and facilitate recovery. Alarmins are small molecules and proteins that include granulysins, high-mobility group box 1 protein, interleukin (IL)-1α, IL-16, IL-33, heat shock proteins, the Ca++ binding S100 proteins, adenosine triphosphate, and uric acid. Alarmins are mostly intracellular molecules, and their release to the extracellular milieu signals cellular stress or damage, generally leading to the recruitment of the cells of the immune system. Early studies indicated a pro-inflammatory role for the alarmins by contributing to immune-system dysregulation and worsening of AKI. However, recent developments demonstrate anti-inflammatory mechanisms of certain alarmins or alarmin-sensing receptors, which may participate in the prevention, resolution, and repair of AKI. This dual function of alarmins is intriguing and has confounded the role of alarmins in AKI. In this study, we review the contribution of various alarmins to the pathogenesis of AKI in experimental and clinical studies. We also analyze the approaches for the therapeutic utilization of alarmins for AKI.
Collapse
Affiliation(s)
| | | | | | - Rahul Sharma
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
29
|
Wang JW, Wu AS, Yue Y, Wu Y. Perioperative Ulinastatin helps preserve endothelial glycocalyx layer in periampullary carcinoma patients undergoing Traditional Whipple Procedure. Clin Hemorheol Microcirc 2020; 75:135-142. [PMID: 31903986 DOI: 10.3233/ch-190688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jia-Wan Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - An-Shi Wu
- Department of Anesthesiology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yun Yue
- Department of Anesthesiology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anesthesiology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Pessentheiner AR, Ducasa GM, Gordts PLSM. Proteoglycans in Obesity-Associated Metabolic Dysfunction and Meta-Inflammation. Front Immunol 2020; 11:769. [PMID: 32508807 PMCID: PMC7248225 DOI: 10.3389/fimmu.2020.00769] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Proteoglycans are a specific subset of glycoproteins found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in metabolic homeostasis and meta-inflammation. Over the last decade, new insights have emerged on the mechanism and biological significance of these interactions in the context of diet-induced disorders such as obesity and type-2 diabetes. Complications of energy metabolism drive most diet-induced metabolic disorders, which results in low-grade chronic inflammation, thereby affecting proper function of many vital organs involved in energy homeostasis, such as the brain, liver, kidney, heart and adipose tissue. Here, we discuss how heparan, chondroitin and keratan sulfate proteoglycans modulate obesity-induced metabolic dysfunction and low-grade inflammation that impact the initiation and progression of obesity-associated morbidities.
Collapse
Affiliation(s)
- Ariane R. Pessentheiner
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - G. Michelle Ducasa
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - Philip L. S. M. Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
31
|
Roedig H, Damiescu R, Zeng-Brouwers J, Kutija I, Trebicka J, Wygrecka M, Schaefer L. Danger matrix molecules orchestrate CD14/CD44 signaling in cancer development. Semin Cancer Biol 2020; 62:31-47. [PMID: 31412297 DOI: 10.1016/j.semcancer.2019.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
The tumor matrix together with inflammation and autophagy are crucial regulators of cancer development. Embedded in the tumor stroma are numerous proteoglycans which, in their soluble form, act as danger-associated molecular patterns (DAMPs). By interacting with innate immune receptors, the Toll-like receptors (TLRs), DAMPs autonomously trigger aseptic inflammation and can regulate autophagy. Biglycan, a known danger proteoglycan, can regulate the cross-talk between inflammation and autophagy by evoking a switch between pro-inflammatory CD14 and pro-autophagic CD44 co-receptors for TLRs. Thus, these novel mechanistic insights provide some explanation for the plethora of reports indicating that the same matrix-derived DAMP acts either as a promoter or suppressor of tumor growth. In this review we will summarize and critically discuss the role of the matrix-derived DAMPs biglycan, hyaluronan, and versican in regulating the TLR-, CD14- and CD44-signaling dialogue between inflammation and autophagy with particular emphasis on cancer development.
Collapse
Affiliation(s)
- Heiko Roedig
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Roxana Damiescu
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Iva Kutija
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
32
|
Iozzo RV, Theocharis AD, Neill T, Karamanos NK. Complexity of matrix phenotypes. Matrix Biol Plus 2020; 6-7:100038. [PMID: 33543032 PMCID: PMC7852209 DOI: 10.1016/j.mbplus.2020.100038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix is engaged in an ever-evolving and elegant ballet of dynamic reciprocity that directly and bi-directionally regulates cell behavior. Homeostatic and pathophysiological changes in cell-matrix signaling cascades manifest as complex matrix phenotypes. Indeed, the extracellular matrix can be implicated in virtually every known human disease, thus, making it the most critical and dynamic "organ" in the human body. The overall goal of this Special Issue is to provide an accurate and inclusive functional definition that addresses the inherent complexity of matrix phenotypes. This goal is summarily achieved via a corpus of expertly written articles, reviews and original research, focused at answering this question empirically and fundamentally via state-of-the-art methods and research strategies.
Collapse
Key Words
- ADAM, a disintegrin and metalloproteinases
- AGE, advanced glycation end products
- Angiogenesis
- Cancer
- Collagen
- DDR1, discoidin domain receptor 1
- ECM, extracellular matrix
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- EMILIN1, elastin microfibril interfacer 1
- EMILIN2, elastin microfibril interfacer 2
- EMT, epithelial-mesenchymal transition
- ERα, estrogen receptor α
- ERβ, estrogen receptor β
- GBM, glioblastoma
- HA, hyaluronan
- HAS2, hyaluronan synthase 2
- HAS2-AS1, HAS2 antisense 1
- HB-EGF, heparin binding EGF
- HMGA2, high-mobility group AT-Hook 2
- IBC, inflammatory breast cancer
- IGF-IR, insulin growth factor I receptor
- IR-A, insulin receptor A
- LEKTI, lympho-epithelial Kazal-type inhibitor
- LOX, lysyl oxidases
- LTBP, latent TGFβ-binding proteins
- MAGP, microfibril-associated glycoproteins
- MET, mesenchymal-epithelial transition
- MMP, matrix metalloproteinases
- Methodologies
- OB, osteoblast
- OI, osteogenesis imperfecta
- PARs, protease activated receptors
- PG, proteoglycans
- PLL, poly-l-lysine
- Proteoglycans
- ROS, reactive oxygen species
- RTK, receptor tyrosine kinase
- SLRP, small leucine rich proteoglycans
- SSR, solar-simulated radiation
- TGFβ, transforming growth factor β
- TNT, tunneling nanotubes
- UVR, ultraviolet radiation
- VEGF, vascular endothelial growth factor
- miR, microRNA
- tPA, tissue-type plasminogen activator
- uPA, urokinase-type plasminogen activator
Collapse
Affiliation(s)
- Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
33
|
Celastrol Induces Necroptosis and Ameliorates Inflammation via Targeting Biglycan in Human Gastric Carcinoma. Int J Mol Sci 2019; 20:ijms20225716. [PMID: 31739592 PMCID: PMC6888087 DOI: 10.3390/ijms20225716] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/26/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Celastrol, a triterpene isolated from the root of traditional Chinese medicine Thunder of God Vine, possesses anti-cancer and anti-inflammatory activity to treat rheumatoid disease or as health product. Necroptosis is considered as a new approach to overcome chemotherapeutics resistance. However, whether celastrol exerts necroptosis leading to gastric cancer cell death is still unclear. Here, for the first time we showed that celastrol induced necroptosis in HGC27 and AGS gastric cancer cell lines. More importantly, celastrol down-regulated biglycan (BGN) protein, which is critical for gastric cancer migration and invasion. Furthermore, celastrol activated receptor-interacting protein 1 and 3 (RIP1 and RIP3) and subsequently promoted the translation of mixed-lineage kinase domain-like (MLKL) from cytoplasm to plasma membrane, leading to necroptosis of gastric cancer cell, which was blocked by over-expression BGN. In addition, celastrol suppressed the release of pro-inflammatory cytokines TNF-α and IL-8 in HGC27 and AGS cells, which was reversed by over-expression BGN. Taken together, we identified celastrol as a necroptosis inducer, activated RIP1/RIP3/MLKL pathway and suppressed the level of pro-inflammatory cytokines by down-regulating BGN in HGC-27 and AGS cells, which supported the feasibility of celastrol in gastric cancer therapy.
Collapse
|
34
|
Placental and serum levels of human Klotho in severe preeclampsia: A potential sensitive biomarker. Placenta 2019; 85:49-55. [DOI: 10.1016/j.placenta.2019.08.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 01/08/2023]
|
35
|
de Velasco G, Bex A, Albiges L, Powles T, Rini BI, Motzer RJ, Heng DYC, Escudier B. Sequencing and Combination of Systemic Therapy in Metastatic Renal Cell Carcinoma. Eur Urol Oncol 2019; 2:505-514. [PMID: 31377308 DOI: 10.1016/j.euo.2019.06.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023]
Abstract
CONTEXT Introduction of additional new agents targeting the vascular endothelial growth factor receptor (VEGFR) and immune checkpoint inhibitors (ICIs) has completely modified the systemic treatment of metastatic renal cell carcinoma (mRCC) during the last years. OBJECTIVE A comprehensive (nonsystematic) review to determine the suggested sequence or combinations for the systemic treatment of mRCC. EVIDENCE ACQUISITION PubMed and abstracts from main conferences up to December 2018 were reviewed to retrieve the current evidence for treatment of mRCC. Search terms included renal cell carcinoma, systemic therapy, targeted therapy (TT), and immunotherapy. EVIDENCE SYNTHESIS Marked advances in the treatment of mRCC have been made with novel VEGFR tyrosine kinase inhibitors and multiple ICIs that have been included in the current treatment paradigm of mRCC. Remarkable advance has been made with the combination of double checkpoint blockade. The combination of ipilimumab and nivolumab compared with sunitinib has shown to increase the overall survival in the intermediate- and poor-risk patients based on the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) model. CONCLUSIONS Double checkpoint blockade with ipilimumab and nivolumab has reported overall survival benefit in IMDC intermediate- and poor-risk patients, providing a durable response for a subset of patients. VEGF inhibitors remain the standard of care for favorable-risk patients in the first line. In the immediate future, more consolidated data on combination of VEGF-TT plus ICIs may show similar robust benefit with different safety profiles. PATIENT SUMMARY Multiple drugs and sequences are now accepted as effective treatment for metastatic renal cell carcinoma (mRCC). Combination of immune checkpoint inhibitors has shown to increase the overall survival in treatment-naïve mRCC patients. Combinations of immunotherapy and antiangiogenics may be another option in the near future. Outcomes of the first line will determine the sequence, although the best sequence has yet to be defined.
Collapse
Affiliation(s)
| | - Axel Bex
- Royal Free London NHS Fountation Turst, London, UK; UCL DIvision of Surgery and Interventional Science, London, UK
| | | | | | - Brian I Rini
- Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH, USA
| | | | | | | |
Collapse
|
36
|
Liu D, Huo Y, Chen S, Xu D, Yang B, Xue C, Fu L, Bu L, Song S, Mei C. Identification of Key Genes and Candidated Pathways in Human Autosomal Dominant Polycystic Kidney Disease by Bioinformatics Analysis. Kidney Blood Press Res 2019; 44:533-552. [DOI: 10.1159/000500458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 11/19/2022] Open
Abstract
Background/Aims: Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic form of kidney disease. High-throughput microarray analysis has been applied for elucidating key genes and pathways associated with ADPKD. Most genetic profiling data from ADPKD patients have been uploaded to public databases but not thoroughly analyzed. This study integrated 2 human microarray profile datasets to elucidate the potential pathways and protein-protein interactions (PPIs) involved in ADPKD via bioinformatics analysis in order to identify possible therapeutic targets. Methods: The kidney tissue microarray data of ADPKD patients and normal individuals were searched and obtained from NCBI Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified, and enriched pathways and central node genes were elucidated using related websites and software according to bioinformatics analysis protocols. Seven DEGs were validated between polycystic kidney disease and control kidney samples by quantitative real-time polymerase chain reaction. Results: Two original human microarray datasets, GSE7869 and GSE35831, were integrated and thoroughly analyzed. In total, 6,422 and 1,152 DEGs were extracted from GSE7869 and GSE35831, respectively, and of these, 561 DEGs were consistent between the databases (291 upregulated genes and 270 downregulated genes). From 421 nodes, 34 central node genes were obtained from a PPI network complex of DEGs. Two significant modules were selected from the PPI network complex by using Cytotype MCODE. Most of the identified genes are involved in protein binding, extracellular region or space, platelet degranulation, mitochondrion, and metabolic pathways. Conclusions: The DEGs and related enriched pathways in ADPKD identified through this integrated bioinformatics analysis provide insights into the molecular mechanisms of ADPKD and potential therapeutic strategies. Specifically, abnormal decorin expression in different stages of ADPKD may represent a new therapeutic target in ADPKD, and regulation of metabolism and mitochondrial function in ADPKD may become a focus of future research.
Collapse
|
37
|
Biglycan is a new high-affinity ligand for CD14 in macrophages. Matrix Biol 2019; 77:4-22. [DOI: 10.1016/j.matbio.2018.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
|
38
|
Roedig H, Nastase MV, Wygrecka M, Schaefer L. Breaking down chronic inflammatory diseases: the role of biglycan in promoting a switch between inflammation and autophagy. FEBS J 2019; 286:2965-2979. [PMID: 30776184 DOI: 10.1111/febs.14791] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/31/2019] [Accepted: 02/15/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Heiko Roedig
- Pharmazentrum Frankfurt/ZAFES Institut für Allgemeine Pharmakologie und Toxikologie Klinikum der Goethe‐Universität Frankfurt am Main Germany
| | - Madalina Viviana Nastase
- Pharmazentrum Frankfurt/ZAFES Institut für Allgemeine Pharmakologie und Toxikologie Klinikum der Goethe‐Universität Frankfurt am Main Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry Faculty of Medicine Universities of Giessen and Marburg Lung Center Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES Institut für Allgemeine Pharmakologie und Toxikologie Klinikum der Goethe‐Universität Frankfurt am Main Germany
| |
Collapse
|
39
|
Biglycan evokes autophagy in macrophages via a novel CD44/Toll-like receptor 4 signaling axis in ischemia/reperfusion injury. Kidney Int 2019; 95:540-562. [PMID: 30712922 DOI: 10.1016/j.kint.2018.10.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 01/14/2023]
Abstract
Biglycan, a small leucine-rich proteoglycan, acts as a danger signal and is classically thought to promote macrophage recruitment via Toll-like receptors (TLR) 2 and 4. We have recently shown that biglycan signaling through TLR 2/4 and the CD14 co-receptor regulates inflammation, suggesting that TLR co-receptors may determine whether biglycan-TLR signaling is pro- or anti-inflammatory. Here, we sought to identify other co-receptors and characterize their impact on biglycan-TLR signaling. We found a marked increase in the number of autophagic macrophages in mice stably overexpressing soluble biglycan. In vitro, stimulation of murine macrophages with biglycan triggered autophagosome formation and enhanced the flux of autophagy markers. Soluble biglycan also promoted autophagy in human peripheral blood macrophages. Using macrophages from mice lacking TLR2 and/or TLR4, CD14, or CD44, we demonstrated that the pro-autophagy signal required TLR4 interaction with CD44, a receptor involved in adhesion, migration, lymphocyte activation, and angiogenesis. In vivo, transient overexpression of circulating biglycan at the onset of renal ischemia/reperfusion injury (IRI) enhanced M1 macrophage recruitment into the kidneys of Cd44+/+ and Cd44-/- mice but not Cd14-/- mice. The biglycan-CD44 interaction increased M1 autophagy and the number of renal M2 macrophages and reduced tubular damage following IRI. Thus, CD44 is a novel signaling co-receptor for biglycan, an interaction that is required for TLR4-CD44-dependent pro-autophagic activity in macrophages. Interfering with the interaction between biglycan and specific TLR co-receptors could represent a promising therapeutic intervention to curtail kidney inflammation and damage.
Collapse
|
40
|
Small leucine-rich proteoglycans and matrix metalloproteinase-14: Key partners? Matrix Biol 2019; 75-76:271-285. [DOI: 10.1016/j.matbio.2017.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 11/19/2022]
|
41
|
Abstract
High-mobility group box 1 (HMGB1) is one of the most abundant proteins in eukaryotes and the best characterized damage-associated molecular pattern (DAMP). The biological activities of HMGB1 depend on its subcellular location, context and post-translational modifications. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription regulation and genome stability; in the cytoplasm, its main function is to regulate the autophagic flux while in the extracellular environment, it possesses more complicated functions and it is involved in a large variety of different processes such as inflammation, migration, invasion, proliferation, differentiation and tissue regeneration. Due to this pleiotropy, the role of HMGB1 has been vastly investigated in various pathological diseases and a large number of studies have explored its function in cardiovascular pathologies. However, in this contest, the precise mechanism of action of HMGB1 and its therapeutic potential are still very controversial since is debated whether HMGB1 is involved in tissue damage or plays a role in tissue repair and regeneration. The main focus of this review is to provide an overview of the effects of HMGB1 in different ischemic heart diseases and to discuss its functions in these pathological conditions.
Collapse
|
42
|
Yu Q, Xin K, Miao Y, Li Z, Fu S, Hu S, Zhang Q, Zhou S. Anti-tumor responses to hypofractionated radiation in mice grafted with triple negative breast cancer is associated with decorin induction in peritumoral muscles. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1150-1157. [PMID: 30124739 DOI: 10.1093/abbs/gmy094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 01/11/2023] Open
Abstract
Triple negative breast cancer (TNBC) is the most lethal one for all types of breast cancer. Though radiotherapy is an efficient treatment, long-term survival rate of TNBC patients is still suboptimal. Hyprofractionated radiotherapy, an improved radiotherapy, has made an inspiring result in clinic. However, the mechanism underlying TNBC treated with hyprofractionated radiotherapy is not clear. Decorin (DCN) is a small poteoglycan of matrix which has an inhibitory effect on the breast cancer and is secreted by muscle under certain conditions. In this study, we demonstrated that peritumoral muscles secrete more DCN at higher dose irradiation than that at conventional irradiation dose in TNBC tumor-bearing mice. Thus, it indicates that DCN secreted from peritumoral muscle may be one of the reasons why hyprofractionated radiotherapy could inhibit the growth of TNBC more effectively. Moreover, we also indicated that the up-regulated DCN attenuated lung metastasis of TNBC. In conclusion, we demonstrated that hypofractionated radiation promotes the secretion of DCN in peritumoral muscle, thus enhancing the inhibitory effect on TNBC, which might help to optimize the strategy of radiotherapy for TNBC patients in the future.
Collapse
Affiliation(s)
- Qi Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kedao Xin
- Department of Radiation Oncology, Suzhou Science and Technology Town Hospital, Suzhou, China
- Department of Radiation Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yu Miao
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zhaobin Li
- Department of Radiation Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shen Fu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shudong Hu
- Department of Radiology, The Affiliated of Renmin Hospital, Jiangsu University, Zhenjiang, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Shumin Zhou
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
43
|
Nastase MV, Zeng-Brouwers J, Beckmann J, Tredup C, Christen U, Radeke HH, Wygrecka M, Schaefer L. Biglycan, a novel trigger of Th1 and Th17 cell recruitment into the kidney. Matrix Biol 2018; 68-69:293-317. [DOI: 10.1016/j.matbio.2017.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/10/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
|
44
|
Schaefer L. Decoding fibrosis: Mechanisms and translational aspects. Matrix Biol 2018; 68-69:1-7. [PMID: 29679639 DOI: 10.1016/j.matbio.2018.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022]
Abstract
Fibrosis, a complex process of abnormal tissue healing which inevitably leads to loss of physiological organ structure and function, is a worldwide leading cause of death. Despite a large body of research over the last two decades, antifibrotic approaches are mainly limited to organ replacement therapy generating high costs of medical care. In this translational issue, a unique group of basic and clinical researchers provide meaningful answers to a desperate call of society for effective antifibrotic treatments. Fortunately, a plethora of novel fibrogenic factors and biomarkers has been identified. Noninvasive diagnostic methods and drug delivery systems have been recently developed for the management of fibrosis. Consequently, a large number of exciting clinical trials addressing comprehensive, organ and stage-specific mechanisms of fibrogenesis are ongoing. By critically addressing previously unsuccessful and novel promising therapeutic strategies, we aim to spread hope for future treatments of the various forms of organ fibrosis.
Collapse
Affiliation(s)
- Liliana Schaefer
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main 60590, Germany.
| |
Collapse
|
45
|
Nastase MV, Zeng-Brouwers J, Wygrecka M, Schaefer L. Targeting renal fibrosis: Mechanisms and drug delivery systems. Adv Drug Deliv Rev 2018; 129:295-307. [PMID: 29288033 DOI: 10.1016/j.addr.2017.12.019] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/10/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
Renal fibrosis is the common outcome of many chronic kidney diseases (CKD) independent of the underlying etiology. Despite a host of promising experimental data, currently available strategies only ameliorate or delay the progression of CKD but do not reverse fibrosis. One of the major impediments of translating novel antifibrotic strategies from bench to bedside is due to the intricacies of the drug delivery process. In this review, we briefly describe mechanisms of renal fibrosis and methods of drug transfer into the kidney. Various tools used in gene therapy to administer nucleic acids in vivo are discussed. Furthermore, we review the modes of action of protein- or peptide-based drugs with target-specific antibodies and cytokines incorporated in hydrogels. Additionally, we assess an intriguing new method to deliver drugs specifically to tubular epithelial cells via conjugation with ligands binding to the megalin receptor. Finally, plant-derived compounds with antifibrotic properties are also summarized.
Collapse
Affiliation(s)
- Madalina V Nastase
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; National Institute for Chemical-Pharmaceutical Research and Development, 112 Vitan Avenue, 031299 Bucharest, Romania
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
46
|
Nastase MV, Janicova A, Roedig H, Hsieh LTH, Wygrecka M, Schaefer L. Small Leucine-Rich Proteoglycans in Renal Inflammation: Two Sides of the Coin. J Histochem Cytochem 2018; 66:261-272. [PMID: 29290137 DOI: 10.1369/0022155417738752] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
It is now well-established that members of the small leucine-rich proteoglycan (SLRP) family act in their soluble form, released proteolytically from the extracellular matrix (ECM), as danger-associated molecular patterns (DAMPs). By interacting with Toll-like receptors (TLRs) and the inflammasome, the two SLRPs, biglycan and decorin, autonomously trigger sterile inflammation. Recent data indicate that these SLRPs, besides their conventional role as pro-inflammatory DAMPs, additionally trigger anti-inflammatory signaling pathways to tightly control inflammation. This is brought about by selective employment of TLRs, their co-receptors, various adaptor molecules, and through crosstalk between SLRP-, reactive oxygen species (ROS)-, and sphingolipid-signaling. In this review, the complexity of SLRP signaling in immune and kidney resident cells and its relevance for renal inflammation is discussed. We propose that the dichotomy in SLRP signaling (pro- and anti-inflammatory) allows for fine-tuning the inflammatory response, which is decisive for the outcome of inflammatory kidney diseases.
Collapse
Affiliation(s)
- Madalina V Nastase
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der JW Goethe-Universität Frankfurt am Main, Germany.,National Institute for Chemical-Pharmaceutical Research and Development, Bucharest, Romania
| | - Andrea Janicova
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der JW Goethe-Universität Frankfurt am Main, Germany
| | - Heiko Roedig
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der JW Goethe-Universität Frankfurt am Main, Germany
| | - Louise Tzung-Harn Hsieh
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der JW Goethe-Universität Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der JW Goethe-Universität Frankfurt am Main, Germany
| |
Collapse
|
47
|
Frevert CW, Felgenhauer J, Wygrecka M, Nastase MV, Schaefer L. Danger-Associated Molecular Patterns Derived From the Extracellular Matrix Provide Temporal Control of Innate Immunity. J Histochem Cytochem 2018; 66:213-227. [PMID: 29290139 DOI: 10.1369/0022155417740880] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is evident that components of the extracellular matrix (ECM) act as danger-associated molecular patterns (DAMPs) through direct interactions with pattern recognition receptors (PRRs) including Toll-like receptors (TLRs) and inflammasomes. Through these interactions, ECM-derived DAMPs autonomously trigger sterile inflammation or prolong pathogen-induced responses through the production of proinflammatory mediators and the recruitment of leukocytes to sites of injury and infection. Recent research, however, suggests that ECM-derived DAMPs are additionally involved in the resolution and fine-tuning of inflammation by orchestrating the production of anti-inflammatory mediators that are required for the resolution of tissue inflammation and the transition to acquired immunity. Thus, in this review, we discuss the current knowledge of the interplay between ECM-derived DAMPs and the innate immune signaling pathways that are activated to provide temporal control of innate immunity.
Collapse
Affiliation(s)
- Charles W Frevert
- Center for Lung Biology, University of Washington, Seattle, Washington
| | | | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Madalina V Nastase
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Frankfurt am Main, Germany.,National Institute for Chemical-Pharmaceutical Research and Development, Bucharest, Romania
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Frankfurt am Main, Germany
| |
Collapse
|
48
|
de Velasco G, Trilla-Fuertes L, Gamez-Pozo A, Urbanowicz M, Ruiz-Ares G, Sepúlveda JM, Prado-Vazquez G, Arevalillo JM, Zapater-Moros A, Navarro H, Lopez-Vacas R, Manneh R, Otero I, Villacampa F, Paramio JM, Vara JAF, Castellano D. Urothelial cancer proteomics provides both prognostic and functional information. Sci Rep 2017; 7:15819. [PMID: 29150671 PMCID: PMC5694001 DOI: 10.1038/s41598-017-15920-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/01/2017] [Indexed: 11/24/2022] Open
Abstract
Traditionally, bladder cancer has been classified based on histology features. Recently, some works have proposed a molecular classification of invasive bladder tumors. To determine whether proteomics can define molecular subtypes of muscle invasive urothelial cancer (MIUC) and allow evaluating the status of biological processes and its clinical value. 58 MIUC patients who underwent curative surgical resection at our institution between 2006 and 2012 were included. Proteome was evaluated by high-throughput proteomics in routinely archive FFPE tumor tissue. New molecular subgroups were defined. Functional structure and individual proteins prognostic value were evaluated and correlated with clinicopathologic parameters. 1,453 proteins were quantified, leading to two MIUC molecular subgroups. A protein-based functional structure was defined, including several nodes with specific biological activity. The functional structure showed differences between subtypes in metabolism, focal adhesion, RNA and splicing nodes. Focal adhesion node has prognostic value in the whole population. A 6-protein prognostic signature, associated with higher risk of relapse (5 year DFS 70% versus 20%) was defined. Additionally, we identified two MIUC subtypes groups. Prognostic information provided by pathologic characteristics is not enough to understand MIUC behavior. Proteomics analysis may enhance our understanding of prognostic and classification. These findings can lead to improving diagnosis and treatment selection in these patients.
Collapse
Affiliation(s)
- Guillermo de Velasco
- Department of Medical Oncology, University Hospital 12 de Octubre, i + 12, Madrid, Spain.
| | - Lucia Trilla-Fuertes
- Molecular Oncology & Pathology Lab, INGEMM, Instituto de Investigación Hospital La Paz-IdiPAZ, Madrid, Spain.,Biomedica Molecular Medicine, Madrid, Spain
| | - Angelo Gamez-Pozo
- Molecular Oncology & Pathology Lab, INGEMM, Instituto de Investigación Hospital La Paz-IdiPAZ, Madrid, Spain.,Biomedica Molecular Medicine, Madrid, Spain
| | - Maria Urbanowicz
- Department of Pathology, University Hospital 12 de Octubre, Madrid, Spain
| | - Gustavo Ruiz-Ares
- Department of Medical Oncology, University Hospital 12 de Octubre, i + 12, Madrid, Spain
| | - Juan M Sepúlveda
- Department of Medical Oncology, University Hospital 12 de Octubre, i + 12, Madrid, Spain
| | - Guillermo Prado-Vazquez
- Molecular Oncology & Pathology Lab, INGEMM, Instituto de Investigación Hospital La Paz-IdiPAZ, Madrid, Spain
| | - Jorge M Arevalillo
- Department of Statistics, Operational Research and Numerical Analysis, University Nacional Educacion a Distancia (UNED), Madrid, Spain
| | - Andrea Zapater-Moros
- Molecular Oncology & Pathology Lab, INGEMM, Instituto de Investigación Hospital La Paz-IdiPAZ, Madrid, Spain
| | - Hilario Navarro
- Department of Statistics, Operational Research and Numerical Analysis, University Nacional Educacion a Distancia (UNED), Madrid, Spain
| | - Rocio Lopez-Vacas
- Molecular Oncology & Pathology Lab, INGEMM, Instituto de Investigación Hospital La Paz-IdiPAZ, Madrid, Spain
| | - Ray Manneh
- Department of Medical Oncology, University Hospital 12 de Octubre, i + 12, Madrid, Spain
| | - Irene Otero
- Department of Medical Oncology, University Hospital 12 de Octubre, i + 12, Madrid, Spain
| | - Felipe Villacampa
- Department of Urology, University Hospital 12 de Octubre, Madrid, Spain.,CIBERONC, Madrid, Spain
| | - Jesus M Paramio
- Molecular and Cell Oncology Group, Biomedical research Institute, University Hospital 12 de Octubre, i + 12, and Molecular Oncology Unit, CIEMAT, Madrid, Spain.,CIBERONC, Madrid, Spain
| | - Juan Angel Fresno Vara
- Molecular Oncology & Pathology Lab, INGEMM, Instituto de Investigación Hospital La Paz-IdiPAZ, Madrid, Spain.,Biomedica Molecular Medicine, Madrid, Spain.,CIBERONC, Madrid, Spain
| | - Daniel Castellano
- Department of Medical Oncology, University Hospital 12 de Octubre, i + 12, Madrid, Spain.,CIBERONC, Madrid, Spain
| |
Collapse
|
49
|
Nastase MV, Janicova A, Wygrecka M, Schaefer L. Signaling at the Crossroads: Matrix-Derived Proteoglycan and Reactive Oxygen Species Signaling. Antioxid Redox Signal 2017; 27:855-873. [PMID: 28510506 DOI: 10.1089/ars.2017.7165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Proteoglycans (PGs), besides their structural contribution, have emerged as dynamic components that mediate a multitude of cellular events. The various roles of PGs are attributed to their structure, spatial localization, and ability to act as ligands and receptors. Reactive oxygen species (ROS) are small mediators that are generated in physiological and pathological conditions. Besides their reactivity and ability to induce oxidative stress, a growing body of data suggests that ROS signaling is more relevant than direct radical damage in development of human pathologies. Recent Advances: Cell surface transmembrane PGs (syndecans, cluster of differentiation 44) represent receptors in diverse and complex transduction networks, which involve redox signaling with implications in cancer, fibrosis, renal dysfunction, or Alzheimer's disease. Through NADPH oxidase (NOX)-dependent ROS, the extracellular PG, hyaluronan is involved in osteoclastogenesis and cancer. The ROS sources, NOX1 and NOX4, increase biglycan-induced inflammation, while NOX2 is a negative regulator. CRITICAL ISSUES The complexity of the mechanisms that bring ROS into the light of PG biology might be the foundation of a new research area with significant promise for understanding health and disease. Important aspects need to be investigated in PG/ROS signaling: the discovery of specific targets of ROS, the precise ROS-induced chemical modifications of these targets, and the study of their pathological relevance. FUTURE DIRECTIONS As we become more and more aware of the interactions between PG and ROS signaling underlying intracellular communication and cell fate decisions, it is quite conceivable that this field will allow to identify new therapeutic targets.-Antioxid. Redox Signal. 27, 855-873.
Collapse
Affiliation(s)
- Madalina-Viviana Nastase
- 1 Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe Universität , Frankfurt am Main, Germany .,2 National Institute for Chemical-Pharmaceutical Research and Development , Bucharest, Romania
| | - Andrea Janicova
- 1 Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe Universität , Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- 3 Department of Biochemistry, Faculty of Medicine, Justus Liebig University , Giessen, Germany
| | - Liliana Schaefer
- 1 Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe Universität , Frankfurt am Main, Germany
| |
Collapse
|
50
|
Álvarez K, Vasquez G. Damage-associated molecular patterns and their role as initiators of inflammatory and auto-immune signals in systemic lupus erythematosus. Int Rev Immunol 2017; 36:259-270. [DOI: 10.1080/08830185.2017.1365146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética, Universidad de Antioquia, carrera 53 numero 61-30, Medellin, Colombia
| | - Gloria Vasquez
- Grupo de Inmunología Celular e Inmunogenética, Universidad de Antioquia, carrera 53 numero 61-30, Medellin, Colombia
| |
Collapse
|