1
|
Zhang QY, Liu HX. Insights into the role of FGF21 in coronary heart disease. Int J Biol Macromol 2024; 282:136911. [PMID: 39476920 DOI: 10.1016/j.ijbiomac.2024.136911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/11/2024]
Abstract
Coronary heart disease (CHD) remains a leading cause of global mortality, with an alarming increase in its incidence among the younger population in recent years. This has amplified the need for early diagnostic markers and advances in therapeutic strategies to improve patient outcomes. Fibroblast growth factor 21 (FGF21), an endocrine hormone crucial for the regulation of metabolic homeostasis, has garnered significant attention over the past decade, owing to its role in cardiovascular health. FGF21 exerts cardioprotective effects through various mechanisms, including regulation of myocardial energy metabolism, prevention of cardiac cell death, suppression of inflammation, and reduction of oxidative stress in the heart. Given these properties, FGF21 shows considerable promise as a pharmacological agent for the management of CHD. Moreover, it has emerged as a promising biomarker for the diagnosis and prognostic assessment of CHD. This review aims to clarify the molecular mechanisms underlying the favorable effects of FGF21 on CHD and its related risk factors, thereby providing valuable insights for future research on the role of FGF21 in CHD management.
Collapse
Affiliation(s)
- Qin-Yao Zhang
- Health Sciences Institute, China Medical University, Shenyang, China; Institute of Life Sciences, China Medical University, Shenyang, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China; Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui-Xin Liu
- Health Sciences Institute, China Medical University, Shenyang, China; Institute of Life Sciences, China Medical University, Shenyang, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Li X, Rao Z, Hu W, Lu W, Luo Y. Treating metabolic dysfunction-associated steatohepatitis: The fat-trimming FGF21 approach. Obes Rev 2024:e13861. [PMID: 39546893 DOI: 10.1111/obr.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/10/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a condition characterized by hepatosteatosis, inflammation, and tissue damage, with steatosis as the initial stage, which involves chronic, excess deposition of lipids in hepatic lipid droplets. Despite the growing prevalence and serious risks it poses, including liver decompensation, the need for transplantation, and increased patient mortality, MASH currently faces no approved pharmacotherapy. Several promising treatment candidates have emerged from recent clinical trials, including analogs of FGF21 and agonists of the associated FGFR1-KLB complex. These agents were well-tolerated in trials and have demonstrated significant improvements in both histological and biochemical markers of liver fat content, inflammation, injury, and fibrosis in patients with MASH. Endocrine FGF21 plays a vital role in maintaining homeostasis of lipid, glucose, and energy metabolism. It achieves this through pathways that target lipids or lipid droplets in adipocytes and hepatocytes. Mechanistically, pharmacological FGF21 acts as a potent catabolic factor to promote lipid or lipid droplet lipolysis, fatty acid oxidation, mitochondrial catabolic flux, and heat-dissipating energy expenditure, leading to effective clearance of hepatic and systemic gluco-lipotoxicity and inflammatory stress, thereby preventing obesity, diabetes, and MASH pathologies. In this review, we aim to provide an update on the outcomes of clinical trials for several FGF21 mimetics. We compare these outcomes with preclinical studies and offer a lipid-centric perspective on the mechanisms underlying the clinical benefits of these agents for MASH.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, & Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
| | - Zhiheng Rao
- School of Pharmaceutical Sciences, Wenzhou Medical University, & Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
| | - Wenhao Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiqin Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas, USA
| | - Yongde Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, & Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Streeter J, Persaud L, Gao J, Manika D, Fairman W, García-Peña LM, Marti A, Manika C, Gaddi S, Schickling B, Pereira RO, Abel ED. ATF4-dependent and independent mitokine secretion from OPA1 deficient skeletal muscle in mice is sexually dimorphic. Front Endocrinol (Lausanne) 2024; 15:1325286. [PMID: 39381436 PMCID: PMC11458430 DOI: 10.3389/fendo.2024.1325286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Reducing Optic Atrophy 1 (OPA1) expression in skeletal muscle in male mice induces Activation Transcription Factor 4 (ATF4) and the integrated stress response (ISR). Additionally, skeletal muscle secretion of Fibroblast Growth Factor 21 (FGF21) is increased, which mediates metabolic adaptations including resistance to diet-induced obesity (DIO) and glucose intolerance in these mice. Although FGF21 induction in this model can be reversed with pharmacological attenuation of ER stress, it remains to be determined if ATF4 is responsible for FGF21 induction and its metabolic benefits in this model. Methods We generated mice with homozygous floxed Opa1 and Atf4 alleles and a tamoxifen-inducible Cre transgene controlled by the human skeletal actin promoter to enable simultaneous depletion of OPA1 and ATF4 in skeletal muscle (mAO DKO). Mice were fed high fat (HFD) or control diet and evaluated for ISR activation, body mass, fat mass, glucose tolerance, insulin tolerance and circulating concentrations of FGF21 and growth differentiation factor 15 (GDF15). Results In mAO DKO mice, ATF4 induction is absent. Other indices of ISR activation, including XBP1s, ATF6, and CHOP were induced in mAO DKO males, but not in mOPA1 or mAO DKO females. Resistance to diet-induced obesity was not reversed in mAO DKO mice of both sexes. Circulating FGF21 and GDF15 illustrated sexually dimorphic patterns. Loss of OPA1 in skeletal muscle increases circulating FGF21 in mOPA1 males, but not in mOPA1 females. Additional loss of ATF4 decreased circulating FGF21 in mAO DKO male mice, but increased circulating FGF21 in female mAO DKO mice. Conversely, circulating GDF15 was increased in mAO DKO males and mOPA1 females, but not in mAO DKO females. Conclusion Sex differences exist in the transcriptional outputs of the ISR following OPA deletion in skeletal muscle. Deletion of ATF4 in male and female OPA1 KO mice does not reverse the resistance to DIO. Induction of circulating FGF21 is ATF4 dependent in males, whereas induction of circulating GDF15 is ATF4 dependent in females. Elevated GDF15 in males and FGF21 in females could reflect activation by other transcriptional outputs of the ISR, that maintain mitokine-dependent metabolic protection in an ATF4-independent manner.
Collapse
Affiliation(s)
- Jennifer Streeter
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Luis Persaud
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Jason Gao
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Deeraj Manika
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Will Fairman
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Luis Miguel García-Peña
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Alex Marti
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Chethan Manika
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Shreya Gaddi
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Brandon Schickling
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Renata O. Pereira
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - E. Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
4
|
Hirai T, Wang W, Murono N, Iwasa K, Inoue M. Potential role of Akt in the regulation of fibroblast growth factor 21 by berberine. J Nat Med 2024; 78:169-179. [PMID: 37951850 DOI: 10.1007/s11418-023-01755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is expressed in several organs, including the liver, adipose tissue, and cardiovascular system, and plays an important role in cross-talk with other organs by binding to specific FGF receptors and their co-receptors. FGF21 represents a potential target for the treatment of obesity, type 2 diabetes mellitus, and non-alcoholic steatohepatitis (NASH). The production of FGF21 in skeletal muscle was recently suggested to be beneficial for metabolic health through its autocrine and paracrine effects. However, the regulatory mechanisms of FGF21 in skeletal muscle remain unclear. In the present study, we showed that berberine regulated FGF21 production in C2C12 myotubes in a dose-dependent manner. We also examined the effects of A-674563, a selective Akt1 inhibitor, on the berberine-mediated regulation of FGF21 expression in C2C12 myotubes. Berberine significantly increased the secretion of FGF21 in C2C12 myotubes, while A-674563 attenuated this effect. Moreover, a pre-treatment with A-674563 effectively suppressed berberine-induced increases in Bmal1 expression in C2C12 myotubes, indicating that the up-regulation of Bmal1 after the berberine treatment was dependent on Akt1. Additionally, berberine-induced increases in FGF21 secretion were significantly attenuated in C2C12 cells transfected with Bmal1 siRNA, indicating the contribution of the core clock transcription factor BMAL1 to Akt-regulated FGF21 in response to berberine. Collectively, these results indicate that berberine regulates the expression of FGF21 through the Akt1 pathway in C2C12 myotubes. Moreover, the core clock gene Bmal1 may participate in the control of the myokine FGF21. Berberine stimulated Akt1-dependent FGF21 expression in C2C12 myotubes. The up-regulation of FGF21 through the modulation of PI3K/AKT1/BMAL1 in response to berberine may be involved in the regulation of cellular function (such as Glut1 expression) by acting in an autocrine and/or paracrine manner in skeletal muscle.
Collapse
Affiliation(s)
- Takao Hirai
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan.
- Laboratory of Biochemical Pharmacology, Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, 1-1 Gakuendai, Kahoku, Ishikawa, 929-1210, Japan.
| | - Wei Wang
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| | - Naoko Murono
- Community Health Nursing, Ishikawa Prefectural Nursing University, Kahoku, Ishikawa, 929-1210, Japan
| | - Kazuo Iwasa
- Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, Kahoku, Ishikawa, 929-1210, Japan
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| |
Collapse
|
5
|
Pei E, Wang H, Li Z, Xie X, Cai L, Lin M. Endoplasmic reticulum stress inhibitor may substitute for sleeve gastrectomy to alleviate metabolic dysfunction-associated steatotic liver disease. Clin Res Hepatol Gastroenterol 2023; 47:102229. [PMID: 37865225 DOI: 10.1016/j.clinre.2023.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming the most common form of chronic liver disease worldwide. We explored the potential mechanisms responsible for the protective role of sleeve gastrectomy (SG) on MASLD in a high-fat diet (HFD) rat model. METHODS Rats were fed with HFD for 12 weeks to generate MASLD model that were subjected to SG or sham surgery. The endoplasmic reticulum stress (ERS) inhibitor 4-phenylbutyric acid (4-PBA) was injected intraperitoneally every day for 4 weeks after surgery to identify the impact of ERS. RESULTS The MASLD rat model was generated successfully, as indicated by significant upregulation of metabolic parameters. Fibroblast growth factor 21 (FGF21) and ERS-related proteins were increased in HFD rats, while expression of fibroblast growth factor receptor 1 was decreased as expected. An HFD also induced swelling and blurring of the endoplasmic reticulum and mitochondria in hepatocytes, and the above transformation could be relieved by SG and 4-PBA. SG and an ERS inhibitor both inhibited MASLD, but their combined treatment had no additional benefit. CONCLUSIONS Dysfunction of the FGF21 signaling pathway and hepatic steatosis and inflammation could be induced by an HFD, potentially causing MASLD. Bariatric surgery and ERS inhibition could alleviate MASLD by relieving ERS-mediated impairment of FGF21 signal transduction. These findings provide a new insight into the use of ERS inhibitors to treat MASLD, especially in patients who prefer to avoid surgery.
Collapse
Affiliation(s)
- Erli Pei
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Wang
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhihong Li
- Department of General Surgery, Zhoupu Hospital, Shanghai, China
| | - Xiaoyun Xie
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Cai
- Department of Science and Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Lee H, Lee TJ, Galloway CA, Zhi W, Xiao W, de Mesy Bentley KL, Sharma A, Teng Y, Sesaki H, Yoon Y. The mitochondrial fusion protein OPA1 is dispensable in the liver and its absence induces mitohormesis to protect liver from drug-induced injury. Nat Commun 2023; 14:6721. [PMID: 37872238 PMCID: PMC10593833 DOI: 10.1038/s41467-023-42564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondria are critical for metabolic homeostasis of the liver, and their dysfunction is a major cause of liver diseases. Optic atrophy 1 (OPA1) is a mitochondrial fusion protein with a role in cristae shaping. Disruption of OPA1 causes mitochondrial dysfunction. However, the role of OPA1 in liver function is poorly understood. In this study, we delete OPA1 in the fully developed liver of male mice. Unexpectedly, OPA1 liver knockout (LKO) mice are healthy with unaffected mitochondrial respiration, despite disrupted cristae morphology. OPA1 LKO induces a stress response that establishes a new homeostatic state for sustained liver function. Our data show that OPA1 is required for proper complex V assembly and that OPA1 LKO protects the liver from drug toxicity. Mechanistically, OPA1 LKO decreases toxic drug metabolism and confers resistance to the mitochondrial permeability transition. This study demonstrates that OPA1 is dispensable in the liver, and that the mitohormesis induced by OPA1 LKO prevents liver injury and contributes to liver resiliency.
Collapse
Affiliation(s)
- Hakjoo Lee
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Chad A Galloway
- Department of Pathology and Laboratory Medicine, and Center for Advanced Research Technologies, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Wei Xiao
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Karen L de Mesy Bentley
- Department of Pathology and Laboratory Medicine, and Center for Advanced Research Technologies, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
7
|
Wang J, Luo LZ, Liang DM, Guo C, Huang ZH, Jian XH, Wen J. Recent progress in understanding mitokines as diagnostic and therapeutic targets in hepatocellular carcinoma. World J Clin Cases 2023; 11:5416-5429. [PMID: 37637689 PMCID: PMC10450380 DOI: 10.12998/wjcc.v11.i23.5416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent tumors worldwide and the leading contributor to cancer-related deaths. The progression and metastasis of HCC are closely associated with altered mitochondrial metabolism, including mitochondrial stress response. Mitokines, soluble proteins produced and secreted in response to mitochondrial stress, play an essential immunomodulatory role. Immunotherapy has emerged as a crucial treatment option for HCC. However, a positive response to therapy is typically dependent on the interaction of tumor cells with immune regulation within the tumor microenvironment. Therefore, exploring the specific immunomodulatory mechanisms of mitokines in HCC is essential for improving the efficacy of immunotherapy. This study provides a comprehensive overview of the association between HCC and the immune microenvironment and highlights recent progress in understanding the involvement of mitochondrial function in preserving liver function. In addition, a systematic review of mitokines-mediated immunomodulation in HCC is presented. Finally, the potential diagnostic and therapeutic roles of mitokines in HCC are prospected and summarized. Recent progress in mitokine research represents a new prospect for mitochondrial therapy. Considering the potential of mitokines to regulate immune function, investigating them as a relevant molecular target holds great promise for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Jiang Wang
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Lan-Zhu Luo
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Dao-Miao Liang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Chao Guo
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhi-Hong Huang
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Xiao-Hong Jian
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410013, Hunan Province, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| |
Collapse
|
8
|
Yang L, Nao J. Focus on Alzheimer's Disease: The Role of Fibroblast Growth Factor 21 and Autophagy. Neuroscience 2023; 511:13-28. [PMID: 36372296 DOI: 10.1016/j.neuroscience.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is a disorder of the central nervous system that is typically marked by progressive cognitive impairment and memory loss. Amyloid β plaque deposition and neurofibrillary tangles with hyperphosphorylated tau are the two hallmark pathologies of AD. In mammalian cells, autophagy clears aberrant protein aggregates, thus maintaining proteostasis as well as neuronal health. Autophagy affects production and metabolism of amyloid β and accumulation of phosphorylated tau proteins, whose malfunction can lead to the progression of AD. On the other hand, defective autophagy has been found to induce the production of the neuroprotective factor fibroblast growth factor 21 (FGF21), although the underlying mechanism is unclear. In this review, we highlight the significance of aberrant autophagy in the pathogenesis of AD, discuss the possible mechanisms by which defective autophagy induces FGF21 production, and analyze the potential of FGF21 in the treatment of AD. The findings provide some insights into the potential role of FGF21 and autophagy in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
9
|
Raptis DD, Mantzoros CS, Polyzos SA. Fibroblast Growth Factor-21 as a Potential Therapeutic Target of Nonalcoholic Fatty Liver Disease. Ther Clin Risk Manag 2023; 19:77-96. [PMID: 36713291 PMCID: PMC9879042 DOI: 10.2147/tcrm.s352008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/22/2022] [Indexed: 01/23/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent disease without any approved treatment to-date despite intensive research efforts by researchers and pharmaceutical industry. Fibroblast growth factor (FGF)-21 has been gaining increasing attention as a possible contributing factor and thus therapeutic target for obesity-related metabolic disorders, including NAFLD, mainly due to its effects on lipid and carbohydrate metabolism. Most animal and human observational studies have shown higher FGF-21 concentrations in NAFLD than non-NAFLD, implying that FGF-21 may be increased to counteract hepatic steatosis and inflammation. However, although Mendelian Randomization studies have revealed that variations of FGF-21 levels within the physiological range may have effects in hyperlipidemia and possibly nonalcoholic steatohepatitis, they also indicate that FGF-21, in physiological concentrations, may fail to reverse NAFLD and may not be able to control obesity and other diseases, indicating a state of FGF-21 resistance or insensitivity that could not respond to administration of FGF-21 in supraphysiological concentrations. Interventional studies with FGF-21 analogs (eg, pegbelfermin, efruxifermin, BOS-580) in humans have provided some favorable results in Phase 1 and Phase 2 studies. However, the definite effect of FGF-21 on NAFLD may be clarified after the completion of the ongoing clinical trials with paired liver biopsies and histological endpoints. The aim of this review is to critically summarize experimental and clinical data of FGF-21 in NAFLD, in an attempt to highlight existing knowledge and areas of uncertainty, and subsequently, to focus on the potential therapeutic effects of FGF-21 and its analogs in NAFLD.
Collapse
Affiliation(s)
- Dimitrios D Raptis
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece,Second Department of Internal Medicine, 424 General Military Hospital, Thessaloniki, Greece
| | - Christos S Mantzoros
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,Department of Internal Medicine, Boston VA Healthcare System, Harvard Medical School, Boston, MA, 02115, USA
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece,Correspondence: Stergios A Polyzos, First Laboratory of Pharmacology, School of Medicine, Campus of Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece, Tel +30 2310 999316, Email
| |
Collapse
|
10
|
Dixon S, Karrow NA, Borkowski E, Suarez-Vega A, Menzies PI, Kennedy D, Peregrine AS, Mallard BA, Cánovas Á. Identifying hepatic genes regulating the ovine response to gastrointestinal nematodes using RNA-Sequencing. Front Genet 2023; 14:1111426. [PMID: 36873933 PMCID: PMC9981634 DOI: 10.3389/fgene.2023.1111426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 02/19/2023] Open
Abstract
Gastrointestinal nematode (GIN) infections are considered the most important disease of grazing sheep and due to increasing anthelmintic resistance, chemical control alone is inadequate. Resistance to Gastrointestinal nematode infection is a heritable trait, and through natural selection many sheep breeds have higher resistance. Studying the transcriptome from GIN-exposed and GIN-unexposed sheep using RNA-Sequencing technology can provide measurements of transcript levels associated with the host response to Gastrointestinal nematode infection, and these transcripts may harbor genetic markers that can be used in selective breeding programs to enhance disease resistance. The objective of this study was to compare liver transcriptomes of sheep naturally exposed to Gastrointestinal nematode s, with either high or low parasite burdens, to GIN-unexposed control sheep in order to identify key regulator genes and biological processes associated with Gastrointestinal nematode infection. Differential gene expression analysis revealed no significant differentially expressed genes (DEG) between sheep with a high or low parasite burden (p-value ≤0.01; False Discovery Rate (FDR) ≤ 0.05; and Fold-Change (FC) of > ±2). However, when compared to the control group, low parasite burden sheep showed 146 differentially expressed genes (64 upregulated and 82 downregulated in the low parasite burden group relative to the control), and high parasite burden sheep showed 159 differentially expressed genes (57 upregulated and 102 downregulated in the low parasite burden group relative to the control) (p-value ≤0.01; FDR ≤0.05; and FC of > ±2). Among these two lists of significant differentially expressed genes, 86 differentially expressed genes (34 upregulated, 52 downregulated in the parasited group relative to the control) were found in common between the two parasite burden groups compared to the control (GIN-unexposed sheep). Functional analysis of these significant 86 differentially expressed genes found upregulated genes involved in immune response and downregulated genes involved in lipid metabolism. Results of this study offer insight into the liver transcriptome during natural Gastrointestinal nematode exposure that helps provide a better understanding of the key regulator genes involved in Gastrointestinal nematode infection in sheep.
Collapse
Affiliation(s)
- Samantha Dixon
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Niel A Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Emma Borkowski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Aroa Suarez-Vega
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Paula I Menzies
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Delma Kennedy
- Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, ON, Canada
| | - Andrew S Peregrine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Bonnie A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Ángela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
11
|
Gessner DK, Sandrock LM, Most E, Koch C, Ringseis R, Eder K. Performance and Metabolic, Inflammatory, and Oxidative Stress-Related Parameters in Early Lactating Dairy Cows with High and Low Hepatic FGF21 Expression. Animals (Basel) 2022; 13:ani13010131. [PMID: 36611740 PMCID: PMC9817787 DOI: 10.3390/ani13010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Induction of FGF21 expression in the liver and a significant increase in plasma FGF21 concentration have been demonstrated in cows during early lactation, but knowledge about the function of FGF21 in dairy cows remains limited. In order to improve the understanding of the physiological role of FGF21 in dairy cows, the present study aimed to investigate differences in metabolic pathways between dairy cows with high and low hepatic expression of FGF21 at week 1 of lactation (n = 8/group) by liver transcriptomics, targeted plasma metabolomics, and analysis of inflammatory and oxidative stress-related parameters. Dry matter intake, energy balance, milk yield, and energy-corrected milk yield at days 8−14 postpartum did not differ between cows with high and low hepatic FGF21 expression. However, cows with high FGF21 expression showed an upregulation of genes involved in endoplasmic reticulum stress, inflammation, and nuclear factor E2-related factor 2 (Nrf2)-dependent cytoprotection compared to cows with low FGF21 expression at week 1 postpartum (p < 0.05). Concentrations of important antioxidants (tocopherols, β-carotene, and glutathione) in the liver and plasma, trolox equivalent antioxidant capacity in plasma, concentrations of oxidative stress-related compounds (thiobarbituric acid-reactive substances and protein carbonyls), and levels of most acute phase proteins at week 1 postpartum did not differ between cows with high or low FGF21 expression. Moreover, among a total of >200 metabolites assayed in the plasma, concentrations of only 7 metabolites were different between cows with high or low FGF21 expression (p < 0.05). Overall, the results showed that cows with high and low FGF21 hepatic expression had only moderate differences in metabolism, but FGF21 might be important in the adaptation of dairy cows to stress conditions during early lactation.
Collapse
Affiliation(s)
- Denise K. Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Lena M. Sandrock
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Christian Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, 67728 Münchweiler an der Alsenz, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-641-9939230
| |
Collapse
|
12
|
O’Neill LM, Phang YX, Liu Z, Lewis SA, Aljohani A, McGahee A, Wade G, Kalyesubula M, Simcox J, Ntambi JM. Hepatic Oleate Regulates Insulin-like Growth Factor-Binding Protein 1 Partially through the mTORC1-FGF21 Axis during High-Carbohydrate Feeding. Int J Mol Sci 2022; 23:14671. [PMID: 36498997 PMCID: PMC9737156 DOI: 10.3390/ijms232314671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Stearoyl-CoA desaturase-1 (SCD1) catalyzes the rate-liming step of monounsaturated fatty acid biosynthesis and is a key regulator of systemic glucose metabolism. Mice harboring either a global (GKO) or liver-specific deletion (LKO) of Scd1 display enhanced insulin signaling and whole-body glucose uptake. Additionally, GKO and LKO mice are protected from high-carbohydrate diet-induced obesity. Given that high-carbohydrate diets can lead to chronic metabolic diseases such as obesity, diabetes, and hepatic steatosis, it is critical to understand how Scd1 deficiency confers metabolically beneficial phenotypes. Here we show that insulin-like growth factor-binding protein 1 (IGFBP1), a hepatokine that has been reported to enhance insulin signaling, is significantly elevated in the liver and plasma of GKO and LKO mice fed a low-fat high-carbohydrate diet. We also observed that the expression of hepatic Igfbp1 is regulated by oleic acid (18:1n9), a product of SCD1, through the mTORC1-FGF21 axis both in vivo and in vitro.
Collapse
Affiliation(s)
- Lucas M. O’Neill
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Yar Xin Phang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Zhaojin Liu
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Sarah A. Lewis
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ahmed Aljohani
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11564, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11564, Saudi Arabia
| | - Ayren McGahee
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Mugagga Kalyesubula
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
13
|
Soleimani-Dodran M, Alipanah-Moghadam R, Jeddi F, Babaei M, Salimnejad R, Bahreini E. Effect of hydroalcoholic seed extract of Nigella sativa on hepatic and pancreatic factors of Nrf2 and FGF21 in the regulation of insulin transcription factors of MafA and PDX-1 in streptozotocin-treated diabetic rats. Nutr Metab (Lond) 2022; 19:64. [PMID: 36109786 PMCID: PMC9479419 DOI: 10.1186/s12986-022-00699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Nigella sativa (N. sativa), one of the most commonly used medicinal herbs with antioxidant properties, increases blood insulin levels and lowers fasting blood sugar. Nuclear Erythroid Factor-Related Factor 2 (Nrf2) and Fibroblast Growth Factor 21 (FGF21) are two antioxidant factors that are increased by oxidative stress and hyperglycemia. The present study investigated how hydroalcoholic extract of N. sativa seed (HENS) increases blood insulin levels, taking into account changes in antioxidant factors and expression of insulin transcription factors. Materials and methods Two groups of male diabetic wistar rats were treated orally with HESN at doses of 200 and 400 mg/kg-body weight for one month. Fasting blood sugar (FBS) and insulin were measured using standard kits by photometric and ELISA methods, respectively. The expression levels of the Nrf2, FGF21 and β-Klotho genes as well as the insulin gene-stimulating transcription factors of MafA and PDX-1 were evaluated using real-time PCR. Oxidative stress was assessed by assessing serum total oxidation status (TOS), malondialdehyde (MDA), and total antioxidant capacity (TAC). Results HSEN showed a significant reducing effect on FBS and oxidative biomarkers and an increasing effect on serum insulin levels in treated diabetic rats compared to untreated diabetics (P < 0.05). The elevated levels of NRF2 and FGF21 in the liver and pancreas of the diabetic control group were significantly reduced after treatment with both HESN doses (P < 0.05). Following the ameliorative effects of HENS on pancreatic tissue and the reduction of oxidative stress, the expression level of MafA and PDX1 genes approached the level of these factors in healthy rats (P < 0.05). Conclusion This study showed the therapeutic effects of HENS on diabetic pancreas by reducing oxidative stress and tissue damage, modifying the expression levels of PDX-1 and MafA genes, and regulating insulin secretion and blood glucose levels.
Collapse
|
14
|
Zhang X, Zhao Y, Liang X, Zhang L, Li K, Sun Z, Zhao YF. α-Lipoic acid upregulates gene expression but reduces protein levels of fibroblast growth factor 21 in HepG2 Cells. Basic Clin Pharmacol Toxicol 2022; 131:270-281. [PMID: 35838000 DOI: 10.1111/bcpt.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a metabolism-regulating hepatokine, and its expression is finely controlled by the nutrients and cellular stressors. α-Lipoic acid (ALA) regulates fuel metabolism as a nutrient, but it also arouses mitochondrial and endoplasmic reticulum (ER) stress as well as oxidative stress in hepatocytes. However, the role of cellular stress in ALA-regulated FGF21 expression has not been demonstrated as yet. The present study found that ALA upregulated FGF21 gene expression while it reduced FGF21 protein levels in HepG2 cells, which was accompanied by mitochondrial damage that was shown by ATP reduction and ROS elevation. ALA led to mitochondrial stress and ER stress as shown by the increased expression of HSP60, ATF6 and ATF4. Inhibition of ER stress by 4-PBA significantly attenuated ALA-stimulated FGF21 gene expression while it did not influence the reduction of FGF21 protein levels. H2 O2 -induced oxidative stress reduced FGF21 protein levels in HepG2 cells, and anti-oxidation by Tempol blocked ALA-induced reduction of FGF21 proteins. In conclusion, ALA upregulates FGF21 gene expression through the stimulation of mitochondrial and ER stress while it reduces FGF21 protein levels through the induction of oxidative stress in HepG2 cells. Further studies are needed to demonstrate the in vivo effect of ALA on hepatic FGF21 expression.
Collapse
Affiliation(s)
- Xiaochun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Yanyan Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xiangyan Liang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Lijun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Ke Li
- Shaanxi Key Laboratory of Brain Disorders, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Zhuo Sun
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Yu-Feng Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| |
Collapse
|
15
|
Elia I, Realini G, Di Mauro V, Borghi S, Bottoni L, Tornambè S, Vitiello L, Weiss SJ, Chiariello M, Tamburrini A, Oliviero S, Neri F, Orlandini M, Galvagni F. SNAI1 is upregulated during muscle regeneration and represses FGF21 and ATF3 expression by directly binding their promoters. FASEB J 2022; 36:e22401. [PMID: 35726676 DOI: 10.1096/fj.202200215r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/11/2022]
Abstract
During skeletal myogenesis, the zinc-finger transcription factors SNAI1 and SNAI2, are expressed in proliferating myoblasts and regulate the transition to terminally differentiated myotubes while repressing pro-differentiation genes. Here, we demonstrate that SNAI1 is upregulated in vivo during the early phase of muscle regeneration induced by bupivacaine injury. Using shRNA-mediated gene silencing in C2C12 myoblasts and whole-transcriptome microarray analysis, we identified a collection of genes belonging to the endoplasmic reticulum (ER) stress pathway whose expression, induced by myogenic differentiation, was upregulated in absence of SNAI1. Among these, key ER stress genes, such as Atf3, Ddit3/Chop, Hspa5/Bip, and Fgf21, a myokine involved in muscle differentiation, were strongly upregulated. Furthermore, by promoter mutant analysis and Chromatin immune precipitation assay, we demonstrated that SNAI1 represses Fgf21 and Atf3 in proliferating myoblasts by directly binding to multiple E boxes in their respective promoter regions. Together, these data describe a new regulatory mechanism of myogenic differentiation involving the direct repressive action of SNAI1 on ER stress and Fgf21 expression, ultimately contributing to maintaining the proliferative and undifferentiated state of myoblasts.
Collapse
Affiliation(s)
- Ines Elia
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giulia Realini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Vittoria Di Mauro
- IRCCS-Humanitas Research Hospital, Rozzano, Italy.,Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Via Fantoli 16/15, Milan, 20138, Italy
| | - Sara Borghi
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA.,Immune Monitoring Laboratory, NYU Langone Health, 550 First Avenue, New York, NY, 10016, USA
| | - Laura Bottoni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Salvatore Tornambè
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Stephen J Weiss
- Division of Genetic Medicine, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Mario Chiariello
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR) and Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Siena, Italy
| | - Annalaura Tamburrini
- Department of Life Science and Systems Biology, Università degli Studi di Torino, Turin, Italy.,IIGM - Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
| | - Salvatore Oliviero
- Department of Life Science and Systems Biology, Università degli Studi di Torino, Turin, Italy.,IIGM - Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
| | - Francesco Neri
- Department of Life Science and Systems Biology, Università degli Studi di Torino, Turin, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
16
|
Bauzá-Thorbrügge M, Banke E, Chanclón B, Peris E, Wu Y, Musovic S, Jönsson C, Strålfors P, Rorsman P, Olofsson CS, Asterholm IW. Adipocyte-specific ablation of the Ca 2+ pump SERCA2 impairs whole-body metabolic function and reveals the diverse metabolic flexibility of white and brown adipose tissue. Mol Metab 2022; 63:101535. [PMID: 35760318 PMCID: PMC9287368 DOI: 10.1016/j.molmet.2022.101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) transports Ca2+ from the cytosol into the ER and is essential for appropriate regulation of intracellular Ca2+ homeostasis. The objective of this study was to test the hypothesis that SERCA pumps are involved in the regulation of white adipocyte hormone secretion and other aspects of adipose tissue function and that this control is disturbed in obesity-induced type-2 diabetes. METHODS SERCA expression was measured in isolated human and mouse adipocytes as well as in whole mouse adipose tissue by Western blot and RT-qPCR. To test the significance of SERCA2 in adipocyte functionality and whole-body metabolism, we generated adipocyte-specific SERCA2 knockout mice. The mice were metabolically phenotyped by glucose tolerance and tracer studies, histological analyses, measurements of glucose-stimulated insulin release in isolated islets, and gene/protein expression analyses. We also tested the effect of pharmacological SERCA inhibition and genetic SERCA2 ablation in cultured adipocytes. Intracellular and mitochondrial Ca2+ levels were recorded with dual-wavelength ratio imaging and mitochondrial function was assessed by Seahorse technology. RESULTS We demonstrate that SERCA2 is downregulated in white adipocytes from patients with obesity and type-2 diabetes as well as in adipocytes from diet-induced obese mice. SERCA2-ablated adipocytes display disturbed Ca2+ homeostasis associated with upregulated ER stress markers and impaired hormone release. These adipocyte alterations are linked to mild lipodystrophy, reduced adiponectin levels, and impaired glucose tolerance. Interestingly, adipocyte-specific SERCA2 ablation leads to increased glucose uptake in white adipose tissue while glucose uptake is reduced in brown adipose tissue. This dichotomous effect on glucose uptake is due to differently regulated mitochondrial function. In white adipocytes, SERCA2 deficiency triggers an adaptive increase in FGF21, increased mitochondrial UCP1 levels, and increased oxygen consumption rate (OCR). In contrast, brown SERCA2 null adipocytes display reduced OCR despite increased mitochondrial content and UCP1 levels compared to wild type controls. CONCLUSIONS Our data suggest causal links between reduced white adipocyte SERCA2 levels, deranged adipocyte Ca2+ homeostasis, adipose tissue dysfunction and type-2 diabetes.
Collapse
Affiliation(s)
- Marco Bauzá-Thorbrügge
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Elin Banke
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Belén Chanclón
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Eduard Peris
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Yanling Wu
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Saliha Musovic
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Cecilia Jönsson
- Department of Biomedical and Clinical Sciences, Linköping University, SE-58185 Linköping, Sweden.
| | - Peter Strålfors
- Department of Biomedical and Clinical Sciences, Linköping University, SE-58185 Linköping, Sweden.
| | - Patrik Rorsman
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX4 7LE, UK.
| | - Charlotta S Olofsson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
17
|
Wu YK, Ren ZN, Zhu SL, Wu YZ, Wang G, Zhang H, Chen W, He Z, Ye XL, Zhai QX. Sulforaphane ameliorates non-alcoholic fatty liver disease in mice by promoting FGF21/FGFR1 signaling pathway. Acta Pharmacol Sin 2022; 43:1473-1483. [PMID: 34654875 PMCID: PMC9159986 DOI: 10.1038/s41401-021-00786-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Most studies regarding the beneficial effect of sulforaphane (SFN) on non-alcoholic fatty liver disease (NAFLD) have focused on nuclear factor E2-related factor 2 (Nrf2). But the molecular mechanisms underlying the beneficial effect of SFN in the treatment of NAFLD remain controversial. Fibroblast growth factor (FGF) 21 is a member of the FGF family expressed mainly in liver but also in adipose tissue, muscle and pancreas, which functions as an endocrine factor and has been considered as a promising therapeutic candidate for the treatment of NAFLD. In the present study we investigated whether FGF21 was involved in the therapeutic effect of SFN against NAFLD. C57BL/6J mice were fed a high-fat diet (HFD) for 12 weeks to generate NAFLD and continued on the HFD for additional 6 weeks with or without SFN treatment. We showed that administration of SFN (0.56 g/kg) significantly ameliorated hepatic steatosis and inflammation in NAFLD mice, along with the improved glucose tolerance and insulin sensitivity, through suppressing the expression of proteins responsible for hepatic lipogenesis, while enhancing proteins for hepatic lipolysis and fatty acids oxidation. SFN administration significantly increased hepatic expression of FGFR1 and fibroblast growth factor 21 (FGF21) in NAFLD mice, along with decreased phosphorylation of p38 MAPK (the downstream of FGF21). HepG2 cells were treated in vitro with FFAs (palmitic acid and oleic acid) followed by different concentrations of SFN. We showed that the effects of SFN on FGF21 and FGFR1 protein expression were replicated in FFAs-treated HepG2 cells. Moreover, the increased FGFR1 protein occurred earlier than increased FGF21 protein. Interestingly, the rapid effect of SFN on FGFR1 protein was not regulated by the FGFR1 gene transcription. Knockdown of FGFR1 and p38 genes weakened SFN-reduced lipid deposition in FFAs-treated HepG2 cells. SFN administration in combination with rmFGF21 (1.5 mg/kg, i.p., every other day) for 3 weeks further suppressed hepatic steatosis in NAFLD mice. In conclusion, SFN ameliorates lipid metabolism disorders in NAFLD mice by upregulating FGF21/FGFR1 pathway. Our results verify that SFN may become a promising intervention to treat or relieve NAFLD.
Collapse
Affiliation(s)
- Yi-kuan Wu
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Zheng-nan Ren
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Sheng-long Zhu
- grid.258151.a0000 0001 0708 1323School of Medicine, Jiangnan University, Wuxi, 214122 China
| | - Yun-zhou Wu
- grid.412243.20000 0004 1760 1136College of Life Science, Northeast Agricultural University, Harbin, 150038 China
| | - Gang Wang
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Hao Zhang
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122 China
| | - Wei Chen
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122 China
| | - Zhao He
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, 250012 China
| | - Xian-long Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000 China
| | - Qi-xiao Zhai
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
18
|
Endocrine Fibroblast Growth Factors in Relation to Stress Signaling. Cells 2022; 11:cells11030505. [PMID: 35159314 PMCID: PMC8834311 DOI: 10.3390/cells11030505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
Fibroblast growth factors (FGFs) play important roles in various growth signaling processes, including proliferation, development, and differentiation. Endocrine FGFs, i.e., atypical FGFs, including FGF15/19, FGF21, and FGF23, function as endocrine hormones that regulate energy metabolism. Nutritional status is known to regulate the expression of endocrine FGFs through nuclear hormone receptors. The increased expression of endocrine FGFs regulates energy metabolism processes, such as fatty acid metabolism and glucose metabolism. Recently, a relationship was found between the FGF19 subfamily and stress signaling during stresses such as endoplasmic reticulum stress and oxidative stress. This review focuses on endocrine FGFs and the recent progress in FGF studies in relation to stress signaling. In addition, the relevance of the stress-FGF pathway to disease and human health is discussed.
Collapse
|
19
|
Iacob SA, Iacob DG. Non-Alcoholic Fatty Liver Disease in HIV/HBV Patients - a Metabolic Imbalance Aggravated by Antiretroviral Therapy and Perpetuated by the Hepatokine/Adipokine Axis Breakdown. Front Endocrinol (Lausanne) 2022; 13:814209. [PMID: 35355551 PMCID: PMC8959898 DOI: 10.3389/fendo.2022.814209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is strongly associated with the metabolic syndrome and is one of the most prevalent comorbidities in HIV and HBV infected patients. HIV plays an early and direct role in the development of metabolic syndrome by disrupting the mechanism of adipogenesis and synthesis of adipokines. Adipokines, molecules that regulate the lipid metabolism, also contribute to the progression of NAFLD either directly or via hepatic organokines (hepatokines). Most hepatokines play a direct role in lipid homeostasis and liver inflammation but their role in the evolution of NAFLD is not well defined. The role of HBV in the pathogenesis of NAFLD is controversial. HBV has been previously associated with a decreased level of triglycerides and with a protective role against the development of steatosis and metabolic syndrome. At the same time HBV displays a high fibrogenetic and oncogenetic potential. In the HIV/HBV co-infection, the metabolic changes are initiated by mitochondrial dysfunction as well as by the fatty overload of the liver, two interconnected mechanisms. The evolution of NAFLD is further perpetuated by the inflammatory response to these viral agents and by the variable toxicity of the antiretroviral therapy. The current article discusses the pathogenic changes and the contribution of the hepatokine/adipokine axis in the development of NAFLD as well as the implications of HIV and HBV infection in the breakdown of the hepatokine/adipokine axis and NAFLD progression.
Collapse
Affiliation(s)
- Simona Alexandra Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Infectious Diseases, National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, Bucharest, Romania
| | - Diana Gabriela Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Infectious Diseases, Emergency University Hospital, Bucharest, Romania
- *Correspondence: Diana Gabriela Iacob,
| |
Collapse
|
20
|
Rhyu J, Yu R. Newly discovered endocrine functions of the liver. World J Hepatol 2021; 13:1611-1628. [PMID: 34904032 PMCID: PMC8637678 DOI: 10.4254/wjh.v13.i11.1611] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/05/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
The liver, the largest solid visceral organ of the body, has numerous endocrine functions, such as direct hormone and hepatokine production, hormone metabolism, synthesis of binding proteins, and processing and redistribution of metabolic fuels. In the last 10 years, many new endocrine functions of the liver have been discovered. Advances in the classical endocrine functions include delineation of mechanisms of liver production of endocrine hormones [including 25-hydroxyvitamin D, insulin-like growth factor 1 (IGF-1), and angiotensinogen], hepatic metabolism of hormones (including thyroid hormones, glucagon-like peptide-1, and steroid hormones), and actions of specific binding proteins to glucocorticoids, sex steroids, and thyroid hormones. These studies have furthered insight into cirrhosis-associated endocrinopathies, such as hypogonadism, osteoporosis, IGF-1 deficiency, vitamin D deficiency, alterations in glucose and lipid homeostasis, and controversially relative adrenal insufficiency. Several novel endocrine functions of the liver have also been unraveled, elucidating the liver’s key negative feedback regulatory role in the pancreatic α cell-liver axis, which regulates pancreatic α cell mass, glucagon secretion, and circulating amino acid levels. Betatrophin and other hepatokines, such as fetuin-A and fibroblast growth factor 21, have also been discovered to play important endocrine roles in modulating insulin sensitivity, lipid metabolism, and body weight. It is expected that more endocrine functions of the liver will be revealed in the near future.
Collapse
Affiliation(s)
- Jane Rhyu
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Run Yu
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, United States
| |
Collapse
|
21
|
Eder K, Gessner DK, Ringseis R. Fibroblast growth factor 21 in dairy cows: current knowledge and potential relevance. J Anim Sci Biotechnol 2021; 12:97. [PMID: 34517929 PMCID: PMC8439079 DOI: 10.1186/s40104-021-00621-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/12/2021] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) has been identified as an important regulator of carbohydrate and lipid metabolism, which plays an important role for metabolic regulation, particularly under conditions of energy deprivation or stress conditions. Dairy cows are subjected to a negative energy balance and various kinds of stress particularly during the periparturient phase and during early lactation. It has been shown that the plasma concentration of FGF21 in dairy cows is dramatically increased at parturition and remains high during the first weeks of lactation. This finding suggests that FGF21 might exert similar functions in dairy cows than in other species, such as mice or humans. However, the role of FGF21 in dairy cows has been less investigated so far. Following a brief summary of the previous findings about the function of FGF21 in humans and mice, the present review aims to present the current state of knowledge about the role of FGF21 in dairy cows. The first part of the review deals with the tissue localization of FGF21 and with conditions leading to an upregulation of FGF21 expression in the liver of dairy cows. In the second part, the influence of nutrition on FGF21 expression and the role of FGF21 for metabolic diseases in dairy cows is addressed. In the third part, findings of exogenous FGF21 application on metabolism in dairy cows are reported. Finally, the potential relevance of FGF21 in dairy cows is discussed. It is concluded that FGF21 might be of great importance for metabolic adaptation to negative energy balance and stress conditions in dairy cows. However, further studies are needed for a better understanding of the functions of FGF21 in dairy cows.
Collapse
Affiliation(s)
- Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Denise K. Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
22
|
Huang Y, Zhao C, Kong Y, Tan P, Liu S, Liu Y, Zeng F, Yuan Y, Zhao B, Wang J. Elucidation of the mechanism of NEFA-induced PERK-eIF2α signaling pathway regulation of lipid metabolism in bovine hepatocytes. J Steroid Biochem Mol Biol 2021; 211:105893. [PMID: 33819629 DOI: 10.1016/j.jsbmb.2021.105893] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
During the periparturient transition period, negative energy balance (NEB) characterized by high concentrations of non-esterified fatty acids (NEFA) may cause fatty liver and ketosis in dairy cows. Previous studies have shown that the protein kinase R-like endoplasmic reticulum kinase (PERK) branch of the endoplasmic reticulum stress (ERS) response plays an important role in lipid metabolism in hepatocytes. This study, therefore, investigated the role of the PERK-branch in NEFA-induced fatty liver. Different concentrations of NEFA or GSK2656157 (a novel catalytic inhibitor of PERK) were used to treat hepatocytes isolated from calves. The NEFA treatment significantly increased the triacylglycerol (TG) content, the phosphorylation level of PERK and eukaryotic initiation factor 2α (eIF2α), and the abundance of glucose-regulated protein 78 (Grp78), C/EBP homologous protein (CHOP), sterol regulatory element-binding protein 1c (SREBP-1c), fatty acid synthase (FASN), peroxisome proliferator-activated receptor-α (PPARα), carnitine palmitoyltransferase 1A (CPT1A), apolipoprotein B (APOB), and the low-density lipoprotein receptor (LDLR). Compared with the 1.2 mM NEFA group, inhibition of PERK activity further increased the TG content in hepatocytes, the very-low-density lipoprotein (VLDL) content in the supernatant and the protein abundance of APOB while reducing the expression and nuclear levels of SREBP-1c and PPARα, as well as the expression of CPT1A and CPT2. In conclusion, the results showed that the NEFA-induced PERK-eIF2α signaling pathway promotes lipid synthesis, lipid oxidation, but inhibits the assembly and secretion of VLDL. Therefore, during the transition period, the activation of the PERK-eIF2α signaling pathway in the liver of dairy cows could defeat the acid-induced lipotoxicity and provide energy to alleviate NEB.
Collapse
Affiliation(s)
- Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Panpan Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Siqi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yaoquan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fangyuan Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
23
|
Krumm CS, Xu X, Bare CJ, Holman CD, Kersten S, Dow LE, Lee AH, Cohen DE. Inducible hepatic expression of CREBH mitigates diet-induced obesity, insulin resistance, and hepatic steatosis in mice. J Biol Chem 2021; 297:100815. [PMID: 34023388 PMCID: PMC8246594 DOI: 10.1016/j.jbc.2021.100815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclic AMP-responsive element-binding protein H (CREBH encoded by Creb3l3) is a transcription factor that regulates the expression of genes that control lipid and glucose metabolism as well as inflammation. CREBH is upregulated in the liver under conditions of overnutrition, and mice globally lacking the gene (CREBH-/-) are highly susceptible to diet-induced obesity, insulin resistance, and hepatic steatosis. The net protective effects of CREBH have been attributed in large part to the activities of fibroblast growth factor (Fgf)-21 (Fgf21), a target gene that promotes weight loss, improves glucose homeostasis, and reduces hepatic lipid accumulation. To explore the possibility that activation of the CREBH-Fgf21 axis could ameliorate established effects of high-fat feeding, we generated an inducible transgenic hepatocyte-specific CREBH overexpression mouse model (Tg-rtTA). Acute overexpression of CREBH in livers of Tg-rtTA mice effectively reversed diet-induced obesity, insulin resistance, and hepatic steatosis. These changes were associated with increased activities of thermogenic brown and beige adipose tissues in Tg-rtTA mice, leading to reductions in fat mass, along with enhanced insulin sensitivity and glucose tolerance. Genetically silencing Fgf21 in Tg-rtTA mice abrogated the CREBH-mediated reductions in body weight loss, but only partially reversed the observed improvements in glucose metabolism. These findings reveal that the protective effects of CREBH activation may be leveraged to mitigate diet-induced obesity and associated metabolic abnormalities in both Fgf21-dependent and Fgf21-independent pathways.
Collapse
Affiliation(s)
- Christopher S Krumm
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Xu Xu
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Curtis J Bare
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Corey D Holman
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Lukas E Dow
- Division of Hematology & Medical Oncology, Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, New York, USA
| | - Ann-Hwee Lee
- Department of Pathology & Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - David E Cohen
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
24
|
Activation of the hypothalamic-pituitary-adrenal axis by exogenous and endogenous GDF15. Proc Natl Acad Sci U S A 2021; 118:2106868118. [PMID: 34187898 PMCID: PMC8271778 DOI: 10.1073/pnas.2106868118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 potently activates the hypothalamic-pituitary-adrenal (HPA) axis in mice and rats. A blocking antibody to the GDNF-family receptor α-like receptor completely prevented the corticosterone response to GDF15 administration. In wild-type mice exposed to a range of stressful stimuli, circulating levels of both corticosterone and GDF15 rose acutely. In the case of Escherichia coli or lipopolysaccharide injections, the vigorous proinflammatory cytokine response elicited was sufficient to produce a near-maximal HPA response, regardless of the presence or absence of GDF15. In contrast, the activation of the HPA axis seen in wild-type mice in response to the administration of genotoxic or endoplasmic reticulum toxins, which do not provoke a marked rise in cytokines, was absent in Gdf15 -/- mice. In conclusion, consistent with its proposed role as a sentinel hormone, endogenous GDF15 is required for the activation of the protective HPA response to toxins that do not induce a substantial cytokine response. In the context of efforts to develop GDF15 as an antiobesity therapeutic, these findings identify a biomarker of target engagement and a previously unrecognized pharmacodynamic effect, which will require monitoring in human studies.
Collapse
|
25
|
Martin A, Ecklu-Mensah G, Ha CWY, Hendrick G, Layman DK, Gilbert J, Devkota S. Gut microbiota mediate the FGF21 adaptive stress response to chronic dietary protein-restriction in mice. Nat Commun 2021; 12:3838. [PMID: 34158480 PMCID: PMC8219803 DOI: 10.1038/s41467-021-24074-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic dietary protein-restriction can create essential amino acid deficiencies and induce metabolic adaptation through the hepatic FGF21 pathway which serves to maintain host fitness during prolonged states of nutritional imbalance. Similarly, the gut microbiome undergoes metabolic adaptations when dietary nutrients are added or withdrawn. Here we confirm previous reports that dietary protein-restriction triggers the hepatic FGF21 adaptive metabolic pathway and further demonstrate that this response is mediated by the gut microbiome and can be tuned through dietary supplementation of fibers that alter the gut microbiome. In the absence of a gut microbiome, we discover that FGF21 is de-sensitized to the effect of protein-restriction. These data suggest that host-intrinsic adaptive pathways to chronic dietary protein-restriction, such as the hepatic FGF21 pathway, may in-fact be responding first to adaptive metabolic changes in the gut microbiome.
Collapse
Affiliation(s)
- Anthony Martin
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gertrude Ecklu-Mensah
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Connie W Y Ha
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gustaf Hendrick
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Donald K Layman
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
| | - Jack Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Suzanne Devkota
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Bayoumi A, Elsayed A, Han S, Petta S, Adams LA, Aller R, Khan A, García‐Monzón C, Arias‐Loste MT, Miele L, Latchoumanin O, Alenizi S, Gallego‐Durán R, Fischer J, Berg T, Craxì A, Metwally M, Qiao L, Liddle C, Yki‐Järvinen H, Bugianesi E, Romero‐Gomez M, George J, Eslam M. Mistranslation Drives Alterations in Protein Levels and the Effects of a Synonymous Variant at the Fibroblast Growth Factor 21 Locus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004168. [PMID: 34141520 PMCID: PMC8188187 DOI: 10.1002/advs.202004168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/09/2021] [Indexed: 05/08/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a liver-derived hormone with pleiotropic beneficial effects on metabolism. Paradoxically, FGF21 levels are elevated in metabolic diseases. Interventions that restore metabolic homeostasis reduce FGF21. Whether abnormalities in FGF21 secretion or resistance in peripheral tissues is the initiating factor in altering FGF21 levels and function in humans is unknown. A genetic approach is used to help resolve this paradox. The authors demonstrate that the primary event in dysmetabolic phenotypes is the elevation of FGF21 secretion. The latter is regulated by translational reprogramming in a genotype- and context-dependent manner. To relate the findings to tissues outcomes, the minor (A) allele of rs838133 is shown to be associated with increased hepatic inflammation in patients with metabolic associated fatty liver disease. The results here highlight a dominant role for translation of the FGF21 protein to explain variations in blood levels that is at least partially inherited. These results provide a framework for translational reprogramming of FGF21 to treat metabolic diseases.
Collapse
Affiliation(s)
- Ali Bayoumi
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Asmaa Elsayed
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Shuanglin Han
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Salvatore Petta
- Section of Gastroenterology and HepatologyPROMISEUniversity of PalermoPalermo90133Italy
| | - Leon A. Adams
- Medical SchoolSir Charles Gairdner Hospital UnitUniversity of Western AustraliaNedlandsWA6009Australia
| | - Rocio Aller
- GastroenterologyHospital Clinico Universitario de ValladolidSchool of MedicineValladolid UniversityValladolid47002Spain
| | - Anis Khan
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Carmelo García‐Monzón
- Liver Research UnitInstituto de Investigacion Sanitaria PrincesaUniversity Hospital Santa CristinaCIBERehdMadrid28009Spain
| | - María Teresa Arias‐Loste
- Gastroenterology and Hepatology DepartmentMarqués de Valdecilla University HospitalSantander39008Spain
| | - Luca Miele
- Department of Internal MedicineCatholic University of the Sacred HeartRome20123Italy
| | - Olivier Latchoumanin
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Shafi Alenizi
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Rocio Gallego‐Durán
- Virgen del Rocío University HospitalInstitute of Biomedicine of SevilleSevilla41013Spain
| | - Janett Fischer
- Division of HepatologyDepartment of Medicine IILeipzig University Medical CenterLeipzig04103Germany
| | - Thomas Berg
- Division of HepatologyDepartment of Medicine IILeipzig University Medical CenterLeipzig04103Germany
| | - Antonio Craxì
- Section of Gastroenterology and HepatologyPROMISEUniversity of PalermoPalermo90133Italy
| | - Mayada Metwally
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Liang Qiao
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Christopher Liddle
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Hannele Yki‐Järvinen
- Department of MedicineUniversity of Helsinki and Helsinki University Hospital and Minerva Foundation Institute for Medical ResearchHelsinki00290Finland
| | - Elisabetta Bugianesi
- Division of GastroenterologyDepartment of Medical ScienceUniversity of TurinTurin10124Italy
| | - Manuel Romero‐Gomez
- Virgen del Rocío University HospitalInstitute of Biomedicine of SevilleSevilla41013Spain
| | - Jacob George
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Mohammed Eslam
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| |
Collapse
|
27
|
Yan H, Hales BF. Effects of an Environmentally Relevant Mixture of Organophosphate Esters Derived From House Dust on Endochondral Ossification in Murine Limb Bud Cultures. Toxicol Sci 2021; 180:62-75. [PMID: 33367866 PMCID: PMC7916738 DOI: 10.1093/toxsci/kfaa180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Organophosphate esters (OPEs) are used widely as flame retardants and plasticizers but much remains unknown about their potential toxicity. Previously, we reported that 4 individual OPEs suppress endochondral ossification in murine limb bud cultures. However, real-life exposure is to complex OPE mixtures. In the present study, we tested the hypothesis that a Canadian household dust-based OPE mixture will affect endochondral ossification in gestation day 13 CD1 mouse embryo limb buds expressing fluorescent markers for the major cell populations involved in the process: collagen type II alpha 1-enhanced cyan fluorescent protein (proliferative chondrocytes), collagen type X alpha 1-mCherry (hypertrophic chondrocytes), and collagen type I alpha 1-yellow fluorescent protein (osteoblasts). Limbs were cultured for 6 days in the presence of vehicle or dilutions of the OPE mixture (1/1 000 000, 1/600 000, and 1/300 000). All 3 OPE mixture dilutions affected cartilage template development and the progression of endochondral ossification, as indicated by the fluorescent markers. The expression of Sox9, the master regulator of chondrogenesis, was unchanged, but the expression of Runx2 and Sp7, which drive chondrocyte hypertrophy and osteoblastogenesis, was dilution-dependently suppressed. RNA-seq revealed that exposure to the 1/300 000 dilution of the OPE mixture for 24 h downregulated 153 transcripts and upregulated 48 others by at least 1.5-fold. Downregulated transcripts were enriched for those related to the immune system and bone formation. In contrast, upregulated transcripts were enriched for those with stress response functions known to be regulated by ATF4 activation. Thus, exposure to the mixture of OPEs commonly found in house dust may have adverse effects on bone formation.
Collapse
Affiliation(s)
- Han Yan
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
28
|
Spann RA, Morrison CD, den Hartigh LJ. The Nuanced Metabolic Functions of Endogenous FGF21 Depend on the Nature of the Stimulus, Tissue Source, and Experimental Model. Front Endocrinol (Lausanne) 2021; 12:802541. [PMID: 35046901 PMCID: PMC8761941 DOI: 10.3389/fendo.2021.802541] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone that is involved in the regulation of lipid, glucose, and energy metabolism. Pharmacological FGF21 administration promotes weight loss and improves insulin sensitivity in rodents, non-human primates, and humans. However, pharmacologic effects of FGF21 likely differ from its physiological effects. Endogenous FGF21 is produced by many cell types, including hepatocytes, white and brown adipocytes, skeletal and cardiac myocytes, and pancreatic beta cells, and acts on a diverse array of effector tissues such as the brain, white and brown adipose tissue, heart, and skeletal muscle. Different receptor expression patterns dictate FGF21 function in these target tissues, with the primary effect to coordinate responses to nutritional stress. Moreover, different nutritional stimuli tend to promote FGF21 expression from different tissues; i.e., fasting induces hepatic-derived FGF21, while feeding promotes white adipocyte-derived FGF21. Target tissue effects of FGF21 also depend on its capacity to enter the systemic circulation, which varies widely from known FGF21 tissue sources in response to various stimuli. Due to its association with obesity and non-alcoholic fatty liver disease, the metabolic effects of endogenously produced FGF21 during the pathogenesis of these conditions are not well known. In this review, we will highlight what is known about endogenous tissue-specific FGF21 expression and organ cross-talk that dictate its diverse physiological functions, with particular attention given to FGF21 responses to nutritional stress. The importance of the particular experimental design, cellular and animal models, and nutritional status in deciphering the diverse metabolic functions of endogenous FGF21 cannot be overstated.
Collapse
Affiliation(s)
- Redin A. Spann
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Christopher D. Morrison
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
- *Correspondence: Laura J. den Hartigh,
| |
Collapse
|
29
|
Fang H, Stone KP, Forney LA, Wanders D, Gettys TW. Nutritional Regulation of Hepatic FGF21 by Dietary Restriction of Methionine. Front Endocrinol (Lausanne) 2021; 12:773975. [PMID: 34917032 PMCID: PMC8669746 DOI: 10.3389/fendo.2021.773975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
FGF21 is a potent metabolic regulator of energy balance, body composition, lipid metabolism, and glucose homeostasis. Initial studies reported that it was increased by fasting and the associated increase in ketones, but more recent work points to the importance of dietary protein and sensing of essential amino acids in FGF21 regulation. For example, dietary restriction of methionine produces a rapid transcriptional activation of hepatic FGF21 that results in a persistent 5- to 10-fold increase in serum FGF21. Although FGF21 is a component of a complex transcriptional program activated by methionine restriction (MR), loss-of-function studies show that FGF21 is an essential mediator of the resulting effects of the MR diet on energy balance, remodeling of adipose tissue, and enhancement of insulin sensitivity. These studies also show that FGF21 signaling in the brain is required for the MR diet-induced increase in energy expenditure (EE) and reduction of adiposity. Collectively, the evidence supports the view that the liver functions as a sentinel to detect and respond to changes in dietary amino acid composition, and that the resulting mobilization of hepatic FGF21 is a key element of the homeostatic response. These findings raise the interesting possibility that therapeutic diets could be developed that produce sustained, biologically effective increases in FGF21 by nutritionally modulating its transcription and release.
Collapse
Affiliation(s)
- Han Fang
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Kirsten P. Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Laura A. Forney
- Department of Kinesiology, Houston Baptist University, Houston, TX, United States
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, GA, United States
| | - Thomas W. Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- *Correspondence: Thomas W. Gettys,
| |
Collapse
|
30
|
Badakhshi Y, Jin T. Current understanding and controversies on the clinical implications of fibroblast growth factor 21. Crit Rev Clin Lab Sci 2020; 58:311-328. [PMID: 33382006 DOI: 10.1080/10408363.2020.1864278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metabolic functions of the hepatic hormone fibroblast growth factor 21 (FGF21) have been recognized for more than a decade in studying the responses of human subjects and rodent models to nutritional stresses such as fasting, high-fat diet or ketogenic diet consumption, and ethanol intake. Our interest in the beneficial metabolic effects of FGF21 has risen due to its potential ability to serve as a therapeutic agent for various metabolic disorders, including type 2 diabetes, obesity, and fatty liver diseases, as well as its potential to act as a diagnostic or prognostic biomarker for metabolic and other disorders. Here, we briefly review the FGF21 gene and protein structures, its expression pattern, and cellular signaling cascades that mediate FGF21 production and function. We mainly focus on discussing experimental and clinical literature pertaining to FGF21 as a therapeutic agent. Furthermore, we present several lines of investigation, including a few studies conducted by our team, suggesting that FGF21 expression and function can be regulated by dietary polyphenol interventions. Finally, we discuss the literature debating FGF21 as a potential biomarker in various disorders.
Collapse
Affiliation(s)
- Yasaman Badakhshi
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
31
|
Myronovych A, Bhattacharjee J, Salazar-Gonzalez RM, Tan B, Mowery S, Ferguson D, Ryan KK, Zhang W, Zhao X, Oehrle M, Setchell KD, Seeley RJ, Sandoval DA, Kohli R. Assessment of the role of FGF15 in mediating the metabolic outcomes of murine Vertical Sleeve Gastrectomy (VSG). Am J Physiol Gastrointest Liver Physiol 2020; 319:G669-G684. [PMID: 32967428 PMCID: PMC7792670 DOI: 10.1152/ajpgi.00175.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 01/31/2023]
Abstract
Vertical sleeve gastrectomy (VSG) is the best current therapy for remission of obesity and its co-morbidities. It is understood to alter the enterohepatic circulation of bile acids in vivo. Fibroblast growth factor 19 (FGF19) in human and its murine orthologue Fgf15 plays a pivotal role in this bile acid driven enterohepatic signaling. The present study evaluated the metabolic outcomes of VSG in Fgf15 deficient mice. 6-8 weeks old male wildtype mice (WT) and Fgf15 deficient mice (KO) were fed a high fat diet (HFD) for 8 weeks. At 8th week of diet, both WT and KO mice were randomly distributed to VSG or sham surgery. Post-surgery, mice were observed for 8 weeks while fed a HFD and then euthanized to collect tissues for experimental analysis. Fgf15 deficient (KO) mice lost weight post VSG, but glucose tolerance in KO mice did not improve post VSG compared to WT mice. Enteroids derived from WT and KO mice proliferated with bile acid exposure in vitro. Post VSG both WT and KO mice had similarly altered bile acid enterohepatic flux, however Fgf15 deficient mice post VSG had increased hepatic accumulation of free and esterified cholesterol leading to lipotoxicity related ER stress, inflammasome activation, and increased Fgf21 expression. Intact Fgf15 mediated enterohepatic bile acid signaling, but not changes in bile acid flux, appear to be important for the metabolic improvements post-murine bariatric surgery. These novel data introduce a potential point of distinction between bile acids acting as ligands compared to their canonical downstream signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Brandon Tan
- Pediatrics, Cincinnati Children's Hospital Medical Center, United States
| | - Sarah Mowery
- Pediatrics, Cincinnati Children's Hospital Medical Center, United States
| | - Danielle Ferguson
- Pediatrics, Cincinnati Children's Hospital Medical Center, United States
| | | | - Wujuan Zhang
- Human Genetics, Cincinnati Children's Hospital Medical Center, United States
| | - Xueheng Zhao
- Pediatrics, Cincinnati Children's Hospital Medical Center, United States
| | - Melissa Oehrle
- Pediatrics, Cincinnati Children's Hospital Medical Center, United States
| | | | - Randy J Seeley
- Surgery, University of Michigan-Ann Arbor, United States
| | - Darleen A Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Rohit Kohli
- Pediatrics, Children's Hospital of Los Angeles, United States
| |
Collapse
|
32
|
The marine compound and elongation factor 1A1 inhibitor, didemnin B, provides benefit in western diet-induced non-alcoholic fatty liver disease. Pharmacol Res 2020; 161:105208. [PMID: 32977024 DOI: 10.1016/j.phrs.2020.105208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Inhibition of eukaryotic elongation factor 1A1 (EEF1A1) with the marine compound didemnin B decreases lipotoxic HepG2 cell death in vitro and improves early stage non-alcoholic fatty liver disease (NAFLD) in young genetically obese mice. However, the effects of didemnin B on NAFLD in a model of long-term diet-induced obesity are not known. We investigated the effects of didemnin B on NAFLD severity and metabolic parameters in western diet-induced obese mice, and on the cell types that contribute to liver inflammation and fibrosis in vitro. Male 129S6 mice were fed either standard chow or western diet for 26 weeks, followed by intervention with didemnin B (50 μg/kg) or vehicle by intraperitoneal (i.p.) injection once every 3 days for 14 days. Didemnin B decreased liver and plasma triglycerides, improved oral glucose tolerance, and decreased NAFLD severity. Moreover, didemnin B moderately increased hepatic expression of genes involved in ER stress response (Perk, Chop), and fatty acid oxidation (Fgf21, Cpt1a). In vitro, didemnin B decreased THP-1 monocyte proliferation, disrupted THP-1 monocyte-macrophage differentiation, decreased THP-1 macrophage IL-1β secretion, and decreased hepatic stellate cell (HSteC) proliferation and collagen secretion under both basal and lipotoxic (high fatty acid) conditions. Thus, didemnin B improves hepatic steatosis, glucose tolerance, and blood lipids in obesity, in association with moderate, possibly hormetic, upregulation of pathways involved in cell stress response and energy balance in the liver. Furthermore, it decreases the activity of the cell types implicated in liver inflammation and fibrosis in vitro. These findings highlight the therapeutic potential of partial protein synthesis inhibition in the treatment of NAFLD.
Collapse
|
33
|
Novel Combinatorial Regimen of Garcinol and Curcuminoids for Non-alcoholic Steatohepatitis (NASH) in Mice. Sci Rep 2020; 10:7440. [PMID: 32366854 PMCID: PMC7198554 DOI: 10.1038/s41598-020-64293-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive form of Non-alcoholic fatty liver disease (NAFLD), a chronic liver disease with a significant unmet clinical need. In this study, we examined the protective effects of Garcinia indica extract standardized to contain 20% w/w of Garcinol (GIE) and 95% Curcuminoids w/w from Curcuma longa (Curcuminoids) in a Stelic animal model (STAM) of NASH. The STAM mice developed steatosis, hepatocyte ballooning, and inflammation, which were significantly reduced by the combination of GIE and Curcuminoids, resulting in a lower NAFLD activity score. The treatment reduced fibrosis as observed by Sirius red staining, liver hydroxyproline content and mRNA levels of TGF- β and collagen in the liver. Immunostaining with alpha-smooth muscle actin (α SMA) revealed a significant reduction in hepatic stellate cells. Intriguingly, the combination regimen markedly decreased the mRNA levels of MCP1 and CRP and both mRNA and protein levels of TNF-α. NF-kB, reduced the hepatic and circulating FGF21 levels and altered the nonenzymatic (glutathione) and enzymatic antioxidant markers (Glutathione peroxidase, and superoxide dismutase). Our results suggest that the combination of GIE and Curcuminoids can reduce the severity of NASH by reducing steatosis, fibrosis, oxidative stress, and inflammation. The results suggest that the combinatorial regimen could be an effective supplement to prevent the progression of liver steatosis to inflammation and fibrosis in NASH.
Collapse
|
34
|
Kakoty V, K C S, Tang RD, Yang CH, Dubey SK, Taliyan R. Fibroblast growth factor 21 and autophagy: A complex interplay in Parkinson disease. Biomed Pharmacother 2020; 127:110145. [PMID: 32361164 DOI: 10.1016/j.biopha.2020.110145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Parkinson disease (PD) is the second common neurodegenerative disorder after Alzheimer's disease (AD). The predominant pathological hallmark is progressive loss of dopaminergic (DA) neurones in the substantia nigra (SN) complicated by aggregation of misfolded forms of alpha-synuclein (α-syn). α-syn is a cytosolic synaptic protein localized in the presynaptic neuron under normal circumstances. What drives misfolding of this protein is largely unknown. However, recent studies suggest that autophagy might be an important risk factor for contributing towards PD. Autophagy is an evolutionarily conserved mechanism that causes the clearance or degradation of misfolded, mutated and damaged proteins, organelles etc. However, in an aging individual this process might deteriorate which could possibly lead to the accumulation of damaged proteins. Hence, autophagy modulation might provide some interesting cues for the treatment of PD. Additionally, Fibroblast growth factor 21 (FGF21) which is known for its role as a potent regulator of glucose and energy metabolism has also proved to be neuroprotective in various neurodegenerative conditions possibly via mediation of autophagy.
Collapse
Affiliation(s)
- Violina Kakoty
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| | - Sarathlal K C
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| | - Ruei-Dun Tang
- Department of Pharmacology, Taipei Medical University, Taipei, Taiwan.
| | - Chih Hao Yang
- Department of Pharmacology, Taipei Medical University, Taipei, Taiwan.
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
35
|
Šimečková P, Hubatka F, Kotouček J, Turánek Knötigová P, Mašek J, Slavík J, Kováč O, Neča J, Kulich P, Hrebík D, Stráská J, Pěnčíková K, Procházková J, Diviš P, Macaulay S, Mikulík R, Raška M, Machala M, Turánek J. Gadolinium labelled nanoliposomes as the platform for MRI theranostics: in vitro safety study in liver cells and macrophages. Sci Rep 2020; 10:4780. [PMID: 32179785 PMCID: PMC7075985 DOI: 10.1038/s41598-020-60284-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Gadolinium (Gd)-based contrast agents are extensively used for magnetic resonance imaging (MRI). Liposomes are potential nanocarrier-based biocompatible platforms for development of new generations of MRI diagnostics. Liposomes with Gd-complexes (Gd-lip) co-encapsulated with thrombolytic agents can serve both for imaging and treatment of various pathological states including stroke. In this study, we evaluated nanosafety of Gd-lip containing PE-DTPA chelating Gd+3 prepared by lipid film hydration method. We detected no cytotoxicity of Gd-lip in human liver cells including cancer HepG2, progenitor (non-differentiated) HepaRG, and differentiated HepaRG cells. Furthermore, no potential side effects of Gd-lip were found using a complex system including general biomarkers of toxicity, such as induction of early response genes, oxidative, heat shock and endoplasmic reticulum stress, DNA damage responses, induction of xenobiotic metabolizing enzymes, and changes in sphingolipid metabolism in differentiated HepaRG. Moreover, Gd-lip did not show pro-inflammatory effects, as assessed in an assay based on activation of inflammasome NLRP3 in a model of human macrophages, and release of eicosanoids from HepaRG cells. In conclusion, this in vitro study indicates potential in vivo safety of Gd-lip with respect to hepatotoxicity and immunopathology caused by inflammation.
Collapse
Affiliation(s)
| | | | - Jan Kotouček
- Veterinary Research Institute, Brno, Czech Republic
| | | | - Josef Mašek
- Veterinary Research Institute, Brno, Czech Republic
| | - Josef Slavík
- Veterinary Research Institute, Brno, Czech Republic
| | - Ondrej Kováč
- Veterinary Research Institute, Brno, Czech Republic
| | - Jiří Neča
- Veterinary Research Institute, Brno, Czech Republic
| | - Pavel Kulich
- Veterinary Research Institute, Brno, Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology CEITEC, Structural Virology, Masaryk University, Brno, Czech Republic
| | - Jana Stráská
- Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc, Czech Republic
| | | | | | - Pavel Diviš
- Faculty of Chemistry, Technical University, Brno, Czech Republic
| | | | - Robert Mikulík
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- Neurology Department, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Milan Raška
- Veterinary Research Institute, Brno, Czech Republic
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | | | | |
Collapse
|
36
|
Pulse Wave Velocity Is Associated with Increased Plasma oxLDL in Ageing but Not with FGF21 and Habitual Exercise. Antioxidants (Basel) 2020; 9:antiox9030221. [PMID: 32156043 PMCID: PMC7139299 DOI: 10.3390/antiox9030221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) and adiponectin increase the expression of genes involved in antioxidant pathways, but their roles in mediating oxidative stress and arterial stiffness with ageing and habitual exercise remain unknown. We explored the role of the FGF21-adiponectin axis in mediating oxidative stress and arterial stiffness with ageing and habitual exercise. Eighty age- and sex-matched healthy individuals were assigned to younger sedentary or active (18-36 years old, n = 20 each) and older sedentary or active (45-80 years old, n = 20 each) groups. Arterial stiffness was measured indirectly using pulse wave velocity (PWV). Fasted plasma concentrations of FGF21, adiponectin and oxidized low-density lipoprotein (oxLDL) were measured. PWV was 0.2-fold higher and oxLDL concentration was 25.6% higher (both p < 0.001) in older than younger adults, despite no difference in FGF21 concentration (p = 0.097) between age groups. PWV (p = 0.09) and oxLDL concentration (p = 0.275) did not differ between activity groups but FGF21 concentration was 9% lower in active than sedentary individuals (p = 0.011). Adiponectin concentration did not differ by age (p = 0.642) or exercise habits (p = 0.821). In conclusion, age, but not habitual exercise, was associated with higher oxidative stress and arterial stiffness. FGF21 and adiponectin did not differ between younger and older adults, meaning that it is unlikely that they mediate oxidative stress and arterial stiffness in healthy adults.
Collapse
|
37
|
Hill CM, Qualls-Creekmore E, Berthoud HR, Soto P, Yu S, McDougal DH, Münzberg H, Morrison CD. FGF21 and the Physiological Regulation of Macronutrient Preference. Endocrinology 2020; 161:5734531. [PMID: 32047920 PMCID: PMC7053867 DOI: 10.1210/endocr/bqaa019] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
The ability to respond to variations in nutritional status depends on regulatory systems that monitor nutrient intake and adaptively alter metabolism and feeding behavior during nutrient restriction. There is ample evidence that the restriction of water, sodium, or energy intake triggers adaptive responses that conserve existing nutrient stores and promote the ingestion of the missing nutrient, and that these homeostatic responses are mediated, at least in part, by nutritionally regulated hormones acting within the brain. This review highlights recent research that suggests that the metabolic hormone fibroblast growth factor 21 (FGF21) acts on the brain to homeostatically alter macronutrient preference. Circulating FGF21 levels are robustly increased by diets that are high in carbohydrate but low in protein, and exogenous FGF21 treatment reduces the consumption of sweet foods and alcohol while alternatively increasing the consumption of protein. In addition, while control mice adaptively shift macronutrient preference and increase protein intake in response to dietary protein restriction, mice that lack either FGF21 or FGF21 signaling in the brain fail to exhibit this homeostatic response. FGF21 therefore mediates a unique physiological niche, coordinating adaptive shifts in macronutrient preference that serve to maintain protein intake in the face of dietary protein restriction.
Collapse
Affiliation(s)
| | | | | | - Paul Soto
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Sangho Yu
- Pennington Biomedical Research Center, Baton Rouge, LA
| | | | | | - Christopher D Morrison
- Pennington Biomedical Research Center, Baton Rouge, LA
- Correspondence: Christopher D. Morrison, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808. E-mail:
| |
Collapse
|
38
|
Chakravarthy MV, Waddell T, Banerjee R, Guess N. Nutrition and Nonalcoholic Fatty Liver Disease: Current Perspectives. Gastroenterol Clin North Am 2020; 49:63-94. [PMID: 32033765 DOI: 10.1016/j.gtc.2019.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis are diseases in their own right as well as modifiable risk factors for cardiovascular disease and type 2 diabetes. With expanding knowledge on NAFLD pathogenesis, insights have been gleaned into molecular targets for pharmacologic and nonpharmacologic approaches. Lifestyle modifications constitute a cornerstone of NAFLD management. This article reviews roles of key dietary macronutrients and micronutrients in NAFLD pathogenesis and their effects on molecular targets shared with established or emerging pharmacotherapies. Based on current evidence, a recommendation for a dietary framework as part of the comprehensive management strategy for NAFLD is provided.
Collapse
Affiliation(s)
| | - Thomas Waddell
- Perspectum Diagnostics, 23-38 Hythe Bridge Street, Oxford OX1 2ET, UK
| | - Rajarshi Banerjee
- Perspectum Diagnostics, 23-38 Hythe Bridge Street, Oxford OX1 2ET, UK; Oxford University Hospitals NHS Foundation Trust, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Nicola Guess
- King's College London, 150 Stamford Street, London SE1 9NH, UK; University of Westminster, 101 New Cavendish St, Fitzrovia, London W1W 6XH, United Kingdom
| |
Collapse
|
39
|
Alizadeh-Fanalou S, Babaei M, Hosseini A, Azadi N, Nazarizadeh A, Shojaii A, Borji M, Malekinejad H, Bahreini E. Effects of Securigera Securidaca seed extract in combination with glibenclamide on antioxidant capacity, fibroblast growth factor 21 and insulin resistance in hyperglycemic rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112331. [PMID: 31655149 DOI: 10.1016/j.jep.2019.112331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/13/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Undesired effects of synthetic antidiabetic agents have made researchers to seek for safer and healthier resources. With this aspect, herbal materials have attracted substantial research interest and are being extensively investigated. Considering that herb-drug interactions can be a double-edged sword presenting both risks and benefits, investigation of such interactions is greatly in demand. AIM OF THE STUDY to investigate possible beneficial effects of hydroalcoholic extract of SecurigeraSecuridaca seed (HESS) on antioxidant capacity, fibroblast growth factor 21 (FGF21) and insulin resistance in Streptozotocin (STZ)-induced diabetic rats, alone and in combination with glibenclamide. MATERIALS AND METHODS Forty male Wistar rats were randomly divided in to eight equal groups including healthy and diabetic controls and six treated groups with a various doses of HESS alone and in combination with glibenclamide, for 35 consecutive days. Serum samples were taken and analyzed for biochemical profile, HOMA indexes, FGF21, oxidative/nitrosative stress and inflammatory biomarkers as compared with the controls. Moreover, total phenolic and flavonoid contents of herbal extract were assessed. RESULTS The herbal extract was found to be rich in flavonoid and phenolic components. Both of glibenclamide and the HESS decreased glucose and insulin resistance, as well as increased body weight and insulin sensitivity. Moreover, the extract could mitigate oxidative/nitrosative stress and inflammation dose-dependently, however, the standard drug was less effective than HESS. Induction of diabetes increased FGF21 levels and both of the treatments could reduce its contents, however, glibenclamide was more effective than HESS. CONCLUSIONS The results clearly show that there is no contradiction between HESS and glibenclamide. Moreover, the herbal extract could augment antioxidant and anti-inflammatory properties of the standard drug.
Collapse
Affiliation(s)
- Shahin Alizadeh-Fanalou
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Babaei
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Namamali Azadi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Nazarizadeh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asie Shojaii
- Department of Pharmacognosy, Research Institute for Islamic & Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Borji
- Department of Biochemistry, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hassan Malekinejad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Urmia University of Medical University, Urmia, Iran.
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Tillman EJ, Rolph T. FGF21: An Emerging Therapeutic Target for Non-Alcoholic Steatohepatitis and Related Metabolic Diseases. Front Endocrinol (Lausanne) 2020; 11:601290. [PMID: 33381084 PMCID: PMC7767990 DOI: 10.3389/fendo.2020.601290] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
The rising global prevalence of obesity, metabolic syndrome, and type 2 diabetes has driven a sharp increase in non-alcoholic fatty liver disease (NAFLD), characterized by excessive fat accumulation in the liver. Approximately one-sixth of the NAFLD population progresses to non-alcoholic steatohepatitis (NASH) with liver inflammation, hepatocyte injury and cell death, liver fibrosis and cirrhosis. NASH is one of the leading causes of liver transplant, and an increasingly common cause of hepatocellular carcinoma (HCC), underscoring the need for intervention. The complex pathophysiology of NASH, and a predicted prevalence of 3-5% of the adult population worldwide, has prompted drug development programs aimed at multiple targets across all stages of the disease. Currently, there are no approved therapeutics. Liver-related morbidity and mortality are highest in more advanced fibrotic NASH, which has led to an early focus on anti-fibrotic approaches to prevent progression to cirrhosis and HCC. Due to limited clinical efficacy, anti-fibrotic approaches have been superseded by mechanisms that target the underlying driver of NASH pathogenesis, namely steatosis, which drives hepatocyte injury and downstream inflammation and fibrosis. Among this wave of therapeutic mechanisms targeting the underlying pathogenesis of NASH, the hormone fibroblast growth factor 21 (FGF21) holds considerable promise; it decreases liver fat and hepatocyte injury while suppressing inflammation and fibrosis across multiple preclinical studies. In this review, we summarize preclinical and clinical data from studies with FGF21 and FGF21 analogs, in the context of the pathophysiology of NASH and underlying metabolic diseases.
Collapse
|
41
|
Torre-Villalvazo I, Alemán-Escondrillas G, Valle-Ríos R, Noriega LG. Protein intake and amino acid supplementation regulate exercise recovery and performance through the modulation of mTOR, AMPK, FGF21, and immunity. Nutr Res 2019; 72:1-17. [DOI: 10.1016/j.nutres.2019.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
|
42
|
Starzonek J, Roscher K, Blüher M, Blaue D, Schedlbauer C, Hirz M, Raila J, Vervuert I. Effects of a blend of green tea and curcuma extract supplementation on lipopolysaccharide-induced inflammation in horses and ponies. PeerJ 2019; 7:e8053. [PMID: 31741800 PMCID: PMC6857679 DOI: 10.7717/peerj.8053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022] Open
Abstract
Background In horses and ponies numerous medical conditions are known to be linked with inflammation in different tissues, especially in the liver. Besides affecting other metabolic pathways such as the expression of certain interleukins (IL), inflammation is associated with stress of the endoplasmic reticulum (ER). In particular, ER stress leads to adaptive stress response and can be measured by several markers of inflammatory and stress signalling pathways, like nuclear factor κB (NF-kB). Objectives To investigate lipopolysaccharide (LPS)-induced inflammatory reactions and their modulation in horses and ponies by feeding a polyphenol-rich supplement consisting of green tea and curcuma. Methods In a cross-over study, 11 animals were allocated to either a placebo or a supplement group and supplemented with 10 g of a blend of green tea and curcuma extract (GCE) or a placebo (calcium carbonate) once daily. After 21 days of supplementation, all animals underwent a LPS challenge to induce moderate systemic inflammation. Blood samples and liver biopsies were taken at standardized time points: 24 hours before and 12 hours after LPS challenge. Inflammatory blood parameters such as serum amyloid A (SAA), haptoglobin and retinol binding protein 4 (RBP4) were measured in serum. Hepatic mRNA levels of selected markers of inflammation such as haptoglobin, tumor necrosis factor α (TNF-α), IL-1β, IL-6, cluster of differentiation 68 (CD68), fibroblast growth factor 21 (FGF-21), NF-κB, activating transcription factor 4 (ATF4) were quantified by RT-qPCR. In addition, liver biopsies were examined histologically for inflammatory alterations. Results Blood markers of acute inflammatory response increased after LPS challenge. In the liver, the proinflammatory cytokine IL-1β showed significantly lower mRNA levels after LPS challenge in the supplemented group (P = 0.04) compared to the placebo group. Levels of the hepatic CD68 mRNA increased significantly in the placebo group (P = 0.04). There were no significant differences between supplemented and placebo groups concerning other markers of inflammation and markers of ER stress within the liver. The number of hepatic macrophages were not different after LPS challenge in both feeding groups. Conclusion LPS was able to induce inflammation but seemed less suitable to induce ER stress in the horses and ponies. The polyphenol-rich supplement showed some potential to reduce inflammatory responses. Nevertheless, the supplementation did not exert an overall anti-inflammatory effect in horses and ponies.
Collapse
Affiliation(s)
- Janine Starzonek
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Saxony, Germany
| | - Katja Roscher
- Equine Clinic, Internal Medicine, Justus-Liebig-University Giessen, Giessen, Hesse, Germany
| | - Matthias Blüher
- Division of Endocrinology and Nephrology, Department of Medicine, Leipzig University, Leipzig, Saxony, Germany
| | - Dominique Blaue
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Saxony, Germany
| | - Carola Schedlbauer
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Saxony, Germany
| | - Manuela Hirz
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Hesse, Germany
| | - Jens Raila
- Institute of Nutritional Science, University of Potsdam, Nuthetal Bergholz-Rehbrücke, Brandenburg, Germany
| | - Ingrid Vervuert
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Saxony, Germany
| |
Collapse
|
43
|
Aljohani A, Khan MI, Bonneville A, Guo C, Jeffery J, O'Neill L, Syed DN, Lewis SA, Burhans M, Mukhtar H, Ntambi JM. Hepatic stearoyl CoA desaturase 1 deficiency increases glucose uptake in adipose tissue partially through the PGC-1α-FGF21 axis in mice. J Biol Chem 2019; 294:19475-19485. [PMID: 31690632 DOI: 10.1074/jbc.ra119.009868] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Increased carbohydrate consumption increases hepatic de novo lipogenesis, which has been linked to the development of chronic metabolic diseases, including obesity, hepatic steatosis, and insulin resistance. Stearoyl CoA desaturase 1 (SCD1) is a critical lipogenic enzyme that catalyzes the synthesis of two monounsaturated fatty acids, oleate and palmitoleate, from the saturated fatty acids stearate and palmitate, respectively. SCD1-deficient mouse models are protected against diet-induced adiposity, hepatic steatosis, and hyperglycemia. However, the mechanism of this protection by SCD1 deficiency is unclear. Using liver-specific SCD1 knockout (LKO) mice fed a high-carbohydrate, low-fat diet, we show that hepatic SCD1 deficiency increases systemic glucose uptake. Hepatic SCD1 deficiency enhanced glucose transporter type 1 (GLUT1) expression in the liver and also up-regulated GLUT4 and adiponectin expression in adipose tissue. The enhanced glucose uptake correlated with increased liver expression and elevated plasma levels of fibroblast growth factor 21 (FGF21), a hepatokine known to increase systemic insulin sensitivity and regulate whole-body lipid metabolism. Feeding LKO mice a triolein-supplemented but not tristearin-supplemented high-carbohydrate, low-fat diet reduced FGF21 expression and plasma levels. Consistently, SCD1 inhibition in primary hepatocytes induced FGF21 expression, which was repressed by treatment with oleate but not palmitoleate. Moreover, deletion of the transcriptional coactivator PPARγ coactivator 1α (PGC-1α) reduced hepatic and plasma FGF21 and white adipocyte tissue-specific GLUT4 expression and raised plasma glucose levels in LKO mice. These results suggest that hepatic oleate regulates glucose uptake in adipose tissue either directly or partially by modulating the hepatic PGC-1α-FGF21 axis.
Collapse
Affiliation(s)
- Ahmed Aljohani
- Endocrinology and Reproductive Physiology Graduate Training Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706.,College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Mohammad Imran Khan
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin, Madison, Wisconsin 53706.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abram Bonneville
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Changan Guo
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Justin Jeffery
- Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53706
| | - Lucas O'Neill
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Deeba Nadeem Syed
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin, Madison, Wisconsin 53706
| | - Sarah A Lewis
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Maggie Burhans
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Hasan Mukhtar
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin, Madison, Wisconsin 53706
| | - James M Ntambi
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 .,Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
44
|
Association between Circulating Fibroblast Growth Factor 21 and Aggressiveness in Thyroid Cancer. Cancers (Basel) 2019; 11:cancers11081154. [PMID: 31408968 PMCID: PMC6721537 DOI: 10.3390/cancers11081154] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/13/2019] [Accepted: 08/08/2019] [Indexed: 12/24/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays important roles in regulating glucose, lipid, and energy metabolism; however, its effects in tumors remain poorly understood. To understand the role of FGF21 in regulating tumor aggressiveness in thyroid cancer, serum levels of FGF21 were measured in healthy subjects and patients with papillary thyroid cancer (PTC), and expression levels of FGF21, FGF receptors (FGFRs), and β-klotho (KLB) were investigated in human thyroid tissues. The cell viability, migrating cells, and invading cells were measured in PTC cells after treatment with recombinant FGF21. Higher serum levels of FGF21 were found in patients with thyroid cancer than in control participants, and were significantly associated with body mass index (BMI), fasting glucose levels, triglyceride levels, tumor stage, lymphovascular invasion, and recurrence. Serum FGF21 levels were positively correlated with the BMI in patients with PTC, and significantly associated with recurrence. Recombinant FGF21 led to tumor aggressiveness via activation of the FGFR signaling axis and epithelial-to-mesenchymal transition (EMT) signaling in PTC cells, and AZD4547, an FGFR tyrosine kinase inhibitor, attenuated the effects of FGF21. Hence, FGF21 may be a new biomarker for predicting tumor progression, and targeting FGFR may be a novel therapy for the treatment of obese patients with PTC.
Collapse
|
45
|
Wang L, Mazagova M, Pan C, Yang S, Brandl K, Liu J, Reilly SM, Wang Y, Miao Z, Loomba R, Lu N, Guo Q, Liu J, Yu RT, Downes M, Evans RM, Brenner DA, Saltiel AR, Beutler B, Schnabl B. YIPF6 controls sorting of FGF21 into COPII vesicles and promotes obesity. Proc Natl Acad Sci U S A 2019; 116:15184-15193. [PMID: 31289229 PMCID: PMC6660779 DOI: 10.1073/pnas.1904360116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is an endocrine hormone that regulates glucose, lipid, and energy homeostasis. While gene expression of FGF21 is regulated by the nuclear hormone receptor peroxisome proliferator-activated receptor alpha in the fasted state, little is known about the regulation of trafficking and secretion of FGF21. We show that mice with a mutation in the Yip1 domain family, member 6 gene (Klein-Zschocher [KLZ]; Yipf6KLZ/Y ) on a high-fat diet (HFD) have higher plasma levels of FGF21 than mice that do not carry this mutation (controls) and hepatocytes from Yipf6KLZ/Y mice secrete more FGF21 than hepatocytes from wild-type mice. Consequently, Yipf6KLZ/Y mice are resistant to HFD-induced features of the metabolic syndrome and have increased lipolysis, energy expenditure, and thermogenesis, with an increase in core body temperature. Yipf6KLZ/Y mice with hepatocyte-specific deletion of FGF21 were no longer protected from diet-induced obesity. We show that YIPF6 binds FGF21 in the endoplasmic reticulum to limit its secretion and specifies packaging of FGF21 into coat protein complex II (COPII) vesicles during development of obesity in mice. Levels of YIPF6 protein in human liver correlate with hepatic steatosis and correlate inversely with levels of FGF21 in serum from patients with nonalcoholic fatty liver disease (NAFLD). YIPF6 is therefore a newly identified regulator of FGF21 secretion during development of obesity and could be a target for treatment of obesity and NAFLD.
Collapse
Affiliation(s)
- Lirui Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiang Su, China;
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161
| | - Magdalena Mazagova
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Chuyue Pan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiang Su, China
| | - Song Yang
- Department of Hepatology, Beijing Ditan Hospital, Capital Medical University, Chaoyang District, 100015 Beijing, China
| | - Katharina Brandl
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Jun Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiang Su, China
| | - Shannon M Reilly
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Yanhan Wang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Zhaorui Miao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiang Su, China
| | - Rohit Loomba
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Na Lu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiang Su, China
| | - Qinglong Guo
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiang Su, China
| | - Jihua Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiang Su, China
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - David A Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Alan R Saltiel
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92093;
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161
| |
Collapse
|
46
|
Guo Q, Hu H, Liu X, Yang D, Yin Y, Zhang B, He H, Oh Y, Wu Q, Liu C, Gu N. C/EBPβ mediates palmitate-induced musclin expression via the regulation of PERK/ATF4 pathways in myotubes. Am J Physiol Endocrinol Metab 2019; 316:E1081-E1092. [PMID: 30964708 DOI: 10.1152/ajpendo.00478.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Musclin is a muscle-secreted cytokine that disrupts glucose uptake and glycogen synthesis in type 2 diabetes. The purpose of this study was to investigate the mechanisms responsible for the regulation of musclin gene expression in response to treatment with palmitate. RNA sequencing results showed that biological processes activated by palmitate are mainly enriched in endoplasmic reticulum (ER) stress. The protein kinase RNA-like ER kinase (PERK) signaling pathway is involved in the regulation of musclin expression induced by palmitate. Chromatin immunoprecipitation data showed that activating transcription factor 4 (ATF4)-downstream of PERK-bound to the promoter of the C/EBPβ gene. Notably, C/EBPβ also contains a binding site in the region -94~-52 of the musclin gene promoter. Knockdown or knockout of PERK and ATF4 using short hairpin RNA or CRISPR-Cas9 decreased the expression of C/EBPβ and musclin induced by palmitate. Furthermore, knockdown and knockout of C/EBPβ alleviated the high expression of musclin in response to treatment with palmitate. Moreover, CRISPR-Cas9 knockout of the region -94~-52 in which C/EBPβ binds to the promoter of musclin abrogated the induction of high musclin expression caused by palmitate. Collectively, these findings suggest that treatment with palmitate activates the PERK/ATF4 signaling pathway, which in turn increases the expression of C/EBPβ. C/EBPβ binds directly to the promoter of the musclin gene and upregulates its expression.
Collapse
Affiliation(s)
- Qian Guo
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - Hailong Hu
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - Xiaohuan Liu
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - DaQian Yang
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - Yao Yin
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - Boya Zhang
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - Hongjuan He
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - Yuri Oh
- Faculty of Education, Wakayama University , Wakayama , Japan
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| |
Collapse
|
47
|
Tezze C, Romanello V, Sandri M. FGF21 as Modulator of Metabolism in Health and Disease. Front Physiol 2019; 10:419. [PMID: 31057418 PMCID: PMC6478891 DOI: 10.3389/fphys.2019.00419] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone that regulates important metabolic pathways. FGF21 is expressed in several metabolically active organs and interacts with different tissues. The FGF21 function is complicated and well debated due to its different sites of production and actions. Striated muscles are plastic tissues that undergo adaptive changes within their structural and functional properties in order to meet their different stresses, recently, they have been found to be an important source of FGF21. The FGF21 expression and secretion from skeletal muscles happen in both mouse and in humans during their different physiological and pathological conditions, including exercise and mitochondrial dysfunction. In this review, we will discuss the recent findings that identify FG21 as beneficial and/or detrimental cytokine interacting as an autocrine or endocrine in order to modulate cellular function, metabolism, and senescence.
Collapse
Affiliation(s)
- Caterina Tezze
- Veneto Institute of Molecular Medicine, Padua, Italy.,Department of Biomedical Science, University of Padua, Padua, Italy
| | - Vanina Romanello
- Veneto Institute of Molecular Medicine, Padua, Italy.,Department of Biomedical Science, University of Padua, Padua, Italy
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, Padua, Italy.,Department of Biomedical Science, University of Padua, Padua, Italy.,Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Biomedical Science, Myology Center, University of Padua, Padua, Italy
| |
Collapse
|
48
|
Klouwer FCC, Koot BGP, Berendse K, Kemper EM, Ferdinandusse S, Koelfat KVK, Lenicek M, Vaz FM, Engelen M, Jansen PLM, Wanders RJA, Waterham HR, Schaap FG, Poll-The BT. The cholic acid extension study in Zellweger spectrum disorders: Results and implications for therapy. J Inherit Metab Dis 2019; 42:303-312. [PMID: 30793331 DOI: 10.1002/jimd.12042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Currently, no therapies are available for Zellweger spectrum disorders (ZSDs), a group of genetic metabolic disorders characterised by a deficiency of functional peroxisomes. In a previous study, we showed that oral cholic acid (CA) treatment can suppress bile acid synthesis in ZSD patients and, thereby, decrease plasma levels of toxic C27 -bile acid intermediates, one of the biochemical abnormalities in these patients. However, no effect on clinically relevant outcome measures could be observed after 9 months of CA treatment. It was noted that, in patients with advanced liver disease, caution is needed because of possible hepatotoxicity. METHODS An extension study of the previously conducted pretest-posttest design study was conducted including 17 patients with a ZSD. All patients received oral CA for an additional period of 12 months, encompassing a total of 21 months of treatment. Multiple clinically relevant parameters and markers for bile acid synthesis were assessed after 15 and 21 months of treatment. RESULTS Bile acid synthesis was still suppressed after 21 months of CA treatment, accompanied with reduced levels of C27 -bile acid intermediates in plasma. These levels significantly increased again after discontinuation of CA. No significant changes were found in liver tests, liver elasticity, coagulation parameters, fat-soluble vitamin levels or body weight. CONCLUSIONS Although CA treatment did lead to reduced levels of toxic C27 -bile acid intermediates in ZSD patients without severe liver fibrosis or cirrhosis, no improvement of clinically relevant parameters was observed after 21 months of treatment. We discuss the implications for CA therapy in ZSD based on these results.
Collapse
Affiliation(s)
- Femke C C Klouwer
- Department of Pediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bart G P Koot
- Department of Pediatric Gastroenterology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kevin Berendse
- Department of Pediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elles M Kemper
- Department of Pharmacy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kiran V K Koelfat
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
| | - Martin Lenicek
- Department of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc Engelen
- Department of Pediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Peter L M Jansen
- Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank G Schaap
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Bwee Tien Poll-The
- Department of Pediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Tabari FS, Karimian A, Parsian H, Rameshknia V, Mahmoodpour A, Majidinia M, Maniati M, Yousefi B. The roles of FGF21 in atherosclerosis pathogenesis. Rev Endocr Metab Disord 2019; 20:103-114. [PMID: 30879171 DOI: 10.1007/s11154-019-09488-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
FGF21 is a peptide hormone that regulates homeostasis of lipid and glucose as well as energy metabolism. It is mainly expressed and secreted in liver and adipose tissues, and it is expressed in lower amounts in the aorta. Recent clinical and preclinical studies indicate increased serum FGF21 levels in atherosclerosis patients. Also, FGF21 therapy has been reported to reduce the initiation and progression of atherosclerosis in animal models and in vitro studies. Moreover, growing evidence indicates that administration of exogenous FGF21 induces anti-atherosclerotic effects, because of its ability to reduce lipid profile, alleviation of oxidative stress, inflammation, and apoptosis. Therefore, FGF21 can not only be considered as a biomarker for predicting atherosclerosis, but also induce protective effects against atherosclerosis. Besides, serum levels of FGF21 increase in various diseases including in diabetes mellitus, hypertension, and obesity, which may be related to initiating and exacerbating atherosclerosis. On the other hand, FGF21 therapy significantly improves lipid profiles, and reduces vascular inflammation and oxidative stress in atherosclerosis related diseases. Therefore, further prospective studies are needed to clarify whether FGF21 can be used as a prognostic biomarker to identify individuals at future risk of atherosclerosis in these atherosclerosis-associated diseases. In this review, we will discuss the possible mechanism by which FGF21 protects against atherosclerosis.
Collapse
Affiliation(s)
- Farzane Shanebandpour Tabari
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Vahid Rameshknia
- Faculty of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Biochemistry, Baku State University, Baku, Azerbaijan
| | - Ata Mahmoodpour
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahmood Maniati
- Faculty of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Yousefi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
50
|
Fujii N, Uta S, Kobayashi M, Sato T, Okita N, Higami Y. Impact of aging and caloric restriction on fibroblast growth factor 21 signaling in rat white adipose tissue. Exp Gerontol 2019; 118:55-64. [PMID: 30620889 DOI: 10.1016/j.exger.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/14/2018] [Accepted: 01/01/2019] [Indexed: 12/31/2022]
Abstract
Caloric restriction (CR) suppresses age-related pathophysiology and extends lifespan. We recently reported that metabolic remodeling of white adipose tissue (WAT) plays an important role in the beneficial actions of CR; however, the detailed molecular mechanisms of this remodeling remain to be established. In the present study, we aimed to identify CR-induced alterations in the expression of fibroblast growth factor 21 (FGF21), a regulator of lipid and glucose metabolism, and of its downstream signaling mediators in liver and WAT, across the lifespan of rats. We evaluated groups of rats that had been either fed ad libitum or calorie restricted from 3 months of age and were euthanized at 3.5, 9, or 24 months of age, under fed and fasted conditions. The expression of FGF21 mRNA and/or protein increased with age in liver and WAT. Interestingly, in the WAT of 9-month-old fed rats, CR further upregulated FGF21 expression and eliminated the aging-associated reductions in the expression of FGFR1 and beta-klotho (KLB; FGF21 receptor complex). It also enhanced the expression of FGF21 targets, including glucose transporter 1 and peroxisome proliferator-activated receptor (PPAR)γ coactivator-1α. The analysis of transcriptional regulators of Fgf21 suggested that aging and CR might upregulate Fgf21 expression via different mechanisms. In adipocytes in vitro, constitutive FGF21 overexpression upregulated the FGF21 receptor complex and FGF21 targets at the mRNA or protein level. Thus, both aging and CR induced FGF21 expression in rat WAT; however, only CR activated FGF21 signaling. Our results suggest that FGF21 signaling contributes to the CR-induced metabolic remodeling of WAT, likely activating glucose uptake and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Namiki Fujii
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Seira Uta
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Tsugumichi Sato
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Laboratory of Drug Informatics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Naoyuki Okita
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Division of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigakudori, Sanyo-onoda, Yamaguchi 756-0884, Japan.
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|