1
|
Song S, Li C, Xiao Y, Ye Z, Rong M, Zeng J. Beyond conventional therapies: MSCs in the battle against nerve injury. Regen Ther 2025; 28:280-291. [PMID: 39896446 PMCID: PMC11782851 DOI: 10.1016/j.reth.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Nerve damage can cause abnormal motor and sensory consequences, including lifelong paralysis if not surgically restored. The yearly cost of healthcare in the United States is projected to be $150 billion, and millions of Americans suffer from peripheral nerve injuries as a result of severe traumas and disorders. For nerve injuries, the outcome of conventional therapies is suboptimal and may have unfavorable side effects. However, mesenchymal stem cells (MSCs) have been proven to be a viable option for the reconstruction of injured nerve tissue and bring a ray of hope. These stem cells are derived from bone marrow, adipose tissue, and human umbilical cord blood and have the ability to secrete trophic factors, contribute to the immune system, and stimulate axonal regeneration. The purpose of this review is to examine the potential benefits of MSCs for enhancing functional recovery and patient prognosis by highlighting their characteristics and elucidating their mechanism of action in nerve injury healing.
Collapse
Affiliation(s)
- Shuo Song
- Central Laboratory, The Fourth People's Hospital of Shenzhen, Shenzhen 518118, China
| | - Cong Li
- Department of Stomatology, Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Ya Xiao
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, Guangdong, China
| | - Mingdeng Rong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jincheng Zeng
- Department of Stomatology, Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, Guangdong, China
| |
Collapse
|
2
|
Gerini G, Traversa A, Cece F, Cassandri M, Pontecorvi P, Camero S, Nannini G, Romano E, Marampon F, Venneri MA, Ceccarelli S, Angeloni A, Amedei A, Marchese C, Megiorni F. Deciphering the Transcriptional Metabolic Profile of Adipose-Derived Stem Cells During Osteogenic Differentiation and Epigenetic Drug Treatment. Cells 2025; 14:135. [PMID: 39851564 PMCID: PMC11763738 DOI: 10.3390/cells14020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are commonly employed in clinical treatment for various diseases due to their ability to differentiate into multi-lineage and anti-inflammatory/immunomodulatory properties. Preclinical studies support their use for bone regeneration, healing, and the improvement of functional outcomes. However, a deeper understanding of the molecular mechanisms underlying ASC biology is crucial to identifying key regulatory pathways that influence differentiation and enhance regenerative potential. In this study, we employed the NanoString nCounter technology, an advanced multiplexed digital counting method of RNA molecules, to comprehensively characterize differentially expressed transcripts involved in metabolic pathways at distinct time points in osteogenically differentiating ASCs treated with or without the pan-DNMT inhibitor RG108. In silico annotation and gene ontology analysis highlighted the activation of ethanol oxidation, ROS regulation, retinoic acid metabolism, and steroid hormone metabolism, as well as in the metabolism of lipids, amino acids, and nucleotides, and pinpointed potential new osteogenic drivers like AOX1 and ADH1A. RG108-treated cells, in addition to the upregulation of the osteogenesis-related markers RUNX2 and ALPL, showed statistically significant alterations in genes implicated in transcriptional control (MYCN, MYB, TP63, and IRF1), ethanol oxidation (ADH1C, ADH4, ADH6, and ADH7), and glucose metabolism (SLC2A3). These findings highlight the complex interplay of the metabolic, structural, and signaling pathways that orchestrate osteogenic differentiation. Furthermore, this study underscores the potential of epigenetic drugs like RG108 to enhance ASC properties, paving the way for more effective and personalized cell-based therapies for bone regeneration.
Collapse
Affiliation(s)
- Giulia Gerini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Alice Traversa
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy; (A.T.); (S.C.)
| | - Fabrizio Cece
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Matteo Cassandri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Simona Camero
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy; (A.T.); (S.C.)
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.N.); (A.A.)
| | - Enrico Romano
- Department of Sense Organs, Sapienza University of Rome, 00161 Rome, Italy;
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.N.); (A.A.)
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| |
Collapse
|
3
|
Da Silva K, Kumar P, Choonara YE. The paradigm of stem cell secretome in tissue repair and regeneration: Present and future perspectives. Wound Repair Regen 2025; 33:e13251. [PMID: 39780313 PMCID: PMC11711308 DOI: 10.1111/wrr.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
As the number of patients requiring organ transplants continues to rise exponentially, there is a dire need for therapeutics, with repair and regenerative properties, to assist in alleviating this medical crisis. Over the past decade, there has been a shift from conventional stem cell treatments towards the use of the secretome, the protein and factor secretions from cells. These components may possess novel druggable targets and hold the key to profoundly altering the field of regenerative medicine. Despite the progress in this field, clinical translation of secretome-containing products is limited by several challenges including but not limited to ensuring batch-to-batch consistency, the prevention of further heterogeneity, production of sufficient secretome quantities, product registration, good manufacturing practice protocols and the pharmacokinetic/pharmacodynamic profiles of all the components. Despite this, the secretome may hold the key to unlocking the regenerative blockage scientists have encountered for years. This review critically analyses the secretome derived from different cell sources and used in several tissues for tissue regeneration. Furthermore, it provides an overview of the current delivery strategies and the future perspectives for the secretome as a potential therapeutic. The success and possible shortcomings of the secretome are evaluated.
Collapse
Affiliation(s)
- Kate Da Silva
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
4
|
Katsuragi R, Ozturk CN, Chida K, Mann GK, Roy AM, Hakamada K, Takabe K, Satake T. Updates on Breast Reconstruction: Surgical Techniques, Challenges, and Future Directions. World J Oncol 2024; 15:853-870. [PMID: 39697427 PMCID: PMC11650608 DOI: 10.14740/wjon1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/13/2024] [Indexed: 12/20/2024] Open
Abstract
The increasing global incidence of breast cancer underscores the significance of breast reconstruction in enhancing patients' quality of life. Breast reconstruction primarily falls into two categories: implant-based techniques and autologous tissue transfers. In this study, we present a comprehensive review of various aspects of implant-based reconstruction, including different types of implants, surgical techniques, and their respective advantages and disadvantages. For autologous breast reconstruction, we classified flaps and optimal harvest sites and provided detailed insights into the characteristics, benefits, and potential complications associated with each flap type. In addition, this review explores the emerging role of fat grafting, which has received increasing attention in recent years. Despite advancements, there remains substantial scope for further improvements in breast reconstruction, emphasizing not only aesthetic outcomes, but also a reduction in complications and postoperative recovery. By offering a comprehensive overview of the historical evolution, current landscape, and future prospects of breast reconstruction, this review aims to provide readers with a comprehensive understanding of breast cancer management strategies.
Collapse
Affiliation(s)
- Ryohei Katsuragi
- Department of Plastic, Reconstructive and Aesthetic Surgery, University of Toyama, Toyama 930-0152, Japan
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Breast Surgery, Nakagami Hospital, Okinawa 904-2142, Japan
| | - Cemile Nurdan Ozturk
- Department of Head and Neck/Plastic and Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Gabriella Kim Mann
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Arya Mariam Roy
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Toshihiko Satake
- Department of Plastic, Reconstructive and Aesthetic Surgery, University of Toyama, Toyama 930-0152, Japan
| |
Collapse
|
5
|
Trotzier C, Bellanger C, Abdessadeq H, Delannoy P, Mojallal A, Auxenfans C. Deciphering influence of donor age on adipose-derived stem cells: in vitro paracrine function and angiogenic potential. Sci Rep 2024; 14:27589. [PMID: 39528480 PMCID: PMC11555058 DOI: 10.1038/s41598-024-73875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND As fat grafting is commonly used as a filler, Adipose-derived stem/stromal cells (ASC) have been reported to be key player in retention rate. Paracrine and differentiation potential of those cells confer them strong pro-angiogenic capacities. However, a full characterization of the influence of aging on ASC has not been reported yet. Here we've investigated the effect of age on paracrine function, stemness and angiogenic potential of ASC. METHODS ASC were extracted from young and old adult donors. We assessed stromal vascular fraction cell populations repartition, ASC stemness potential, capability to differentiate into mesenchymal lineages as well as their secretome. Angiogenic potential was assessed using a sprouting assay, an indirect co-culture of ASC and dermal microvascular endothelial cells (EC). Total vascular sprout length was measured, and co-culture soluble factors were quantified. Pro-angiogenic factors alone or in combination as well as ASC-conditioned medium (CM) were added to EC to assess sprouting induction. RESULTS Decrease of endothelial cells yield and percentage is observed in cells extracted from adipose tissue of older patients, whereas ASC percentage increased with age. Clonogenic potential of ASC is stable with age. ASC can differentiate into adipocytes, chondrocytes and osteoblasts, and aging does not alter this potential. Among the 25 analytes quantified, high levels of pro-angiogenic factors were found, but none is significantly modulated with age. ASC induce a significantly longer vascular sprouts compared to fibroblasts, and no difference was found between young and old ASC donors on that parameter. Higher concentrations of FGF-2, G-CSF, HGF and IL-8, and lower concentrations of VEGF-C were quantified in EC/ASC co-cultures compared to EC/fibroblasts co-cultures. EC/ASC from young donors secrete higher levels of VEGF-A compared to old ones. Neither soluble factor nor CM without cells are able to induce organized sprouts, highlighting the requirement of cell communication for sprouting. CM produced by ASC supporting development of long vascular sprouts promote sprouting in co-cultures that establish shorter sprouts. CONCLUSION Our results show cells from young and old donors exhibit no difference in all assessed parameters, suggesting all patients could be included in clinical applications. We emphasized the leading role of ASC in angiogenesis, without impairment with age, where secretome is a key but not sufficient actor.
Collapse
Affiliation(s)
- Chloe Trotzier
- Advanced Research, L'Oréal Research and Innovation, 1, Av. Eugene Schueller, 93600, Aulnay sous Bois, France.
| | - Clement Bellanger
- Advanced Research, L'Oréal Research and Innovation, 1, Av. Eugene Schueller, 93600, Aulnay sous Bois, France
| | - Hakima Abdessadeq
- Advanced Research, L'Oréal Research and Innovation, 1, Av. Eugene Schueller, 93600, Aulnay sous Bois, France
| | - Philippe Delannoy
- Advanced Research, L'Oréal Research and Innovation, 1, Av. Eugene Schueller, 93600, Aulnay sous Bois, France
| | - Ali Mojallal
- Department of Plastic, Reconstructive and Aesthetic Surgery, La Croix Rousse Hospital, Bernard Lyon 1 University, Lyon, France
| | - Celine Auxenfans
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
6
|
Domengé O, Deloux R, Revet G, Mazière L, Pillet-Michelland E, Commin L, Bonnefont-Rebeix C, Simon A, Mougenot N, Cavagnino A, Baraibar M, Saulnier N, Crépet A, Delair T, Agbulut O, Montembault A. Bio-functionalized hydrogel patches of chitosan for the functional recovery of infarcted myocardial tissue. Int J Biol Macromol 2024; 281:136400. [PMID: 39389478 DOI: 10.1016/j.ijbiomac.2024.136400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The aim of this work was to assess the potential benefits of the enrichment of a chitosan hydrogel patch with secretome and its epicardial implantation in a murine model of chronic ischemia, focusing on the potential to restore the functional capacity of the heart. Thus, a hydrogel with a final polymer concentration of 3 % was prepared from chitosan with an acetylation degree of 24 % and then bio-functionalized with a secretome produced by mesenchymal stromal cells. The identification of proteins in the secretomes showed the presence of several proteins known to have beneficial effects on cardiac muscle repair. Then chitosan hydrogels were immersed in secretome. The protein incorporation in the hydrogel and their release over time were studied, demonstrating the ability of the gel to retain and then deliver proteins (around 40 % was released in the first 6 h, and then a plateau was reached). Moreover, mechanical analysis exhibited that the patches remained suturable after enrichment. Finally, bio-functionalized hydrogel patches were sutured onto the surface of the infarcted myocardium in rat. Thirty days after, the presence of enriched hydrogels induced a reversion of cardiac function which seems to come mainly from an improvement of left ventricle systolic performance and contractility.
Collapse
Affiliation(s)
- O Domengé
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France
| | - R Deloux
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France
| | - G Revet
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France
| | - L Mazière
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - E Pillet-Michelland
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - L Commin
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - C Bonnefont-Rebeix
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - A Simon
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France
| | - N Mougenot
- Sorbonne Universite, UMS28 Plateforme d'Expérimentation Cœur, Muscles, Vaisseaux, 91 Bd de l'Hôpital, F-75013 Paris, France
| | - A Cavagnino
- Société OxiProteomics, 2 rue Antoine Etex, 94000 Créteil, France
| | - M Baraibar
- Société OxiProteomics, 2 rue Antoine Etex, 94000 Créteil, France
| | - N Saulnier
- Vetbiobank, 1 Avenue Bourgelat, 69280 Marcy-l'Étoile, France
| | - A Crépet
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France
| | - T Delair
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France
| | - O Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France.
| | - A Montembault
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France.
| |
Collapse
|
7
|
Pinheiro-Machado E, Faas MM, de Haan BJ, Moers C, Smink AM. Culturing Conditions Dictate the Composition and Pathways Enrichment of Human and Rat Perirenal Adipose-Derived Stromal Cells' Secretomes. Stem Cell Rev Rep 2024; 20:1869-1888. [PMID: 38922529 PMCID: PMC11445368 DOI: 10.1007/s12015-024-10748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Understanding the impact of various culturing strategies on the secretome composition of adipose-derived stromal cells (ASC) enhances their therapeutic potential. This study investigated changes in the secretome of perirenal ASC (prASC) under different conditions: normoxia, cytokine exposure, high glucose, hypoxia, and hypoxia with high glucose. Using mass spectrometry and enrichment clustering analysis, we found that normoxia enriched pathways related to extracellular matrix (ECM) organization, platelet degranulation, and insulin-like growth factor (IGF) transport and uptake. Cytokine exposure influenced metabolism, vascular development, and protein processing pathways. High glucose affected the immune system, metabolic processes, and IGF transport and uptake. Hypoxia impacted immune and metabolic processes and protein processing. Combined hypoxia and high glucose influenced the immune system, IGF transport and uptake, and ECM organization. Our findings highlight the potential of manipulating culturing conditions to produce secretomes with distinct protein and functional profiles, tailoring therapeutic strategies accordingly.
Collapse
Affiliation(s)
- Erika Pinheiro-Machado
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen, 9713 GZ, The Netherlands
| | - Marijke M Faas
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen, 9713 GZ, The Netherlands
| | - Bart J de Haan
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen, 9713 GZ, The Netherlands
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen, 9713 GZ, The Netherlands.
| |
Collapse
|
8
|
Di Rocco G, Trivisonno A, Trivisonno G, Toietta G. Dissecting human adipose tissue heterogeneity using single-cell omics technologies. Stem Cell Res Ther 2024; 15:322. [PMID: 39334440 PMCID: PMC11437900 DOI: 10.1186/s13287-024-03931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Single-cell omics technologies that profile genes (genomic and epigenomic) and determine the abundance of mRNA (transcriptomic), protein (proteomic and secretomic), lipids (lipidomic), and extracellular matrix (matrisomic) support the dissection of adipose tissue heterogeneity at unprecedented resolution in a temporally and spatially defined manner. In particular, cell omics technologies may provide innovative biomarkers for the identification of rare specific progenitor cell subpopulations, assess transcriptional and proteomic changes affecting cell proliferation and immunomodulatory potential, and accurately define the lineage hierarchy and differentiation status of progenitor cells. Unraveling adipose tissue complexity may also provide for the precise assessment of a dysfunctional state, which has been associated with cancer, as cancer-associated adipocytes play an important role in shaping the tumor microenvironment supporting tumor progression and metastasis, obesity, metabolic syndrome, and type 2 diabetes mellitus. The information collected by single-cell omics has relevant implications for regenerative medicine because adipose tissue is an accessible source of multipotent cells; alternative cell-free approaches, including the use of adipose tissue stromal cell-conditioned medium, extracellular vesicles, or decellularized extracellular matrix, are clinically valid options. Subcutaneous white adipose tissue, which is generally harvested via liposuction, is highly heterogeneous because of intrinsic biological variability and extrinsic inconsistencies in the harvesting and processing procedures. The current limited understanding of adipose tissue heterogeneity impinges on the definition of quality standards appropriate for clinical translation, which requires consistency and uniformity of the administered product. We review the methods used for dissecting adipose tissue heterogeneity and provide an overview of advances in omics technology that may contribute to the exploration of heterogeneity and dynamics of adipose tissue at the single-cell level.
Collapse
Affiliation(s)
- Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Angelo Trivisonno
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | | | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi, 53, 00144, Rome, Italy.
| |
Collapse
|
9
|
Della Sala F, Longobardo G, di Gennaro M, Messina F, Borzacchiello A. The interplay between hyaluronic acid and stem cell secretome boosts pulmonary differentiation in 3D biomimetic microenvironments. Int J Biol Macromol 2024; 276:133793. [PMID: 38992542 DOI: 10.1016/j.ijbiomac.2024.133793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Mesenchymal stem cells (MCSs) secretome provide MSC-like therapeutic effects in preclinical models of lung injury, circumventing safety concerns with the use of live cells. Secretome consists of Extracellular Vesicles (EVs), including populations of nano- to micro-sized particles (exosomes and microvesicles) delimited by a phospholipidic bilayer. However, its poor stability and bioavailability severely limit its application. The role of Hyaluronic acid (HA) as potential carrier in biomedical applications has been widely demonstrated. Here, we investigated the interplay between HA and MSCs- secretome blends and their ability to exert a bioactive effect on pulmonary differentiation in a 3D microenvironment mimicking lung niche. To this aim, the physical-chemical properties of HA/Secre blends have been characterized at low, medium and high HA Molecular Weights (MWs), by means of SEM/TEM, DLS, confocal microscopy and FTIR. Collectively physical-chemical properties highlight the interplay between the HA and the EVs. In 3D matrices, HA/Secre blends showed to promote differentiation in pulmonary lineage, improved as the MW of the HA in the blends decreased. Finally, HA/Secre blends' ability to cross an artificial mucus has been demonstrated. Overall, this work provides new insights for the development of future devices for the therapy of respiratory diseases that are still unmet.
Collapse
Affiliation(s)
- Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy
| | - Gennaro Longobardo
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Mario di Gennaro
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy
| | | | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy.
| |
Collapse
|
10
|
Ramaut L, Moonen L, Geeroms M, Leemans G, Peters E, Forsyth R, Gutermuth J, Hamdi M. Improvement in Early Scar Maturation by Nanofat Infiltration: Histological and Spectrophotometric Preliminary Results From a Split Scar-Controlled, Randomized, Double-Blinded Clinical Trial. Aesthet Surg J Open Forum 2024; 6:ojae072. [PMID: 39360238 PMCID: PMC11446608 DOI: 10.1093/asjof/ojae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Background The regenerative properties of stromal vascular fraction (SVF) in wound healing and scar formation are a subject of increasing clinical interest. Objectives Although preclinical studies have confirmed the angiogenetic, proliferative, and antifibrotic properties of SVF, there is limited clinical evidence from randomized controlled clinical trials. Methods Twelve patients who underwent abdominoplasty were included in this clinical study. Nanofat was mechanically obtained intraoperatively and infiltrated intradermally in the sutured surgical wound, randomly assigned to either the left or the right side. The abdominal scar was evaluated with the Patient and Observer Scar Assessment Scale, whereas erythema and pigmentation were measured with a reflectance spectrophotometry device (Mexameter, Courage + Khazaka electronic GmbH, Köln,Germany). Histological analysis and electron scan microscopy of tissue biopsies were performed at 8 months. Results The treated side of the scar showed significantly less erythema at 3- and 6-month follow-ups, but this difference reduced after 12 months. Patients reported better scar scores at the 6-month follow-up with a significantly better color at the treated side. Observers reported better overall scar scores at the treated side at 3-, 6-, and 12-month follow-ups, with better vascularization, pigmentation, and thickness. There was no statistically significant difference in terms of histological analysis between the 2 groups. There was no difference in the occurrence of adverse events between both sides. Conclusions Infiltration of nanofat exhibited promising results in surgical scar maturation characterized by less erythema and better texture. More clinical trials with a larger sample size are warranted to better elucidate the possible benefits of SVF on surgical scar formation. Level of Evidence 5
Collapse
|
11
|
Vitale F, Cacciottola L, Camboni A, Houeis L, Donnez J, Dolmans MM. Assessing the effect of adipose-tissue-derived stem cell conditioned medium on follicles and stromal cells in bovine ovarian tissue culture. Reprod Biomed Online 2024; 49:103938. [PMID: 38759499 DOI: 10.1016/j.rbmo.2024.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 05/19/2024]
Abstract
RESEARCH QUESTION Does adipose-tissue-derived stem cell conditioned medium (ASC-CM) supplementation enhance follicle and stromal cell outcomes in vitro? DESIGN Bovine ovaries (n = 8) were sectioned and cultured in vitro for 8 days in two different groups: (i) standard culture (OT Ctrl D8); and (ii) culture with ASC-CM supplementation (OT + CM D8). Half of the culture medium was replaced every other day, and stored to measure the production of oestradiol. Follicle classification was established using haematoxylin and eosin staining. Follicle and stromal cell DNA fragmentation was assessed by TUNEL assays, while growth differentiation factor-9 (GDF-9) staining served as a marker of follicle quality. Additionally, three factors, namely vascular endothelial growth factor (VEGF), interleukin 6 (IL-6) and transforming growth factor beta 1 (TGF-β1), were evaluated in ASC-CM in order to appraise the potential underlying mechanisms of action of ASC. RESULTS The OT + CM D8 group showed a significantly higher proportion of secondary follicles (P = 0.02) compared with the OT Ctrl D8 group. The OT + CM D8 group also demonstrated significantly lower percentages of TUNEL-positive follicles (P = 0.014) and stromal cells (P = 0.001) compared with the OT Ctrl D8 group. Furthermore, follicles in the OT + CM D8 group exhibited a significant increase (P = 0.002) in expression of GDF-9 compared with those in the OT Ctrl D8 group, and oestradiol production was significantly higher (P = 0.04) in the OT + CM D8 group. All studied factors were found to be present in ASC-CM. VEGF and IL-6 were the most widely expressed factors, while TGF-β1 showed the lowest expression. CONCLUSIONS Addition of ASC-CM to culture medium enhances follicle survival, development and oestradiol production, and promotes the viability of stromal cells. VEGF, IL-6 and TGF-β1 could be paracrine mediators underlying the beneficial effects.
Collapse
Affiliation(s)
- Francisco Vitale
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Luciana Cacciottola
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Alessandra Camboni
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Pathology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lara Houeis
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques Donnez
- Société de Recherche pour l'Infertilité, Brussels, Belgium; Professor Em, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Gynaecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
12
|
Zinger G, Gronovich Y, Lotan AM, Sharon-Gabbay R. Pilot Study for Isolation of Stromal Vascular Fraction with Collagenase Using an Automated Processing System. Int J Mol Sci 2024; 25:7148. [PMID: 39000252 PMCID: PMC11241134 DOI: 10.3390/ijms25137148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/10/2024] [Accepted: 06/16/2024] [Indexed: 07/16/2024] Open
Abstract
There are many potential therapeutic applications for autologous adipose-derived stromal cells. These cells are found in a heterogeneous population isolated from adipose tissue called the stromal vascular fraction (SVF). Closed automated systems are available to release cells from the adherent stroma. Here, we test one system to evaluate the heterogeneous output for yield, purity, cellular characterization, and stemness criteria. The SVF was isolated from three donors using the Automated Cell Station (ACS) from BSL Co., Ltd., Busan, Republic of Korea. The SVF cellular output was characterized for cell yield and viability, immunophenotyping analysis, pluripotent differentiation potential, adhesion to plastic, and colony-forming units. Additionally, the SVF was tested for endotoxin and collagenase residuals. The SVF yield from the ACS system was an average volume of 7.9 ± 0.5 mL containing an average of 19 × 106 nucleated cells with 85 ± 12% viability. Flow cytometry identified a variety of cells, including ASCs (23%), macrophages (24%), endothelial cells (5%), pericytes (4%), and transitional cells (0.5%). The final concentrated product contained cells capable of differentiating into adipogenic, chondrogenic, and osteogenic phenotypes. Furthermore, tests for SVF sterility and purity showed no evidence of endotoxin or collagenase residuals. The ACS system can efficiently process cells from adipose tissue within the timeframe of a single surgical procedure. The cellular characterization indicated that this system can yield a sterile and concentrated SVF output, providing a valuable source of ASCs within the heterogeneous cell population.
Collapse
Affiliation(s)
- Gershon Zinger
- Department of Orthopedic Surgery, Hand Unit, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9103102, Israel;
| | - Yoav Gronovich
- Department of Plastic & Reconstructive Surgery, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9103102, Israel; (Y.G.); (A.M.L.)
| | - Adi Maisel Lotan
- Department of Plastic & Reconstructive Surgery, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9103102, Israel; (Y.G.); (A.M.L.)
| | - Racheli Sharon-Gabbay
- Department of Orthopedic Surgery, Hand Unit, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9103102, Israel;
| |
Collapse
|
13
|
Rezaei Z, Navarro Torres A, Ge D, Wang T, Méndez Terán EC, García Vera SE, Bassous NJ, Soria OYP, Ávila Ramírez AE, Flores Campos LM, Azuela Rosas DA, Hassan S, Khorsandi D, Jucaud V, Hussain MA, Khateeb A, Zhang YS, Lee H, Kim DH, Khademhosseini A, Dokmeci MR, Shin SR. Noninvasive and Continuous Monitoring of On-Chip Stem Cell Osteogenesis Using a Reusable Electrochemical Immunobiosensor. ACS Sens 2024; 9:2334-2345. [PMID: 38639453 DOI: 10.1021/acssensors.3c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Noninvasive monitoring of biofabricated tissues during the biomanufacturing process is needed to obtain reproducible, healthy, and functional tissues. Measuring the levels of biomarkers secreted from tissues is a promising strategy to understand the status of tissues during biofabrication. Continuous and real-time information from cultivated tissues enables users to achieve scalable manufacturing. Label-free biosensors are promising candidates for detecting cell secretomes since they can be noninvasive and do not require labor-intensive processes such as cell lysing. Moreover, most conventional monitoring techniques are single-use, conducted at the end of the fabrication process, and, challengingly, are not permissive to in-line and continual detection. To address these challenges, we developed a noninvasive and continual monitoring platform to evaluate the status of cells during the biofabrication process, with a particular focus on monitoring the transient processes that stem cells go through during in vitro differentiation over extended periods. We designed and evaluated a reusable electrochemical immunosensor with the capacity for detecting trace amounts of secreted osteogenic markers, such as osteopontin (OPN). The sensor has a low limit of detection (LOD), high sensitivity, and outstanding selectivity in complex biological media. We used this OPN immunosensor to continuously monitor on-chip osteogenesis of human mesenchymal stem cells (hMSCs) cultured 2D and 3D hydrogel constructs inside a microfluidic bioreactor for more than a month and were able to observe changing levels of OPN secretion during culture. The proposed platform can potentially be adopted for monitoring a variety of biological applications and further developed into a fully automated system for applications in advanced cellular biomanufacturing.
Collapse
Affiliation(s)
- Zahra Rezaei
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Sharif University of Technology, Azadi Avenue, Tehran 11365-11155, Iran
| | - Andrea Navarro Torres
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- School of Science and Engineering, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - David Ge
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Ting Wang
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Eloísa Carolina Méndez Terán
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- School of Science and Engineering, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Stefany Elizabeth García Vera
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- School of Science and Engineering, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Nicole Joy Bassous
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Oscar Yael Perez Soria
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- School of Science and Engineering, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Alan Eduardo Ávila Ramírez
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- School of Science and Engineering, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
- Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luis Mario Flores Campos
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- School of Science and Engineering, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Diego Arnoldo Azuela Rosas
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- School of Science and Engineering, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Shabir Hassan
- Department of Biological Sciences, Khalifa University, Main Campus, Abu Dhabi 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University, Main Campus, Abu Dhabi 127788, United Arab Emirates
- Functional Biomaterials Group, Khalifa University, SAN Campus, Abu Dhabi 127788, United Arab Emirates
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, 11570 W Olympic Boulevard, Los Angeles, California 90024, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, 11570 W Olympic Boulevard, Los Angeles, California 90024, United States
| | - Mohammad Asif Hussain
- Electrical and Computer Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulhameed Khateeb
- Electrical and Computer Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - HeaYeon Lee
- Mara Nanotech Inc., Hanmir Hall, Yongdang Campus, Pukyong National University, 365 Sinseon-ro, Nam-gu 48548, Republic of Korea
- MARA Nanotech New York INC., NY Designs, 29-10 Thomson Ave, Rm. C760, L.I.C., New York 11101, United States
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, 11570 W Olympic Boulevard, Los Angeles, California 90024, United States
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation, 11570 W Olympic Boulevard, Los Angeles, California 90024, United States
| | - Su Ryon Shin
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Ramirez JA, Jiménez MC, Ospina V, Rivera BS, Fiorentino S, Barreto A, Restrepo LM. The secretome from human-derived mesenchymal stem cells augments the activity of antitumor plant extracts in vitro. Histochem Cell Biol 2024; 161:409-421. [PMID: 38402366 PMCID: PMC11045572 DOI: 10.1007/s00418-024-02265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/26/2024]
Abstract
Cancer is understood as a multifactorial disease that involve multiple cell types and phenotypes in the tumor microenvironment (TME). The components of the TME can interact directly or via soluble factors (cytokines, chemokines, growth factors, extracellular vesicles, etc.). Among the cells composing the TME, mesenchymal stem cells (MSCs) appear as a population with debated properties since it has been seen that they can both promote or attenuate tumor progression. For various authors, the main mechanism of interaction of MSCs is through their secretome, the set of molecules secreted into the extracellular milieu, recruiting, and influencing the behavior of other cells in inflammatory environments where they normally reside, such as wounds and tumors. Natural products have been studied as possible cancer treatments, appealing to synergisms between the molecules in their composition; thus, extracts obtained from Petiveria alliacea (Anamu-SC) and Caesalpinia spinosa (P2Et) have been produced and studied previously on different models, showing promising results. The effect of plant extracts on the MSC secretome has been poorly studied, especially in the context of the TME. Here, we studied the effect of Anamu-SC and P2Et extracts in the human adipose-derived MSC (hAMSC)-tumor cell interaction as a TME model. We also investigated the influence of the hAMSC secretome, in combination with these natural products, on tumor cell hallmarks such as viability, clonogenicity, and migration. In addition, hAMSC gene expression and protein synthesis were evaluated for some key factors in tumor progression in the presence of the extracts by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Multiplex, respectively. It was found that the presence of the hAMSC secretome did not affect the cytotoxic or clonogenicity-reducing activities of the natural extracts on cancer cells, and even this secretome can inhibit the migration of these tumor cells, in addition to the fact that the profile of molecules can be modified by natural products. Overall, our findings demonstrate that hAMSC secretome participation in TME interactions can favor the antitumor activities of natural products.
Collapse
Affiliation(s)
- J A Ramirez
- Grupo Ingeniería de Tejidos y Terapías Celulares, Facultad de Medicina, Universidad de Antioquia, Carrera 51 A No 62-42, Medellín, Colombia
| | - M C Jiménez
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7 No 40-62, Bogotá, Colombia
| | - V Ospina
- Grupo Ingeniería de Tejidos y Terapías Celulares, Facultad de Medicina, Universidad de Antioquia, Carrera 51 A No 62-42, Medellín, Colombia
| | - B S Rivera
- Grupo Ingeniería de Tejidos y Terapías Celulares, Facultad de Medicina, Universidad de Antioquia, Carrera 51 A No 62-42, Medellín, Colombia
| | - S Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7 No 40-62, Bogotá, Colombia
| | - A Barreto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7 No 40-62, Bogotá, Colombia.
| | - L M Restrepo
- Grupo Ingeniería de Tejidos y Terapías Celulares, Facultad de Medicina, Universidad de Antioquia, Carrera 51 A No 62-42, Medellín, Colombia
| |
Collapse
|
15
|
Berry CE, Abbas DB, Lintel HA, Churukian AA, Griffin M, Guo JL, Cotterell AC, Parker JBL, Downer MA, Longaker MT, Wan DC. Adipose-Derived Stromal Cell-Based Therapies for Radiation-Induced Fibrosis. Adv Wound Care (New Rochelle) 2024; 13:235-252. [PMID: 36345216 PMCID: PMC11304913 DOI: 10.1089/wound.2022.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Significance: Half of all cancer patients receive radiation therapy as a component of their treatment regimen, and the most common resulting complication is radiation-induced fibrosis (RIF) of the skin and soft tissue. This thickening of the dermis paired with decreased vascularity results in functional limitations and esthetic concerns and poses unique challenges when considering surgical exploration or reconstruction. Existing therapeutic options for RIF of the skin are limited both in scope and efficacy. Cell-based therapies have emerged as a promising means of utilizing regenerative cell populations to improve both functional and esthetic outcomes, and even as prophylaxis for RIF. Recent Advances: As one of the leading areas of cell-based therapy research, adipose-derived stromal cells (ADSCs) demonstrate significant therapeutic potential in the treatment of RIF. The introduction of the ADSC-augmented fat graft has shown clinical utility. Recent research dedicated to characterizing specific ADSC subpopulations points toward further granularity in understanding of the mechanisms driving the well-established clinical outcomes seen with fat grafting therapy. Critical Issues: Various animal models of RIF demonstrated improved clinical outcomes following treatment with cell-based therapies, but the cellular and molecular basis underlying these effects remains poorly understood. Future Directions: Recent literature has focused on improving the efficacy of cell-based therapies, most notably through (1) augmentation of fat grafts with platelet-rich plasma and (2) the modification of expressed RNA through epitranscriptomics. For the latter, new and promising gene targets continue to be identified which have the potential to reverse the effects of fibrosis by increasing angiogenesis, decreasing inflammation, and promoting adipogenesis.
Collapse
Affiliation(s)
- Charlotte E. Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Darren B. Abbas
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hendrik A. Lintel
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Andrew A. Churukian
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jason L. Guo
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Asha C. Cotterell
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer B. Laufey Parker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Mauricio A. Downer
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
16
|
Goulas P, Karakwta M, Zatagias A, Bakoutsi M, Zevgaridis A, Ioannidis A, Krokou D, Michalopoulos A, Zevgaridis V, Koliakos G. A Simple and Effective Mechanical Method for Adipose-Derived Stromal Vascular Fraction Isolation. Cureus 2024; 16:e57137. [PMID: 38681268 PMCID: PMC11055620 DOI: 10.7759/cureus.57137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Over the last decades, there has been ongoing and evolving research concerning regenerative medicine, specifically, stem cells. The most common source of adult mesenchymal stem cells (MSCs) remains the adipose tissue and the easiest way to obtain such tissue is lipoaspirate. The fatty tissue obtained can be processed either in an enzymatic way, which is time-consuming and expensive and carries several dangers for the viability of the stem cells included, or with mechanical means which are fast, inexpensive, yield enough viable cells, and can be readily used for autologous transplantation in one-stage procedures. Herein, we demonstrate our non-enzymatic method for obtaining adipose-derived stromal vascular fraction comprising MSCs. The stromal vascular fraction was isolated via centrifugation, and the characteristics and numbers of the cells isolated have been tested with flow cytometry assay, cell culture, and differentiation. Over 91% of viable MSCs were isolated using the mechanical method. The cells retained the ability to differentiate into osteocytes, adipocytes, and chondrocytes. The method presented is simple, requiring no special equipment, and yields a viable population of stem cells in large numbers. These cells can be readily used in several operations (orthopedic, dentistry, fistulas, etc.) making feasible "one-stage" procedures, thus proving their benefits for the patient and the health care system.
Collapse
Affiliation(s)
- Patroklos Goulas
- 1st Propedeutic Surgical Department, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Maria Karakwta
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Apostolos Zatagias
- 1st Propedeutic Surgical Department, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Maria Bakoutsi
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | - Aristeidis Ioannidis
- Department of Surgery, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| | - Despoina Krokou
- 1st Propedeutic Surgical Department, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Antonios Michalopoulos
- 1st Propedeutic Surgical Department, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Vasileios Zevgaridis
- 1st Surgical Department, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - George Koliakos
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
17
|
Brodeur A, Roy V, Touzel-Deschênes L, Bianco S, Droit A, Fradette J, Ruel J, Gros-Louis F. Transcriptomic Analysis of Mineralized Adipose-Derived Stem Cell Tissues for Calcific Valve Disease Modelling. Int J Mol Sci 2024; 25:2291. [PMID: 38396969 PMCID: PMC10889332 DOI: 10.3390/ijms25042291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Calcific aortic valve disease (CAVD) is characterized by the fibrosis and mineralization of the aortic valve, which leads to aortic stenosis and heart failure. At the cellular level, this is due to the osteoblastic-like differentiation of valve interstitial cells (VICs), resulting in the calcification of the tissue. Unfortunately, human VICs are not readily available to study CAVD pathogenesis and the implicated mechanisms in vitro; however, adipose-derived stromal/stem cells (ASCs), carrying the patient's specific genomic features, have emerged as a promising cell source to model cardiovascular diseases due to their multipotent nature, availability, and patient-specific characteristics. In this study, we describe a comprehensive transcriptomic analysis of tissue-engineered, scaffold-free, ASC-embedded mineralized tissue sheets using bulk RNA sequencing. Bioinformatic and gene set enrichment analyses revealed the up-regulation of genes associated with the organization of the extracellular matrix (ECM), suggesting that the ECM could play a vital role in the enhanced mineralization observed in these tissue-engineered ASC-embedded sheets. Upon comparison with publicly available gene expression datasets from CAVD patients, striking similarities emerged regarding cardiovascular diseases and ECM functions, suggesting a potential link between ECM gene expression and CAVDs pathogenesis. A matrisome-related sub-analysis revealed the ECM microenvironment promotes the transcriptional activation of the master gene runt-related transcription factor 2 (RUNX2), which is essential in CAVD development. Tissue-engineered ASC-embedded sheets with enhanced mineralization could be a valuable tool for research and a promising avenue for the identification of more effective aortic valve replacement therapies.
Collapse
Affiliation(s)
- Alyssa Brodeur
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 5C3, Canada; (A.B.); (V.R.); (L.T.-D.); (J.F.)
- Division of Regenerative Medicine, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada;
| | - Vincent Roy
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 5C3, Canada; (A.B.); (V.R.); (L.T.-D.); (J.F.)
- Division of Regenerative Medicine, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada;
| | - Lydia Touzel-Deschênes
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 5C3, Canada; (A.B.); (V.R.); (L.T.-D.); (J.F.)
- Division of Regenerative Medicine, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada;
| | - Stéphanie Bianco
- Department of Molecular Medicine, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1V 5C3, Canada; (S.B.); (A.D.)
- Computational Biology Laboratory, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1V 4G2, Canada
| | - Arnaud Droit
- Department of Molecular Medicine, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1V 5C3, Canada; (S.B.); (A.D.)
- Computational Biology Laboratory, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1V 4G2, Canada
| | - Julie Fradette
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 5C3, Canada; (A.B.); (V.R.); (L.T.-D.); (J.F.)
- Division of Regenerative Medicine, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada;
| | - Jean Ruel
- Division of Regenerative Medicine, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada;
- Department of Mechanical Engineering, Faculty of Sciences and Engineering, Laval University, Quebec City, QC G1V 0A6, Canada
| | - François Gros-Louis
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 5C3, Canada; (A.B.); (V.R.); (L.T.-D.); (J.F.)
- Division of Regenerative Medicine, CHU de Quebec Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada;
| |
Collapse
|
18
|
Strong AL, Rohrich RJ, Tonnard PL, Vargo JD, Cederna PS. Technical Precision with Autologous Fat Grafting for Facial Rejuvenation: A Review of the Evolving Science. Plast Reconstr Surg 2024; 153:360-377. [PMID: 37159906 DOI: 10.1097/prs.0000000000010643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
SUMMARY The scientific study of facial aging has transformed modern facial rejuvenation. As people age, fat loss in specific fat compartments is a major contributor to structural aging of the face. Autologous fat grafting is safe, abundant, readily available, and completely biocompatible, which makes it the preferred soft-tissue filler in the correction of facial atrophy. The addition of volume through fat grafting gives an aging face a more youthful, healthy, and aesthetic appearance. Harvesting and preparation with different cannula sizes and filter-cartridge techniques have allowed for fat grafts to be divided based on parcel size and cell type into three major subtypes: macrofat, microfat, and nanofat. Macrofat and microfat have the benefit of providing volume to restore areas of facial deflation and atrophy in addition to improving skin quality; nanofat has been shown to improve skin texture and pigmentation. In this article, the authors discuss the current opinions regarding fat grafting and how the evolving science of fat grafting has led to the clinical utility of each type of fat to optimize facial rejuvenation. The opportunity exists to individualize the use of autologous fat grafting with the various subtypes of fat for the targeted correction of aging in different anatomic areas of the face. Fat grafting has become a powerful tool that has revolutionized facial rejuvenation, and developing precise, individualized plans for autologous fat grafting for each patient is an important advancement in the evolution of facial rejuvenation.
Collapse
Affiliation(s)
- Amy L Strong
- From the Section of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan
| | - Rod J Rohrich
- Dallas Plastic Surgery Institute
- Baylor College of Medicine
| | | | - James D Vargo
- From the Section of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan
| | - Paul S Cederna
- From the Section of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan
| |
Collapse
|
19
|
Lee CK, Wang FT, Huang CH, Chan WH. Prevention of methylmercury-triggered ROS-mediated impairment of embryo development by co-culture with adult adipose-derived mesenchymal stem cells. Toxicol Res (Camb) 2024; 13:tfad122. [PMID: 38162594 PMCID: PMC10753290 DOI: 10.1093/toxres/tfad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/19/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Methylmercury (MeHg) is a potent toxin that exerts deleterious effects on human health via environmental contamination. Significant effects of MeHg on neuronal development in embryogenesis have been reported. Recently, our group demonstrated that MeHg exerts toxic effects on pre- and post-implantation embryonic development processes from zygote to blastocyst stage. Our results showed that MeHg impairs embryo development by induction of apoptosis through reactive oxygen species (ROS) generation that triggers caspase-3 cleavage and activation, which, in turn, stimulates p21-activated kinase 2 (PAK2) activity. Importantly, ROS were identified as a key upstream regulator of apoptotic events in MeHg-treated blastocysts. Data from the current study further confirmed that MeHg exerts hazardous effects on cell proliferation, apoptosis, implantation, and pre- and post-implantation embryo development. Notably, MeHg-induced injury was markedly prevented by co-culture with adipose-derived mesenchymal stem cells (ADMSCs) in vitro. Furthermore, ADMSC injection significantly reduced MeHg-mediated deleterious effects on embryo, placenta, and fetal development in vivo. Further investigation of the regulatory mechanisms by which co-cultured ADMSCs could prevent MeHg-induced impairment of embryo development revealed that ADMSCs effectively reduced ROS generation and its subsequent downstream apoptotic events, including loss of mitochondrial membrane potential and activation of caspase-3 and PAK2. The collective findings indicate that co-culture with mesenchymal stem cells (MSCs) or utilization of MSC-derived cell-conditioned medium offers an effective potential therapeutic strategy to prevent impairment of embryo development by MeHg.
Collapse
Affiliation(s)
- Cheng-Kai Lee
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Zhongshan Road, Taoyuan District, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Section 2, Shipai Road, Beitou District, Taipei City 11217, Taiwan
| | - Chien-Hsun Huang
- Hungchi Gene IVF Center, Daxing West Road, Taoyuan District, Taoyuan City 330012, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Zhongbei Road, Zhongli District, Taoyuan City 32023, Taiwan
| |
Collapse
|
20
|
Monaghan MG, Borah R, Thomsen C, Browne S. Thou shall not heal: Overcoming the non-healing behaviour of diabetic foot ulcers by engineering the inflammatory microenvironment. Adv Drug Deliv Rev 2023; 203:115120. [PMID: 37884128 DOI: 10.1016/j.addr.2023.115120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Diabetic foot ulcers (DFUs) are a devastating complication for diabetic patients that have debilitating effects and can ultimately lead to limb amputation. Healthy wounds progress through the phases of healing leading to tissue regeneration and restoration of the barrier function of the skin. In contrast, in diabetic patients dysregulation of these phases leads to chronic, non-healing wounds. In particular, unresolved inflammation in the DFU microenvironment has been identified as a key facet of chronic wounds in hyperglyceamic patients, as DFUs fail to progress beyond the inflammatory phase and towards resolution. Thus, control over and modulation of the inflammatory response is a promising therapeutic avenue for DFU treatment. This review discusses the current state-of-the art regarding control of the inflammatory response in the DFU microenvironment, with a specific focus on the development of biomaterials-based delivery strategies and their cargos to direct tissue regeneration in the DFU microenvironment.
Collapse
Affiliation(s)
- Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland; CÚRAM, Centre for Research in Medical Devices, National University of Ireland, H91 W2TY Galway, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Rajiv Borah
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Charlotte Thomsen
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Shane Browne
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland, H91 W2TY Galway, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
21
|
Ramírez Idarraga JA, Restrepo Múnera LM. Mesenchymal Stem Cells: Their Role in the Tumor Microenvironment. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:681-691. [PMID: 37276173 DOI: 10.1089/ten.teb.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have been seen for years as great candidates for treating different diseases and an alternative to embryonic stem cells due to their differentiation capacity in vitro. More recent research has focused on their ability to modulate the immune response and regeneration at sites associated with inflammation, activities attributable to the release of trophic factors into the extracellular medium, a set of components known as the secretome. It has been possible to demonstrate the presence of these cells within the tumor microenvironment, which is associated with their tropism for sites of inflammation; however, their role here needs to be clarified. In different investigations, the feasibility of using MSCs or their secretome to treat cancer has been sought, with these results being ambiguous. It has been described that MSCs can be activated and present various phenotypes, which could explain the divergence in their action; however, these activation mechanisms and the different phenotypes still need to be well known. This review explores MSCs and their use in regenerative medicine with a targeted approach to cancer. Impact Statement This text addresses the diverging findings on the role of mesenchymal stem cells in the tumor microenvironment and discrepancies on the use of these cells as cancer treatment, separating the direct use of the cells from the use of the secretome. Multiple authors refer equally to the cells and their secretome to conclude on the positive or negative outcome, without taking into consideration how the cells are affected by their surroundings.
Collapse
Affiliation(s)
- Jhon Alexander Ramírez Idarraga
- Corporación Académica Ciencias Básicas Biomédicas, Universidad de Antioquía, Medellín, Colombia
- Grupo Ingeniería de Tejidos y Terapias Celulares, Instituto de Investigaciones Médicas, Universidad de Antioquía, Medellín, Colombia
| | - Luz Marina Restrepo Múnera
- Grupo Ingeniería de Tejidos y Terapias Celulares, Instituto de Investigaciones Médicas, Universidad de Antioquía, Medellín, Colombia
| |
Collapse
|
22
|
Debuc B, Gendron N, Cras A, Rancic J, Philippe A, Cetrulo CL, Lellouch AG, Smadja DM. Improving Autologous Fat Grafting in Regenerative Surgery through Stem Cell-Assisted Lipotransfer. Stem Cell Rev Rep 2023; 19:1726-1754. [PMID: 37261667 DOI: 10.1007/s12015-023-10568-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Autologous fat transplantation -i.e., lipofilling- has become a promising and popular technique in aesthetic and reconstructive surgery with several application such as breast reconstruction, facial and hand rejuvenation. However, the use of this technology is still limited due to an unpredictable and low graft survival rate (which ranges from 25%-80%). A systematic literature review was performed by thoroughly searching 12 terms using the PubMed database. The objective of this study is to present the current evidence for the efficacy of adjuvant regenerative strategies and cellular factors, which have been tested to improve fat graft retention. We present the main results (fat retention rate, histological analysis for pre-clinical studies and satisfaction/ complication for clinical studies) obtained from the studies of the three main fat grafting enrichment techniques: platelet-rich plasma (PRP), the stromal vascular fraction (SVF) and adipose-derived stem cells (ADSCs) and discuss the promising role of recent angiogenic cell enrichment that could induce early vascularization of fat graft. All in all, adding stem or progenitor cells to autologous fat transplantation might become a new concept in lipofilling. New preclinical models should be used to find mechanisms able to increase fat retention, assure safety and transfer these technologies to a good manufacturing practice (GMP) compliant facility, to manufacture an advanced therapy medicinal product (ATMP).
Collapse
Affiliation(s)
- Benjamin Debuc
- Department of Plastic Surgery, European Georges Pompidou Hospital, AP-HP, Paris, France
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
| | - Nicolas Gendron
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
- Department of Hematology, European Georges Pompidou Hospital, AP-HP, 20 Rue Leblanc, F-75015, Paris, France
| | - Audrey Cras
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
- Department of Cell Therapy, Saint Louis Hospital, AP-HP, F-75010, Paris, France
| | - Jeanne Rancic
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
| | - Aurélien Philippe
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
- Department of Hematology, European Georges Pompidou Hospital, AP-HP, 20 Rue Leblanc, F-75015, Paris, France
| | - Curtis L Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children-Boston, Boston, MA, USA
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Alexandre G Lellouch
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children-Boston, Boston, MA, USA
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David M Smadja
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France.
- Department of Hematology, European Georges Pompidou Hospital, AP-HP, 20 Rue Leblanc, F-75015, Paris, France.
| |
Collapse
|
23
|
Kelly R, Aviles D, Krisulevicz C, Hunter K, Krill L, Warshal D, Ostrovsky O. The Effects of Natural Epigenetic Therapies in 3D Ovarian Cancer and Patient-Derived Tumor Explants: New Avenues in Regulating the Cancer Secretome. Biomolecules 2023; 13:1066. [PMID: 37509102 PMCID: PMC10377145 DOI: 10.3390/biom13071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
High mortality rates in ovarian cancer have been linked to recurrence, metastasis, and chemoresistant disease, which are known to involve not only genetic changes but also epigenetic aberrations. In ovarian cancer, adipose-derived stem cells from the omentum (O-ASCs) play a crucial role in supporting the tumor and its tumorigenic microenvironment, further propagating epigenetic abnormalities and dissemination of the disease. Epigallocatechin gallate (EGCG), a DNA methyltransferase inhibitor derived from green tea, and Indole-3-carbinol (I3C), a histone deacetylase inhibitor from cruciferous vegetables, carry promising effects in reprograming aberrant epigenetic modifications in cancer. Therefore, we demonstrate the action of these diet-derived compounds in suppressing the growth of 3D ovarian cancer spheroids or organoids as well as post-treatment cancer recovery through proliferation, migration, invasion, and colony formation assays when compared to the synthetic epigenetic compound Panobinostat with or without standard chemotherapy. Finally, given the regulatory role of the secretome in growth, metastasis, chemoresistance, and relapse of disease, we demonstrate that natural epigenetic compounds can regulate the secretion of protumorigenic growth factors, cytokines, extracellular matrix components, and immunoregulatory markers in human ovarian cancer specimens. While further studies are needed, our results suggest that these treatments could be considered in the future as adjuncts to standard chemotherapy, improving efficiency and patient outcomes.
Collapse
Affiliation(s)
- Rebeca Kelly
- Department of Gynecologic Oncology, MD Anderson Cancer Center at Cooper University Hospital, Camden, NJ 08103, USA
| | - Diego Aviles
- Department of Gynecologic Oncology, MD Anderson Cancer Center at Cooper University Hospital, Camden, NJ 08103, USA
| | | | - Krystal Hunter
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Cooper Research Institute, Cooper University Healthcare, Camden, NJ 08103, USA
| | - Lauren Krill
- Department of Gynecologic Oncology, MD Anderson Cancer Center at Cooper University Hospital, Camden, NJ 08103, USA
| | - David Warshal
- Department of Gynecologic Oncology, MD Anderson Cancer Center at Cooper University Hospital, Camden, NJ 08103, USA
| | - Olga Ostrovsky
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Cooper Research Institute, Cooper University Healthcare, Camden, NJ 08103, USA
| |
Collapse
|
24
|
Zhou C, Huang YQ, Da MX, Jin WL, Zhou FH. Adipocyte-derived extracellular vesicles: bridging the communications between obesity and tumor microenvironment. Discov Oncol 2023; 14:92. [PMID: 37289328 PMCID: PMC10250291 DOI: 10.1007/s12672-023-00704-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023] Open
Abstract
By the year 2035 more than 4 billion people might be affected by obesity and being overweight. Adipocyte-derived Extracellular Vesicles (ADEVs/ADEV-singular) are essential for communication between the tumor microenvironment (TME) and obesity, emerging as a prominent mechanism of tumor progression. Adipose tissue (AT) becomes hypertrophic and hyperplastic in an obese state resulting in insulin resistance in the body. This modifies the energy supply to tumor cells and simultaneously stimulates the production of pro-inflammatory adipokines. In addition, obese AT has a dysregulated cargo content of discharged ADEVs, leading to elevated amounts of pro-inflammatory proteins, fatty acids, and carcinogenic microRNAs. ADEVs are strongly associated with hallmarks of cancer (proliferation and resistance to cell death, angiogenesis, invasion, metastasis, immunological response) and may be useful as biomarkers and antitumor therapy strategy. Given the present developments in obesity and cancer-related research, we conclude by outlining significant challenges and significant advances that must be addressed expeditiously to promote ADEVs research and clinical applications.
Collapse
Affiliation(s)
- Chuan Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, 730000 People’s Republic of China
| | - Yu-Qian Huang
- Department of Center of Medical Cosmetology, Chengdu Second People’s Hospital, Chengdu, 610017 People’s Republic of China
| | - Ming-Xu Da
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000 People’s Republic of China
| | - Wei-Lin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Feng-Hai Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Department of Urology, Gansu Provincial Hospital, Lanzhou, 730000 People’s Republic of China
| |
Collapse
|
25
|
Khouri AN, Adidharma W, MacEachern M, Haase SC, Waljee JF, Cederna PS, Strong AL. The Current State of Fat Grafting in the Hand: A Systematic Review for Hand Diseases. Hand (N Y) 2023; 18:543-552. [PMID: 35130761 PMCID: PMC10233632 DOI: 10.1177/15589447211066347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Autologous fat grafting (AFG) has traditionally been used for facial rejuvenation and soft tissue augmentation, but in recent years, its use has expanded to treat diseases of the hand. Autologous fat grafting is ideal for use in the hand because it is minimally invasive, can restore volume, and has regenerative capabilities. This review summarizes the emerging evidence regarding the safety and efficacy of AFG to the hand in several conditions, including systemic sclerosis, Dupuytren disease, osteoarthritis, burns, and traumatic fingertip injuries. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses-compliant literature search on the use of AFG in hand pathologies was performed on October 8, 2020, in Ovid MEDLINE, Elsevier Embase, Clarivate Web of Science, and Wiley Cochrane Central Register of Controlled Trials. The retrieved hits were screened and reviewed by 2 independent reviewers and a third reviewer adjudicated when required. Reviewers identified 919 unique hits. Screening of the abstracts identified 22 manuscripts which described the use of AFG to treat an identified hand condition. Studies suggest AFG in the hands is a safe, noninvasive option for the management of systemic sclerosis, Dupuytren contracture, osteoarthritis, burns, and traumatic fingertip injuries. While AFG is a promising therapeutic option for autoimmune, inflammatory, and fibrotic disease manifestations in the hand, further studies are warranted to understand its efficacy and to establish more robust clinical guidelines. Studies to date show the regenerative, immunomodulatory, and volume-filling properties of AFG that facilitate wound healing and restoration of hand function with limited complications.
Collapse
|
26
|
Abstract
SUMMARY Over the past 30 years, there has been a dramatic increase in the use of autologous fat grafting for soft-tissue augmentation and to improve facial skin quality. Several studies have highlighted the impact of aging on adipose tissue, leading to a decrease of adipose tissue volume and preadipocyte proliferation and increase of fibrosis. Recently, there has been a rising interest in adipose tissue components, including adipose-derived stem/stromal cells (ASCs) because of their regenerative potential, including inflammation, fibrosis, and vascularization modulation. Because of their differentiation potential and paracrine function, ASCs have been largely used for fat grafting procedures, as they are described to be a key component in fat graft survival. However, many parameters as surgical procedures or adipose tissue biology could change clinical outcomes. Variation on fat grafting methods have led to numerous inconsistent clinical outcomes. Donor-to-donor variation could also be imputed to ASCs, tissue inflammatory state, or tissue origin. In this review, the authors aim to analyze (1) the parameters involved in graft survival, and (2) the effect of aging on adipose tissue components, especially ASCs, that could lead to a decrease of skin regeneration and fat graft retention. CLINICAL RELEVANCE STATEMENT This review aims to enlighten surgeons about known parameters that could play a role in fat graft survival. ASCs and their potential mechanism of action in regenerative medicine are more specifically described.
Collapse
|
27
|
Effect of Hyaluronic Acid and Mesenchymal Stem Cells Secretome Combination in Promoting Alveolar Regeneration. Int J Mol Sci 2023; 24:ijms24043642. [PMID: 36835068 PMCID: PMC9966269 DOI: 10.3390/ijms24043642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Pharmacological therapies in lung diseases are nowadays useful in reducing the symptomatology of lung injury. However, they have not yet been translated to effective treatment options able to restore the lung tissue damage. Cell-therapy based on Mesenchymal Stem Cells (MSCs) is an attractive, as well as new therapeutic approach, although some limitations can be ascribed for therapeutic use, such as tumorigenicity and immune rejection. However, MSCs have the capacity to secrete multiple paracrine factors, namely secretome, capable of regulating endothelial and epithelial permeability, decrease inflammation, enhancing tissue repair, and inhibiting bacterial growth. Furthermore, Hyaluronic acid (HA) has been demonstrated to have particularly efficacy in promoting the differentiation of MSCs in Alveolar type II (ATII) cells. In this frame, the combination of HA and secretome to achieve the lung tissue regeneration has been investigated for the first time in this work. Overall results showed how the combination of HA (low and medium molecular weight HA) plus secretome could enhance MSCs differentiation in ATII cells (SPC marker expression of about 5 ng/mL) compared to the only HA or secretome solutions alone (SPC about 3 ng/mL, respectively). Likewise, cell viability and cell rate of migration were reported to be improved for HA and secretome blends, indicating an interesting potentiality of such systems for lung tissue repair. Moreover, an anti-inflammatory profile has been revealed when dealing with HA and secretome mixtures. Therefore, these promising results can allow important advance in the accomplishment of the future therapeutic approach in respiratory diseases, up to date still missing.
Collapse
|
28
|
Nellinger S, Kluger PJ. How Mechanical and Physicochemical Material Characteristics Influence Adipose-Derived Stem Cell Fate. Int J Mol Sci 2023; 24:ijms24043551. [PMID: 36834966 PMCID: PMC9961531 DOI: 10.3390/ijms24043551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Adipose-derived stem cells (ASCs) are a subpopulation of mesenchymal stem cells. Compared to bone marrow-derived stem cells, they can be harvested with minimal invasiveness. ASCs can be easily expanded and were shown to be able to differentiate into several clinically relevant cell types. Therefore, this cell type represents a promising component in various tissue engineering and medical approaches (e.g., cell therapy). In vivo cells are surrounded by the extracellular matrix (ECM) that provides a wide range of tissue-specific physical and chemical cues, such as stiffness, topography, and chemical composition. Cells can sense the characteristics of their ECM and respond to them in a specific cellular behavior (e.g., proliferation or differentiation). Thus, in vitro biomaterial properties represent an important tool to control ASCs behavior. In this review, we give an overview of the current research in the mechanosensing of ASCs and current studies investigating the impact of material stiffens, topography, and chemical modification on ASC behavior. Additionally, we outline the use of natural ECM as a biomaterial and its interaction with ASCs regarding cellular behavior.
Collapse
Affiliation(s)
- Svenja Nellinger
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany
| | - Petra Juliane Kluger
- School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
- Correspondence: ; Tel.: +49-07121-271-2061
| |
Collapse
|
29
|
Schneider I, Calcagni M, Buschmann J. Adipose-derived stem cells applied in skin diseases, wound healing and skin defects: a review. Cytotherapy 2023; 25:105-119. [PMID: 36115756 DOI: 10.1016/j.jcyt.2022.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 08/11/2022] [Indexed: 01/18/2023]
Abstract
Adipose tissue presents a comparably easy source for obtaining stem cells, and more studies are increasingly investigating the therapeutic potential of adipose-derived stem cells. Wound healing, especially in chronic wounds, and treatment of skin diseases are some of the fields investigated. In this narrative review, the authors give an overview of some of the latest studies concerning wound healing as well as treatment of several skin diseases and concentrate on the different forms of application of adipose-derived stem cells.
Collapse
Affiliation(s)
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Johanna Buschmann
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
30
|
Chen W, He Z, Li S, Wu Z, Tan J, Yang W, Li G, Pan X, Liu Y, Lyu FJ, Li W. The Effect of Tissue Stromal Vascular Fraction as Compared to Cellular Stromal Vascular Fraction to Treat Anal Sphincter Incontinence. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010032. [PMID: 36671604 PMCID: PMC9854502 DOI: 10.3390/bioengineering10010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND The long-term prognosis of current treatments for anal sphincter incontinence (ASI) is poor. Here, we explored the efficacy of tissue adipose stromal vascular fraction SVF (tSVF) on ASI and compared it to that of cellular SVF (cSVF). We then investigated possible mechanisms. METHODS Rat cSVF and tSVF were isolated and labeled with DIL. One day after modeling, three groups received phosphate-buffered saline (PBS), cSVF, tSVF, respectively. The control group received nil modeling nor any treatments. The effect was assessed by function test for anal pressure and electromyography, and staining for fiber content, proliferation and differentiation at day 5 and day 10. RESULTS cSVF injection resulted in faster healing than tSVF. The cSVF group showed significant improvement on anal pressure on day 10. For the electromyography test, cSVF showed significant improvement for the frequencies on day 10, and for the peak values on both time points, while tSVF showed significant improvement for the peak values on day 10. The two SVF both alleviated fibrosis. Immunofluorescence tracing identified differentiation of some injected cells towards myosatellite cells and smooth muscle cells in both SVF groups. For all the tests, the tSVF group tends to have similar or lower effects than the cSVF group with no significant difference. CONCLUSION cSVF and tSVF are both safe and effective in treating ASI, while the effect of cSVF is slighter higher than tSVF.
Collapse
Affiliation(s)
- Wenbin Chen
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Zijian He
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Shuyu Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zixin Wu
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Jin Tan
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Weifeng Yang
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Guanwei Li
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Xiaoling Pan
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Yuying Liu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| | - Feng-Juan Lyu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
- Correspondence: (F.-J.L.); (W.L.)
| | - Wanglin Li
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
- Correspondence: (F.-J.L.); (W.L.)
| |
Collapse
|
31
|
MiR-181a-5p Delivered by Adipose-Derived Mesenchymal Stem Cell Exosomes Alleviates Klebsiella pneumonia Infection-Induced Lung Injury by Targeting STAT3 Signaling. Mediators Inflamm 2022; 2022:5188895. [PMID: 36570020 PMCID: PMC9771653 DOI: 10.1155/2022/5188895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 12/23/2022] Open
Abstract
Background Klebsiella pneumoniae (K. pneu) is a leading cause of gram-negative pneumonia, which requires effective treatment. Adipose-derived mesenchymal stem cell- (ADSC-) derived exosomal microRNAs (miRNAs) have presented the inhibitory effect of multiple diseases. However, the function of ADSC-derived exosomal miRNAs in K. pneu remains unclear. Aim In this study, we aimed to explore the effect of ADSC-derived exosomal miR-181-5p on K. pneu infection-induced lung injury. Methods C57BL/6 mouse model was established by infection of K. pneu. ADSCs and exosomes were extracted and characterized in vitro. The translocation of ADSC-derived exosomes to bone marrow-derived macrophages (BMDMs) was detected. The level of miR-181a-5p was detected by real-time PCR. The secretion of inflammatory factors was determined by ELISA. The interaction between miR-181a-5p with STAT3 was identified. Results We successfully isolated the ADSCs that express positive markers CD90 and CD105 rather than CD31 and CD45. The exosomal miR-181a-5p secreted by ADSCs were internalized by BMDM and K. pneu infection stimulated the miR-181a-5p level in bronchoalveolar lavage fluid (BALF) and BMDM. ADSC-derived exosomal miR-181a-5p repressed pulmonary outgrowth and dissemination of K. pneu infection in mice, repressed cellular infiltration in lung tissue, and attenuated the inflammasome activity and the levels of IL-1β and IL-18 in the lung. Mechanically, miR-181a-5p was able to inhibit STAT3 expression at posttranscriptional levels and repressed Nlrp3 and Asc expression in BMDM. Conclusion Consequently, we concluded that ADSC-derived exosomal miR-181a-5p alleviated Klebsiella pneumonia infection-induced lung injury by targeting STAT3 signaling. ADSC-derived exosomal miR-181a-5p may serve as a potential candidate for the treatment of Klebsiella pneumonia infection-induced lung injury.
Collapse
|
32
|
Bellei B, Migliano E, Picardo M. Therapeutic potential of adipose tissue-derivatives in modern dermatology. Exp Dermatol 2022; 31:1837-1852. [PMID: 35102608 DOI: 10.1111/exd.14532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Stem cell-mediated therapies in combination with biomaterial and growth factor-based approaches in regenerative medicine are rapidly evolving with increasing application beyond the dermatologic field. Adipose-derived stem cells (ADSCs) are the more frequently used adult stem cells due to their abundance and easy access. In the case of volumetric defects, adipose tissue can take the shape of defects, restoring the volume and enhancing the regeneration of receiving tissue. When regenerative purposes prevail on volume restoration, the stromal vascular fraction (SVF) rich in staminal cells, purified mesenchymal stem cells (MSCs) or their cell-free derivatives grafting are favoured. The therapeutic efficacy of acellular approaches is explained by the fact that a significant part of the natural propensity of stem cells to repair damaged tissue is ascribable to their secretory activity that combines mitogenic factors, cytokines, chemokines and extracellular matrix components. Therefore, the secretome's ability to modulate multiple targets simultaneously demonstrated preclinical and clinical efficacy in reversing pathological mechanisms of complex conditions such atopic dermatitis (AD), vitiligo, psoriasis, acne and Lichen sclerosus (LS), non-resolving wounds and alopecia. This review analysing both in vivo and in vitro models gives an overview of the clinical relevance of adipose tissue-derivatives such as autologous fat graft, stromal vascular fraction, purified stem cells and secretome for skin disorders application. Finally, we highlighted the major disease-specific limitations and the future perspective in this field.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Emilia Migliano
- Department of Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
33
|
Vargel İ, Tuncel A, Baysal N, Hartuç-Çevik İ, Korkusuz F. Autologous Adipose-Derived Tissue Stromal Vascular Fraction (AD-tSVF) for Knee Osteoarthritis. Int J Mol Sci 2022; 23:13517. [PMID: 36362308 PMCID: PMC9658499 DOI: 10.3390/ijms232113517] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 07/30/2023] Open
Abstract
Adipose tissue contains adult mesenchymal stem cells that may modulate the metabolism when applied to other tissues. Stromal vascular fraction (SVF) can be isolated from adipose tissue mechanically and/or enzymatically. SVF was recently used to decrease the pain and improve the function of knee osteoarthritis (OA) patients. Primary and/or secondary OA causes inflammation and degeneration in joints, and regenerative approaches that may modify the natural course of the disease are limited. SVF may modulate inflammation and initiate regeneration in joint tissues by initiating a paracrine effect. Chemokines released from SVF may slow down degeneration and stimulate regeneration in joints. In this review, we overviewed articular joint cartilage structures and functions, OA, and macro-, micro-, and nano-fat isolation techniques. Mechanic and enzymatic SVF processing techniques were summarized. Clinical outcomes of adipose tissue derived tissue SVF (AD-tSVF) were evaluated. Medical devices that can mechanically isolate AD-tSVF were listed, and publications referring to such devices were summarized. Recent review manuscripts were also systematically evaluated and included. Transferring adipose tissues and cells has its roots in plastic, reconstructive, and aesthetic surgery. Micro- and nano-fat is also transferred to other organs and tissues to stimulate regeneration as it contains regenerative cells. Minimal manipulation of the adipose tissue is recently preferred to isolate the regenerative cells without disrupting them from their natural environment. The number of patients in the follow-up studies are recently increasing. The duration of follow up is also increasing with favorable outcomes from the short- to mid-term. There are however variations for mean age and the severity of knee OA patients between studies. Positive outcomes are related to the higher number of cells in the AD-tSVF. Repetition of injections and concomitant treatments such as combining the AD-tSVF with platelet rich plasma or hyaluronan are not solidified. Good results were obtained when combined with arthroscopic debridement and micro- or nano-fracture techniques for small-sized cartilage defects. The optimum pressure applied to the tissues and cells during filtration and purification of the AD-tSVF is not specified yet. Quantitative monitoring of articular joint cartilage regeneration by ultrasound, MR, and synovial fluid analysis as well as with second-look arthroscopy could improve our current knowledge on AD-tSVF treatment in knee OA. AD-tSVF isolation techniques and technologies have the potential to improve knee OA treatment. The duration of centrifugation, filtration, washing, and purification should however be standardized. Using gravity-only for isolation and filtration could be a reasonable approach to avoid possible complications of other methodologies.
Collapse
Affiliation(s)
- İbrahim Vargel
- Department of Plastic Reconstructive and Aesthetic Surgery, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - Ali Tuncel
- Department of Chemical Engineering, Engineering Faculty, Hacettepe University, Universiteler Mahallesi, Hacettepe Beytepe Campus #31, Çankaya, Ankara 06800, Turkey
| | - Nilsu Baysal
- Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - İrem Hartuç-Çevik
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - Feza Korkusuz
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| |
Collapse
|
34
|
Alheib O, da Silva LP, Kwon IK, Reis RL, Correlo VM. Preclinical research studies for treating severe muscular injuries: focus on tissue-engineered strategies. Trends Biotechnol 2022; 41:632-652. [PMID: 36266101 DOI: 10.1016/j.tibtech.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
Severe skeletal muscle injuries are a lifelong trauma with limited medical solutions. Significant progress has been made in developing in vitro surrogates for treating such trauma. However, more attention is needed when translating these approaches to the clinic. In this review, we survey the potential of tissue-engineered surrogates in promoting muscle healing, by critically analyzing data from recent preclinical models. The therapeutic advantages provided by a combination of different biomaterials, cell types, and biochemical mediators are discussed. Current therapies on muscle healing are also summarized, emphasizing their main advantages and drawbacks. We also discuss previous and ongoing clinical trials as well as highlighting future directions for the field.
Collapse
Affiliation(s)
- Omar Alheib
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília P da Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Dental Materials, School of Dentistry, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Vitor M Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
35
|
González-Cubero E, González-Fernández ML, Rodríguez-Díaz M, Palomo-Irigoyen M, Woodhoo A, Villar-Suárez V. Application of adipose-derived mesenchymal stem cells in an in vivo model of peripheral nerve damage. Front Cell Neurosci 2022; 16:992221. [PMID: 36159399 PMCID: PMC9493127 DOI: 10.3389/fncel.2022.992221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuropathic pain is one of the most difficult to treat chronic pain syndromes. It has significant effects on patients’ quality of life and substantially adds to the burden of direct and indirect medical costs. There is a critical need to improve therapies for peripheral nerve regeneration. The aim of this study is to address this issue by performing a detailed analysis of the therapeutic benefits of two treatment options: adipose tissue derived-mesenchymal stem cells (ASCs) and ASC-conditioned medium (CM). Methods To this end, we used an in vivo rat sciatic nerve damage model to investigate the molecular mechanisms involved in the myelinating capacity of ASCs and CM. Furthermore, effect of TNF and CM on Schwann cells (SCs) was evaluated. For our in vivo model, biomaterial surgical implants containing TNF were used to induce peripheral neuropathy in rats. Damaged nerves were also treated with either ASCs or CM and molecular methods were used to collect evidence of nerve regeneration. Post-operatively, rats were subjected to walking track analysis and their sciatic functional index was evaluated. Morphological data was gathered through transmission electron microscopy (TEM) of sciatic nerves harvested from the experimental rats. We also evaluated the effect of TNF on Schwann cells (SCs) in vitro. Genes and their correspondent proteins associated with nerve regeneration were analyzed by qPCR, western blot, and confocal microscopy. Results Our data suggests that both ASCs and CM are potentially beneficial treatments for promoting myelination and axonal regeneration. After TNF-induced nerve damage we observed an upregulation of c-Jun along with a downregulation of Krox-20 myelin-associated transcription factor. However, when CM was added to TNF-treated nerves the opposite effect occurred and also resulted in increased expression of myelin-related genes and their corresponding proteins. Conclusion Findings from our in vivo model showed that both ASCs and CM aided the regeneration of axonal myelin sheaths and the remodeling of peripheral nerve morphology.
Collapse
Affiliation(s)
- Elsa González-Cubero
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
| | | | - María Rodríguez-Díaz
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
| | - Marta Palomo-Irigoyen
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Genes and Disease Group, Department of Dermatology, Medical University of Vienna, Anna Spiegel Center of Translational Research, Vienna, Austria
| | - Ashwin Woodhoo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Vega Villar-Suárez
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
- Institute of Biomedicine (IBIOMED), University of León-Universidad de León, León, Spain
- *Correspondence: Vega Villar-Suárez,
| |
Collapse
|
36
|
Corneal Regeneration Using Adipose-Derived Mesenchymal Stem Cells. Cells 2022; 11:cells11162549. [PMID: 36010626 PMCID: PMC9406486 DOI: 10.3390/cells11162549] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Adipose-derived stem cells are a subtype of mesenchymal stem cell that offers the important advantage of being easily obtained (in an autologous manner) from low invasive procedures, rendering a high number of multipotent stem cells with the potential to differentiate into several cellular lineages, to show immunomodulatory properties, and to promote tissue regeneration by a paracrine action through the secretion of extracellular vesicles containing trophic factors. This secretome is currently being investigated as a potential source for a cell-free based regenerative therapy for human tissues, which would significantly reduce the involved costs, risks and law regulations, allowing for a broader application in real clinical practice. In the current article, we will review the existing preclinical and human clinical evidence regarding the use of such adipose-derived mesenchymal stem cells for the regeneration of the three main layers of the human cornea: the epithelium (derived from the surface ectoderm), the stroma (derived from the neural crest mesenchyme), and the endothelium (derived from the neural crest cells).
Collapse
|
37
|
Wang H, Xuan P, Tian H, Hao X, Yang J, Xu X, Qiao L. Adipose‑derived mesenchymal stem cell‑derived HCAR1 regulates immune response in the attenuation of sepsis. Mol Med Rep 2022; 26:279. [PMID: 35856408 PMCID: PMC9364135 DOI: 10.3892/mmr.2022.12795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/15/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis serves as a leading cause of admission to and death of patients in the intensive care unit (ICU) and is described as a systemic inflammatory response syndrome caused by abnormal host response to infection. Adipose‑derived mesenchymal stem cells (ADSCs) have exhibited reliable and promising clinical application potential in multiple disorders. However, the function and the mechanism of ADSCs in sepsis remain elusive. In the present study, the crucial inhibitory effect of ADSC‑derived hydroxy‑carboxylic acid receptor 1 (HCAR1) on sepsis was identified. Reverse transcription quantitative‑PCR determined that the mRNA expression of HCAR1 was reduced while the mRNA expression of Toll‑like receptor 4 (TLR4), major histocompatibility complex class II (MHC II), NOD‑like receptor family pyrin domain containing 3 (NLRP3), and the levels of interleukin‑1β (IL‑1β), tumor necrosis factor‑α (TNF‑α), interleukin‑10 (IL‑10), and interleukin‑18 (IL‑18) were enhanced in the peripheral blood of patients with sepsis. The expression of HCAR1 was negatively correlated with TLR4 (r=‑0.666), MHC II (r=‑0.587), and NLRP3 (r=‑0.621) expression and the expression of TLR4 was positively correlated with NLRP3 (r=0.641), IL‑1β (r=0.666), TNF‑α (r=0.606), and IL‑18 (r=0.624) levels in the samples. Receiver operating characteristic (ROC) curve analysis revealed that the area under the ROC curve (AUC) of HCAR1, TLR4, MHC II and NLRP3 mRNA expression was 0.830, 0.853, 0.735 and 0.945, respectively, in which NLRP3 exhibited the highest diagnostic value, and the AUC values of IL‑1β, IL‑18, TNF‑α, and IL‑10 were 0.751, 0.841, 0.924 and 0.729, respectively, in which TNF‑α exhibited the highest diagnostic value. A sepsis rat model was established by injecting lipopolysaccharide (LPS) and the rats were randomly divided into 5 groups, including a normal control group (NC group; n=6), a sepsis model group (LPS group; n=6), an ADSC transplantation group (L + M group; n=6), a combined HCAR1 receptor agonist group [L + HCAR1 inducer (Gi) + M group; n=6], and a combined HCAR1 receptor inhibitor group [L + HCAR1 blocker (Gk) + M group; n=6]. Hematoxylin and eosin staining determined that ADSCs attenuated the lung injury of septic rats and ADSC‑derived HCAR1 enhanced the effect of ADSCs. The expression of HCAR1, TLR4, MHC II, NLRP3, IL‑1β, IL‑18 and TNF‑α levels were suppressed by ADSCs and the effect was further induced by ADSC‑derived HCAR1. However, ADSC‑derived HCAR1 induced the levels of anti‑inflammatory factor IL‑10. The negative correlation of HCAR1 expression with TLR4, MHC II, and NLRP3 expression in the peripheral blood and lung tissues of the rats was then identified. It is thus concluded that ADSC‑derived HCAR1 regulates immune response in the attenuation of sepsis. ADSC‑derived HCAR1 may be a promising therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China
| | - Pengfei Xuan
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China
| | - Hongjun Tian
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China
| | - Xinyu Hao
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China
| | - Jingping Yang
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China
| | - Xiyuan Xu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China,Correspondence to: Dr Xiyuan Xu or Dr Lixia Qiao, Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, 20 Shaoxian Road, Kundulun, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China, E-mail: , E-mail:
| | - Lixia Qiao
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China,Correspondence to: Dr Xiyuan Xu or Dr Lixia Qiao, Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Inner Mongolia Medical University, 20 Shaoxian Road, Kundulun, Baotou, Inner Mongolia Autonomous Region 014010, P.R. China, E-mail: , E-mail:
| |
Collapse
|
38
|
Adipose-derived stem cell-enriched lipotransfer reverses skin sclerosis by suppressing dermal inflammation. Plast Reconstr Surg 2022; 150:578-587. [PMID: 35759642 DOI: 10.1097/prs.0000000000009435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Scleroderma is a chronic autoimmune disease with an incidence of 2.7 per 100,000 people. Traditional lipotransfer has been used to treat atrophic sclerotic skin. Enzymatically processed cell-assisted lipotransfer (CAL) and mechanically processed stromal vascular fraction gel (SVF-gel) are fat products with abundant adipose-derived stem cells (ASCs). The present study aimed to assess whether ASC-enriched lipotransfer elicits superior therapeutic effects on scleroderma. METHODS Scleroderma was induced in nude mice by injections of bleomycin for 4 weeks. Human-derived Coleman fat (CF), CAL, or SVF-gel (0.1 mL) was injected into sclerotic lesions. Histologic examinations, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and expression analyses of inflammatory factors in skin lesions and transferred fat were performed at 4 weeks post-implantation. RESULTS Dermal thickness was lower in the CF- (339.0 ± 19.66 µm), CAL- (271.0 ± 16.15 µm), and SVF-gel- (197.8 ± 12.99 µm) injected groups than in the phosphate-buffered saline-injected group (493.3 ± 28.13 µm) (P<0.05). The numbers of TUNEL+ and Mac2+ cells in fat tissue were significantly higher in the CF-injected group than in the SVF-gel- and CAL-injected groups. Expression of monocyte chemotactic protein-1 and interleukin-6 was significantly lower in the ASC-enriched groups than in the CF group. Histologic analysis showed there were far fewer macrophages and myofibroblasts in skin lesions in the ASC-enriched groups than in the CF group. CONCLUSION Transplantation of SVF-gel and CAL, which contain abundant ASCs, reduces the levels of apoptotic cells and inflammation, significantly reverses skin sclerosis, and elicits superior anti-inflammatory and anti-fibrotic effects on scleroderma.
Collapse
|
39
|
Yuan Y, Zhang X, Zhan Y, Tang S, Deng P, Wang Z, Li J. Adipose-derived stromal/stem cells are verified to be potential seed candidates for bio-root regeneration in three-dimensional culture. Stem Cell Res Ther 2022; 13:234. [PMID: 35659736 PMCID: PMC9166419 DOI: 10.1186/s13287-022-02907-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/29/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Bio-root regeneration is a promising treatment for tooth loss. It has been reported that dental-derived stem cells are effective seed cells for bio-root construction, but further applications are limited by their few sources. Human adipose tissues have a wide range of sources and numerous studies have confirmed the ability of adipose-derived stromal/stem cells (ASCs) in regenerative medicine. In the current study, the odontogenic capacities of ASCs were compared with dental-derived stem cells including dental follicle cells (DFCs), and stem cells from human exfoliated deciduous teeth (SHEDs). METHODS The biological characteristics of ASCs, DFCs, and SHEDs were explored in vitro. Two-dimensional (2D) and three-dimensional (3D) cultures were compared in vitro. Odontogenic characteristics of porcine-treated dentin matrix (pTDM) induced cells under a 3D microenvironment in vitro were compared. The complexes (cell/pTDM) were transplanted subcutaneously into nude mice to verify regenerative potential. RNA sequencing (RNA-seq) was used to explore molecular mechanisms of different seed cells in bio-root regeneration. RESULTS 3D culture was more efficient in constructing bio-root complexes. ASCs exhibited good biological characteristics similar to dental-derived stem cells in vitro. Besides, pTDM induced ASCs presented odontogenic ability similar to dental-derived stem cells. Furthermore, 3D cultured ASCs/pTDM complex promoted regeneration of dentin-like, pulp-like, and periodontal fiber-like tissues in vivo. Analysis indicated that PI3K-Akt, VEGF signaling pathways may play key roles in the process of inducing ASCs odontogenic differentiation by pTDM. CONCLUSIONS ASCs are potential seed cells for pTDM-induced bio-root regeneration, providing a basis for further research and application.
Collapse
Affiliation(s)
- Yu Yuan
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Yuzhen Zhan
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Song Tang
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Pingmeng Deng
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Zhenxiang Wang
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China.
| |
Collapse
|
40
|
Tevlin R, desJardins-Park H, Huber J, DiIorio S, Longaker M, Wan D. Musculoskeletal tissue engineering: Adipose derived stromal cell implementation for the treatment of osteoarthritis. Biomaterials 2022; 286:121544. [DOI: 10.1016/j.biomaterials.2022.121544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/23/2021] [Accepted: 09/13/2021] [Indexed: 11/02/2022]
|
41
|
Kim SY, Yoon TH, Na J, Yi SJ, Jin Y, Kim M, Oh TH, Chung TW. Mesenchymal Stem Cells and Extracellular Vesicles Derived from Canine Adipose Tissue Ameliorates Inflammation, Skin Barrier Function and Pruritus by Reducing JAK/STAT Signaling in Atopic Dermatitis. Int J Mol Sci 2022; 23:ijms23094868. [PMID: 35563259 PMCID: PMC9101369 DOI: 10.3390/ijms23094868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Canine atopic dermatitis (AD) is a common chronic inflammatory skin disorder resulting from imbalance between T lymphocytes. Current canine AD treatments use immunomodulatory drugs, but some of the dogs have limitations that do not respond to standard treatment, or relapse after a period of time. Thus, the purpose of this study was to evaluate the immunomodulatory effect of mesenchymal stem cells derived from canine adipose tissue (cASCs) and cASCs-derived extracellular vesicles (cASC-EVs) on AD. First, we isolated and characterized cASCs and cASCs-EVs to use for the improvement of canine atopic dermatitis. Here, we investigated the effect of cASCs or cASC-EVs on DNCB-induced AD in mice, before using for canine AD. Interestingly, we found that cASCs and cASC-EVs improved AD-like dermatitis, and markedly decreased levels of serum IgE, (49.6%, p = 0.002 and 32.1%, p = 0.016 respectively) epidermal inflammatory cytokines and chemokines, such as IL-4 (32%, p = 0.197 and 44%, p = 0.094 respectively), IL-13 (47.4%, p = 0.163, and 50.0%, p = 0.039 respectively), IL-31 (64.3%, p = 0.030 and 76.2%, p = 0.016 respectively), RANTES (66.7%, p = 0.002 and 55.6%, p = 0.007) and TARC (64%, p = 0.016 and 86%, p = 0.010 respectively). In addition, cASCs or cASC-EVs promoted skin barrier repair by restoring transepidermal water loss, enhancing stratum corneum hydration and upregulating the expression levels of epidermal differentiation proteins. Moreover, cASCs or cASC-EVs reduced IL-31/TRPA1-mediated pruritus and activation of JAK/STAT signaling pathway. Taken together, these results suggest the potential of cASCs or cASC-EVs for the treatment of chronic inflammation and damaged skin barrier in AD or canine AD.
Collapse
Affiliation(s)
- Sung Youl Kim
- GNG CELL Co., Ltd., R&D Center, 122 Unjung-ro, Bundang-gu, Seongnam-si 13466, Korea; (S.Y.K.); (T.H.Y.)
| | - Tae Hong Yoon
- GNG CELL Co., Ltd., R&D Center, 122 Unjung-ro, Bundang-gu, Seongnam-si 13466, Korea; (S.Y.K.); (T.H.Y.)
| | - Jungtae Na
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea;
| | - Seong Joon Yi
- Department of Veterinary Anatomy, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
| | - Yunseok Jin
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; (Y.J.); (M.K.)
| | - Minji Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; (Y.J.); (M.K.)
| | - Tae-Ho Oh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; (Y.J.); (M.K.)
- Correspondence: (T.-H.O.); (T.-W.C.)
| | - Tae-Wook Chung
- JIN BioCell Co., Ltd., R&D Center, #101-103, National Clinical Research Center for Korean Medicine, Pusan National University Korean Medicine Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan-si 50612, Korea
- Correspondence: (T.-H.O.); (T.-W.C.)
| |
Collapse
|
42
|
Intravitreal Administration Effect of Adipose-Derived Mesenchymal Stromal Cells Combined with Anti-VEGF Nanocarriers, in a Pharmaceutically Induced Animal Model of Retinal Vein Occlusion. Stem Cells Int 2022; 2022:2760147. [PMID: 35251186 PMCID: PMC8890865 DOI: 10.1155/2022/2760147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Antiangiogenic therapeutic agents (anti-VEGF) have contributed to the treatment of retinal vein occlusion (RVO) while mesenchymal stromal cell- (MSCs-) mediated therapies limit eye degeneration. The aim of the present study is to determine the effect of adipose-derived MSCs (ASCs) combination with nanocarriers of anti-VEGF in a pharmaceutically induced animal model of RVO. Nanoparticles (NPs) of thiolated chitosan (ThioCHI) with encapsulated anti-VEGF antibody were prepared. ASCs were isolated and genetically modified to secrete the green fluorescence GFP. Twenty-four New Zealand rabbits were divided into the I-IV equal following groups: ASCs, ASCs + nanoThioCHI-anti-VEGF, RVO, and control. For the RVO induction, groups I-III received intravitreal (iv) injections of MEK kinase inhibitor, PD0325901. Twelve days later, therapeutic regiments were administered at groups I-II while groups III-IV received BSS. Two weeks later, the retinal damage evaluated via detailed ophthalmic examinations, histological analysis of fixed retinal sections, ELISA for secreted cytokines in peripheral blood or vitreous fluid, and Q-PCR for the expression of related to the occlusion and inflammatory genes. Mild retinal edema and hemorrhages, limited retinal detachment, and vasculature attenuation were observed in groups I and II compared with the pathological symptoms of group III which presented a totally disorganized retinal structure, following of positive immunostaining for neovascularization and related to RVO markers. Important reduction of the high secreted levels of inflammatory cytokines was quantified in groups I and II vitreous fluid, while the expression of the RVO-related and inflammatory genes has been significantly decreased especially in group II. GFP+ ASCs, capable of being differentiated towards neural progenitors, detected in dissociated retina tissues of group II presenting their attachment to damaged area. Conclusively, a stem cell-based therapy for RVO is proposed, accompanied by sustained release of anti-VEGF, in order to combine the paracrine action of ASCs and the progressive reduction of neovascularization.
Collapse
|
43
|
Al-Ghadban S, Artiles M, Bunnell BA. Adipose Stem Cells in Regenerative Medicine: Looking Forward. Front Bioeng Biotechnol 2022; 9:837464. [PMID: 35096804 PMCID: PMC8792599 DOI: 10.3389/fbioe.2021.837464] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last decade, stem cell-based regenerative medicine has progressed to clinical testing and therapeutic applications. The applications range from infusions of autologous and allogeneic stem cells to stem cell-derived products. Adult stem cells from adipose tissue (ASCs) show significant promise in treating autoimmune and neurodegenerative diseases, vascular and metabolic diseases, bone and cartilage regeneration and wound defects. The regenerative capabilities of ASCs in vivo are primarily orchestrated by their secretome of paracrine factors and cell-matrix interactions. More recent developments are focused on creating more complex structures such as 3D organoids, tissue elements and eventually fully functional tissues and organs to replace or repair diseased or damaged tissues. The current and future applications for ASCs in regenerative medicine are discussed here.
Collapse
Affiliation(s)
| | | | - Bruce A. Bunnell
- Department of Microbiology Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
44
|
Dias I, Pinheiro D, Ribeiro Silva K, Stumbo AC, Thole A, Cortez E, de Carvalho L, Carvalho SN. Secretome effect of adipose tissue-derived stem cells cultured two-dimensionally and three-dimensionally in mice with streptozocin induced type 1 diabetes. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 2:100069. [PMID: 34988430 PMCID: PMC8710992 DOI: 10.1016/j.crphar.2021.100069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 12/31/2022] Open
Abstract
Aims To analyze therapeutic potential of the conditioned medium from adipose tissue-derived stem cells (ASC) cultivated in 2D (CM-2D) and 3D (CM-3D) models, in mice with Type 1 diabetes (T1D) induced by streptozotocin. Main methods Viability andCD105 expression of 2D and 3D ASC were analyzed by flow cytometry. T1D was induced in mice by multiple injections of streptozocin. On the 28th and 29th days after the first injection of streptozocin, diabetic animals received CM-2D or CM-3D. Pancreatic, CM-2D, and CM-3D cytokines were analyzed by cytometric bead array (CBA) and insulin and PDX-1 were observed and quantified by immunohistochemistry. Apoptosis-related proteins were quantified by Western Blotting. Key findings ASC in three-dimensional culture released increased levels of IL-6 and IL-2, while IL-4 was decreased. CM-2D induced pancreatic PDX-1 expression and was able to reduce glycemia in diabetic mice one week after injections but not CM-3D. On the other hand, CM-2D and CM-3D were not able to reverse apoptosis of pancreatic cells in diabetic mice nor to increase insulin expression. Significance Together, these results demonstrate that the 3D cell culture secretome was not able to improve diabetes type 1 symptoms at the times observed, while 2D cell secretome improved glycemic levels in T1D mice.
Collapse
Affiliation(s)
- Isabelle Dias
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| | - Daphne Pinheiro
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| | - Karina Ribeiro Silva
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| | - Ana Carolina Stumbo
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| | - Alessandra Thole
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| | - Erika Cortez
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| | - Laís de Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| | - Simone Nunes Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro, 20550-170, Brazil
| |
Collapse
|
45
|
Semsarzadeh N, Khetarpal S. Rise of stem cell therapies in aesthetics. Clin Dermatol 2022; 40:49-56. [DOI: 10.1016/j.clindermatol.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Guerrero J, Dasen B, Frismantiene A, Pigeot S, Ismail T, Schaefer DJ, Philippova M, Resink TJ, Martin I, Scherberich A. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:213-229. [PMID: 35259280 PMCID: PMC8929526 DOI: 10.1093/stcltm/szab021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/31/2021] [Indexed: 11/24/2022] Open
Abstract
Cells of the stromal vascular fraction (SVF) of human adipose tissue have the capacity to generate osteogenic grafts with intrinsic vasculogenic properties. However, cultured adipose-derived stromal cells (ASCs), even after minimal monolayer expansion, lose osteogenic capacity in vivo. Communication between endothelial and stromal/mesenchymal cell lineages has been suggested to improve bone formation and vascularization by engineered tissues. Here, we investigated the specific role of a subpopulation of SVF cells positive for T-cadherin (T-cad), a putative endothelial marker. We found that maintenance during monolayer expansion of a T-cad-positive cell population, composed of endothelial lineage cells (ECs), is mandatory to preserve the osteogenic capacity of SVF cells in vivo and strongly supports their vasculogenic properties. Depletion of T-cad-positive cells from the SVF totally impaired bone formation in vivo and strongly reduced vascularization by SVF cells in association with decreased VEGF and Adiponectin expression. The osteogenic potential of T-cad-depleted SVF cells was fully rescued by co-culture with ECs from a human umbilical vein (HUVECs), constitutively expressing T-cad. Ectopic expression of T-cad in ASCs stimulated mineralization in vitro but failed to rescue osteogenic potential in vivo, indicating that the endothelial nature of the T-cad-positive cells is the key factor for induction of osteogenesis in engineered grafts based on SVF cells. This study demonstrates that crosstalk between stromal and T-cad expressing endothelial cells within adipose tissue critically regulates osteogenesis, with VEGF and adiponectin as associated molecular mediators.
Collapse
Affiliation(s)
- Julien Guerrero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Boris Dasen
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Agne Frismantiene
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sebastien Pigeot
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tarek Ismail
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Maria Philippova
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Therese J Resink
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Corresponding author: Arnaud Scherberich, Department of Biomedicine, Hebelstrasse 20, University Hospital Basel, 4031 Basel, Switzerland. Tel: +41 061 328 73 75;
| |
Collapse
|
47
|
Guillaume VGJ, Ruhl T, Boos AM, Beier JP. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:394-406. [PMID: 35274703 PMCID: PMC9052412 DOI: 10.1093/stcltm/szac002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
Adipose-derived stem or stromal cells (ASCs) possess promising potential in the fields of tissue engineering and regenerative medicine due to their secretory activity, their multilineage differentiation potential, their easy harvest, and their rich yield compared to other stem cell sources. After the first identification of ASCs in humans in 2001, the knowledge of their cell biology and cell characteristics have advanced, and respective therapeutic options were determined. Nowadays, ASC-based therapies are on the verge of translation into clinical practice. However, conflicting evidence emerged in recent years about the safety profile of ASC applications as they may induce tumor progression and invasion. Numerous in-vitro and in-vivo studies demonstrate a potential pro-oncogenic effect of ASCs on various cancer entities. This raises questions about the safety profile of ASCs and their broad handling and administration. However, these findings spark controversy as in clinical studies ASC application did not elevate tumor incidence rates, and other experimental studies reported an inhibitory effect of ASCs on different cancer cell types. This comprehensive review aims at providing up-to-date information about ASCs and cancer cell interactions, and their potential carcinogenesis and tumor tropism. The extracellular signaling activity of ASCs, the interaction of ASCs with the tumor microenvironment, and 3 major organ systems (the breast, the skin, and genitourinary system) will be presented with regard to cancer formation and progression.
Collapse
Affiliation(s)
- Vincent G J Guillaume
- Corresponding author: Vincent G. J. Guillaume, Resident Physician and Research Assistant, Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany. Tel: 0049-241-80-89700; Fax: 0241-80-82448;
| | - Tim Ruhl
- Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Anja M Boos
- Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
48
|
Hermida-Prieto M, García-Castro J, Mariñas-Pardo L. Systemic Treatment of Immune-Mediated Keratoconjunctivitis Sicca with Allogeneic Stem Cells Improves the Schirmer Tear Test Score in a Canine Spontaneous Model of Disease. J Clin Med 2021; 10:jcm10245981. [PMID: 34945277 PMCID: PMC8709250 DOI: 10.3390/jcm10245981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 12/17/2022] Open
Abstract
Keratoconjunctivitis sicca (KCS) is characterized by ocular discomfort, conjunctival hyperaemia, and corneal scarring, causing reduced aqueous tear production that can be measured using the standard Schirmer tear test (STT). Canine adipose tissue-derived MSCs (cATMSCs) have been proposed as treatment due to their anti-inflammatory effect, by releasing cytokines and immunomodulatory soluble factors. PURPOSE The aim of this study was to evaluate the effect of the systemic administration of cATMSCs on tear production in dogs with immune-mediated KCS, compared to classical Cyclosporine A (CsA) treatment. METHODS Twenty-eight client-owned dogs with spontaneous KCS were allocated in the experimental group (n = 14, treated with systemic cATMSCs or control group (n = 14, treated with CsA). SST values increased significantly at days 15 (p = 0.002), 45 (p = 0.042) and 180 (p = 0.005) with no observed side-effects in the experimental group. Eyes with an initial STT value of 11-14 mm/min maintained significant improvement at day 180, needing only artificial tears as treatment. Eyes with an initial STT value <11 mm/min needed cyclosporin treatment at day 45, so follow-up was stopped. Control animals treated with CsA did not improve their STT at day 180. RESULTS AND CONCLUSIONS Systemic allogeneic cATMSCs application appeared to be a feasible and effective therapy with positive outcome in dogs with initial STT between 11-14 mm/min, with a significant improvement in tear production. The STT increment was maintained for at least 180 days, without needing additional medication, thus suggesting it could constitute an alternative therapy to classical immunosuppressive treatments.
Collapse
Affiliation(s)
- Manuel Hermida-Prieto
- Instituto de Investigación Biomédica de A Coruña—Universidade de A Coruña (INIBIC—UDC), 15006 A Coruna, Spain;
| | - Javier García-Castro
- Faculty of Veterinary Medicine, Universidad Alfonso X El Sabio (UAX), 28691 Villanueva de la Canada, Spain;
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Mariñas-Pardo
- Instituto de Investigación Biomédica de A Coruña—Universidade de A Coruña (INIBIC—UDC), 15006 A Coruna, Spain;
- Correspondence:
| |
Collapse
|
49
|
A Retrospective Study of SVF-gel Compared With Nanofat Combined With High-density Fat in the Treatment of Early Periorbital Aging. Ophthalmic Plast Reconstr Surg 2021; 38:340-347. [PMID: 34889312 DOI: 10.1097/iop.0000000000002103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To compare the effectiveness of transplantation with stromal vascular fraction (SVF)-gel or nanofat combined with high-density fat prepared with the Coleman technique (nanofat+high-density fat) to restore volume in the periorbital region or for periorbital rejuvenation in early periorbital aging. METHODS This retrospective study included 103 patients who received a transplant of SVF-gel (n = 58) or nanofat+high-density fat (n = 45) to restore volume in the periorbital region (n = 85) or for periorbital rejuvenation (n = 18) in our hospital between January 2016 and January 2020. Patient satisfaction and the reoperation rate were evaluated. RESULTS All patients had improved periorbital contouring and augmentation. Among the patients that received treatment to restore volume in the periorbital region, 17% and 65.9% of patients administered SVF-gel were very satisfied or satisfied, and 5.3% and 44.7% of patients administered nanofat+high-density fat were very satisfied or satisfied. PATIENTS administered SVF-gel were significantly more satisfied than patients administered nanofat+high-density fat with improvements in periorbital contouring (p < 0.05). Among the patients that received treatment for periorbital rejuvenation, 54.5% and 27.3% of patients administered SVF-gel were very satisfied or satisfied, and 28.6% and 42.8% of patients administered nanofat+high-density fat were very satisfied or satisfied. There was no significant difference between groups (p > 0.05). Some patients underwent a second operation after 3 to 8 months. Patients administered SVF-gel to restore volume in the periorbital region had a significantly lower reoperation rate than patients administered nanofat+high-density fat (12.7% [6/47] vs. 34.2% [13/38]; p < 0.05). There was no significant difference in the reoperation rate in patients treated for periorbital rejuvenation (9.1% [1/11] vs. 14.3% [1/7]; p > 0.05). CONCLUSION SVF-gel and nanofat+high-density fat are effective for restoring volume in the periorbital region and for periorbital rejuvenation in early periorbital aging. The reoperation rate was significantly lower and patient satisfaction scores were significantly higher in patients administered SVF-gel to restore volume in the periorbital region compared with patients administered nanofat+high-density fat.
Collapse
|
50
|
Shadmanesh A, Nazari H, Shirazi A, Ahmadi E, Shams-Esfandabadi N. Human amniotic membrane stem cells' conditioned medium has better support for in-vitro production of bovine embryos than FBS. Reprod Domest Anim 2021; 57:173-184. [PMID: 34741476 DOI: 10.1111/rda.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/02/2021] [Indexed: 11/27/2022]
Abstract
Apart from oocyte quality, the media used has a significant effect on the production and quality of blastocysts produced in vitro. This study was designed to evaluate the replacement of serum with human amniotic membrane stem cells' conditioned medium (hAMSCs-CM) during bovine embryo culture on the quantity and quality of produced blastocysts. The in-vitro-produced embryos on the third day of IVC were randomly divided into the following culture groups: SOFaa + 5% FBS (Control), SOFaa + 5% hAMSCs-CM (5% CM), SOFaa + 2.5% hAMSCs-CM + 2.5% FBS (2.5% CM) and SOFaa + hAMSC co-culture (co-culture). The blastocyst and hatching rates, blastocyst cells number (the number of trophectoderm, inner cell mass and total cells), and the expression of some developmentally important genes (OCT4, PLAC8 and COX2 genes) in the treated groups, especially in the 5% CM, compared to the control had improved (p < .05). No significant difference was observed between groups for viability and hatching rate in vitrified-warmed blastocysts. Due to the positive effect of hAMSCs' conditioned medium (hAMSCs-CM) on blastocyst production, as well as its ease of preparation and the need to avoid the transmission of microbial contamination to the culture medium, hAMSCs-CM can be used as a suitable alternative to FBS during 3 to 8 days of bovine embryo culture.
Collapse
Affiliation(s)
- Ali Shadmanesh
- Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.,Department of Verterinary Medicine, Eghlid Branch-Islamic Azad University, Eghlid, Iran
| | - Hassan Nazari
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ebrahim Ahmadi
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Naser Shams-Esfandabadi
- Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.,Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| |
Collapse
|