1
|
Ma Y, Dong T, Luan F, Yang J, Miao F, Wei P. Interaction of major facilitator superfamily domain containing 2A with the blood-brain barrier. Neural Regen Res 2025; 20:2133-2152. [PMID: 39248155 DOI: 10.4103/nrr.nrr-d-24-00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment; however, the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood. The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function. It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier, in addition to the transport of lipids, such as docosahexaenoic acid, across the blood-brain barrier. Furthermore, an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases; however, little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier. This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier, including their basic structures and functions, cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier, and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability. This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date. This will not only help to elucidate the pathogenesis of neurological diseases, improve the accuracy of laboratory diagnosis, and optimize clinical treatment strategies, but it may also play an important role in prognostic monitoring. In addition, the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized. This review may contribute to the development of new approaches for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yilun Ma
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Taiwei Dong
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Fei Luan
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Juanjuan Yang
- National Drug Clinical Trial Agency, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine/Xixian New District Central Hospital, Xi'an, Shaanxi Province, China
| | - Feng Miao
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Peifeng Wei
- National Drug Clinical Trial Agency, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine/Xixian New District Central Hospital, Xi'an, Shaanxi Province, China
| |
Collapse
|
2
|
Otaegui L, Urgin T, Zaiter T, Zussy C, Vitalis M, Pellequer Y, Acar N, Vigor C, Galano JM, Durand T, Givalois L, Béduneau A, Desrumaux C. Nose-to-brain delivery of DHA-loaded nanoemulsions: A promising approach against Alzheimer's disease. Int J Pharm 2025; 670:125125. [PMID: 39788398 DOI: 10.1016/j.ijpharm.2024.125125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
Reduced docosahexaenoic acid (DHA) concentrations seem to be associated with an increased risk of Alzheimer's disease (AD), and DHA accretion to the brain across the blood-brain-barrier (BBB) can be modulated by various factors. Therefore, there is an urgent need to identify an efficient and non-invasive method to ensure brain DHA enrichment. In the present study, a safe and stable DHA-enriched nanoemulsion, designed to protect DHA against oxidation, was designed and administered intranasally in a transgenic mouse model of AD, the J20 mice. Intranasal treatment with nanoformulated DHA significantly improved well-being and working spatial memory in six-months-old J20 mice. These behavioral effects were associated with a reduction of amyloid deposition, oxidative stress, and neuroinflammation in brain tissues, which may be partially due to DHA-induced inactivation of the pleiotropic kinase GSK3β. In conclusion, intranasal DHA administration exhibited strong therapeutic effects and disease-modifying benefits in the J20 AD model. Given that DHA has already shown safety and tolerability in healthy human subjects, our results further support the need for clinical trials to assess the potential of this approach in Alzheimer's patients.
Collapse
Affiliation(s)
- Léa Otaegui
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Théo Urgin
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Taghrid Zaiter
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France
| | - Charleine Zussy
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Mathieu Vitalis
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Yann Pellequer
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, F-21000 Dijon, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Claire Vigor
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jean-Marie Galano
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Thierry Durand
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Laurent Givalois
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; Laval University, Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Québec City (QC), Canada
| | - Arnaud Béduneau
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Catherine Desrumaux
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France.
| |
Collapse
|
3
|
Ali AH, Hachem M, Ahmmed MK. Compound-Specific Isotope Analysis as a Potential Approach for Investigation of Cerebral Accumulation of Docosahexaenoic Acid: Previous Milestones and Recent Trends. Mol Neurobiol 2024:10.1007/s12035-024-04643-1. [PMID: 39633088 DOI: 10.1007/s12035-024-04643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Docosahexaenoic acid (DHA, C22:6 n-3), a predominant omega-3 polyunsaturated fatty acid in brain, plays a vital role in cerebral development and exhibits functions with potential therapeutic effects (synaptic function, neurogenesis, brain inflammation regulation) in neurodegenerative diseases. The most common approaches of studying the cerebral accretion and metabolism of DHA involve the use of stable or radiolabeled tracers. Although these methods approved kinetic modeling of ratios and turnovers for fatty acids, they are associated with excessive costs, restrictive studies, and singular dosing effects. Compound-specific isotope analysis (CSIA) is recognized as a cost-effective alternative approach for investigating DHA metabolism in vitro and in vivo. This method involves determining variations in 13C content to identify the sources of specific compounds. This review comprehensively discusses a summary of different methods and recent advancements in CSIA application in studying DHA turnover in brain. Following, the ability and applications of CSIA by using gas-chromatography combined with isotope ratio mass-spectrometry to differentiate between natural endogenous DHA in brain and exogenous DHA are also highlighted. In general, the efficiency of CSIA has been demonstrated in utilizing natural 13C enrichment to distinguish between the incorporation of newly synthesized or pre-existing DHA into the brain and other body tissues, eliminating the need of tracers. This review provides comprehensive knowledge, which will have potential applications in both academia and industry for advancing the understanding in neurobiology and enhancing the development of nutritional strategies and pharmaceutical interventions targeting brain health.
Collapse
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates
| | - Mayssa Hachem
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, 4225, Bangladesh
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand
| |
Collapse
|
4
|
Hachem M, Ali AH, Yildiz I, Landry C, Gosselet F. Investigation of Lysophospholipids-DHA transport across an in vitro human model of blood brain barrier. Heliyon 2024; 10:e38871. [PMID: 39421371 PMCID: PMC11483317 DOI: 10.1016/j.heliyon.2024.e38871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Several studies emphasized on the preventive and therapeutic potential of Docosahexaenoic Acid (DHA, 22:6n-3) supplementation in chronic and age-related disorders including neurodegenerative diseases. Researchers principally studied the cerebral accretion of Lysophosphatidylcholine (LysoPC-DHA), the furthermost vital Lysophospholipid-DHA (LysoPL-DHA) in blood plasma. Nevertheless, the cerebral bioavailability of other LysoPL-DHA forms including Lysophosphatidylethanolamine (LysoPE-DHA), and Lysophosphatidylserine (LysoPS-DHA) were not extensively examined even though their vital biological functions in the brain. Hence, the aim of the present study was to evaluate the toxicity and transport of DHA in comparison to several LysoPL-DHA including LysoPC-DHA, LysoPE-DHA and LysoPS-DHA across a human model of blood-brain barrier (BBB). The human brain-like endothelial cells (hBLECs) monolayer tightness was evaluated by the parallel assessment of the permeability of fluorescent marker Lucifer yellow (LY) and revealed the absence of toxicity of non-esterified DHA and all LysoPL-DHA towards hBLECs. LysoPC-DHA, LysoPE-DHA and LysoPS-DHA displayed a higher recovery in the abluminal medium in comparison to non-esterified DHA at 30, 60 and 120 min post-incubation. Among all, LysoPS-DHA revealed the highest apparent coefficient permeability (Papp) 85.87 ± 4.24 x 10-6 cm s-1 and was significantly different than DHA, LysoPC-DHA and LysoPE-DHA. More interestingly, when studying the time course of Papp of DHA, LysoPC-DHA and LysoPE-DHA, at different post-incubation time, this permeability decreases with time especially for LysoPC-DHA and LysoPE-DHA, not for DHA. Furthermore, LysoPS-DHA exhibited the highest intracellular accumulation (10.39 ± 0.49 %) in hBLECs in comparison to all other tested lipids. Finally, differences in 3D structures and molecular electrostatic potential maps calculation of LysoPL-DHA could explain the dissimilar cerebral uptake of LysoPL-DHA. Altogether, our findings raise the novel hypothesis that LysoPS-DHA may represent a preferred physiological carrier of DHA to the brain.
Collapse
Affiliation(s)
- Mayssa Hachem
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Abdelmoneim H. Ali
- Department of Chemical & Petroleum Engineering, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Ibrahim Yildiz
- Department of Chemistry, Khalifa University of Sciences and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Christophe Landry
- Artois University, Blood-Brain Barrier Laboratory, UR 2465, Lens, France
| | - Fabien Gosselet
- Artois University, Blood-Brain Barrier Laboratory, UR 2465, Lens, France
| |
Collapse
|
5
|
Zuo WY, Wen M, Zhao YC, Li XY, Xue CH, Yanagita T, Wang YM, Zhang TT. Effects of short-term supplementation with DHA-enriched phosphatidylcholine and phosphatidylserine on lipid profiles in the brain and liver of n-3 PUFA-deficient mice in early life after weaning. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7939-7952. [PMID: 38843481 DOI: 10.1002/jsfa.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Lack of n-3 polyunsaturated fatty acids during the period of maternity drastically lowers the docosahexaenoic acid (DHA) level in the brain of offspring and studies have demonstrated that different molecular forms of DHA are beneficial to brain development. The aim of this study was to investigate the effect of short-term supplementation with DHA-enriched phosphatidylserine (PS) and phosphatidylcholine (PC) on DHA levels in the liver and brain of congenital n-3-deficient mice. RESULTS Dietary supplementation with DHA significantly changed the fatty acid composition of various phospholipid molecules in the cerebral cortex and liver while DHA-enriched phospholipid was more effective than DHA triglyceride (TG) in increasing brain and liver DHA. Both DHA-PS and DHA-PC could effectively increase the DHA levels, but DHA in the PS form was superior to PC in the contribution of DHA content in the brain ether-linked PC (ePC) and liver lyso-phosphatidylcholine molecular species. DHA-PC showed more significant effects on the increase of DHA in liver TG, PC, ePC, phosphatidylethanolamine (PE) and PE plasmalogen (pPE) molecular species and decreasing the arachidonic acid level in liver PC plasmalogen, ePC, PE and pPE molecular species compared with DHA-PS. CONCLUSION The effect of dietary interventions with different molecular forms of DHA for brain and liver lipid profiles is different, which may provide theoretical guidance for dietary supplementation of DHA for people. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei-Ya Zuo
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Min Wen
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga, Japan
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
6
|
Avallone R, Rustichelli C, Filaferro M, Vitale G. Chemical Characterization and Beneficial Effects of Walnut Oil on a Drosophila melanogaster Model of Parkinson's Disease. Molecules 2024; 29:4190. [PMID: 39275038 PMCID: PMC11397333 DOI: 10.3390/molecules29174190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
A nutritional approach could be a promising strategy to prevent or decrease the progression of neurodegenerative disorders such as Parkinson's disease (PD). The neuroprotective role of walnut oil (WO) was investigated in Drosophila melanogaster treated with rotenone (Rot), as a PD model, WO, or their combination, and compared to controls. WO reduced mortality and improved locomotor activity impairment after 3 and 7 days, induced by Rot. LC-MS analyses of fatty acid levels in Drosophila heads showed a significant increase in linolenic (ALA) and linoleic acid (LA) both in flies fed with the WO-enriched diet and in those treated with the association of WO with Rot. Flies supplemented with the WO diet showed an increase in brain dopamine (DA) level, while Rot treatment significantly depleted dopamine content; conversely, the association of Rot with WO did not modify DA content compared to controls. The greater intake of ALA and LA in the enriched diet enhanced their levels in Drosophila brain, suggesting a neuroprotective role of polyunsaturated fatty acids against Rot-induced neurotoxicity. The involvement of the dopaminergic system in the improvement of behavioral and biochemical parameters in Drosophila fed with WO is also suggested.
Collapse
Affiliation(s)
- Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Monica Filaferro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Vitale
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
7
|
Alves BDS, Schimith LE, da Cunha AB, Dora CL, Hort MA. Omega-3 polyunsaturated fatty acids and Parkinson's disease: A systematic review of animal studies. J Neurochem 2024; 168:1655-1683. [PMID: 38923542 DOI: 10.1111/jnc.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The primary pathological features of PD include the presence of α-synuclein aggregates and Lewy bodies, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Recently, omega-3 fatty acids (ω-3 PUFAs) have been under investigation as a preventive and/or therapeutic strategy for PD, primarily owing to their antioxidant and anti-inflammatory properties. Therefore, the objective of this study was to conduct a systematic review of the literature, focusing on studies that assessed the effects of ω-3 PUFAs in rodent models mimicking human PD. The search was performed using the terms "Parkinson's disease," "fish oil," "omega 3," "docosahexaenoic acid," and "eicosapentaenoic acid" across databases PUBMED, Web of Science, Science Direct, Scielo, and Google Scholar. Following analysis based on predefined inclusion and exclusion criteria, 39 studies were included. Considering behavioral parameters, pathological markers of the disease, quantification of ω-3 PUFAs in the brain, as well as anti-inflammatory, antioxidant, and anti-apoptotic effects, it can be observed that ω-3 PUFAs exhibit a potential neuroprotective effect in PD. In summary, this systematic review presents significant scientific evidence regarding the effects and mechanisms underlying the neuroprotective properties of ω-3 PUFAs, offering valuable insights for the development of future clinical investigations.
Collapse
Affiliation(s)
- Barbara da Silva Alves
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Lucia Emanueli Schimith
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - André Brito da Cunha
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Cristiana Lima Dora
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Mariana Appel Hort
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
8
|
Bernoud-Hubac N, Lo Van A, Lazar AN, Lagarde M. Ischemic Brain Injury: Involvement of Lipids in the Pathophysiology of Stroke and Therapeutic Strategies. Antioxidants (Basel) 2024; 13:634. [PMID: 38929073 PMCID: PMC11200865 DOI: 10.3390/antiox13060634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is a devastating neurological disorder that is characterized by the sudden disruption of blood flow to the brain. Lipids are essential components of brain structure and function and play pivotal roles in stroke pathophysiology. Dysregulation of lipid signaling pathways modulates key cellular processes such as apoptosis, inflammation, and oxidative stress, exacerbating ischemic brain injury. In the present review, we summarize the roles of lipids in stroke pathology in different models (cell cultures, animal, and human studies). Additionally, the potential of lipids, especially polyunsaturated fatty acids, to promote neuroprotection and their use as biomarkers in stroke are discussed.
Collapse
Affiliation(s)
- Nathalie Bernoud-Hubac
- Univ Lyon, INSA Lyon, CNRS, LAMCOS, UMR5259, 69621 Villeurbanne, France; (A.L.V.); (A.-N.L.); (M.L.)
| | | | | | | |
Collapse
|
9
|
Fan L, Wang X, Szeto IMY, Liu B, Sinclair AJ, Li D. Dietary intake of different ratios of ARA/DHA in early stages and its impact on infant development. Food Funct 2024; 15:3259-3273. [PMID: 38469864 DOI: 10.1039/d3fo04629j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs), arachidonic acid (ARA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3) are essential in the development of infants. ARA and DHA from breast milk or infant formula are the main sources of access for infants to meet their physiological and metabolic needs. The ratio of ARA to DHA in breast milk varies among regions and different lactation stages. Different ratios of ARA and DHA mainly from algal oil, animal fat, fish oil, and microbial oil, are added to infant formula in different regions and infant age ranges. Supplementing with appropriate ratios of ARA and DHA during infancy promotes brain, neural, visual, and other development aspects. In this review, we first introduced the current intake status of ARA and DHA in different locations, lactation stages, and age ranges in breast milk and infant formula. Finally, we discussed the effect of different ratios of ARA and DHA on infant development. This review provided a comprehensive research basis for the nutritional research of infants who consume different ratios of ARA and DHA.
Collapse
Affiliation(s)
- Lijiao Fan
- Institute of Nutrition & Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Xincen Wang
- Institute of Nutrition & Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | | | - Biao Liu
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Andrew J Sinclair
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Monash University, Notting Hill, VIC 3168, Australia
- Faculty of Health, Deakin University, Burwood, VIC 3152, Australia
| | - Duo Li
- Institute of Nutrition & Health, School of Public Health, Qingdao University, Qingdao 266071, China.
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Monash University, Notting Hill, VIC 3168, Australia
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Chalifour B, Holzhausen EA, Lim JJ, Yeo EN, Shen N, Jones DP, Peterson BS, Goran MI, Liang D, Alderete TL. The potential role of early life feeding patterns in shaping the infant fecal metabolome: implications for neurodevelopmental outcomes. NPJ METABOLIC HEALTH AND DISEASE 2023; 1:2. [PMID: 38299034 PMCID: PMC10828959 DOI: 10.1038/s44324-023-00001-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 02/02/2024]
Abstract
Infant fecal metabolomics can provide valuable insights into the associations of nutrition, dietary patterns, and health outcomes in early life. Breastmilk is typically classified as the best source of nutrition for nearly all infants. However, exclusive breastfeeding may not always be possible for all infants. This study aimed to characterize associations between levels of mixed breastfeeding and formula feeding, along with solid food consumption and the infant fecal metabolome at 1- and 6-months of age. As a secondary aim, we examined how feeding-associated metabolites may be associated with early life neurodevelopmental outcomes. Fecal samples were collected at 1- and 6-months, and metabolic features were assessed via untargeted liquid chromatography/high-resolution mass spectrometry. Feeding groups were defined at 1-month as 1) exclusively breastfed, 2) breastfed >50% of feedings, or 3) formula fed ≥50% of feedings. Six-month groups were defined as majority breastmilk (>50%) or majority formula fed (≥50%) complemented by solid foods. Neurodevelopmental outcomes were assessed using the Bayley Scales of Infant Development at 2 years. Changes in the infant fecal metabolome were associated with feeding patterns at 1- and 6-months. Feeding patterns were associated with the intensities of a total of 57 fecal metabolites at 1-month and 25 metabolites at 6-months, which were either associated with increased breastmilk or increased formula feeding. Most breastmilk-associated metabolites, which are involved in lipid metabolism and cellular processes like cell signaling, were associated with higher neurodevelopmental scores, while formula-associated metabolites were associated with lower neurodevelopmental scores. These findings offer preliminary evidence that feeding patterns are associated with altered infant fecal metabolomes, which may be associated with cognitive development later in life.
Collapse
Affiliation(s)
- Bridget Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | | | - Joseph J. Lim
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | - Emily N. Yeo
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | - Natalie Shen
- Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Dean P. Jones
- School of Medicine, Emory University, Atlanta, GA USA
| | | | | | - Donghai Liang
- Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| |
Collapse
|
11
|
Ahmmed MK, Hachem M, Ahmmed F, Rashidinejad A, Oz F, Bekhit AA, Carne A, Bekhit AEDA. Marine Fish-Derived Lysophosphatidylcholine: Properties, Extraction, Quantification, and Brain Health Application. Molecules 2023; 28:molecules28073088. [PMID: 37049852 PMCID: PMC10095705 DOI: 10.3390/molecules28073088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Long-chain omega-3 fatty acids esterified in lysophosphatidylcholine (LPC-omega-3) are the most bioavailable omega-3 fatty acid form and are considered important for brain health. Lysophosphatidylcholine is a hydrolyzed phospholipid that is generated from the action of either phospholipase PLA1 or PLA2. There are two types of LPC; 1-LPC (where the omega-3 fatty acid at the sn-2 position is acylated) and 2-LPC (where the omega-3 fatty acid at the sn-1 position is acylated). The 2-LPC type is more highly bioavailable to the brain than the 1-LPC type. Given the biological and health aspects of LPC types, it is important to understand the structure, properties, extraction, quantification, functional role, and effect of the processing of LPC. This review examines various aspects involved in the extraction, characterization, and quantification of LPC. Further, the effects of processing methods on LPC and the potential biological roles of LPC in health and wellbeing are discussed. DHA-rich-LysoPLs, including LPC, can be enzymatically produced using lipases and phospholipases from wide microbial strains, and the highest yields were obtained by Lipozyme RM-IM®, Lipozyme TL-IM®, and Novozym 435®. Terrestrial-based phospholipids generally contain lower levels of long-chain omega-3 PUFAs, and therefore, they are considered less effective in providing the same health benefits as marine-based LPC. Processing (e.g., thermal, fermentation, and freezing) reduces the PL in fish. LPC containing omega-3 PUFA, mainly DHA (C22:6 omega-3) and eicosapentaenoic acid EPA (C20:5 omega-3) play important role in brain development and neuronal cell growth. Additionally, they have been implicated in supporting treatment programs for depression and Alzheimer’s. These activities appear to be facilitated by the acute function of a major facilitator superfamily domain-containing protein 2 (Mfsd2a), expressed in BBB endothelium, as a chief transporter for LPC-DHA uptake to the brain. LPC-based delivery systems also provide the opportunity to improve the properties of some bioactive compounds during storage and absorption. Overall, LPCs have great potential for improving brain health, but their safety and potentially negative effects should also be taken into consideration.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Fatih Oz
- Department of Food Engineering, Ataturk University, Yakutiye 25030, Turkey
| | - Adnan A. Bekhit
- Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Sakhir 32038, Bahrain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria 21521, Egypt
| | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Alaa El-Din A. Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Correspondence: ; Tel.: +64-3-479-4994
| |
Collapse
|
12
|
Holton K. The potential role of dietary intervention for the treatment of neuroinflammation. TRANSLATIONAL NEUROIMMUNOLOGY, VOLUME 7 2023:239-266. [DOI: 10.1016/b978-0-323-85841-0.00022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Zhang M, Wang P, Jin D, Jian S, Wu J, Huang M, Xie H, Zhao Q, Yang H, Luo P, Yuan H, Xue J, Shen Q. Chain-locked precursor ion scanning based HPLC–MS/MS for in-depth molecular analysis of lipase-catalyzed transesterification of structured phospholipids containing ω-3 fatty acyl chains. Food Chem 2023; 399:133982. [DOI: 10.1016/j.foodchem.2022.133982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
|
14
|
Venegas-Calerón M, Napier JA. New alternative sources of omega-3 fish oil. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516467 DOI: 10.1016/bs.afnr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Long-chain omega-3 polyunsaturated fatty acids such as eicosapentaenoic and docosahexaenoic acids play an important role in brain growth and development, as well as in the health of the body. These fatty acids are traditionally found in seafood, such as fish, fish oils, and algae. They can also be added to food or consumed through dietary supplements. Due to a lack of supply to meet current demand and the potential for adverse effects from excessive consumption of fish and seafood, new alternatives are being sought to achieve the recommended levels in a safe and sustainable manner. New sources have been studied and new production mechanisms have been developed. These new proposals, as well as the importance of these fatty acids, are discussed in this paper.
Collapse
|
15
|
de Melo MFFT, de Souza MA, de Cássia Ramos do Egypto Queiroga R, Soares JKB. Functionality of bioactive lipids in cognitive function. BIOACTIVE LIPIDS 2023:169-190. [DOI: 10.1016/b978-0-12-824043-4.00010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Lo Van A, Bernoud-Hubac N, Lagarde M. Esterification of Docosahexaenoic Acid Enhances Its Transport to the Brain and Its Potential Therapeutic Use in Brain Diseases. Nutrients 2022; 14:4550. [PMID: 36364810 PMCID: PMC9656701 DOI: 10.3390/nu14214550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 10/22/2023] Open
Abstract
Docosahexaenoic acid-containing lysophosphatidylcholine (DHA-LysoPC) is presented as the main transporter of DHA from blood plasma to the brain. This is related to the major facilitator superfamily domain-containing protein 2A (Mfsd2a) symporter expression in the blood-brain barrier that recognizes the various lyso-phospholipids that have choline in their polar head. In order to stabilize the DHA moiety at the sn-2 position of LysoPC, the sn-1 position was esterified by the shortest acetyl chain, creating the structural phospholipid 1-acetyl,2-docosahexaenoyl-glycerophosphocholine (AceDoPC). This small structure modification allows the maintaining of the preferential brain uptake of DHA over non-esterified DHA. Additional properties were found for AceDoPC, such as antioxidant properties, especially due to the aspirin-like acetyl moiety, as well as the capacity to generate acetylcholine in response to the phospholipase D cleavage of the polar head. Esterification of DHA within DHA-LysoPC or AceDoPC could elicit more potent neuroprotective effects against neurological diseases.
Collapse
Affiliation(s)
- Amanda Lo Van
- Univ Lyon, INSA Lyon, CNRS, LaMCoS, UMR5259, 69621 Villeurbanne, France
| | | | | |
Collapse
|
17
|
Zussy C, John R, Urgin T, Otaegui L, Vigor C, Acar N, Canet G, Vitalis M, Morin F, Planel E, Oger C, Durand T, Rajshree SL, Givalois L, Devarajan PV, Desrumaux C. Intranasal Administration of Nanovectorized Docosahexaenoic Acid (DHA) Improves Cognitive Function in Two Complementary Mouse Models of Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11050838. [PMID: 35624701 PMCID: PMC9137520 DOI: 10.3390/antiox11050838] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are a class of fatty acids that are closely associated with the development and function of the brain. The most abundant PUFA is docosahexaenoic acid (DHA, 22:6 n-3). In humans, low plasmatic concentrations of DHA have been associated with impaired cognitive function, low hippocampal volumes, and increased amyloid deposition in the brain. Several studies have reported reduced brain DHA concentrations in Alzheimer’s disease (AD) patients’ brains. Although a number of epidemiological studies suggest that dietary DHA consumption may protect the elderly from developing cognitive impairment or dementia including AD, several review articles report an inconclusive association between omega-3 PUFAs intake and cognitive decline. The source of these inconsistencies might be because DHA is highly oxidizable and its accessibility to the brain is limited by the blood–brain barrier. Thus, there is a pressing need for new strategies to improve DHA brain supply. In the present study, we show for the first time that the intranasal administration of nanovectorized DHA reduces Tau phosphorylation and restores cognitive functions in two complementary murine models of AD. These results pave the way for the development of a new approach to target the brain with DHA for the prevention or treatment of this devastating disease.
Collapse
Affiliation(s)
- Charleine Zussy
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
| | - Rijo John
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Mumbai 400019, India; (R.J.); (S.L.R.); (P.V.D.)
| | - Théo Urgin
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
| | - Léa Otaegui
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
| | - Claire Vigor
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (C.V.); (C.O.); (T.D.)
| | - Niyazi Acar
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Geoffrey Canet
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
| | - Mathieu Vitalis
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
| | - Françoise Morin
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, CR-CHUQ, Québec City, QC G1V 0A6, Canada; (F.M.); (E.P.)
| | - Emmanuel Planel
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, CR-CHUQ, Québec City, QC G1V 0A6, Canada; (F.M.); (E.P.)
| | - Camille Oger
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (C.V.); (C.O.); (T.D.)
| | - Thierry Durand
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (C.V.); (C.O.); (T.D.)
| | - Shinde L. Rajshree
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Mumbai 400019, India; (R.J.); (S.L.R.); (P.V.D.)
| | - Laurent Givalois
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, CR-CHUQ, Québec City, QC G1V 0A6, Canada; (F.M.); (E.P.)
| | - Padma V. Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Mumbai 400019, India; (R.J.); (S.L.R.); (P.V.D.)
| | - Catherine Desrumaux
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
- LIPSTIC LabEx, 21000 Dijon, France
- Correspondence: ; Tel.: +33-467-14-36-89; Fax: +33-467-14-33-86
| |
Collapse
|
18
|
Emerging Role of Phospholipids and Lysophospholipids for Improving Brain Docosahexaenoic Acid as Potential Preventive and Therapeutic Strategies for Neurological Diseases. Int J Mol Sci 2022; 23:ijms23073969. [PMID: 35409331 PMCID: PMC9000073 DOI: 10.3390/ijms23073969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 01/25/2023] Open
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) is an omega-3 polyunsaturated fatty acid (PUFA) essential for neural development, learning, and vision. Although DHA can be provided to humans through nutrition and synthesized in vivo from its precursor alpha-linolenic acid (ALA, 18:3n-3), deficiencies in cerebral DHA level were associated with neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases. The aim of this review was to develop a complete understanding of previous and current approaches and suggest future approaches to target the brain with DHA in different lipids’ forms for potential prevention and treatment of neurodegenerative diseases. Since glycerophospholipids (GPs) play a crucial role in DHA transport to the brain, we explored their biosynthesis and remodeling pathways with a focus on cerebral PUFA remodeling. Following this, we discussed the brain content and biological properties of phospholipids (PLs) and Lyso-PLs with omega-3 PUFA focusing on DHA’s beneficial effects in healthy conditions and brain disorders. We emphasized the cerebral accretion of DHA when esterified at sn-2 position of PLs and Lyso-PLs. Finally, we highlighted the importance of DHA-rich Lyso-PLs’ development for pharmaceutical applications since most commercially available DHA formulations are in the form of PLs or triglycerides, which are not the preferred transporter of DHA to the brain.
Collapse
|
19
|
Xu M, Legradi J, Leonards P. Using comprehensive lipid profiling to study effects of PFHxS during different stages of early zebrafish development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151739. [PMID: 34848268 DOI: 10.1016/j.scitotenv.2021.151739] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 05/26/2023]
Abstract
PFHxS (Perfluorohexane sulfonic acid) is one of the short-chain perfluoroalkyl substances (PFASs) which are widely used in many industrial and consumer applications. However, limited information is available on the molecular mechanism of PFHxS toxicity (e.g. lipid metabolism). This study provides in-depth information on the lipid regulation of zebrafish embryos with and without PFHxS exposure. Lipid changes throughout zebrafish development (4 to 120 h post fertilization (hpf)) were closely associated with lipid species and lipid composition (fatty acyl chains). A comprehensive lipid analysis of four different PFHxS exposures (0, 0.3, 1, 3, and 10 μM) at different zebrafish developmental stages (24, 48, 72, and 120 hpf) was performed. Data on exposure concentration, lipids, and developmental stage showed that all PFHxS concentrations dysregulated the lipid metabolism and these were developmental-dependent. The pattern of significantly changed lipids revealed that PFHxS caused effects related to oxidative stress, inflammation, and impaired fatty acid β-oxidation. Oxidative stress and inflammation caused the remodeling of glycerophospholipid (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)), with increased incorporation of omega-3 PUFA and a decreased incorporation of omega-6 PUFA.
Collapse
Affiliation(s)
- Mengmeng Xu
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| | - Jessica Legradi
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Pim Leonards
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
20
|
Passeri E, Elkhoury K, Jiménez Garavito MC, Desor F, Huguet M, Soligot-Hognon C, Linder M, Malaplate C, Yen FT, Arab-Tehrany E. Use of Active Salmon-Lecithin Nanoliposomes to Increase Polyunsaturated Fatty Acid Bioavailability in Cortical Neurons and Mice. Int J Mol Sci 2021; 22:11859. [PMID: 34769291 PMCID: PMC8584305 DOI: 10.3390/ijms222111859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) play an important role in the development, maintenance, and function of the brain. Dietary supplementation of n-3 PUFAs in neurological diseases has been a subject of particular interest in preventing cognitive deficits, and particularly in age-related neurodegeneration. Developing strategies for the efficient delivery of these lipids to the brain has presented a challenge in recent years. We recently reported the preparation of n-3 PUFA-rich nanoliposomes (NLs) from salmon lecithin, and demonstrated their neurotrophic effects in rat embryo cortical neurons. The objective of this study was to assess the ability of these NLs to deliver PUFAs in cellulo and in vivo (in mice). NLs were prepared using salmon lecithin rich in n-3 PUFAs (29.13%), and characterized with an average size of 107.90 ± 0.35 nm, a polydispersity index of 0.25 ± 0.01, and a negative particle-surface electrical charge (-50.4 ± 0.2 mV). Incubation of rat embryo cortical neurons with NLs led to a significant increase in docosahexaenoic acid (DHA) (51.5%, p < 0.01), as well as palmitic acid, and a small decrease in oleic acid after 72 h (12.2%, p < 0.05). Twenty mice on a standard diet received oral administration of NLs (12 mg/mouse/day; 5 days per week) for 8 weeks. Fatty acid profiles obtained via gas chromatography revealed significant increases in cortical levels of saturated, monounsaturated, and n-3 (docosahexaenoic acid,) and n-6 (docosapentaenoic acid and arachidonic acid) PUFAs. This was not the case for the hippocampus or in the liver. There were no effects on plasma lipid levels, and daily monitoring confirmed NL biocompatibility. These results demonstrate that NLs can be used for delivery of PUFAs to the brain. This study opens new research possibilities in the development of preventive as well as therapeutic strategies for age-related neurodegeneration.
Collapse
Affiliation(s)
- Elodie Passeri
- LIBio Laboratory, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (E.P.); (K.E.); (M.C.J.G.); (M.L.)
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Kamil Elkhoury
- LIBio Laboratory, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (E.P.); (K.E.); (M.C.J.G.); (M.L.)
| | | | - Frédéric Desor
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Marion Huguet
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Claire Soligot-Hognon
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Michel Linder
- LIBio Laboratory, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (E.P.); (K.E.); (M.C.J.G.); (M.L.)
| | - Catherine Malaplate
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Frances T. Yen
- UR AFPA Laboratory, Qualivie Team, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (F.D.); (M.H.); (C.S.-H.); (C.M.)
| | - Elmira Arab-Tehrany
- LIBio Laboratory, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France; (E.P.); (K.E.); (M.C.J.G.); (M.L.)
| |
Collapse
|
21
|
RXR – centralny regulator wielu ścieżek sygnałowych w organizmie. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstrakt
Receptory jądrowe (NRs) tworzą największą nadrodzinę czynników transkrypcyjnych, które odgrywają ważną rolę w regulacji wielu procesów biologicznych. Receptor kwasu 9-cis-retinowego (RXR) wydaje się odgrywać szczególną rolę wśród tej grupy białek, a to ma związek z jego zdolnością do tworzenia dimerów z innymi NRs. Ze względu na kontrolę ekspresji wielu genów, RXR stanowi bardzo dobry cel licznych terapii. Nieprawidłowości w szlakach modulowanych przez RXR są powiązane m.in. z chorobami neurodegeneracyjnymi, otyłością, cukrzycą, a także nowotworami. Istnieje wiele związków mogących regulować aktywność transkrypcyjną RXR. Jednak obecnie dopuszczonych do użytku klinicznego jest tylko kilka z nich. Retinoidy normalizują wzrost i różnicowanie komórek skóry i błon śluzowych, ponadto działają immunomodulująco oraz przeciwzapalnie. Stąd są stosowane przede wszystkim w chorobach skóry i w terapii niektórych chorób nowotworowych. W artykule przedstawiono ogólne wiadomości na temat RXR, jego budowy, ligandów i mechanizmu działania oraz potencjalnej roli w terapii nowotworów i zespołu metabolicznego.
Collapse
|
22
|
Wu F, Wang DD, Shi HH, Wang CC, Xue CH, Wang YM, Zhang TT. N-3 PUFA-Deficiency in Early Life Exhibits Aggravated MPTP-Induced Neurotoxicity in Old Age while Supplementation with DHA/EPA-Enriched Phospholipids Exerts a Neuroprotective Effect. Mol Nutr Food Res 2021; 65:e2100339. [PMID: 34378848 DOI: 10.1002/mnfr.202100339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/04/2021] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Malnutrition in early life affects the growth and development of fetus and children, which has a long-term impact on adult health. Previous studies reveal a relationship between dietary omega-3 polyunsaturated fatty acid (n-3 PUFA) content, brain development, and the prevalence of neurodevelopmental disorders and inflammation. However, it is unclear about the effect of n-3 PUFA-deficiency in early life on the development of Parkinson's disease (PD) in old age, as well as the neuroprotective effect of DHA- and EPA-enriched phospholipids (DHA/EPA-PLs) supplemented in old age in long-term n-3 PUFA-deficient mice. METHODS AND RESULTS The PD mice induced by 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) in n-3 PUFA-adequate (N) and -deficient (DEF) group are supplemented with a DHA/EPA-PLs diet for 2 weeks (N+DPL, DEF+DPL). DHA/EPA-PLs supplementation significantly protects against MPTP-induced impairments. The DEF+DPL group shows poorer motor performance, the loss of dopaminergic neurons, mitochondrial dysfunction, and neurodevelopment delay than the N+DPL group, and still did not recover to the Control level. CONCLUSIONS Dietary n-3 PUFA-deficiency in early life exhibits more aggravated MPTP-induced neurotoxicity in old age, than DHA/EPA-PLs supplementation recovers brain DHA levels and exerts neuroprotective effects in old age in long-term n-3 PUFA-deficient mice, which might provide a potential dietary guidance.
Collapse
Affiliation(s)
- Fang Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Dan-Dan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| |
Collapse
|
23
|
Pontifex MG, Martinsen A, Saleh RNM, Harden G, Tejera N, Müller M, Fox C, Vauzour D, Minihane AM. APOE4 genotype exacerbates the impact of menopause on cognition and synaptic plasticity in APOE-TR mice. FASEB J 2021; 35:e21583. [PMID: 33891334 DOI: 10.1096/fj.202002621rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/15/2023]
Abstract
The impact of sex and menopausal status in Alzheimer's disease remains understudied despite increasing evidence of greater female risk, particularly in APOE4 carriers. Utilizing female APOE-TR mice maintained on a high-fat diet background we induced ovarian failure through repeated VCD injections, to mimic human menopause. At 12 months of age, recognition memory and spatial memory were assessed using object recognition, Y-maze spontaneous alternation, and Barnes maze. A VCD*genotype interaction reduced the recognition memory (P < .05), with APOE4 VCD-treated animals unable to distinguish between novel and familiar objects. APOE4 mice displayed an additional 37% and 12% reduction in Barnes (P < .01) and Y-maze (P < .01) performance, indicative of genotype-specific spatial memory impairment. Molecular analysis indicated both VCD and genotype-related deficits in synaptic plasticity with BDNF, Akt, mTOR, and ERK signaling compromised. Subsequent reductions in the transcription factors Creb1 and Atf4 were also evident. Furthermore, the VCD*genotype interaction specifically diminished Ephb2 expression, while Fos, and Cnr1 expression reduced as a consequence of APOE4 genotype. Brain DHA levels were 13% lower in VCD-treated animals independent of genotype. Consistent with this, we detected alterations in the expression of the DHA transporters Acsl6 and Fatp4. Our results indicate that the combination of ovarian failure and APOE4 leads to an exacerbation of cognitive and neurological deficits.
Collapse
Affiliation(s)
| | | | | | - Glenn Harden
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Noemi Tejera
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Michael Müller
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Chris Fox
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
24
|
Scheinman SB, Sugasini D, Zayed M, Yalagala PCR, Marottoli FM, Subbaiah PV, Tai LM. LPC-DHA/EPA-Enriched Diets Increase Brain DHA and Modulate Behavior in Mice That Express Human APOE4. Front Neurosci 2021; 15:690410. [PMID: 34276296 PMCID: PMC8282213 DOI: 10.3389/fnins.2021.690410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Compared with APOE3, APOE4 is associated with greater age-related cognitive decline and higher risk of neurodegenerative disorders. Therefore, development of supplements that target APOE genotype-modulated processes could provide a great benefit for the aging population. Evidence suggests a link between APOE genotype and docosahexaenoic acid (DHA); however, clinical studies with current DHA supplements have produced negative results in dementia. The lack of beneficial effects with current DHA supplements may be related to limited bioavailability, as the optimal form of DHA for brain uptake is lysophosphatidylcholine (LPC)-DHA. We previously developed a method to enrich the LPC-DHA content of krill oil through lipase treatment (LT-krill oil), which resulted in fivefold higher enrichment in brain DHA levels in wild-type mice compared with untreated krill oil. Here, we evaluated the effect of a control diet, diet containing krill oil, or a diet containing LT-krill oil in APOE3- and APOE4-targeted replacement mice (APOE-TR mice; treated from 4 to 12 months of age). We found that DHA levels in the plasma and hippocampus are lower in APOE4-TR mice and that LT-krill oil increased DHA levels in the plasma and hippocampus of both APOE3- and APOE4-TR mice. In APOE4-TR mice, LT-krill oil treatment resulted in higher levels of the synaptic vesicle protein SV2A and improved performance on the novel object recognition test. In conclusion, our data demonstrate that LPC-DHA/EPA-enriched krill oil can increase brain DHA and improve memory-relevant behavior in mice that express APOE4. Therefore, long-term use of LT-krill oil supplements may on some level protect against age-related neurodegeneration.
Collapse
Affiliation(s)
- Sarah B Scheinman
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Dhavamani Sugasini
- Division of Endocrinology and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Monay Zayed
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Poorna C R Yalagala
- Division of Endocrinology and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Felecia M Marottoli
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Papasani V Subbaiah
- Division of Endocrinology and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.,Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
25
|
Huo M, Wang Z, Fu W, Tian L, Li W, Zhou Z, Chen Y, Wei J, Abliz Z. Spatially Resolved Metabolomics Based on Air-Flow-Assisted Desorption Electrospray Ionization-Mass Spectrometry Imaging Reveals Region-Specific Metabolic Alterations in Diabetic Encephalopathy. J Proteome Res 2021; 20:3567-3579. [PMID: 34137614 DOI: 10.1021/acs.jproteome.1c00179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spatially resolved metabolic profiling of brain is vital for elucidating tissue-specific molecular histology and pathology underlying diabetic encephalopathy (DE). In this study, a spatially resolved metabolomic method based on air-flow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) was developed for investigating the region-specific metabolic disturbances in the brain of DE model rats induced by a high-fat diet in combination with streptozotocin administration. A total of 19 discriminating metabolites associated with glycolysis and the pentose phosphate pathway (PPP); the glutamate/gamma aminobutyric acid-glutamine cycle and tricarboxylic acid cycle; nucleotide metabolism; lipid metabolism; carnitine homeostasis; and taurine, ascorbic acid, histidine, and choline metabolism were identified and located in the brains of the diabetic rats simultaneously for the first time. The results indicated that increased glycolytic and PPP activity; dysfunction of mitochondrial metabolism; dysregulation of adenosinergic, glutamatergic, dopaminergic, cholinergic, and histaminergic systems; disorder of osmotic regulation and antioxidant system; and disorder of lipid metabolism occur in a region-specific fashion in the brains of DE rats. Thus, this study provides valuable information regarding the molecular pathological signature of DE. These findings also underline the high potential of AFADESI-MSI for applications in various central nervous system diseases.
Collapse
Affiliation(s)
- Meiling Huo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Zhonghua Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Wenqing Fu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Lu Tian
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yanhua Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jinfeng Wei
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China.,Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, P. R. China
| |
Collapse
|
26
|
Saito K, Hattori K, Hidese S, Sasayama D, Miyakawa T, Matsumura R, Tatsumi M, Yokota Y, Ota M, Hori H, Kunugi H. Profiling of Cerebrospinal Fluid Lipids and Their Relationship with Plasma Lipids in Healthy Humans. Metabolites 2021; 11:metabo11050268. [PMID: 33923144 PMCID: PMC8146161 DOI: 10.3390/metabo11050268] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
Lipidomics provides an overview of lipid profiles in biological systems. Although blood is commonly used for lipid profiling, cerebrospinal fluid (CSF) is more suitable for exploring lipid homeostasis in brain diseases. However, whether an individual’s background affects the CSF lipid profile remains unclear, and the association between CSF and plasma lipid profiles in heathy individuals has not yet been defined. Herein, lipidomics approaches were employed to analyze CSF and plasma samples obtained from 114 healthy Japanese subjects. Results showed that the global lipid profiles differed significantly between CSF and plasma, with only 13 of 114 lipids found to be significantly correlated between the two matrices. Additionally, the CSF total protein content was the primary factor associated with CSF lipids. In the CSF, the levels of major lipids, namely, phosphatidylcholines, sphingomyelins, and cholesterolesters, correlated with CSF total protein levels. These findings indicate that CSF lipidomics can be applied to explore changes in lipid homeostasis in patients with brain diseases.
Collapse
Affiliation(s)
- Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa 210-9501, Japan
- Correspondence: (K.S.); (H.K.); Tel.:+81-44-270-6628 (K.S.); +81-42-346-1714 (H.K.)
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Tomoko Miyakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Ryo Matsumura
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Megumi Tatsumi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Yuuki Yokota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
- Correspondence: (K.S.); (H.K.); Tel.:+81-44-270-6628 (K.S.); +81-42-346-1714 (H.K.)
| |
Collapse
|
27
|
Gázquez A, Larqué E. Towards an Optimized Fetal DHA Accretion: Differences on Maternal DHA Supplementation Using Phospholipids vs. Triglycerides during Pregnancy in Different Models. Nutrients 2021; 13:511. [PMID: 33557158 PMCID: PMC7913957 DOI: 10.3390/nu13020511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
Docosahexaenoic acid (DHA) supplementation during pregnancy has been recommended by several health organizations due to its role in neural, visual, and cognitive development. There are several fat sources available on the market for the manufacture of these dietary supplements with DHA. These fat sources differ in the lipid structure in which DHA is esterified, mainly phospholipids (PL) and triglycerides (TG) molecules. The supplementation of DHA in the form of PL or TG during pregnancy can lead to controversial results depending on the animal model, physiological status and the fat sources utilized. The intestinal digestion, placental uptake, and fetal accretion of DHA may vary depending on the lipid source of DHA ingested by the mother. The form of DHA used in maternal supplementation that would provide an optimal DHA accretion for fetal brain development, based on the available data obtained most of them from different animal models, indicates no consistent differences in fetal accretion when DHA is provided as TG or PL. Other related lipid species are under evaluation, e.g., lyso-phospholipids, with promising results to improve DHA bioavailability although more studies are needed. In this review, the evidence on DHA bioavailability and accumulation in both maternal and fetal tissues after the administration of DHA supplementation during pregnancy in the form of PL or TG in different models is summarized.
Collapse
Affiliation(s)
- Antonio Gázquez
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Elvira Larqué
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| |
Collapse
|
28
|
Balakrishnan J, Kannan S, Govindasamy A. Structured form of DHA prevents neurodegenerative disorders: A better insight into the pathophysiology and the mechanism of DHA transport to the brain. Nutr Res 2020; 85:119-134. [PMID: 33482601 DOI: 10.1016/j.nutres.2020.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
Docosahexaenoic acid (DHA) is one of the most important fatty acids that plays a critical role in maintaining proper brain function and cognitive development. Deficiency of DHA leads to several neurodegenerative disorders and, therefore, dietary supplementations of these fatty acids are essential to maintain cognitive health. However, the complete picture of how DHA is incorporated into the brain is yet to be explored. In general, the de novo synthesis of DHA is poor, and targeting the brain with specific phospholipid carriers provides novel insights into the process of reduction of disease progression. Recent studies have suggested that compared to triacylglycerol form of DHA, esterified form of DHA (i.e., lysophosphatidylcholine [lysoPC]) is better incorporated into the brain. Free DHA is transported across the outer membrane leaflet of the blood-brain barrier via APOE4 receptors, whereas DHA-lysoPC is transported across the inner membrane leaflet of the blood-brain barrier via a specific protein called Mfsd2a. Dietary supplementation of this lysoPC specific form of DHA is a novel therapy and is used to decrease the risk of various neurodegenerative disorders. Currently, structured glycerides of DHA - novel nutraceutical agents - are being widely used for the prevention and treatment of various neurological diseases. However, it is important to fully understand their metabolic regulation and mechanism of transportation to the brain. This article comprehensively reviews various studies that have evaluated the bioavailability of DHA, mechanisms of DHA transport, and role of DHA in preventing neurodegenerative disorders, which provides better insight into the pathophysiology of these disorders and use of structured DHA in improving neurological health.
Collapse
Affiliation(s)
- Jeyakumar Balakrishnan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry, India.
| | - Suganya Kannan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry, India
| | - Ambujam Govindasamy
- Department of General Surgery, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission Research Foundation (Deemed to be University), Karaikal. Puducherry, India
| |
Collapse
|
29
|
Manual Kollareth DJ, Deckelbaum RJ, Liu Z, Ramakrishnan R, Jouvene C, Serhan CN, Ten VS, Zirpoli H. Acute injection of a DHA triglyceride emulsion after hypoxic-ischemic brain injury in mice increases both DHA and EPA levels in blood and brain ✰. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102176. [PMID: 33038830 PMCID: PMC7685398 DOI: 10.1016/j.plefa.2020.102176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022]
Abstract
We recently reported that acute injection of docosahexaenoic acid (DHA) triglyceride emulsions (tri-DHA) conferred neuroprotection after hypoxic-ischemic (HI) injury in a neonatal mouse stroke model. We showed that exogenous DHA increased concentrations of DHA in brain mitochondria as well as DHA-derived specialized pro-resolving mediator (SPM) levels in the brain. The objective of the present study was to investigate the distribution of emulsion particles and changes in plasma lipid profiles after tri-DHA injection in naïve mice and in animals subjected to HI injury. We also examined whether tri-DHA injection would change DHA- and eicosapentaenoic acid (EPA)-derived SPM levels in the brain. To address this, neonatal (10-day-old) naïve and HI mice were injected with radiolabeled tri-DHA emulsion (0.375 g tri-DHA/kg bw), and blood clearance and tissue distribution were analyzed. Among all the organs assayed, the lowest uptake of emulsion particles was in the brain (<0.4% recovered dose) in both naïve and HI mice, while the liver had the highest uptake. Tri-DHA administration increased DHA concentrations in plasma lysophosphatidylcholine and non-esterified fatty acids. Additionally, treatment with tri-DHA after HI injury significantly elevated the levels of DHA-derived SPMs and monohydroxy-containing DHA-derived products in the brain. Further, tri-DHA administration increased resolvin E2 (RvE2, 5S,18R-dihydroxy-eicosa-6E,8Z,11Z,14Z,16E-pentaenoic acid) and monohydroxy-containing EPA-derived products in the brain. These results suggest that the transfer of DHA through plasma lipid pools plays an important role in DHA brain transport in neonatal mice subjected to HI injury. Furthermore, increases in EPA and EPA-derived SPMs following tri-DHA injection demonstrate interlinked metabolism of these two fatty acids. Hence, changes in both EPA and DHA profile patterns need to be considered when studying the protective effects of DHA after HI brain injury. Our results highlight the need for further investigation to differentiate the effects of DHA from EPA on neuroprotective pathways following HI damage. Such information could contribute to the development of specific DHA-EPA formulations to improve clinical endpoints and modulate potential biomarkers in ischemic brain injury.
Collapse
Affiliation(s)
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Zequn Liu
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY
| | - Rajasekhar Ramakrishnan
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Charlotte Jouvene
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Vadim S Ten
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Hylde Zirpoli
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
30
|
McGeown JP, Hume PA, Theadom A, Quarrie KL, Borotkanics R. Nutritional interventions to improve neurophysiological impairments following traumatic brain injury: A systematic review. J Neurosci Res 2020; 99:573-603. [PMID: 33107071 DOI: 10.1002/jnr.24746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury (TBI) accounts for significant global health burden. Effects of TBI can become chronic even following mild injury. There is a need to develop effective therapies to attenuate the damaging effects of TBI and improve recovery outcomes. This literature review using a priori criteria (PROSPERO; CRD42018100623) summarized 43 studies between January 1998 and July 2019 that investigated nutritional interventions (NUT) delivered with the objective of altering neurophysiological (NP) outcomes following TBI. Risk of bias was assessed for included studies, and NP outcomes recorded. The systematic search resulted in 43 of 3,748 identified studies met inclusion criteria. No studies evaluated the effect of a NUT on NP outcomes of TBI in humans. Biomarkers of morphological changes and apoptosis, oxidative stress, and plasticity, neurogenesis, and neurotransmission were the most evaluated NP outcomes across the 43 studies that used 2,897 animals. The risk of bias was unclear in all reviewed studies due to poorly detailed methodology sections. Taking these limitations into account, anti-oxidants, branched chain amino acids, and ω-3 polyunsaturated fatty acids have shown the most promising pre-clinical results for altering NP outcomes following TBI. Refinement of pre-clinical methodologies used to evaluate effects of interventions on secondary damage of TBI would improve the likelihood of translation to clinical populations.
Collapse
Affiliation(s)
- Joshua P McGeown
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand.,Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand
| | - Patria A Hume
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand.,Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand.,National Institute of Stroke and Applied Neuroscience (NISAN), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| | - Alice Theadom
- Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand.,National Institute of Stroke and Applied Neuroscience (NISAN), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| | | | - Robert Borotkanics
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
31
|
Semba RD. Perspective: The Potential Role of Circulating Lysophosphatidylcholine in Neuroprotection against Alzheimer Disease. Adv Nutr 2020; 11:760-772. [PMID: 32190891 PMCID: PMC7360459 DOI: 10.1093/advances/nmaa024] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/02/2020] [Accepted: 02/19/2020] [Indexed: 12/28/2022] Open
Abstract
Alzheimer disease (AD), the most common cause of dementia, is a progressive disorder involving cognitive impairment, loss of learning and memory, and neurodegeneration affecting wide areas of the cerebral cortex and hippocampus. AD is characterized by altered lipid metabolism in the brain. Lower concentrations of long-chain PUFAs have been described in the frontal cortex, entorhinal cortex, and hippocampus in the brain in AD. The brain can synthesize only a few fatty acids; thus, most fatty acids must enter the brain from the blood. Recent studies show that PUFAs such as DHA (22:6) are transported across the blood-brain barrier (BBB) in the form of lysophosphatidylcholine (LPC) via a specific LPC receptor at the BBB known as the sodium-dependent LPC symporter 1 (MFSD2A). Higher dietary PUFA intake is associated with decreased risk of cognitive decline and dementia in observational studies; however, PUFA supplementation, with fatty acids esterified in triacylglycerols did not prevent cognitive decline in clinical trials. Recent studies show that LPC is the preferred carrier of PUFAs across the BBB into the brain. An insufficient pool of circulating LPC containing long-chain fatty acids could potentially limit the supply of long-chain fatty acids to the brain, including PUFAs such as DHA, and play a role in the pathobiology of AD. Whether adults with low serum LPC concentrations are at greater risk of developing cognitive decline and AD remains a major gap in knowledge. Preventing and treating cognitive decline and the development of AD remain a major challenge. The LPC pathway is a promising area for future investigators to identify modifiable risk factors for AD.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Barr JL, Lindenau KL, Brailoiu E, Brailoiu GC. Direct evidence of bradycardic effect of omega-3 fatty acids acting on nucleus ambiguus. Neurosci Lett 2020; 735:135196. [PMID: 32585256 DOI: 10.1016/j.neulet.2020.135196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022]
Abstract
Docosahexaenoic acid (DHA) an omega-3 polyunsaturated fatty acid, is an agonist of FFA1 receptor. DHA administration reduces the heart rate via unclear mechanisms. We examined the effect of DHA on neurons of nucleus ambiguus that provide the parasympathetic control of heart rate. DHA produced a dose-dependent increase in cytosolic Ca2+ concentration in cardiac-projecting nucleus ambiguus neurons; the effect was prevented by GW1100, a FFA1 receptor antagonist. DHA depolarized cultured nucleus ambiguus neurons via FFA1 activation. Bilateral microinjection of DHA into nucleus ambiguus produced bradycardia in conscious rats. Our results indicate that DHA decreases heart rate by activation of FFA1 receptor on cardiac-projecting nucleus ambiguus neurons.
Collapse
Affiliation(s)
- Jeffrey L Barr
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Kristen L Lindenau
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, 901 Walnut St, Suite 901, Philadelphia, PA 19107, United States
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, 901 Walnut St, Suite 901, Philadelphia, PA 19107, United States.
| |
Collapse
|
33
|
Lust CAC, Mountjoy M, Robinson LE, Oliver JM, Ma DWL. Sports-related concussions and subconcussive impacts in athletes: incidence, diagnosis, and the emerging role of EPA and DHA. Appl Physiol Nutr Metab 2020; 45:886-892. [PMID: 32119565 DOI: 10.1139/apnm-2019-0555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sports-related concussions (SRC) are traumatic brain injuries induced as the result of a biomechanical force to the body that temporarily impair neurological functions. Not all traumatic impacts reach the threshold necessary to produce concussive symptoms; however, the culmination of these events is known as a subconcussive impact (SCI). Athletes who have been diagnosed with a SRC or those who accumulate multiple SCI have exhibited structural damage to the brain, impairments to learning and memory, and an increase in depressive symptoms. This area is rapidly evolving, and current clinical definitions of injury, diagnosis, and treatment of SRC and SCI are reviewed. In tandem, there is also growing research examining the role of nutrition in brain injuries, focusing primarily on n-3 polyunsaturated fatty acids (PUFA). The potential role of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in reducing inflammation and promoting recovery following brain injury are also reviewed. Overall, advancements in the evaluation of SRC and SCI coupled with n-3 PUFA supplementation show promise in the management of brain injuries, leading to better long-term health outcomes for athletes. Novelty SRC have garnered widespread attention due to the growing body of reported prevalence in youth and professional sports. Current definitions and protocol(s) for diagnosing SRC and SCI have improved, but still require further evaluation. n-3, EPA and DHA, reduce inflammation and promote recovery following brain injuries in experimental models.
Collapse
Affiliation(s)
- Cody A C Lust
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Margo Mountjoy
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jonathan M Oliver
- Athletics, United States Military Academy, West Point, NY 10996, USA
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
34
|
Improvement of Blood Plasmalogens and Clinical Symptoms in Parkinson's Disease by Oral Administration of Ether Phospholipids: A Preliminary Report. PARKINSONS DISEASE 2020; 2020:2671070. [PMID: 32148751 PMCID: PMC7049862 DOI: 10.1155/2020/2671070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 01/25/2023]
Abstract
Introduction. Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). With the ageing of population, the frequency of PD is expected to increase dramatically in the coming decades. L-DOPA (1,3,4-dihydroxyalanine) is the most effective drug in the symptomatic treatment of PD. Nonmotor symptoms in PD include sleep problems, depression, and dementia, which are not adequately controlled with dopaminergic therapy. Here, we report the efficacy of oral administration of scallop-derived ether phospholipids to some nonmotor symptoms of PD.
Collapse
|
35
|
Calanus oil in the treatment of obesity-related low-grade inflammation, insulin resistance, and atherosclerosis. Appl Microbiol Biotechnol 2019; 104:967-979. [PMID: 31853565 DOI: 10.1007/s00253-019-10293-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022]
Abstract
Calanus oil (COil) is a natural product extracted from marine zooplankton Calanus finmarchicus found in the North Atlantic Ocean. This oil is rich in wax esters of polyunsaturated fatty acids (PUFAs) and has been projected as the best alternative to fish oil because its production cannot keep pace with the demands from the growing markets. The COil is the only commercially available marine source of wax esters, whereas classic ω-3 PUFAs comes from triglycerides, ethyl esters, and phospholipids. It has, in recent decades, been seen that there is an unprecedented rise in the use of PUFA-rich oil in the aquaculture industry. A simultaneous rise in the demand of PUFAs is also observed in the health care industry, where PUFAs are suggested preventing various disorders related to lifestyles such as obesity, diabetes mellitus, chronic low-grade inflammation, atherosclerosis, and brain and cardiovascular disorders (CVDs). In this review, we will explore the metabolic aspects related to the use of COil as an antioxidant, anticholesterinemic, and anti-inflammatory dietary source and its impact on the prevention and therapy of obesity-related metabolic disorders.
Collapse
|
36
|
Omega-3 Docosahexaenoic Acid Is a Mediator of Fate-Decision of Adult Neural Stem Cells. Int J Mol Sci 2019; 20:ijms20174240. [PMID: 31480215 PMCID: PMC6747551 DOI: 10.3390/ijms20174240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
The mammalian brain is enriched with lipids that serve as energy catalyzers or secondary messengers of essential signaling pathways. Docosahexaenoic acid (DHA) is an omega-3 fatty acid synthesized de novo at low levels in humans, an endogenous supply from its precursors, and is mainly incorporated from nutrition, an exogeneous supply. Decreased levels of DHA have been reported in the brains of patients with neurodegenerative diseases. Preventing this decrease or supplementing the brain with DHA has been considered as a therapy for the DHA brain deficiency that could be linked with neuronal death or neurodegeneration. The mammalian brain has, however, a mechanism of compensation for loss of neurons in the brain: neurogenesis, the birth of neurons from neural stem cells. In adulthood, neurogenesis is still present, although at a slower rate and with low efficiency, where most of the newly born neurons die. Neural stem/progenitor cells (NSPCs) have been shown to require lipids for proper metabolism for proliferation maintenance and neurogenesis induction. Recent studies have focused on the effects of these essential lipids on the neurobiology of NSPCs. This review aimed to introduce the possible use of DHA to impact NSPC fate-decision as a therapy for neurodegenerative diseases.
Collapse
|
37
|
Krężel W, Rühl R, de Lera AR. Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol 2019; 491:110436. [PMID: 31026478 DOI: 10.1016/j.mce.2019.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022]
Abstract
Retinoid X receptors (RXRs) control a wide variety of functions by virtue of their dimerization with other nuclear hormone receptors (NRs), contributing thereby to activities of different signaling pathways. We review known RXR ligands as transcriptional modulators of specific RXR-dimers and the associated biological processes. We also discuss the physiological relevance of such ligands, which remains frequently a matter of debate and which at present is best met by member(s) of a novel family of retinoids, postulated as Vitamin A5. Through comparison with other natural, but also with synthetic ligands, we discuss high diversity in the modes of ligand binding to RXRs resulting in agonistic or antagonistic profiles and selectivity towards specific subtypes of permissive heterodimers. Despite such diversity, direct ligand binding to the ligand binding pocket resulting in agonistic activity was preferentially preserved in the course of animal evolution pointing to its functional relevance, and potential for existence of other, species-specific endogenous RXR ligands sharing the same mode of function.
Collapse
Affiliation(s)
- Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
38
|
Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1098-1112. [PMID: 30703511 DOI: 10.1016/j.bbadis.2019.01.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
Glutamate-mediated excitotoxicity, neuroinflammation, and oxidative stress are common underlying events in neurodegeneration. This pathogenic "triad" characterizes the neurobiology of epilepsy, leading to seizure-induced cell death, increased susceptibility to neuronal synchronization and network alterations. Along with other maladaptive changes, these events pave the way to spontaneous recurrent seizures and progressive degeneration of the interested brain areas. In vivo models of epilepsy are available to explore such epileptogenic mechanisms, also assessing the efficacy of chemoprevention and therapy strategies at the pre-clinical level. The kainic acid model of pharmacological excitotoxicity and epileptogenesis is one of the most investigated mimicking the chronicization profile of temporal lobe epilepsy in humans. Its pathogenic cues include inflammatory and neuronal death pathway activation, mitochondrial disturbances and lipid peroxidation of several regions of the brain, the most vulnerable being the hippocampus. The importance of neuroinflammation and lipid peroxidation as underlying molecular events of brain damage was demonstrated in this model by the possibility to counteract the related maladaptive morphological and functional changes of this organ with vitamin E, the main fat-soluble cellular antioxidant and "conditional" co-factor of enzymatic pathways involved in polyunsaturated lipid metabolism and inflammatory signaling. The present review paper provides an overview of the literature supporting the potential for a timely intervention with vitamin E therapy in clinical management of seizures and epileptogenic processes associated with excitotoxicity, neuroinflammation and lipid peroxidation, i.e. the pathogenic "triad".
Collapse
|
39
|
Ruan M, Liu J, Ren X, Li C, Zhao AZ, Li L, Yang H, Dai Y, Wang Y. Whole transcriptome sequencing analyses of DHA treated glioblastoma cells. J Neurol Sci 2018; 396:247-253. [PMID: 30529802 DOI: 10.1016/j.jns.2018.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 01/06/2023]
Abstract
Glioblastoma (GBM) is a typical malignant tumor, and there are no effective drugs capable of improving patient survival. Docosahexaenoic acid (DHA), a nutrient essential to animal health and neurodevelopment, exerts an anticancer effect in several types of cancer. However, the function of DHA in GBM is still unclear. Here, we showed that DHA could repress the migration and invasion of GBM U251 cells and promote their apoptosis in a dose- and time-dependent manner, indicating that DHA has an anticancer effect on GBM cells. Whole-transcriptome analysis indicated that DHA treatment mainly regulates the genes associated with receptor binding, oxidoreductase activity, organic acid transmembrane transporter activity, and carboxylic acid transmembrane transporter activity. Long non-coding RNAs (LncRNAs) involved in the regulation network of DHA were also identified, and their targets were assigned to the Gene Ontology (GO) categories. In silico analysis was conducted to predict the pathways related to the differentially expressed genes by DHA treatment. Our findings suggest that DHA acts as an antitumor agent in GBM, which may provide a suitable means of improving the efficacy of GBM treatment in the future.
Collapse
Affiliation(s)
- Miaomiao Ruan
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Jiangsu Center for Safety Evaluation of Drugs, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Jiying Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xueyang Ren
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Chu Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Allan Z Zhao
- Collaborative Innovation Center for Cancer Medicine, Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province 510643, China
| | - Lin Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China; Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Ying Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
40
|
Sandoval KE, Wooten JS, Harris MP, Schaller ML, Umbaugh DS, Witt KA. Mfsd2a and Glut1 Brain Nutrient Transporters Expression Increase with 32-Week Low and High Lard Compared with Fish-Oil Dietary Treatment in C57Bl/6 Mice. Curr Dev Nutr 2018; 2:nzy065. [PMID: 30338310 PMCID: PMC6186908 DOI: 10.1093/cdn/nzy065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/27/2018] [Accepted: 07/26/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Diet-mediated alterations of critical brain nutrient transporters, major facilitator super family domain-containing 2a (Mfsd2a) and glucose transporter 1 (Glut1), have wide reaching implications in brain health and disease. OBJECTIVE The aim of the study was to examine the impact of long-term low- and high-fat diets with lard or fish oil on critical brain nutrient transporters, Mfsd2a and Glut1. METHODS Eight-week-old male C57BL/6 mice were fed 1 of the following 4 diets for 32 wk: 10% of kcal from lard, 10% of kcal from fish oil, 41% of kcal from lard, or 41% of kcal from fish oil. Body weight and blood chemistries delineated dietary effects. Cortical and subcortical Mfsd2a and Glut1 mRNA and protein expression were evaluated, with other supportive nutrient-sensitive targets also assessed for mRNA expression changes. RESULTS Fish-oil diets increased cortical Mfsd2a mRNA expression compared with lard diets. Subcortical Mfsd2a mRNA expression decreased as the percentage of fat in the diet increased. There was an interaction between the type and percentage of fat with cortical and subcortical Mfsd2a and cortical Glut1 protein expression. In the lard diet groups, protein expression of cortical and subcortical Mfsd2a and cortical Glut1 significantly increased as fat percentage increased. As the fat percentage increased in the fish-oil diet groups, protein expression of cortical and subcortical Mfsd2a and cortical Glut1 did not change. When comparing the fish-oil groups with 10% lard, cortical Mfsd2a protein expression was significantly higher in the 10% and 41% fish-oil groups, whereas cortical Glut1 protein expression was significantly higher in only the 10% fish-oil group. A positive correlation between cortical peroxisome proliferator-activated receptor γ mRNA expression and Mfsd2a protein expression was shown. CONCLUSION Corresponding to chronic dietary treatment, an interaction between the type of fat and the percentage of fat exists respective to changes in brain expression of the key nutrient transporters Mfsd2a and Glut1.
Collapse
Affiliation(s)
| | - Joshua S Wooten
- Applied Health, School of Education, Health, and Human Behavior, Southern Illinois University Edwardsville, Edwardsville, IL
| | - Mathew P Harris
- Applied Health, School of Education, Health, and Human Behavior, Southern Illinois University Edwardsville, Edwardsville, IL
| | - Megan L Schaller
- Applied Health, School of Education, Health, and Human Behavior, Southern Illinois University Edwardsville, Edwardsville, IL
| | - David S Umbaugh
- Pharmaceutical Sciences, School of Pharmacy, Edwardsville, IL
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Edwardsville, IL
| |
Collapse
|
41
|
Lin L, Metherel AH, Kitson AP, Alashmali SM, Hopperton KE, Trépanier MO, Jones PJ, Bazinet RP. Dietary fatty acids augment tissue levels of n-acylethanolamines in n-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) knockout mice. J Nutr Biochem 2018; 62:134-142. [PMID: 30290332 DOI: 10.1016/j.jnutbio.2018.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 07/31/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022]
Abstract
N-acylethanolamines (NAEs) are lipid signaling mediators, which can be synthesized from dietary fatty acids via n-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD) and in turn influence physiological outcomes; however, the roles of NAPE-PLD upon dietary fatty acid modulation are not fully understood. Presently, we examine if NAPE-PLD is necessary to increase NAEs in response to dietary fatty acid manipulation. Post-weaning male wild-type (C57Bl/6), NAPE-PLD (-/+) and NAPE-PLD (-/-) mice received isocaloric fat diets containing either beef tallow, corn oil, canola oil or fish oil (10% wt/wt from fat) for 9 weeks. Brain docosahexaenoic acid (DHA) levels were higher (P<.01) in NAPE-PLD (-/+) (10.01±0.31 μmol/g) and NAPE-PLD (-/-) (10.89±0.61 μmol/g) than wild-type (7.72±0.61 μmol/g) consuming fish oil. In NAPE-PLD (-/-) mice, brain docosahexaenoylethanolamide (DHEA) levels were higher (P<.01) after fish oil feeding suggesting that NAPE-PLD was not necessary for DHEA synthesis. Liver and jejunum arachidonoylethanolamide, 1,2-arachidonoylglycerol and DHEA levels reflected their corresponding fatty acid precursors suggesting that alternate pathways are involved in NAE synthesis. NAPE-PLD (-/-) mice had lower oleoylethanolamide levels in the jejunum and a leaner phenotype compared to wild-type mice. Overall, these results demonstrate that dietary fatty acid can augment tissue NAEs in the absence of NAPE-PLD.
Collapse
Affiliation(s)
- Lin Lin
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Alex P Kitson
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Shoug M Alashmali
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | | | | | - Peter J Jones
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada.
| |
Collapse
|
42
|
Gómez-Soler M, Cordobilla B, Morató X, Fernández-Dueñas V, Domingo JC, Ciruela F. Triglyceride Form of Docosahexaenoic Acid Mediates Neuroprotection in Experimental Parkinsonism. Front Neurosci 2018; 12:604. [PMID: 30233293 PMCID: PMC6127646 DOI: 10.3389/fnins.2018.00604] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/09/2018] [Indexed: 01/09/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder of unknown etiology. The main treatment of PD consists of medication with dopamine-based drugs, which palliate the symptoms but may produce adverse effects after chronic administration. Accordingly, there is a need to develop novel neuroprotective therapies. Several studies suggest that omega-3 polyunsaturated fatty acids (n-3 PUFA) might provide protection against brain damage. Here, we studied several experimental models of PD, using striatal neuronal cultures, striatal slices, and mice, to assess the neuroprotective effects of docosahexaenoic acid (DHA), the main n-3 PUFA in the brain, administered in its triglyceride form (TG-DHA). Hence, we determined the beneficial effects of TG-DHA on neural viability following 6-hydroxydopamine (6-OHDA)-induced neurotoxicity, a well-established PD model. We also implemented a novel mouse behavioral test, the beam walking test, to finely assess mouse motor skills following dopaminergic denervation. This test showed potential as a useful behavioral tool to assess novel PD treatments. Our results indicated that TG-DHA-mediated neuroprotection was independent of the net incorporation of PUFA into the striatum, thus suggesting a tight control of brain lipid homeostasis both in normal and pathological conditions.
Collapse
Affiliation(s)
- Maricel Gómez-Soler
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, Institut d'Investigació Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Begoña Cordobilla
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Morató
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, Institut d'Investigació Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, Institut d'Investigació Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Joan C Domingo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, Institut d'Investigació Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
43
|
Lo Van A, Sakayori N, Hachem M, Belkouch M, Picq M, Fourmaux B, Lagarde M, Osumi N, Bernoud-Hubac N. Targeting the Brain with a Neuroprotective Omega-3 Fatty Acid to Enhance Neurogenesis in Hypoxic Condition in Culture. Mol Neurobiol 2018; 56:986-999. [DOI: 10.1007/s12035-018-1139-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/21/2018] [Indexed: 12/01/2022]
|
44
|
Che H, Fu X, Zhang L, Gao X, Wen M, Du L, Xue C, Xu J, Wang Y. Neuroprotective Effects of n-3 Polyunsaturated Fatty Acid-Enriched Phosphatidylserine Against Oxidative Damage in PC12 Cells. Cell Mol Neurobiol 2018; 38:657-668. [PMID: 28689275 DOI: 10.1007/s10571-017-0516-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/22/2017] [Indexed: 01/06/2023]
Abstract
Neurodegenerative diseases are defined by progressive loss of specific neuronal cell populations and are associated with protein aggregates. Oxidative stress has been implicated in their pathological processes. Previous studies revealed that docosahexaenoic acid (DHA) is beneficial in neurodegenerative diseases. Phospholipids (PLs) derived from marine products are rich in DHA and eicosapentaenoic acid (EPA). In the present study, we investigated the neuroprotective effects of DHA-enriched and unenriched phosphatidylcholine (PC) and phosphatidylserine (PS) on oxidative stress induced by hydrogen peroxide (H2O2) and tert-butylhydroperoxide in PC12 cells. Cell viability and leakage of lactate dehydrogenase results showed that the neuroprotective effect of PS was superior to that of PC. DHA- and EPA-enriched PC and PS were superior to that without DHA or EPA; in addition, the improvement with n-3 polyunsaturated fatty acid-enriched PS (n-3 PS) was dose dependent. Acridine orange/ethidium bromide staining showed that DHA- and EPA-enriched PS (DHA/EPA-PS) could significantly inhibit apoptosis. Mechanistic studies revealed that EPA-PS and DHA-PS were effective to increase superoxide dismutase (SOD) levels by 48.4 and 58.2 % and total antioxidant capacity (T-AOC) level by 51 and 94 %, respectively, in the H2O2 model. Similar results for SOD and T-AOC levels were shown in the t-BHP model. EPA/DHA-PS could downregulate the messenger RNA level of Caspase-3, Caspase-9, and Bax, upregulate Bcl-2, inhibit Bax, and increase Bcl-2 at protein level. In conclusion, EPA/DHA-PS could protect PC12 cells from oxidative stress and prevent mitochondrial-mediated apoptosis. Our findings indicate that the neuroprotective effects of DHA/EPA-PLs depend on the molecular form. Further studies are necessary to reveal detailed mechanisms and structure-effect relationships.
Collapse
Affiliation(s)
- Hongxia Che
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Xueyuan Fu
- Marine Biomedical Research Institute of Qingdao, No. 23 Hong Kong East Road, Qingdao, Shandong, China
| | - Lingyu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Xiang Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Min Wen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Lei Du
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong University, 44 Wenhua Xilu, Jinan, 250012, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
45
|
Chouinard-Watkins R, Lacombe RJS, Bazinet RP. Mechanisms regulating brain docosahexaenoic acid uptake: what is the recent evidence? Curr Opin Clin Nutr Metab Care 2018; 21:71-77. [PMID: 29206690 DOI: 10.1097/mco.0000000000000440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW To summarize recent advances pertaining to the mechanisms regulating brain docosahexaenoic acid (DHA) uptake. DHA is an omega-3 polyunsaturated fatty acid highly enriched in neuronal membranes and it is implicated in several important neurological processes. However, DHA synthesis is extremely limited within the brain. RECENT FINDINGS There are two main plasma pools that supply the brain with DHA: the nonesterified pool and the lysophosphatidylcholine (lysoPtdCho) pool. Quantitatively, plasma nonesterified-DHA (NE-DHA) is the main contributor to brain DHA. Fatty acid transport protein 1 (FATP1) in addition to fatty acid-binding protein 5 (FABP5) are key players that regulate brain uptake of NE-DHA. However, the plasma half-life of lysoPtdCho-DHA and its brain partition coefficient are higher than those of NE-DHA after intravenous administration. SUMMARY The mechanisms regulating brain DHA uptake are more complicated than once believed, but recent advances provide some clarity notably by suggesting that FATP1 and FABP5 are key contributors to cellular uptake of DHA at the blood-brain barrier. Elucidating how DHA enters the brain is important as we might be able to identify methods to better deliver DHA to the brain as a potential therapeutic.
Collapse
Affiliation(s)
- Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
46
|
Wang DD, Wu F, Wen M, Ding L, Du L, Xue CH, Xu J, Wang YM. Replenishment of Docosahexaenoic Acid (DHA) in Dietary n-3-Deficient Mice Fed DHA in Triglycerides or Phosphatidylcholines After Weaning. J Food Sci 2018; 83:481-488. [PMID: 29337366 DOI: 10.1111/1750-3841.14017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/19/2017] [Indexed: 01/01/2023]
Abstract
Previous studies have shown that DHA in triglyceride (TG) and phosphatidylcholine (PC) forms are different in their bioavailability. The aim of this study was to investigate the comparative effects of DHA-TG and DHA-PC on tissue DHA accretion in dietary n-3 polyunsaturated fatty acid deficient (n-3 Def) mice. The mice were fed with n-3 Def diet containing DHA-TG or DHA-PC (5 g/kg diet) for 2, 4, 7, or 14 d after weaning, respectively. The DHA levels in the cortex, liver, testis, and erythrocytes were analyzed by gas chromatography. For liver, DHA mainly existed in hepatic phospholipids relative to triglycerides. Both DHA-TG and DHA-PC could recover the hepatic DHA to a normal level. Interestingly, DHA-TG was more effective in increasing the DHA level in hepatic triglycerides, and DHA-PC was more effective in increasing the DHA level in hepatic phospholipids. For erythrocytes, during the first 7 d, no difference was observed after dietary DHA-TG and DHA-PC but a significantly higher DHA percentage was detected in the DHA-PC group after 14 d. For cortex, the DHA-TG group showed a higher cortical DHA level at the 4th day, but the DHA-PC group showed a higher cortical DHA level with a greater slope from Day 7 to Day 14, and the same trend was observed in testis. But unexpectedly, the DHA level in testis showed a downtrend from Day 7 to Day 14. This study suggests that, under dietary n-3-deficient condition, both DHA-TG and DHA-PC could recover the DHA level in tissues after weaning, and DHA-PC showed a better supplemental effect. PRACTICAL APPLICATION Dietary DHA is essential for neurodevelopment which is usually accompanied by large amounts of DHA accretion in the brain. Our present study showed that DHA-PC had a better efficiency for DHA accretion in the brain and other tissues compared with DHA-TG. The findings are supposed to pave the way for the DHA in phospholipids as a novel nutrient added into the infant formula and assisted food for neurodevelopment.
Collapse
Affiliation(s)
- Dan-Dan Wang
- College of Food Science and Engineering, Ocean Univ. of China, Qingdao, Shandong 266003, China
| | - Fang Wu
- College of Food Science and Engineering, Ocean Univ. of China, Qingdao, Shandong 266003, China
| | - Min Wen
- College of Food Science and Engineering, Ocean Univ. of China, Qingdao, Shandong 266003, China
| | - Lin Ding
- College of Food Science and Engineering, Ocean Univ. of China, Qingdao, Shandong 266003, China
| | - Lei Du
- Faculty of Fisheries Sciences, Hokkaido Univ., 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean Univ. of China, Qingdao, Shandong 266003, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean Univ. of China, Qingdao, Shandong 266003, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean Univ. of China, Qingdao, Shandong 266003, China
| |
Collapse
|
47
|
Layé S, Nadjar A, Joffre C, Bazinet RP. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacol Rev 2017; 70:12-38. [PMID: 29217656 DOI: 10.1124/pr.117.014092] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain.
Collapse
Affiliation(s)
- Sophie Layé
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Agnès Nadjar
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Corinne Joffre
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Richard P Bazinet
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| |
Collapse
|
48
|
Ghazale H, Ramadan N, Mantash S, Zibara K, El-Sitt S, Darwish H, Chamaa F, Boustany RM, Mondello S, Abou-Kheir W, Soueid J, Kobeissy F. Docosahexaenoic acid (DHA) enhances the therapeutic potential of neonatal neural stem cell transplantation post-Traumatic brain injury. Behav Brain Res 2017; 340:1-13. [PMID: 29126932 DOI: 10.1016/j.bbr.2017.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 12/25/2022]
Abstract
Traumatic Brain Injury (TBI) is a major cause of death and disability worldwide with 1.5 million people inflicted yearly. Several neurotherapeutic interventions have been proposed including drug administration as well as cellular therapy involving neural stem cells (NSCs). Among the proposed drugs is docosahexaenoic acid (DHA), a polyunsaturated fatty acid, exhibiting neuroprotective properties. In this study, we utilized an innovative intervention of neonatal NSCs transplantation in combination with DHA injections in order to ameliorate brain damage and promote functional recovery in an experimental model of TBI. Thus, NSCs derived from the subventricular zone of neonatal pups were cultured into neurospheres and transplanted in the cortex of an experimentally controlled cortical impact mouse model of TBI. The effect of NSC transplantation was assessed alone and/or in combination with DHA administration. Motor deficits were evaluated using pole climbing and rotarod tests. Using immunohistochemistry, the effect of transplanted NSCs and DHA treatment was used to assess astrocytic (Glial fibrillary acidic protein, GFAP) and microglial (ionized calcium binding adaptor molecule-1, IBA-1) activity. In addition, we quantified neuroblasts (doublecortin; DCX) and dopaminergic neurons (tyrosine hydroxylase; TH) expression levels. Combined NSC transplantation and DHA injections significantly attenuated TBI-induced motor function deficits (pole climbing test), promoted neurogenesis, coupled with an increase in glial reactivity at the cortical site of injury. In addition, the number of tyrosine hydroxylase positive neurons was found to increase markedly in the ventral tegmental area and substantia nigra in the combination therapy group. Immunoblotting analysis indicated that DHA+NSCs treated animals showed decreased levels of 38kDa GFAP-BDP (breakdown product) and 145kDa αII-spectrin SBDP indicative of attenuated calpain/caspase activation. These data demonstrate that prior treatment with DHA may be a desirable strategy to improve the therapeutic efficacy of NSC transplantation in TBI.
Collapse
Affiliation(s)
- Hussein Ghazale
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Naify Ramadan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Sara Mantash
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, DSST, Lebanese University, Beirut, Lebanon; Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Sally El-Sitt
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Hala Darwish
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rose Mary Boustany
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon; American University of Beirut Medical Center Special Kids Clinic, Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Adolescent Medicine, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, A.O.U. "Policlinico G. Martino", Via Consolare Valeria, Messina, 98125, Italy
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Jihane Soueid
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon; Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
49
|
Lo Van A, Fourmaux B, Picq M, Guichardant M, Lagarde M, Bernoud-Hubac N. Synthesis and Identification of AceDoxyPC, a Protectin-Containing Structured Phospholipid, Using Liquid Chromatography/Mass Spectrometry. Lipids 2017; 52:751-761. [PMID: 28776175 DOI: 10.1007/s11745-017-4280-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/21/2017] [Indexed: 11/29/2022]
Abstract
Fatty acids have many health benefits in a great variety of diseases ranging from cardiovascular to cerebral diseases. For instance, docosahexaenoic acid (DHA), which is highly enriched in brain phospholipids, plays a major role in anti-inflammatory or neuroprotective pathways. Its effects are thought to be due, in part, to its conversion into derived mediators such as protectins. 1-Lyso,2-docosahexaenoyl-glycerophosphocholine (LysoPtdCho-DHA) is one of the physiological carrier of DHA to the brain. We previously synthesized a structured phosphatidylcholine to mimic 1-lyso,2-docosahexaenoyl-glycerophosphocholine, named AceDoPC® (1-acetyl,2-docosahexaenoyl-glycerophosphocholine), that is considered as a stabilized form of the physiological LysoPtdCho-DHA and that is neuroprotective in experimental ischemic stroke. Considering these, the current study aimed at enzymatically oxygenate DHA contained within AceDoPC® to synthesize a readily structured oxidized phospholipid containing protectin DX (PDX), thereafter named AceDoxyPC (1-acetyl,2-PDX-glycerophosphocholine). Identification of this product was performed using liquid chromatography/tandem mass spectrometry. Such molecule could be used as a bioactive mediator for therapy against neurodegenerative diseases and stroke.
Collapse
Affiliation(s)
- Amanda Lo Van
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France
- Department of Developmental Neuroscience, Center for Neuroscience, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Baptiste Fourmaux
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France
| | - Madeleine Picq
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France
| | - Michel Guichardant
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France
| | - Michel Lagarde
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France
| | - Nathalie Bernoud-Hubac
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France.
| |
Collapse
|
50
|
Fourrier C, Remus-Borel J, Greenhalgh AD, Guichardant M, Bernoud-Hubac N, Lagarde M, Joffre C, Layé S. Docosahexaenoic acid-containing choline phospholipid modulates LPS-induced neuroinflammation in vivo and in microglia in vitro. J Neuroinflammation 2017; 14:170. [PMID: 28838312 PMCID: PMC5571638 DOI: 10.1186/s12974-017-0939-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/09/2017] [Indexed: 12/27/2022] Open
Abstract
Background Neuroinflammatory processes are considered a double-edged sword, having both protective and detrimental effects in the brain. Microglia, the brain’s resident innate immune cells, are a key component of neuroinflammatory response. There is a growing interest in developing drugs to target microglia and control neuroinflammatory processes. In this regard, docosahexaenoic acid (DHA), the brain’s n-3 polyunsaturated fatty acid, is a promising molecule to regulate pro-inflammatory microglia and cytokine production. Several works reported that the bioavailability of DHA to the brain is higher when DHA is acylated to phospholipid. In this work, we analyzed the anti-inflammatory activity of DHA-phospholipid, either acetylated at the sn-1 position (AceDoPC, a stable form thought to have superior access to the brain) or acylated with palmitic acid at the sn-1 position (PC-DHA) using a lipopolysaccharide (LPS)-induced neuroinflammation model both in vitro and in vivo. Methods In vivo, adult C57Bl6/J mice were injected intravenously (i.v.) with either AceDoPC or PC-DHA 24 h prior to LPS (i.p.). For in vitro studies, immortalized murine microglia cells BV-2 were co-incubated with DHA forms and LPS. AceDoPC and PC-DHA effect on brain or BV-2 PUFA content was assessed by gas chromatography. LPS-induced pro-inflammatory cytokines interleukin IL-1β, IL-6, and tumor necrosis factor (TNF) α production were measured by quantitative PCR (qPCR) or multiplex. IL-6 receptors and associated signaling pathway STAT3 were assessed by FACS analysis and western-blot in vitro. Results In vivo, a single injection of AceDoPC or PC-DHA decreased LPS-induced IL-6 production in the hippocampus of mice. This effect could be linked to their direct effect on microglia, as revealed in vitro. In addition, AceDoPC or PC-DHA reduced IL-6 receptor while only AceDoPC decreased IL-6-induced STAT3 phosphorylation. Conclusions These results highlight the potency of administered DHA—acetylated to phospholipids—to rapidly regulate LPS-induced neuroinflammatory processes through their effect on microglia. In particular, both IL-6 production and signaling are targeted by AceDoPC in microglia.
Collapse
Affiliation(s)
- Célia Fourrier
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076, Bordeaux, France.,Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076, Bordeaux, France
| | - Julie Remus-Borel
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076, Bordeaux, France.,Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076, Bordeaux, France
| | - Andrew D Greenhalgh
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076, Bordeaux, France.,Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076, Bordeaux, France
| | - Michel Guichardant
- CarMeN laboratory, INSERM UMR 1060, INRA UMR 1397, IMBL, INSA-Lyon, University of Lyon, Lyon, France
| | - Nathalie Bernoud-Hubac
- CarMeN laboratory, INSERM UMR 1060, INRA UMR 1397, IMBL, INSA-Lyon, University of Lyon, Lyon, France
| | - Michel Lagarde
- CarMeN laboratory, INSERM UMR 1060, INRA UMR 1397, IMBL, INSA-Lyon, University of Lyon, Lyon, France
| | - Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076, Bordeaux, France. .,Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076, Bordeaux, France.
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076, Bordeaux, France. .,Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076, Bordeaux, France.
| |
Collapse
|