1
|
Mochalova EN, Cherkasov VR, Sizikov AA, Litvinenko AV, Vorobeva TS, Norvillo NB, Gopanenko AV, Ivashchenko IA, Nikitin MP, Ivashchenko AA. Liposome-encapsulated aprotinin biodistribution in mice: Side-by-side comparison with free drug formulation. Biochem Biophys Res Commun 2024; 734:150636. [PMID: 39250873 DOI: 10.1016/j.bbrc.2024.150636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Injuries of the respiratory system caused by viral infections (e.g., by influenza virus, respiratory syncytial virus, metapneumovirus, or coronavirus) can lead to long-term complications or even life-threatening conditions. The challenges of treatment of such diseases have become particularly pronounced during the recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One promising drug is the anti-fibrinolytic and anti-inflammatory protease inhibitor aprotinin, which has demonstrated considerable inhibition of the replication of some viruses. Encapsulation of aprotinin in liposomes can significantly improve the effectiveness of the drug, however, the use of nanoparticles as carriers of aprotinin can radically change its biodistribution in the body. Here we show that the liposomal form of aprotinin accumulates more efficiently in the lungs, heart, and kidneys than the molecular form by side-by-side comparison of the ex vivo biodistribution of these two fluorescently labeled formulations in mice using bioimaging. In particular, we synthesized liposomes of different compositions and studied their accumulation in various organs and tissues. Direct comparison of the biodistributions of liposomal and free aprotinin showed that liposomes accumulated in the lungs 1.82 times more effectively, and in the heart and kidneys - 3.56 and 2.00 times, respectively. This suggests that the liposomal formulation exhibits a longer residence time in the target organ and, thus, has the potential for a longer therapeutic effect. The results reveal the great potential of the aprotinin-loaded liposomes for the treatment of respiratory system injuries and heart- and kidney-related complications of viral infections.
Collapse
Affiliation(s)
- Elizaveta N Mochalova
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia; Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991, Moscow, Russia
| | - Vladimir R Cherkasov
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991, Moscow, Russia
| | - Artem A Sizikov
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia
| | | | - Tatiana S Vorobeva
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia
| | - Natalia B Norvillo
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia
| | - Alexander V Gopanenko
- Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia
| | - Ilya A Ivashchenko
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia
| | - Maxim P Nikitin
- Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St, 117997, Moscow, Russia; Moscow Center for Advanced Studies, 20 Kulakova St, 123592, Moscow, Russia.
| | | |
Collapse
|
2
|
Haynes LM, Holding ML, DiGiovanni H, Siemieniak D, Ginsburg D. High-throughput amino acid-level characterization of the interactions of plasminogen activator inhibitor-1 with variably divergent proteases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.612699. [PMID: 39345533 PMCID: PMC11429915 DOI: 10.1101/2024.09.16.612699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
While members of large paralogous protein families share structural features, their functional niches often diverge significantly. Serine protease inhibitors (SERPINs), whose members typically function as covalent inhibitors of serine proteases, are one such family. Plasminogen activator inhibitor-1 (PAI-1) is a prototypic SERPIN, which canonically inhibits tissue-and urokinase-type plasminogen activators (tPA and uPA) to regulate fibrinolysis. PAI-1 has been shown to also inhibit other serine proteases, including coagulation factor XIIa (FXIIa) and transmembrane serine protease 2 (TMPRSS2). The structural determinants of PAI-1 inhibitory function toward these non-canonical protease targets, and the biological significance of these functions, are unknown. We applied deep mutational scanning (DMS) to assess the effects of ∼80% of all possible single amino acid substitutions in PAI-1 on its ability to inhibit three putative serine protease targets (uPA, FXIIa, and TMPRSS2). Selection with each target protease generated a unique PAI-1 mutational landscape, with the determinants of protease specificity distributed throughout PAI-1's primary sequence. Next, we conducted a comparative analysis of extant orthologous sequences, demonstrating that key residues modulating PAI-1 inhibition of uPA and FXIIa, but not TMPRSS2, are maintained by purifying selection. PAI-1's activity toward FXIIa may reflect how protease evolutionary relationships predict SERPIN functional divergence, which we support via a cophylogenetic analysis of all secreted SERPINs and their cognate serine proteases. This work provides insight into the functional diversification of SERPINs and lays the framework for extending these studies to other proteases and their regulators.
Collapse
|
3
|
Hose L, Schürmann M, Sudhoff H. Upregulation of key factors of viral entry of corona- and influenza viruses upon TLR3-signaling in cells from the respiratory tract and clinical treatment options by 1,8-Cineol. Phytother Res 2024; 38:4453-4466. [PMID: 39020450 DOI: 10.1002/ptr.8280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
At the end of the 2019 coronavirus pandemic (COVID-19), highly contagious variants of coronaviruses had emerged. Together with influenza viruses, different variants of the coronavirus currently cause most colds and require appropriate drug treatment. We have investigated the expression of important factors for the replication of these viruses, namely transmembrane protease serine subtype 2 (TMPRSS2), neuropilin1 (NRP1), and angiotensin converting enzyme 2 (ACE2) or tumor necrosis factor-α (TNF-α) after toll like receptor-3 (TLR-3) stimulation using RT-qPCR and flow cytometry (FC) analysis. As model served primary fibroblasts derived from the lung and nasal cavity, as well as epidermal stem cells and fully matured respiratory epithelium. The stimulated cell cultures were treated with pharmaceuticals (Dexamethasone and Enzalutamide) and the outcome was compared with the phytomedicine 1,8-Cineol. The stimulation of TLR3 is sufficient to induce the expression of exactly those targets that were highly expressed in the corresponding culture type, specifically ACE2 and TMPRSS2 in respiratory epithelial stem cells and NRP1 in fibroblast cells. It seems this self-perpetuating cycle of infection-driven upregulation of key viral replication factors by the innate immune system represents an evolutionary advantage for viruses using these transcripts as viral replication factors. Likewise, to the standard pharmaceuticals with proven clinical efficiency, 1,8-Cineol was able to disrupt this self-perpetuating cycle. Considering the minor side effects and negligible pharmacological interactions with other drugs, it is conceivable that an adjuvant or combinatorial therapy with 1,8-Cineol for respiratory diseases caused by corona- or influenza viruses would be beneficial.
Collapse
Affiliation(s)
- Leonie Hose
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Matthias Schürmann
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Gamba D, van Eijk N, Lányi K, Monostory K, Steinmetzer T, Marosi A, Rácz A, Bajusz D, Kruhl D, Böttcher-Friebertshäuser E, Pászti-Gere E. PK/PD investigation of antiviral host matriptase/TMPRSS2 inhibitors in cell models. Sci Rep 2024; 14:16621. [PMID: 39025978 PMCID: PMC11258351 DOI: 10.1038/s41598-024-67633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Certain corona- and influenza viruses utilize type II transmembrane serine proteases for cell entry, making these enzymes potential drug targets for the treatment of viral respiratory infections. In this study, the cytotoxicity and inhibitory effects of seven matriptase/TMPRSS2 inhibitors (MI-21, MI-463, MI-472, MI-485, MI-1900, MI-1903, and MI-1904) on cytochrome P450 enzymes were evaluated using fluorometric assays. Additionally, their antiviral activity against influenza A virus subtypes H1N1 and H9N2 was assessed. The metabolic depletion rates of these inhibitors in human primary hepatocytes were determined over a 120-min period by LC-MS/MS, and PK parameters were calculated. The tested compounds, with the exception of MI-21, displayed potent inhibition of CYP3A4, while all compounds lacked inhibitory effects on CYP1A2, CYP2C9, CYP2C19, and CYP2D6. The differences between the CYP3A4 activity within the series were rationalized by ligand docking. Elucidation of PK parameters showed that inhibitors MI-463, MI-472, MI-485, MI-1900 and MI-1904 were more stable compounds than MI-21 and MI-1903. Anti-H1N1 properties of inhibitors MI-463 and MI-1900 and anti-H9N2 effects of MI-463 were shown at 20 and 50 µM after 24 h incubation with the inhibitors, suggesting that these inhibitors can be applied to block entry of these viruses by suppressing host matriptase/TMPRSS2-mediated cleavage.
Collapse
Affiliation(s)
- Dávid Gamba
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Utca 2, 1078, Budapest, Hungary
| | - Nicholas van Eijk
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Utca 2, 1078, Budapest, Hungary
| | - Katalin Lányi
- Department of Food Hygiene, University of Veterinary Medicine, István Utca 2, 1078, Budapest, Hungary
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Torsten Steinmetzer
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - András Marosi
- Virology Research Group, Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt 23, 1143, Budapest, Hungary
| | - Anita Rácz
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Dávid Bajusz
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Diana Kruhl
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Str. 2, 35043, Marburg, Germany
| | | | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Utca 2, 1078, Budapest, Hungary.
| |
Collapse
|
5
|
Valenzuela AR, Turner M, Markarian N, Lachance-Brais C, Hanrahan J, Vali H, Vidal S, Mongeau L. Design, infectability, and transcriptomic analysis of transregionally differentiated and scalable lung organoids derived from adult bronchial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601655. [PMID: 39026877 PMCID: PMC11257428 DOI: 10.1101/2024.07.02.601655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The lung is a primary target for many lethal respiratory viruses, leading to significant global mortality. Current organoid models fail to completely mimic the cellular diversity and intricate tubular and branching structures of the human lung. Lung organoids derived from adult primary cells have so far only included cells from the input cell region, proximal or distal. Existing models are expensive. They often require cells from invasive deep lung tissue biopsies. The present study aimed to address these limitations. The lung organoids obtained using an original protocol exhibited transregional differentiation and were derived from relatively more accessible primary cells from the trachea/bronchi. Immortal bronchial cell lines were also used to simplify organoid fabrication and improve its scalability. The lung organoids are formed starting from bronchial cells with fibroblasts feeder cells in an alginate hydrogel coated with base membrane zone proteins. Characterizations were performed using bulk RNA sequencing and tandem mass tags. The resulting organoids express markers of different lung regions and mimic to some extent the tubular and branching morphology of the lung. The proteomic profile of organoid from primary cells and from cell lines was found to evolve towards that of mature lung tissue. Upregulated genes were mostly related to the respiratory system, tube development, and various aspects of respiratory viral infections. Infection with SARS-CoV-2 and influenza H1N1 was successful and did not require organoid disassembly. The organoids matured within 21 days and did not require complex or expensive culture methods. Transregionally differentiated lung organoid may find applications for the study of emerging or re-emerging viral infections and fostering the development of novel in-vitro therapeutic strategies.
Collapse
Affiliation(s)
- Alicia Reyes Valenzuela
- Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada. H3A 2B4
- Department of Mechanical engineering. McGill University. Montreal, Canada. H3A 0C3
| | - Mark Turner
- Pharmaceutical Drugs Directorate, Bureau of Gastroenterology, Infection and Viral Diseases, Health Canada, Ottawa, Ontario, Canada, K1A 0K9
| | - Nathan Markarian
- Department of Human Genetics, McGill University, Montreal, Canada, H3A 0C7
- Research Centre on Complex Traits, McGill University, Montreal, Canada, H3G 0B1
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal. Montreal, Canada, J25 2MD
| | | | - John Hanrahan
- Department of Physiology, McGill University, Montreal, Canada. H3G 1Y6
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada. H3A 0C7
| | - Silvia Vidal
- Department of Human Genetics, McGill University, Montreal, Canada, H3A 0C7
- Research Centre on Complex Traits, McGill University, Montreal, Canada, H3G 0B1
| | - Luc Mongeau
- Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada. H3A 2B4
- Department of Mechanical engineering. McGill University. Montreal, Canada. H3A 0C3
| |
Collapse
|
6
|
Martínez-Gómez LE, Martinez-Armenta C, Tusie-Luna T, Vázquez-Cárdenas P, Vidal-Vázquez RP, Ramírez-Hinojosa JP, Gómez-Martín D, Vargas-Alarcón G, Posadas-Sánchez R, Fragoso JM, de la Peña A, Rodríguez-Pérez JM, Mata-Miranda MM, Vázquez-Zapién GJ, Martínez-Cuazitl A, Martínez-Ruiz FDJ, Zayago-Angeles DM, Ramos-Tavera L, Méndez-Aguilera A, Camacho-Rea MDC, Ordoñez-Sánchez ML, Segura-Kato Y, Suarez-Ahedo C, Olea-Torres J, Herrera-López B, Pineda C, Martínez-Nava GA, López-Reyes A. The fatal contribution of serine protease-related genetic variants to COVID-19 outcomes. Front Immunol 2024; 15:1335963. [PMID: 38601158 PMCID: PMC11004237 DOI: 10.3389/fimmu.2024.1335963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Serine proteases play a critical role during SARS-CoV-2 infection. Therefore, polymorphisms of transmembrane protease serine 2 (TMPRSS2) and serpine family E member 1 (SERPINE1) could help to elucidate the contribution of variability to COVID-19 outcomes. Methods To evaluate the genetic variants of the genes previously associated with COVID-19 outcomes, we performed a cross-sectional study in which 1536 SARS-CoV-2-positive participants were enrolled. TMPRSS2 (rs2070788, rs75603675, rs12329760) and SERPINE1 (rs2227631, rs2227667, rs2070682, rs2227692) were genotyped using the Open Array Platform. The association of polymorphisms with disease outcomes was determined by logistic regression analysis adjusted for covariates (age, sex, hypertension, type 2 diabetes, and obesity). Results According to our codominant model, the GA genotype of rs2227667 (OR=0.55; 95% CI = 0.36-0.84; p=0.006) and the AG genotype of rs2227667 (OR=0.59; 95% CI = 0.38-0.91; p=0.02) of SERPINE1 played a protective role against disease. However, the rs2227692 T allele and TT genotype SERPINE1 (OR=1.45; 95% CI = 1.11-1.91; p=0.006; OR=2.08; 95% CI = 1.22-3.57; p=0.007; respectively) were associated with a decreased risk of death. Similarly, the rs75603675 AA genotype TMPRSS2 had an OR of 1.97 (95% CI = 1.07-3.6; p=0.03) for deceased patients. Finally, the rs2227692 T allele SERPINE1 was associated with increased D-dimer levels (OR=1.24; 95% CI = 1.03-1.48; p=0.02). Discussion Our data suggest that the rs75603675 TMPRSS2 and rs2227692 SERPINE1 polymorphisms are associated with a poor outcome. Additionally, rs2227692 SERPINE1 could participate in hypercoagulable conditions in critical COVID-19 patients, and this genetic variant could contribute to the identification of new pharmacological targets and treatment strategies to block the inhibition of TMPRSS2 entry into SARS-CoV-2.
Collapse
Affiliation(s)
- Laura Edith Martínez-Gómez
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Carlos Martinez-Armenta
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Teresa Tusie-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador, Zubirán, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola Vázquez-Cárdenas
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Rosa P. Vidal-Vázquez
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Juan P. Ramírez-Hinojosa
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Departamento de Inmunogenética, Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Rosalinda Posadas-Sánchez
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - José Manuel Fragoso
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Aurora de la Peña
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Manuel Rodríguez-Pérez
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Mónica M. Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Mexico City, Mexico
| | - Gustavo J. Vázquez-Zapién
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Mexico City, Mexico
| | - Adriana Martínez-Cuazitl
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Mexico City, Mexico
| | - Felipe de J. Martínez-Ruiz
- Nuevo Hospital General Delegación Regional Sur de la Ciudad de México Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Dulce M. Zayago-Angeles
- Nuevo Hospital General Delegación Regional Sur de la Ciudad de México Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Luis Ramos-Tavera
- Department of Immunology and Rheumatology, Departamento de Inmunogenética, Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico
| | - Alberto Méndez-Aguilera
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - María del C. Camacho-Rea
- Department of Immunology and Rheumatology, Departamento de Inmunogenética, Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico
| | - María L. Ordoñez-Sánchez
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador, Zubirán, Mexico City, Mexico
| | - Yayoi Segura-Kato
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador, Zubirán, Mexico City, Mexico
| | - Carlos Suarez-Ahedo
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Jessel Olea-Torres
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Brígida Herrera-López
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Carlos Pineda
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Gabriela A. Martínez-Nava
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Alberto López-Reyes
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
7
|
Ugrani S. Inhibitor design for TMPRSS2: insights from computational analysis of its backbone hydrogen bonds using a simple descriptor. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:27-46. [PMID: 38157015 PMCID: PMC10853362 DOI: 10.1007/s00249-023-01695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Transmembrane protease serine 2 (TMPRSS2) is an important drug target due to its role in the infection mechanism of coronaviruses including SARS-CoV-2. Current understanding regarding the molecular mechanisms of known inhibitors and insights required for inhibitor design are limited. This study investigates the effect of inhibitor binding on the intramolecular backbone hydrogen bonds (BHBs) of TMPRSS2 using the concept of hydrogen bond wrapping, which is the phenomenon of stabilization of a hydrogen bond in a solvent environment as a result of being surrounded by non-polar groups. A molecular descriptor which quantifies the extent of wrapping around BHBs is introduced for this. First, virtual screening for TMPRSS2 inhibitors is performed by molecular docking using the program DOCK 6 with a Generalized Born surface area (GBSA) scoring function. The docking results are then analyzed using this descriptor and its relationship to the solvent-accessible surface area term ΔGsa of the GBSA score is demonstrated with machine learning regression and principal component analysis. The effect of binding of the inhibitors camostat, nafamostat, and 4-guanidinobenzoic acid (GBA) on the wrapping of important BHBs in TMPRSS2 is also studied using molecular dynamics. For BHBs with a large increase in wrapping groups due to these inhibitors, the radial distribution function of water revealed that certain residues involved in these BHBs, like Gln438, Asp440, and Ser441, undergo preferential desolvation. The findings offer valuable insights into the mechanisms of these inhibitors and may prove useful in the design of new inhibitors.
Collapse
Affiliation(s)
- Suraj Ugrani
- Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
8
|
Cani M, Epistolio S, Dazio G, Modesti M, Salfi G, Pedrani M, Isella L, Gillessen S, Vogl UM, Tortola L, Treglia G, Buttigliero C, Frattini M, Pereira Mestre R. Antiandrogens as Therapies for COVID-19: A Systematic Review. Cancers (Basel) 2024; 16:298. [PMID: 38254788 PMCID: PMC10814161 DOI: 10.3390/cancers16020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND In 2019, the breakthrough of the coronavirus 2 disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represented one of the major issues of our recent history. Different drugs have been tested to rapidly find effective anti-viral treatments and, among these, antiandrogens have been suggested to play a role in mediating SARS-CoV-2 infection. Considering the high heterogeneity of studies on this topic, we decided to review the current literature. METHODS We performed a systematic review according to PRISMA guidelines. A search strategy was conducted on PUBMED and Medline. Only original articles published from March 2020 to 31 August 2023 investigating the possible protective role of antiandrogens were included. In vitro or preclinical studies and reports not in the English language were excluded. The main objective was to investigate how antiandrogens may interfere with COVID-19 outcomes. RESULTS Among 1755 records, we selected 31 studies, the majority of which consisted of retrospective clinical data collections and of randomized clinical trials during the first and second wave of the COVID-19 pandemic. CONCLUSIONS In conclusion, we can state that antiandrogens do not seem to protect individuals from SARS-CoV-2 infection and COVID-19 severity and, thus, their use should not be encouraged in this field.
Collapse
Affiliation(s)
- Massimiliano Cani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy;
| | - Samantha Epistolio
- Laboratory of Genetics and Molecular Pathology, Institute of Pathology, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland (M.F.)
| | - Giulia Dazio
- Laboratory of Genetics and Molecular Pathology, Institute of Pathology, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland (M.F.)
| | - Mikol Modesti
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland
| | - Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Luca Isella
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland;
| | - Ursula Maria Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
| | - Giorgio Treglia
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland;
- Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Consuelo Buttigliero
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy;
| | - Milo Frattini
- Laboratory of Genetics and Molecular Pathology, Institute of Pathology, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland (M.F.)
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland;
- Clinical Research Unit, myDoctorAngel, 6934 Bioggio, Switzerland
| |
Collapse
|
9
|
Zareie AR, Dabral P, Verma SC. G-Quadruplexes in the Regulation of Viral Gene Expressions and Their Impacts on Controlling Infection. Pathogens 2024; 13:60. [PMID: 38251367 PMCID: PMC10819198 DOI: 10.3390/pathogens13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid structures that play significant roles in regulating various biological processes, including replication, transcription, translation, and recombination. Recent studies have identified G4s in the genomes of several viruses, such as herpes viruses, hepatitis viruses, and human coronaviruses. These structures are implicated in regulating viral transcription, replication, and virion production, influencing viral infectivity and pathogenesis. G4-stabilizing ligands, like TMPyP4, PhenDC3, and BRACO19, show potential antiviral properties by targeting and stabilizing G4 structures, inhibiting essential viral life-cycle processes. This review delves into the existing literature on G4's involvement in viral regulation, emphasizing specific G4-stabilizing ligands. While progress has been made in understanding how these ligands regulate viruses, further research is needed to elucidate the mechanisms through which G4s impact viral processes. More research is necessary to develop G4-stabilizing ligands as novel antiviral agents. The increasing body of literature underscores the importance of G4s in viral biology and the development of innovative therapeutic strategies against viral infections. Despite some ligands' known regulatory effects on viruses, a deeper comprehension of the multifaceted impact of G4s on viral processes is essential. This review advocates for intensified research to unravel the intricate relationship between G4s and viral processes, paving the way for novel antiviral treatments.
Collapse
Affiliation(s)
| | | | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, NV 89557, USA; (A.R.Z.); (P.D.)
| |
Collapse
|
10
|
Khalifa HO, Al Ramahi YM. After the Hurricane: Anti-COVID-19 Drugs Development, Molecular Mechanisms of Action and Future Perspectives. Int J Mol Sci 2024; 25:739. [PMID: 38255813 PMCID: PMC10815681 DOI: 10.3390/ijms25020739] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a new coronavirus in the Coronaviridae family. The COVID-19 pandemic, caused by SARS-CoV-2, has undoubtedly been the largest crisis of the twenty-first century, resulting in over 6.8 million deaths and 686 million confirmed cases, creating a global public health issue. Hundreds of notable articles have been published since the onset of this pandemic to justify the cause of viral spread, viable preventive measures, and future therapeutic approaches. As a result, this review was developed to provide a summary of the current anti-COVID-19 drugs, as well as their timeline, molecular mode of action, and efficacy. It also sheds light on potential future treatment options. Several medications, notably hydroxychloroquine and lopinavir/ritonavir, were initially claimed to be effective in the treatment of SARS-CoV-2 but eventually demonstrated inadequate activity, and the Food and Drug Administration (FDA) withdrew hydroxychloroquine. Clinical trials and investigations, on the other hand, have demonstrated the efficacy of remdesivir, convalescent plasma, and monoclonal antibodies, 6-Thioguanine, hepatitis C protease inhibitors, and molnupiravir. Other therapeutics, including inhaled medicines, flavonoids, and aptamers, could pave the way for the creation of novel anti-COVID-19 therapies. As future pandemics are unavoidable, this article urges immediate action and extensive research efforts to develop potent specialized anti-COVID-19 medications.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yousef M. Al Ramahi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
| |
Collapse
|
11
|
Ishii S, Sakaguchi W, Yamamura M, Nagumo T, Koeda S, Akiyama H, Kinuta M, Nishikubo S, Tsukinoki K. Association between salivary proteases and protease inhibitors linked with viral infections and oral inflammatory diseases. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101572. [PMID: 37495185 DOI: 10.1016/j.jormas.2023.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Despite the role of transmembrane protease, serine 2 (TMPRSS2) in facilitating the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the primary cause of the global COVID-19 pandemic, the interaction of extracellular and intracellular proteases in this process remains poorly elucidated. Thus, we monitored the salivary expression concentration (SEC) of TMPRSS2 and its inhibitor, alpha-1 antitrypsin (A1AT), and investigated whether oral inflammatory diseases affected the SEC of both proteins. MATERIALS AND METHODS We collected saliva samples before and after surgical treatment of inflammatory cystic diseases (radicular and inflammatory dentigerous cysts) in 25 patients. The SEC of TMPRSS2 and A1AT was measured using enzyme-linked immunosorbent assay. SEC in multiple patient status groups and subgroups of each status were investigated. Finally, the correlation between TMPRSS2 and A1AT SEC was analyzed. RESULTS The TMPRSS2 and A1AT SEC did not significantly change pre- or post-treatment. The TMPRSS2 SEC was significantly higher before and after treatment in patients aged >50 years, patients with radicular cysts, and patients with the basic disease. A1AT SEC was significantly decreased after treatment in the acute inflammation, large-sized, and patients without basic disease groups. No significant correlation was observed between the SEC of either protein before and after treatment. DISCUSSION Individual-specific SEC for TMPRSS2 may be influenced by age, lesion type, and basic disease; however, oral inflammatory diseases may not have a direct effect. Moreover, the extent of oral inflammatory diseases and the presence of basic diseases may be associated with A1AT SEC. Furthermore, the SEC between the two proteins may be independent.
Collapse
Affiliation(s)
- Shigeru Ishii
- Department of Advanced Oral Surgery, Kanagawa Dental University, Yokohama Clinic, 3-31-6 Tsuruya-cho, Kanagawa-ku, Yokohama City, Kanagawa, 221-0835, Japan.
| | - Wakako Sakaguchi
- Department of Environmental Pathology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka City, Kanagawa, 238-8580, Japan.
| | - Makiko Yamamura
- Department of Advanced Oral Surgery, Kanagawa Dental University, Yokohama Clinic, 3-31-6 Tsuruya-cho, Kanagawa-ku, Yokohama City, Kanagawa, 221-0835, Japan.
| | - Tatsuhito Nagumo
- Department of Advanced Oral Surgery, Kanagawa Dental University, Yokohama Clinic, 3-31-6 Tsuruya-cho, Kanagawa-ku, Yokohama City, Kanagawa, 221-0835, Japan.
| | - Satoko Koeda
- Department of Advanced Oral Surgery, Kanagawa Dental University, Yokohama Clinic, 3-31-6 Tsuruya-cho, Kanagawa-ku, Yokohama City, Kanagawa, 221-0835, Japan.
| | - Hiroki Akiyama
- Department of Advanced Oral Surgery, Kanagawa Dental University, Yokohama Clinic, 3-31-6 Tsuruya-cho, Kanagawa-ku, Yokohama City, Kanagawa, 221-0835, Japan.
| | - Mikihisa Kinuta
- Department of Advanced Oral Surgery, Kanagawa Dental University, Yokohama Clinic, 3-31-6 Tsuruya-cho, Kanagawa-ku, Yokohama City, Kanagawa, 221-0835, Japan.
| | - Shuichi Nishikubo
- Department of Advanced Oral Surgery, Kanagawa Dental University, Yokohama Clinic, 3-31-6 Tsuruya-cho, Kanagawa-ku, Yokohama City, Kanagawa, 221-0835, Japan.
| | - Keiichi Tsukinoki
- Department of Environmental Pathology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka City, Kanagawa, 238-8580, Japan.
| |
Collapse
|
12
|
Kushwaha ND, Mohan J, Kushwaha B, Ghazi T, Nwabuife JC, Koorbanally N, Chuturgoon AA. A comprehensive review on the global efforts on vaccines and repurposed drugs for combating COVID-19. Eur J Med Chem 2023; 260:115719. [PMID: 37597435 DOI: 10.1016/j.ejmech.2023.115719] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
The recently discovered coronavirus, known as SARS-CoV-2, is a highly contagious and potentially lethal viral infection that was declared a pandemic by the World Health Organization on March 11, 2020. Since the beginning of the pandemic, an unprecedented number of COVID-19 vaccine candidates have been investigated for their potential to manage the pandemic. Herein, we reviewed vaccine development and the associated research effort, both traditional and forward-looking, to demonstrate the advantages and disadvantages of their technology, in addition to their efficacy limitations against mutant SARS-CoV-2. Moreover, we report repurposed drug discovery, which mainly focuses on virus-based and host-based targets, as well as their inhibitors. SARS-CoV-2 targets include the main protease (Mpro), and RNA-dependent RNA-polymerase (RdRp), which are the most well-studied and conserved across coronaviruses, enabling the development of broad-spectrum inhibitors of these enzymes.
Collapse
Affiliation(s)
- Narva Deshwar Kushwaha
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Jivanka Mohan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Babita Kushwaha
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Joshua C Nwabuife
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Neil Koorbanally
- School of Chemistry, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
13
|
Malvankar S, Singh A, Ravi Kumar YS, Sahu S, Shah M, Murghai Y, Seervi M, Srivastava RK, Verma B. Modulation of various host cellular machinery during COVID-19 infection. Rev Med Virol 2023; 33:e2481. [PMID: 37758688 DOI: 10.1002/rmv.2481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/24/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) emerged in December 2019, causing a range of respiratory infections from mild to severe. This resulted in the ongoing global COVID-19 pandemic, which has had a significant impact on public health. The World Health Organization declared COVID-19 as a global pandemic in March 2020. Viruses are intracellular pathogens that rely on the host's machinery to establish a successful infection. They exploit the gene expression machinery of host cells to facilitate their own replication. Gaining a better understanding of gene expression modulation in SARS-CoV2 is crucial for designing and developing effective antiviral strategies. Efforts are currently underway to understand the molecular-level interaction between the host and the pathogen. In this review, we describe how SARS-CoV2 infection modulates gene expression by interfering with cellular processes, including transcription, post-transcription, translation, post-translation, epigenetic modifications as well as processing and degradation pathways. Additionally, we emphasise the therapeutic implications of these findings in the development of new therapies to treat SARS-CoV2 infection.
Collapse
Affiliation(s)
- Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Anjali Singh
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Y S Ravi Kumar
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Swetangini Sahu
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Shah
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Yamini Murghai
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Mahendra Seervi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Lushington GH, Linde A, Melgarejo T. Bacterial Proteases as Potentially Exploitable Modulators of SARS-CoV-2 Infection: Logic from the Literature, Informatics, and Inspiration from the Dog. BIOTECH 2023; 12:61. [PMID: 37987478 PMCID: PMC10660736 DOI: 10.3390/biotech12040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
(1) Background: The COVID-19 pandemic left many intriguing mysteries. Retrospective vulnerability trends tie as strongly to odd demographics as to exposure profiles, genetics, health, or prior medical history. This article documents the importance of nasal microbiome profiles in distinguishing infection rate trends among differentially affected subgroups. (2) Hypothesis: From a detailed literature survey, microbiome profiling experiments, bioinformatics, and molecular simulations, we propose that specific commensal bacterial species in the Pseudomonadales genus confer protection against SARS-CoV-2 infections by expressing proteases that may interfere with the proteolytic priming of the Spike protein. (3) Evidence: Various reports have found elevated Moraxella fractions in the nasal microbiomes of subpopulations with higher resistance to COVID-19 (e.g., adolescents, COVID-19-resistant children, people with strong dietary diversity, and omnivorous canines) and less abundant ones in vulnerable subsets (the elderly, people with narrower diets, carnivorous cats and foxes), along with bioinformatic evidence that Moraxella bacteria express proteases with notable homology to human TMPRSS2. Simulations suggest that these proteases may proteolyze the SARS-CoV-2 spike protein in a manner that interferes with TMPRSS2 priming.
Collapse
Affiliation(s)
| | - Annika Linde
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Tonatiuh Melgarejo
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
15
|
Strobelt R, Adler J, Shaul Y. The Transmembrane Protease Serine 2 (TMPRSS2) Non-Protease Domains Regulating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike-Mediated Virus Entry. Viruses 2023; 15:2124. [PMID: 37896901 PMCID: PMC10612036 DOI: 10.3390/v15102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells by binding to the angiotensin-converting enzyme 2 (hACE2) receptor. This process is aided by the transmembrane protease serine 2 (TMPRSS2), which enhances entry efficiency and infectiousness by cleaving the SARS-CoV-2 surface glycoprotein (Spike). The cleavage primes the Spike protein, promoting membrane fusion instead of receptor-mediated endocytosis. Despite the pivotal role played by TMPRSS2, our understanding of its non-protease distinct domains remains limited. In this report, we present evidence indicating the potential phosphorylation of a minimum of six tyrosine residues within the cytosolic tail (CT) of TMPRSS2. Via the use of TMPRSS2 CT phospho-mimetic mutants, we observed a reduction in TMPRSS2 protease activity, accompanied by a decrease in SARS-CoV-2 pseudovirus transduction, which was found to occur mainly via the endosomal pathway. We expanded our investigation beyond TMPRSS2 CT and discovered the involvement of other non-protease domains in regulating infection. Our co-immunoprecipitation experiments demonstrated a strong interaction between TMPRSS2 and Spike. We revealed a 21 amino acid long TMPRSS2-Spike-binding region (TSBR) within the TMPRSS2 scavenger receptor cysteine-rich (SRCR) domain that contributes to this interaction. Our study sheds light on novel functionalities associated with TMPRSS2's cytosolic tail and SRCR region. Both of these regions have the capability to regulate SARS-CoV-2 entry pathways. These findings contribute to a deeper understanding of the complex interplay between viral entry and host factors, opening new avenues for potential therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
16
|
Xie E, Ahmad S, Smyth RP, Sieben C. Advanced fluorescence microscopy in respiratory virus cell biology. Adv Virus Res 2023; 116:123-172. [PMID: 37524480 DOI: 10.1016/bs.aivir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
Collapse
Affiliation(s)
- Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shazeb Ahmad
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany; Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
17
|
Ye X, Ling X, Wu M, Bai G, Yuan M, Rao L. Improving Soluble Expression of SARS-CoV-2 Spike Priming Protease TMPRSS2 with an Artificial Fusing Protein. Int J Mol Sci 2023; 24:10475. [PMID: 37445653 DOI: 10.3390/ijms241310475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
SARS-CoV-2 relies on the recognition of the spike protein by the host cell receptor ACE2 for cellular entry. In this process, transmembrane serine protease 2 (TMPRSS2) plays a pivotal role, as it acts as the principal priming agent catalyzing spike protein cleavage to initiate the fusion of the cell membrane with the virus. Thus, TMPRSS2 is an ideal pharmacological target for COVID-19 therapy development, and the effective production of high-quality TMPRSS2 protein is essential for basic and pharmacological research. Unfortunately, as a mammalian-originated protein, TMPRSS2 could not be solubly expressed in the prokaryotic system. In this study, we applied different protein engineering methods and found that an artificial protein XXA derived from an antifreeze protein can effectively promote the proper folding of TMPRSS2, leading to a significant improvement in the yield of its soluble form. Our study also showed that the fused XXA protein did not influence the enzymatic catalytic activity; instead, it greatly enhanced TMPRSS2's thermostability. Therefore, our strategy for increasing TMPRSS2 expression would be beneficial for the large-scale production of this stable enzyme, which would accelerate aniti-SARS-CoV-2 therapeutics development.
Collapse
Affiliation(s)
- Xiao Ye
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China
| | - Xue Ling
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Min Wu
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guijie Bai
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Yuan
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lang Rao
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
18
|
Zaher K, Basingab F, Alrahimi J, Basahel K, Aldahlawi A. Gender Differences in Response to COVID-19 Infection and Vaccination. Biomedicines 2023; 11:1677. [PMID: 37371774 DOI: 10.3390/biomedicines11061677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Since COVID-19 first appeared, a number of follow-up events have taken place. In an effort to find a solution to this catastrophe, a great deal of study and analysis has been conducted. Because of the high morbidity and exceptionally large losses, scientists are being pushed to conduct more research and find vaccination and treatments. The virus has a wide range of effects, one of which is how it affects sexual activity in both men and women. The impact of the cardiovascular system and susceptibility to embolism, lung stress, and infection heightens the probability of hospitalization in the intensive care unit for pregnant women who have contracted COVID-19. There is no evidence of infection being passed from mother to child. In the current review, the role of COVID-19 infection and vaccination on male and female sexual activity, hormones, and the menstrual cycle for females, as well as on male sex hormones and sexual activity during infection and after vaccination, are being investigated. There are no reports of the virus being isolated from the semen of an infected patient or recently recovered patients. A recent investigation on the influence of the virus on gender susceptibility to sexual organs and function has been uncovered throughout this study.
Collapse
Affiliation(s)
- Kawther Zaher
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Jehan Alrahimi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Kholood Basahel
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Alia Aldahlawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| |
Collapse
|
19
|
Peiffer A, Garlick JM, Wu Y, Wotring JW, Arora S, Harmata AS, Bochar DA, Stephenson CJ, Soellner MB, Sexton JZ, Brooks CL, Mapp AK. TMPRSS2 Inhibitor Discovery Facilitated through an In Silico and Biochemical Screening Platform. ACS Med Chem Lett 2023; 14:860-866. [PMID: 37284689 PMCID: PMC10237299 DOI: 10.1021/acsmedchemlett.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
The COVID-19 pandemic has highlighted the need for new antiviral approaches because many of the currently approved drugs have proven ineffective against mitigating SARS-CoV-2 infections. The host transmembrane serine protease TMPRSS2 is a promising antiviral target because it plays a role in priming the spike protein before viral entry occurs for the most virulent variants. Further, TMPRSS2 has no established physiological role, thereby increasing its attractiveness as a target for antiviral agents. Here, we utilize virtual screening to curate large libraries into a focused collection of potential inhibitors. Optimization of a recombinant expression and purification protocol for the TMPRSS2 peptidase domain facilitates subsequent biochemical screening and characterization of selected compounds from the curated collection in a kinetic assay. In doing so, we identify new noncovalent TMPRSS2 inhibitors that block SARS-CoV-2 infectivity in a cellular model. One such inhibitor, debrisoquine, has high ligand efficiency, and an initial structure-activity relationship study demonstrates that debrisoquine is a tractable hit compound for TMPRSS2.
Collapse
Affiliation(s)
- Amanda
L. Peiffer
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48019, United States
- Program
in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Julie M. Garlick
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48019, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yujin Wu
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jesse W. Wotring
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sahil Arora
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexander S. Harmata
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Daniel A. Bochar
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Corey J. Stephenson
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Matthew B. Soellner
- Program
in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jonathan Z. Sexton
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- University
of Michigan Medical School, Ann
Arbor, Michigan 48109, United States
| | - Charles L. Brooks
- Program
in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna K. Mapp
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48019, United States
- Program
in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Pozzi C, Vanet A, Francesconi V, Tagliazucchi L, Tassone G, Venturelli A, Spyrakis F, Mazzorana M, Costi MP, Tonelli M. Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery-Genetics Alliance Perspective. J Med Chem 2023; 66:3664-3702. [PMID: 36857133 PMCID: PMC10005815 DOI: 10.1021/acs.jmedchem.2c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The most advanced antiviral molecules addressing major SARS-CoV-2 targets (Main protease, Spike protein, and RNA polymerase), compared with proteins of other human pathogenic coronaviruses, may have a short-lasting clinical efficacy. Accumulating knowledge on the mechanisms underlying the target structural basis, its mutational progression, and the related biological significance to virus replication allows envisaging the development of better-targeted therapies in the context of COVID-19 epidemic and future coronavirus outbreaks. The identification of evolutionary patterns based solely on sequence information analysis for those targets can provide meaningful insights into the molecular basis of host-pathogen interactions and adaptation, leading to drug resistance phenomena. Herein, we will explore how the study of observed and predicted mutations may offer valuable suggestions for the application of the so-called "synthetic lethal" strategy to SARS-CoV-2 Main protease and Spike protein. The synergy between genetics evidence and drug discovery may prioritize the development of novel long-lasting antiviral agents.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy,
University of Siena, via Aldo Moro 2, 53100 Siena,
Italy
| | - Anne Vanet
- Université Paris Cité,
CNRS, Institut Jacques Monod, F-75013 Paris,
France
| | - Valeria Francesconi
- Department of Pharmacy, University of
Genoa, viale Benedetto XV n.3, 16132 Genoa, Italy
| | - Lorenzo Tagliazucchi
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
- Doctorate School in Clinical and Experimental Medicine
(CEM), University of Modena and Reggio Emilia, Via Campi 287,
41125 Modena, Italy
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy,
University of Siena, via Aldo Moro 2, 53100 Siena,
Italy
| | - Alberto Venturelli
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology,
University of Turin, Via Giuria 9, 10125 Turin,
Italy
| | - Marco Mazzorana
- Diamond Light Source, Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE,
U.K.
| | - Maria P. Costi
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
| | - Michele Tonelli
- Department of Pharmacy, University of
Genoa, viale Benedetto XV n.3, 16132 Genoa, Italy
| |
Collapse
|
21
|
Meng M, Gao R, Liu Z, Liu F, Du S, Song Y, He J. Ginsenosides, potential TMPRSS2 inhibitors, a trade-off between the therapeutic combination for anti-PD-1 immunotherapy and the treatment of COVID-19 infection of LUAD patients. Front Pharmacol 2023; 14:1085509. [PMID: 36992839 PMCID: PMC10040610 DOI: 10.3389/fphar.2023.1085509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Acting as a viral entry for coronavirus to invade human cells, TMPRSS2 has become a target for the prevention and treatment of COVID-19 infection. Before this, TMPRSS2 has presented biological functions in cancer, but the roles remain controversial and the mechanism remains unelucidated. Some chemicals have been reported to be inhibitors of TMPRSS2 and also demonstrated other pharmacological properties. At this stage, it is important to discover more new compounds targeting TMPRSS2, especially from natural products, for the prevention and treatment of COVID-19 infection.Methods: We analyzed the correlation between TMPRSS2 expression, methylation level, overall survival rate, clinical parameters, biological process, and determined the correlation between TMPRSS2 and tumor-infiltrating lymphocytes in the tumor and adjacent normal tissue of adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) respectively by using various types of bioinformatics approaches. Moreover, we determined the correlation between TMPRSS2 protein level and the prognosis of LUAD and LUSC cohorts by immunohistochemistry assay. Furthermore, the cancer immunome atlas (TCIA) database was used to predict the relationship between the expression of TMPRSS2 and response to programmed cell death protein 1 (PD-1) blocker immunotherapy in lung cancer patients. Finally, the putative binding site of ginsenosides bound to TMPRSS2 protein was built from homology modeling to screen high-potency TMPRSS2 inhibitors.Results: We found that TMPRSS2 recruits various types of immunocytes, including CD8+, CD4+ T cells, B cells and DCs both in LUAD and LUSC patients, and the correlation between TMPRSS2 expression and CD8+ and CD4+ T cells are stronger in LUAD rather than in LUSC, but excludes macrophages and neutrophils in LUAD patient cohorts. These might be the reason that higher mRNA and protein levels of TMPRSS2 are associated with better prognosis in LUAD cohorts rather than in LUSC cohorts. Furthermore, we found that TMPRSS2 was positively correlated with the prognosis in patient nonresponse to anti-PD-1 therapy. Therefore, we made an inference that increasing the expression level of TMPRSS2 may improve the anti-PD-1 immunotherapy efficacy. Finally, five ginsenosides candidates with high inhibition potency were screened from the natural chemical library to be used as TMPRSS2 inhibitors.Conclusion: All these may imply that TMPRSS2 might be a novel prognostic biomarker and serve as a potential immunomodulator target of immunotherapy combination therapies in LUAD patients nonresponse to anti-PD-1 therapy. Also, these findings may suggest we should pay more attention to LUAD patients, especially those infected with COVID-19, who should avoid medicating TMPRSS2 inhibitors, such as ginsenosides to gain prophylactic and therapeutic benefits against COVID-19.
Collapse
Affiliation(s)
- Mei Meng
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Gao
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixue Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengxiang Liu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Shiyu Du
- Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, China
- School of Computer Science, China University of Petroleum (East China), Qingdao, China
- *Correspondence: Jian He, ; Yizhi Song, ; Shiyu Du,
| | - Yizhi Song
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- *Correspondence: Jian He, ; Yizhi Song, ; Shiyu Du,
| | - Jian He
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jian He, ; Yizhi Song, ; Shiyu Du,
| |
Collapse
|
22
|
Soni S, Mebratu YA. B-cell lymphoma-2 family proteins-activated proteases as potential therapeutic targets for influenza A virus and severe acute respiratory syndrome coronavirus-2: Killing two birds with one stone? Rev Med Virol 2023; 33:e2411. [PMID: 36451345 PMCID: PMC9877712 DOI: 10.1002/rmv.2411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to a global health emergency. There are many similarities between SARS-CoV-2 and influenza A virus (IAV); both are single-stranded RNA viruses infecting airway epithelial cells and have similar modes of replication and transmission. Like IAVs, SARS-CoV-2 infections poses serious challenges due to the lack of effective therapeutic interventions, frequent appearances of new strains of the virus, and development of drug resistance. New approaches to control these infectious agents may stem from cellular factors or pathways that directly or indirectly interact with viral proteins to enhance or inhibit virus replication. One of the emerging concepts is that host cellular factors and pathways are required for maintaining viral genome integrity, which is essential for viral replication. Although IAVs have been studied for several years and many cellular proteins involved in their replication and pathogenesis have been identified, very little is known about how SARS-CoV-2 hijacks host cellular proteins to promote their replication. IAV induces apoptotic cell death, mediated by the B-cell lymphoma-2 (Bcl-2) family proteins in infected epithelia, and the pro-apoptotic members of this family promotes viral replication by activating host cell proteases. This review compares the life cycle and mode of replication of IAV and SARS-CoV-2 and examines the potential roles of host cellular proteins, belonging to the Bcl-2 family, in SARS-CoV-2 replication to provide future research directions.
Collapse
Affiliation(s)
- Sourabh Soni
- Division of Pulmonary, Critical Care, and Sleep MedicineDepartment of Internal MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Yohannes A. Mebratu
- Division of Pulmonary, Critical Care, and Sleep MedicineDepartment of Internal MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
23
|
How the Competition for Cysteine May Promote Infection of SARS-CoV-2 by Triggering Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12020483. [PMID: 36830041 PMCID: PMC9952211 DOI: 10.3390/antiox12020483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
SARS-CoV-2 induces a broad range of clinical manifestations. Besides the main receptor, ACE2, other putative receptors and co-receptors have been described and could become genuinely relevant to explain the different tropism manifested by new variants. In this study, we propose a biochemical model envisaging the competition for cysteine as a key mechanism promoting the infection and the selection of host receptors. The SARS-CoV-2 infection produces ROS and triggers a massive biosynthesis of proteins rich in cysteine; if this amino acid becomes limiting, glutathione levels are depleted and cannot control oxidative stress. Hence, infection succeeds. A receptor should be recognized as a marker of suitable intracellular conditions, namely the full availability of amino acids except for low cysteine. First, we carried out a comparative investigation of SARS-CoV-2 proteins and human ACE2. Then, using hierarchical cluster protein analysis, we searched for similarities between all human proteins and spike produced by the latest variant, Omicron BA.1. We found 32 human proteins very close to spike in terms of amino acid content. Most of these potential SARS-CoV-2 receptors have less cysteine than spike. We suggest that these proteins could signal an intracellular shortage of cysteine, predicting a burst of oxidative stress when used as viral entry mediators.
Collapse
|
24
|
Abou-Hamdan M, Saleh R, Mani S, Dournaud P, Metifiot M, Blondot ML, Andreola ML, Abdel-Sater F, De Reggi M, Gressens P, Laforge M. Potential antiviral effects of pantethine against SARS-CoV-2. Sci Rep 2023; 13:2237. [PMID: 36754974 PMCID: PMC9906591 DOI: 10.1038/s41598-023-29245-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
SARS-CoV-2 interacts with cellular cholesterol during many stages of its replication cycle. Pantethine was reported to reduce total cholesterol levels and fatty acid synthesis and potentially alter different processes that might be involved in the SARS-CoV-2 replication cycle. Here, we explored the potential antiviral effects of pantethine in two in vitro experimental models of SARS-CoV-2 infection, in Vero E6 cells and in Calu-3a cells. Pantethine reduced the infection of cells by SARS-CoV-2 in both preinfection and postinfection treatment regimens. Accordingly, cellular expression of the viral spike and nucleocapsid proteins was substantially reduced, and we observed a significant reduction in viral copy numbers in the supernatant of cells treated with pantethine. In addition, pantethine inhibited the infection-induced increase in TMPRSS2 and HECT E3 ligase expression in infected cells as well as the increase in antiviral interferon-beta response and inflammatory gene expression in Calu-3a cells. Our results demonstrate that pantethine, which is well tolerated in humans, was very effective in controlling SARS-CoV-2 infection and might represent a new therapeutic drug that can be repurposed for the prevention or treatment of COVID-19 and long COVID syndrome.
Collapse
Affiliation(s)
- M Abou-Hamdan
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France.,Biology Department, Faculty of Sciences (I), Lebanese University, Beirut, Lebanon
| | - R Saleh
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - S Mani
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - P Dournaud
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - M Metifiot
- Université Bordeaux, CNRS, UMR 5234, Microbiologie Fondamentale et Pathogénicité, 33076, Bordeaux, France
| | - M L Blondot
- Université Bordeaux, CNRS, UMR 5234, Microbiologie Fondamentale et Pathogénicité, 33076, Bordeaux, France
| | - M L Andreola
- Université Bordeaux, CNRS, UMR 5234, Microbiologie Fondamentale et Pathogénicité, 33076, Bordeaux, France
| | - F Abdel-Sater
- Biochemistry Department, Faculty of Sciences (I), Lebanese University, Beirut, Lebanon
| | - M De Reggi
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - P Gressens
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - M Laforge
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France.
| |
Collapse
|
25
|
Yatsenko T, Skrypnyk M, Troyanovska O, Tobita M, Osada T, Takahashi S, Hattori K, Heissig B. The Role of the Plasminogen/Plasmin System in Inflammation of the Oral Cavity. Cells 2023; 12:cells12030445. [PMID: 36766787 PMCID: PMC9913802 DOI: 10.3390/cells12030445] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
The oral cavity is a unique environment that consists of teeth surrounded by periodontal tissues, oral mucosae with minor salivary glands, and terminal parts of major salivary glands that open into the oral cavity. The cavity is constantly exposed to viral and microbial pathogens. Recent studies indicate that components of the plasminogen (Plg)/plasmin (Pm) system are expressed in tissues of the oral cavity, such as the salivary gland, and contribute to microbial infection and inflammation, such as periodontitis. The Plg/Pm system fulfills two major functions: (a) the destruction of fibrin deposits in the bloodstream or damaged tissues, a process called fibrinolysis, and (b) non-fibrinolytic actions that include the proteolytic modulation of proteins. One can observe both functions during inflammation. The virus that causes the coronavirus disease 2019 (COVID-19) exploits the fibrinolytic and non-fibrinolytic functions of the Plg/Pm system in the oral cavity. During COVID-19, well-established coagulopathy with the development of microthrombi requires constant activation of the fibrinolytic function. Furthermore, viral entry is modulated by receptors such as TMPRSS2, which is necessary in the oral cavity, leading to a derailed immune response that peaks in cytokine storm syndrome. This paper outlines the significance of the Plg/Pm system for infectious and inflammatory diseases that start in the oral cavity.
Collapse
Affiliation(s)
- Tetiana Yatsenko
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Maksym Skrypnyk
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Olga Troyanovska
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Morikuni Tobita
- Department of Oral and Maxillofacial Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Taro Osada
- Department of Gastroenterology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-Shi 279-0021, Japan
| | - Satoshi Takahashi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo 108-8639, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
- Correspondence: (K.H.); (B.H.); Tel.: +81-3-3813-3111 (switchboard 2115) (B.H.)
| | - Beate Heissig
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
- Correspondence: (K.H.); (B.H.); Tel.: +81-3-3813-3111 (switchboard 2115) (B.H.)
| |
Collapse
|
26
|
Tang M, Zhang X, Huang Y, Cheng W, Qu J, Gui S, Li L, Li S. Peptide-based inhibitors hold great promise as the broad-spectrum agents against coronavirus. Front Microbiol 2023; 13:1093646. [PMID: 36741878 PMCID: PMC9893414 DOI: 10.3389/fmicb.2022.1093646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome (MERS), and the recent SARS-CoV-2 are lethal coronaviruses (CoVs) that have caused dreadful epidemic or pandemic in a large region or globally. Infections of human respiratory systems and other important organs by these pathogenic viruses often results in high rates of morbidity and mortality. Efficient anti-viral drugs are needed. Herein, we firstly take SARS-CoV-2 as an example to present the molecular mechanism of CoV infection cycle, including the receptor binding, viral entry, intracellular replication, virion assembly, and release. Then according to their mode of action, we provide a summary of anti-viral peptides that have been reported in peer-reviewed publications. Even though CoVs can rapidly evolve to gain resistance to the conventional small molecule drugs, peptide-based inhibitors targeting various steps of CoV lifecycle remain a promising approach. Peptides can be continuously modified to improve their antiviral efficacy and spectrum along with the emergence of new viral variants.
Collapse
Affiliation(s)
- Mingxing Tang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xin Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yanhong Huang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jing Qu
- Department of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuiqing Gui
- Department of Critical Care Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China,*Correspondence: Shuiqing Gui, ✉
| | - Liang Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China,Liang Li, ✉
| | - Shuo Li
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China,Shuo Li, ✉
| |
Collapse
|
27
|
Li X, Yuan H, Li X, Wang H. Spike protein mediated membrane fusion during SARS-CoV-2 infection. J Med Virol 2023; 95:e28212. [PMID: 36224449 PMCID: PMC9874878 DOI: 10.1002/jmv.28212] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 01/27/2023]
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to public health and has quickly become a global concern. The infection of SARS-CoV-2 begins with the binding of its spike protein to the receptor-angiotensin-converting enzyme 2 (ACE2), which, after a series of conformation changes, results in the fusion of viral-cell membranes and the release of the viral RNA genome into the cytoplasm. In addition, infected host cells can express spike protein on their cell surface, which will interact with ACE2 on neighboring cells, leading to cell membrane fusion and the formation of multinucleated cells or syncytia. Both viral entry and syncytia formation are mediated by spike-ACE2 interaction and share some common mechanisms of membrane fusion. Here in this review, we will summarize our current understanding of spike-mediated membrane fusion, which may shed light on future broad-spectrum antiviral development.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Pathogen Biology and ImmunologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Huijun Yuan
- Department of Pathogen Biology and ImmunologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Xiaozhen Li
- Department of Pathogen Biology and ImmunologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Hongliang Wang
- Department of Pathogen Biology and ImmunologyXi'an Jiaotong University Health Science CenterXi'anChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
28
|
Vila Méndez ML, Antón Sanz C, Cárdenas García ADR, Bravo Malo A, Torres Martínez FJ, Martín Moros JM, Real Torrijos M, Vendrell Covisa JFJ, Guzmán Sierra O, Molina Barcena V, Viejo Pinero N, Fernández Díaz C, Arroyo Burguillo P, Blanco Gallego AM, Guirao Sánchez C, Montilla Bernabé A, Villanueva Morán MDP, Juárez Antón S, Fernández Rodríguez Á, Somoza Calvo MÁ, Cerrada EC, Pérez Mañas G, Sánchez Calso A, Vallejo Somohano F, Cauqui Díaz C, Viñas Fernández G, Molina París J, González Godoy M, Lumbreras García G, Rosado Martín J, Rodríguez Hernández A, López Antúñez S, Vázquez Perfecto G, Marcello Andrés MC, Puente García NM, Gil C, Martínez A, Soler López B. Efficacy of Bromhexine versus Standard of Care in Reducing Viral Load in Patients with Mild-to-Moderate COVID-19 Disease Attended in Primary Care: A Randomized Open-Label Trial. J Clin Med 2022; 12:jcm12010142. [PMID: 36614943 PMCID: PMC9821213 DOI: 10.3390/jcm12010142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
A 28-day randomized open-label multicenter study was conducted to assess the efficacy of bromhexine plus standard of care (SOC) (n = 98) vs. SOC alone (n = 93) in 191 outpatients with mild-to-moderate COVID-19 in the primary health care setting. Bromhexine three daily doses of 10 mL (48 mg/day) were administered for seven days. The primary efficacy endpoint was the reduction of viral load estimated as the cycle thresholds (Ct) to detect ORF1ab, N Protein, and S Protein genes by RT-qPCR in saliva samples on day 4 as compared with baseline. Ct values of the three genes increased from baseline throughout days 4 to 14 (p < 0.001) but significant differences between the study groups were not found. Differences in the percentages of patients with low, medium, and high viral loads at 4, 7, and 14 days were not found either. In summary, treatment with bromhexine plus SCO was associated with a viral load reduction of ORF1ab, N Protein, and S Protein genes at day 4, which was not significantly different than similar viral load reductions observed with SOC alone. The present findings do not seem to favor the use of bromhexine as an antiviral in patients with COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Carmen Gil
- Centro de Investigaciones Biológicas “Margarita Salas” (CSIC), 28040 Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas “Margarita Salas” (CSIC), 28040 Madrid, Spain
- Correspondence: (A.M.); (B.S.L.); Tel.: +34-91-8373112 (A.M.); +34-91-6300480 (B.S.L.)
| | - Begoña Soler López
- E-C-BIO, S.L., Las Rozas, 28230 Madrid, Spain
- Correspondence: (A.M.); (B.S.L.); Tel.: +34-91-8373112 (A.M.); +34-91-6300480 (B.S.L.)
| |
Collapse
|
29
|
Haynes LM, Huttinger ZM, Yee A, Kretz CA, Siemieniak DR, Lawrence DA, Ginsburg D. Deep mutational scanning and massively parallel kinetics of plasminogen activator inhibitor-1 functional stability to probe its latency transition. J Biol Chem 2022; 298:102608. [PMID: 36257408 PMCID: PMC9667310 DOI: 10.1016/j.jbc.2022.102608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor superfamily of proteins, is unique among serine protease inhibitors for exhibiting a spontaneous conformational change to a latent or inactive state. The functional half-life for this transition at physiologic temperature and pH is ∼1 to 2 h. To better understand the molecular mechanisms underlying this transition, we now report on the analysis of a comprehensive PAI-1 variant library expressed on filamentous phage and selected for functional stability after 48 h at 37 °C. Of the 7201 possible single amino acid substitutions in PAI-1, we identified 439 that increased the functional stability of PAI-1 beyond that of the WT protein. We also found 1549 single amino acid substitutions that retained inhibitory activity toward the canonical target protease of PAI-1 (urokinase-like plasminogen activator), whereas exhibiting functional stability less than or equal to that of WT PAI-1. Missense mutations that increase PAI-1 functional stability are concentrated in highly flexible regions within the PAI-1 structure. Finally, we developed a method for simultaneously measuring the functional half-lives of hundreds of PAI-1 variants in a multiplexed, massively parallel manner, quantifying the functional half-lives for 697 single missense variants of PAI-1 by this approach. Overall, these findings provide novel insight into the mechanisms underlying the latency transition of PAI-1 and provide a database for interpreting human PAI-1 genetic variants.
Collapse
Affiliation(s)
- Laura M Haynes
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Zachary M Huttinger
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew Yee
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Colin A Kretz
- Department of Medicine, McMaster University and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - David R Siemieniak
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Howard Hughes Medical Institute
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA; Howard Hughes Medical Institute; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; Departments of Human Genetics and Pediatrics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
30
|
Ma J, Deng Y, Zhang M, Yu J. The role of multi-omics in the diagnosis of COVID-19 and the prediction of new therapeutic targets. Virulence 2022; 13:1101-1110. [PMID: 35801633 PMCID: PMC9272836 DOI: 10.1080/21505594.2022.2092941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing COVID-19, has led to more than 170 million confirmed cases in 223 countries and regions, claiming 3,872,457 lives. Some patients with COVID-19 have mild clinical symptoms despite severe respiratory failure, which greatly increases the difficulty of diagnosis and treatment. It is therefore necessary to identify biological characteristics of SARS-CoV-2, screen novel diagnostic and prognostic biomarkers, as well as to explore potential therapeutic targets for COVID-19. In this comprehensive review, we discuss the current published literature on COVID-19. We find that the comprehensive application of genomics, transcriptomics, proteomics and metabolomics is becoming increasingly important in the treatment of COVID-19. Multi-omics analysis platforms are expected to revolutionize the diagnosis and classification of COVID-19. This review aims to provide a reference for diagnosis, surveillance and clinical decision making related to COVID-19.
Collapse
Affiliation(s)
- Jianli Ma
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong Province, People's Republic of China
| | - Yuwei Deng
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, People's Republic of China
| | - Minghui Zhang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, People's Republic of China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
31
|
Reactive Centre Loop Mutagenesis of SerpinB3 to Target TMPRSS2 and Furin: Inhibition of SARS-CoV-2 Cell Entry and Replication. Int J Mol Sci 2022; 23:ijms232012522. [PMID: 36293378 PMCID: PMC9604144 DOI: 10.3390/ijms232012522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
The SARS-CoV-2 virus can utilize host cell proteases to facilitate cell entry, whereby the Spike (S) protein is cleaved at two specific sites to enable membrane fusion. Furin, transmembrane protease serine 2 (TMPRSS2), and cathepsin L (CatL) are the major proteases implicated, and are thus targets for anti-viral therapy. The human serpin (serine protease inhibitor) alpha-1 antitrypsin (A1AT) shows inhibitory activity for TMPRSS2, and has previously been found to suppress cell infection with SARS-CoV-2. Here, we have generated modified serpin inhibitors with increased specificity for these cellular proteases. Using SerpinB3 (SCCA-1), a cross-class inhibitor of CatL, as a scaffold, we have designed and produced reactive centre loop (RCL) variants to more specifically target both furin and TMPRSS2. Two further variants were generated by substituting the RCL P7–P1 with the spike protein S1/S2 cleavage site from either SARS-CoV-2 alpha or delta (P681R) sequences. Altered inhibitory specificity of purified recombinant proteins was verified in protease assays, with attenuated CatL inhibition and gain of furin or TMPRSS2 inhibition, as predicted, and modified serpins were shown to block S protein cleavage in vitro. Furthermore, the serpin variants were able to inhibit S-pseudoparticle entry into A549-ACE2-TMPRSS2 cells and suppress SARS-CoV-2 replication in Vero E6 cells expressing TMPRSS2. The construct designed to inhibit TMPRSS2 (B3-TMP) was most potent. It was more effective than A1AT for TMPRSS2 enzyme inhibition (with an eighteen-fold improvement in the second order inhibition rate constant) and for blocking SARS-CoV-2 viral replication. These findings advance the potential for serpin RCL mutagenesis to generate new inhibitors, and may lead to novel anti-viral biological molecules.
Collapse
|
32
|
Dhindsa S, Champion C, Deol E, Lui M, Campbell R, Newman J, Yeggalam A, Nadella S, Ahir V, Shrestha E, Kannampallil T, Diwan A. Association of Male Hypogonadism With Risk of Hospitalization for COVID-19. JAMA Netw Open 2022; 5:e2229747. [PMID: 36053534 PMCID: PMC9440397 DOI: 10.1001/jamanetworkopen.2022.29747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
IMPORTANCE Male sex is associated with severe COVID-19. It is not known whether the risk of hospitalization differs between men with hypogonadism, men with eugonadism, and those receiving testosterone therapy (TTh). OBJECTIVE To compare COVID-19 hospitalization rates for men with hypogonadism who were not receiving TTh, men with eugonadism, and men receiving TTh. DESIGN, SETTING, AND PARTICIPANTS This cohort study was conducted in 2 large academic health systems in St Louis, Missouri, among 723 men with a history of COVID-19 who had testosterone concentrations measured between January 1, 2017, and December 31, 2021. EXPOSURES The primary exposure was gonadal status (hypogonadism, eugonadism, and TTh). Hypogonadism was defined as a total testosterone concentration below the limit of normal provided by the laboratory (which varied from 175 to 300 ng/dL [to convert to nanomoles per liter, multiply by 0.0347]). MAIN OUTCOMES AND MEASURES The primary outcome was rate of hospitalization for COVID-19. Statistical adjustments were made for group differences in age, body mass index, race and ethnicity, immunosuppression, and comorbid conditions. RESULTS Of the 723 study participants (mean [SD] age, 55 [14] years; mean [SD] body mass index, 33.5 [7.3]), 116 men had hypogonadism, 427 had eugonadism, and 180 were receiving TTh. Men with hypogonadism were more likely than men with eugonadism to be hospitalized with COVID-19 (52 of 116 [45%] vs 53 of 427 [12%]; P < .001). After multivariable adjustment, men with hypogonadism had higher odds than men with eugonadism of being hospitalized (odds ratio, 2.4; 95% CI, 1.4-4.4; P < .003). Men receiving TTh had a similar risk of hospitalization as men with eugonadism (odds ratio, 1.3; 95% CI, 0.7-2.3; P = .35). Men receiving inadequate TTh (defined as subnormal testosterone concentrations while receiving TTh) had higher odds of hospitalization compared with men who had normal testosterone concentrations while receiving TTh (multivariable adjusted odds ratio, 3.5; 95% CI, 1.5-8.6; P = .003). CONCLUSIONS AND RELEVANCE This study suggests that men with hypogonadism were more likely to be hospitalized after COVID-19 infection compared with those with eugonadism, independent of other known risk factors. This increased risk was not observed among men receiving adequate TTh. Screening and appropriate therapy for hypogonadism need to be evaluated as a strategy to prevent severe COVID-19 outcomes among men.
Collapse
Affiliation(s)
- Sandeep Dhindsa
- Division of Endocrinology, Diabetes and Metabolism, St Louis University School of Medicine, St Louis, Missouri
| | - Cosette Champion
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Ekamjit Deol
- School of Medicine, St Louis University, St Louis, Missouri
| | - Matthew Lui
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Robert Campbell
- Division of Endocrinology, Diabetes and Metabolism, St Louis University School of Medicine, St Louis, Missouri
| | - Jennifer Newman
- Division of Endocrinology, Diabetes and Metabolism, St Louis University School of Medicine, St Louis, Missouri
| | - Aparna Yeggalam
- Division of Endocrinology, Diabetes and Metabolism, St Louis University School of Medicine, St Louis, Missouri
| | - Srikanth Nadella
- Division of Endocrinology, Diabetes and Metabolism, St Louis University School of Medicine, St Louis, Missouri
| | - Vaishaliben Ahir
- Division of Endocrinology, Diabetes and Metabolism, St Louis University School of Medicine, St Louis, Missouri
| | - Ekta Shrestha
- Division of Endocrinology, Diabetes and Metabolism, St Louis University School of Medicine, St Louis, Missouri
| | - Thomas Kannampallil
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Abhinav Diwan
- Center for Cardiovascular Research, Washington University School of Medicine in St Louis, St Louis, Missouri
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri
- Department of Cell Biology and Physiology, Washington University School of Medicine in St Louis, St Louis, Missouri
- Department of Obstetrics and Gynecology, Washington University School of Medicine in St Louis, St Louis, Missouri
- Division of Cardiology, Medicine Service, John Cochran Veterans Affairs Medical Center, St Louis, Missouri
| |
Collapse
|
33
|
Alegría-Arcos M, Barbosa T, Sepúlveda F, Combariza G, González J, Gil C, Martínez A, Ramírez D. Network pharmacology reveals multitarget mechanism of action of drugs to be repurposed for COVID-19. Front Pharmacol 2022; 13:952192. [PMID: 36052135 PMCID: PMC9424758 DOI: 10.3389/fphar.2022.952192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
The coronavirus disease 2019 pandemic accelerated drug/vaccine development processes, integrating scientists all over the globe to create therapeutic alternatives against this virus. In this work, we have collected information regarding proteins from SARS-CoV-2 and humans and how these proteins interact. We have also collected information from public databases on protein–drug interactions. We represent this data as networks that allow us to gain insights into protein–protein interactions between both organisms. With the collected data, we have obtained statistical metrics of the networks. This data analysis has allowed us to find relevant information on which proteins and drugs are the most relevant from the network pharmacology perspective. This method not only allows us to focus on viral proteins as the main targets for COVID-19 but also reveals that some human proteins could be also important in drug repurposing campaigns. As a result of the analysis of the SARS-CoV-2–human interactome, we have identified some old drugs, such as disulfiram, auranofin, gefitinib, suloctidil, and bromhexine as potential therapies for the treatment of COVID-19 deciphering their potential complex mechanism of action.
Collapse
Affiliation(s)
- Melissa Alegría-Arcos
- Facultad de Ingeniería y Negocios, Universidad de Las Américas, Sede Providencia, Santiago, Chile
| | - Tábata Barbosa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá, Colombia
| | - Felipe Sepúlveda
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
| | - German Combariza
- Universidad Externado de Colombia, Departamento de Matemáticas, Bogotá, Colombia
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá, Colombia
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
- *Correspondence: David Ramírez,
| |
Collapse
|
34
|
Ivashchenko AA, Zagribelnyy BA, Ivanenkov YA, Ivashchenko IA, Karapetian RN, Kravchenko DV, Savchuk NP, Yakubova EV, Ivachtchenko AV. The Efficacy of Aprotinin Combinations with Selected Antiviral Drugs in Mouse Models of Influenza Pneumonia and Coronavirus Infection Caused by SARS-CoV-2. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154975. [PMID: 35956925 PMCID: PMC9370800 DOI: 10.3390/molecules27154975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
The efficacy of aprotinin combinations with selected antiviral-drugs treatment of influenza virus and coronavirus (SARS-CoV-2) infection was studied in mice models of influenza pneumonia and COVID-19. The high efficacy of the combinations in reducing virus titer in lungs and body weight loss and in increasing the survival rate were demonstrated. This preclinical study can be considered a confirmatory step before introducing the combinations into clinical assessment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alexandre V. Ivachtchenko
- ChemDiv Inc., San Diego, CA 92130, USA
- ASAVI LLC, 1835 E. Hallandale Beach Blvd, #442, Hallandale Beach, FL 33009, USA
- Correspondence: (R.N.K.); (A.V.I.)
| |
Collapse
|
35
|
Mishra A, Kaur U, Singh A. Fisetin 8-C-glucoside as entry inhibitor in SARS CoV-2 infection: molecular modelling study. J Biomol Struct Dyn 2022; 40:5128-5137. [PMID: 33382023 PMCID: PMC7784833 DOI: 10.1080/07391102.2020.1868335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/18/2020] [Indexed: 11/03/2022]
Abstract
Coronaviruses are RNA viruses that infect varied species including humans. TMPRSS2 is gateway for SARS CoV-2 entry into the host cell. It causes proteolytic activation of spike protein and discharge of the peptide into host cell. The TMPRSS2 inhibition could be one of the approaches to stop the viral entry, therefore, interaction pattern and binding energies for Fisetin and TMPRSS2 have been explored in the present study. TMPRSS2 peptide was used for homology modelling and then for further study. Molecular docking score and MMGBSA Binding energy of Fisetin was better than Nafamostat, a known inhibitor of TMPRSS2. Post docking MM-GBSA free energy for Fisetin and Nafamostat was -42.78 and -21.11 kcal/mol, respectively. Fisetin forms H bond with Val 25, His 41, Lys 42, Lys 45, Glu 44, Ser186. Nafamostat formed H bonds with Lys 85, Asp 90, Asp 203. RMSD plots of TMPRSS2, TMPRSS2-Fisetin and TMPRSS2-Nafamostat complex showed stable profile with very small fluctuation during entire simulation of 150 ns. Significant decrease in TMPRSS2-Fisetin and TMPRSS2-Nafamostat complex fluctuation occurred around His 41, Glu 44, Gly 136, Ser 186 in RMSF study. During simulation Fisetin interaction was observed with residues Val 25, His 41, Glu 44, Lys 45, Lys 87, Gly 136, Gln 183, Ser 186 likewise interaction of Nafamostat with Lys 85, Asp 90, Asn 163, Asp 203 and Ser 205. Post simulation MM-GBSA free energy was found to be -51.87 ± 4.3 and -48.23 ± 4.39 kcal/mol for TMPRSS2 with Fisetin and Nafamostat, respectively.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Upinder Kaur
- Department of Pharmacology, All India Institute of Medical Sciences, Gorakhpur, India
| | - Amit Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
36
|
Kim HA, Kim JE. Development of Nafamostat Mesylate Immediate-Release Tablet by Drug Repositioning Using Quality-by-Design Approach. Pharmaceutics 2022; 14:1219. [PMID: 35745792 PMCID: PMC9228348 DOI: 10.3390/pharmaceutics14061219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 12/01/2022] Open
Abstract
We aimed to develop nafamostat mesylate immediate-release tablets for the treatment of COVID-19 through drug repositioning studies of nafamostat mesylate injection. Nafamostat mesylate is a serine protease inhibitor known to inhibit the activity of the transmembrane protease, serine 2 enzyme that affects the penetration of the COVID-19 virus, thereby preventing the binding of the angiotensin-converting enzyme 2 receptor in vivo and the spike protein of the COVID-19 virus. The formulation was selected through a stability study after manufacturing by a wet granulation process and a direct tableting process to develop a stable nafamostat mesylate immediate-release tablet. Formulation issues for the selected processes were addressed using the design of experiments and quality-by-design approaches. The dissolution rate of the developed tablet was confirmed to be >90% within 30 min in the four major dissolutions, except in the pH 6.8 dissolution medium. Additionally, an in vivo pharmacokinetic study was performed in monkeys, and the pharmacokinetic profiles of nafamostat injections, oral solutions, and tablets were compared. The half-life during oral administration was confirmed to be significantly longer than the reported literature value of 8 min, and the bioavailability of the tablet was approximately 25% higher than that of the oral solution.
Collapse
Affiliation(s)
| | - Joo-Eun Kim
- Department of Pharmaceutical Engineering, Catholic University of Daegu, Hayang-Ro 13-13, Gyeongsan City 38430, Korea;
| |
Collapse
|
37
|
Iciek M, Bilska-Wilkosz A, Kozdrowicki M, Górny M. Reactive Sulfur Compounds in the Fight against COVID-19. Antioxidants (Basel) 2022; 11:antiox11061053. [PMID: 35739949 PMCID: PMC9220020 DOI: 10.3390/antiox11061053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The SARS-CoV-2 coronavirus pandemic outbreak in 2019 resulted in the need to search for an effective and safe strategy for treating infected patients, relieving symptoms, and preventing severe disease. SARS-CoV-2 is an RNA virus that can cause acute respiratory failure and thrombosis, as well as impair circulatory system function. Permanent damage to the heart muscle or other cardiovascular disorders may occur during or after the infection. The severe course of the disease is associated with the release of large amounts of pro-inflammatory cytokines. Due to their documented anti-inflammatory, antioxidant, and antiviral effects, reactive sulfur compounds, including hydrogen sulfide (H2S), lipoic acid (LA), N-acetylcysteine (NAC), glutathione (GSH), and some other lesser-known sulfur compounds, have attracted the interest of scientists for the treatment and prevention of the adverse effects of diseases caused by SARS-CoV-2. This article reviews current knowledge about various endogenous or exogenous reactive sulfur compounds and discusses the possibility, or in some cases the results, of their use in the treatment or prophylaxis of COVID-19.
Collapse
|
38
|
Feng Y, Cheng X, Wu S, Mani Saravanan K, Liu W. Hybrid drug-screening strategy identifies potential SARS-CoV-2 cell-entry inhibitors targeting human transmembrane serine protease. Struct Chem 2022; 33:1503-1515. [PMID: 35571866 PMCID: PMC9091140 DOI: 10.1007/s11224-022-01960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022]
Abstract
The spread of coronavirus infectious disease (COVID-19) is associated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has risked public health more than any other infectious disease. Researchers around the globe use multiple approaches to identify an effective approved drug (drug repurposing) that treats viral infections. Most of the drug repurposing approaches target spike protein or main protease. Here we use transmembrane serine protease 2 (TMPRSS2) as a target that can prevent the virus entry into the cell by interacting with the surface receptors. By hypothesizing that the TMPRSS2 binders may help prevent the virus entry into the cell, we performed a systematic drug screening over the current approved drug database. Furthermore, we screened the Enamine REAL fragments dataset against the TMPRSS2 and presented nine potential drug-like compounds that give us clues about which kinds of groups the pocket prefers to bind, aiding future structure-based drug design for COVID-19. Also, we employ molecular dynamics simulations, binding free energy calculations, and well-tempered metadynamics to validate the obtained candidate drug and fragment list. Our results suggested three potential FDA-approved drugs against human TMPRSS2 as a target. These findings may pave the way for more drugs to be exposed to TMPRSS2, and testing the efficacy of these drugs with biochemical experiments will help improve COVID-19 treatment. Supplementary information The online version contains supplementary material available at 10.1007/s11224-022-01960-w.
Collapse
Affiliation(s)
- Yufei Feng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048 Guangdong Province China
| | - Xiaoning Cheng
- Central People’s Hospital of Zhanjiang, Zhanjiang, 524045 Guangdong Province China
| | - Shuilong Wu
- Central People’s Hospital of Zhanjiang, Zhanjiang, 524045 Guangdong Province China
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu 600073 India
| | - Wenxin Liu
- Central People’s Hospital of Zhanjiang, Zhanjiang, 524045 Guangdong Province China
| |
Collapse
|
39
|
Bahadoram S, Keikhaei B, Bahadoram M, Mahmoudian-Sani MR, Hassanzadeh S, Saeedi-Boroujeni A, Alikhani K. [Bromhexine is a potential drug for COVID-19; From hypothesis to clinical trials]. Vopr Virusol 2022; 67:126-132. [PMID: 35521985 DOI: 10.36233/0507-4088-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/05/2022]
Abstract
COVID-19 (novel coronavirus disease 2019), caused by the SARS-CoV-2 virus, has various clinical manifestations and several pathogenic pathways. Although several therapeutic options have been used to control COVID-19, none of these medications have been proven to be a definitive cure. Transmembrane serine protease 2 (TMPRSS2) is a protease that has a key role in the entry of SARS-CoV-2 into host cells. Following the binding of the viral spike (S) protein to the angiotensin-converting enzyme 2 (ACE2) receptors of the host cells, TMPRSS2 processes and activates the S protein on the epithelial cells. As a result, the membranes of the virus and host cell fuse. Bromhexine is a specific TMPRSS2 inhibitor that potentially inhibits the infectivity cycle of SARS-CoV-2. Moreover, several clinical trials are evaluating the efficacy of bromhexine in COVID-19 patients. The findings of these studies have shown that bromhexine is effective in improving the clinical outcomes of COVID-19 and has prophylactic effects by inhibiting TMPRSS2 and viral penetration into the host cells. Bromhexine alone cannot cure all of the symptoms of SARS-CoV-2 infection. However, it could be an effective addition to control and prevent the disease progression along with other drugs that are used to treat COVID-19. Further studies are required to investigate the efficacy of bromhexine in COVID-19.
Collapse
Affiliation(s)
- S Bahadoram
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences
| | - B Keikhaei
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences
| | - M Bahadoram
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences
| | - M-R Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences
| | - S Hassanzadeh
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences
| | - A Saeedi-Boroujeni
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences; Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences; Abadan University of Medical Sciences;ImmunologyToday, Universal Scientific Education and Research Network (USERN)
| | - K Alikhani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences
| |
Collapse
|
40
|
Pandey RK, Srivastava A, Singh PP, Chaubey G. Genetic association of TMPRSS2 rs2070788 polymorphism with COVID-19 case fatality rate among Indian populations. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105206. [PMID: 34995811 PMCID: PMC8730738 DOI: 10.1016/j.meegid.2022.105206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022]
Abstract
SARS-CoV-2, the causative agent for COVID-19, an ongoing pandemic, engages the ACE2 receptor to enter the host cell through S protein priming by a serine protease, TMPRSS2. Variation in the TMPRSS2 gene may account for the disparity in disease susceptibility between populations. Therefore, in the present study, we have used next-generation sequencing (NGS) data of world populations from 393 individuals and analyzed the TMPRSS2 gene using a haplotype-based approach with a major focus on South Asia to study its phylogenetic structure and their haplotype sharing among various populations worldwide. Our analysis of phylogenetic relatedness showed a closer affinity of South Asians with the West Eurasian populations therefore, host disease susceptibility and severity particularly in the context of TMPRSS2 will be more akin to West Eurasian instead of East Eurasian. This is in contrast to our prior study on the ACE2 gene which shows South Asian haplotypes have a strong affinity towards West Eurasians. Thus ACE2 and TMPRSS2 have an antagonistic genetic relatedness among South Asians. Considering the significance of the TMPRSS2 gene in the SARS-CoV-2 pathogenicity, COVID-19 infection and intensity trends could be directly associated with increased expression therefore, we have also tested the SNPs frequencies of this gene among various Indian state populations with respect to the case fatality rate (CFR). Interestingly, we found a significant positive association between the rs2070788 SNP (G Allele) and the CFR among Indian populations. Further our cis eQTL analysis of rs2070788 shows that the GG genotype of the rs2070788 tends to have a significantly higher expression of TMPRSS2 gene in the lung compared to the AG and AA genotypes thus validating the previous observation and therefore it might play a vital part in determining differential disease vulnerability. We trust that this information will be useful in understanding the role of the TMPRSS2 variant in COVID-19 susceptibility and using it as a biomarker may help to predict populations at risk.
Collapse
Affiliation(s)
- Rudra Kumar Pandey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| | - Anshika Srivastava
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Prajjval Pratap Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
41
|
Kaviani M, Keshtkar S, Soleimanian S, Sabet Sarvestani F, Azarpira N, Pakbaz S. Susceptibility to Metabolic Diseases in COVID-19: To be or Not to be an Issue. Front Mol Biosci 2022; 9:803314. [PMID: 35187079 PMCID: PMC8852768 DOI: 10.3389/fmolb.2022.803314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/05/2022] [Indexed: 01/08/2023] Open
Abstract
Despite the passage of more than 17 months from the beginning of the COVID-19 pandemic, challenges regarding the disease and its related complications still continue in recovered patients. Thus, various studies are underway to assay the long-term effects of COVID-19. Some patients, especially those with severe symptoms, experience susceptibility to a range of diseases and substantial organ dysfunction after recovery. Although COVID-19 primarily affects the lungs, multiple reports exist on the effect of this infection on the kidneys, cardiovascular system, and gastrointestinal tract. Studies have also indicated the increased risk of severe COVID-19 in patients with diabetes. On the other hand, COVID-19 may predispose patients to diabetes, as the most common metabolic disease. Recent studies have shown that Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) binds to Angiotensin-Converting Enzyme 2 (ACE2) receptors, which are expressed in the tissues and organs involved in regulating the metabolic status including pancreas, adipose tissue, gastrointestinal tract, and kidneys. Therefore, SARS-CoV-2 may result in metabolic disturbance. However, there are still many unknowns about SARS-CoV-2, which are required to be explored in basic studies. In this context, special attention to molecular pathways is warranted for understanding the pathogenesis of the disease and achieving therapeutic opportunities. Hence, the present review aims to focus on the molecular mechanisms associated with the susceptibility to metabolic diseases amongst patients recovered from COVID-19.
Collapse
Affiliation(s)
- Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Keshtkar
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Negar Azarpira,
| | - Sara Pakbaz
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Ray R, Birangal SR, Fathima F, Bhat GV, Rao M, Shenoy GG. Repurposing of approved drugs and nutraceuticals to identify potential inhibitors of SARS-COV-2’s entry into human host cells: a structural analysis using induced-fit docking, MMGBSA and molecular dynamics simulation approach. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2021.2016741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rajdeep Ray
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Fajeelath Fathima
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - G. Varadaraj Bhat
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - G. Gautham Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
43
|
Alzain AA, Elbadwi FA, Alsamani FO. Discovery of novel TMPRSS2 inhibitors for COVID-19 using in silico fragment-based drug design, molecular docking, molecular dynamics, and quantum mechanics studies. INFORMATICS IN MEDICINE UNLOCKED 2022; 29:100870. [PMID: 35128036 PMCID: PMC8806845 DOI: 10.1016/j.imu.2022.100870] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 01/18/2023] Open
Abstract
The global expansion of COVID-19 and the mutations of severe acute respiratory syndrome coronavirus necessitate quick development of treatment and vaccination. Because the androgen-responsive serine protease TMPRSS2 is involved in cleaving the SARS-CoV-2 spike protein allowing the virus to enter the cell, therefore, direct TMPRSS2 inhibition will inhibit virus activation and disease progression which make it an important target for drug discovery. In this study, a homology model of TMPRSS2 protein was initially developed. Then, we used the fragment-based drug design (FBDD) technique to develop effective TMPRSS2 inhibitors. Over a half-million fragments from the enamine database were screened for their binding ability to target protein, and then best-scoring fragments were linked to building new molecules with a good binding affinity. XP docking and MM-GBSA studies revealed 10 new formed molecules with docking score ≤ -14.982 kcal/mol compared to ambroxol (control) with a docking score of -6.464 kcal/mol. Finally, molecular dynamics (MD) and density functional theory (DFT) were calculated for the top 3 molecules.
Collapse
Affiliation(s)
- Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Fatima A Elbadwi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Fatima O Alsamani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
44
|
Singh SP, Bhatnagar A, Singh SK, K Patra S, Kanwar N, Kanwal A, Amar S, Manna R. SARS-CoV-2 Infections, Impaired Tissue, and Metabolic Health: Pathophysiology and Potential Therapeutics. Mini Rev Med Chem 2022; 22:2102-2123. [PMID: 35105287 DOI: 10.2174/1389557522666220201154845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023]
Abstract
The SARS-CoV-2 enters the human airways and comes into contact with the mucous membranes lining the mouth, nose, and eyes. The virus enters the healthy cells and uses cell machinery to make several copies of the virus. Critically ill patients infected with SARS-CoV-2 may have damaged lungs, air sacs, lining, and walls. Since COVID-19 causes cytokine storm, it damages the alveolar cells of the lungs and fills them with fluid, making it harder to exchange oxygen and carbon dioxide. The SARS-CoV-2 infection causes a range of complications, including mild to critical breathing difficulties. It has been observed that older people suffering from health conditions like cardiomyopathies, nephropathies, metabolic syndrome, and diabetes instigate severe symptoms. Many people who died due to COVID-19 had impaired metabolic health [IMH], characterized by hypertension, dyslipidemia, and hyperglycemia, i.e., diabetes, cardiovascular system, and renal diseases making their retrieval challenging. Jeopardy stresses for increased mortality from COVID-19 include older age, COPD, ischemic heart disease, diabetes mellitus, and immunosuppression. However, no targeted therapies are available as of now. Almost two-thirds of diagnosed coronavirus patients had cardiovascular diseases and diabetes, out of which 37% were under 60. The NHS audit revealed that with a higher expression of ACE-2 receptors, viral particles could easily bind their protein spikes and get inside the cells, finally causing COVID-19 infection. Hence, people with IMH are more prone to COVID-19 and, ultimately, comorbidities. This review provides enormous information about tissue [lungs, heart and kidneys] damage, pathophysiological changes, and impaired metabolic health of SARS-CoV-2 infected patients. Moreover, it also designates the possible therapeutic targets of COVID-19 and drugs which can be used against these targets.
Collapse
Affiliation(s)
| | - Aayushi Bhatnagar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India-305817
| | - Sujeet Kumar Singh
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India-305817
| | - Sanjib K Patra
- Department of Yoga, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India-305817
| | - Navjot Kanwar
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab, India-151001
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab, India-151001
| | - Salomon Amar
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595
| | - Ranata Manna
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India-305817
| |
Collapse
|
45
|
Mukherjee T, Behl T, Sharma S, Sehgal A, Singh S, Sharma N, Mathew B, Kaur J, Kaur R, Das M, Aleya L, Bungau S. Anticipated pharmacological role of Aviptadil on COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8109-8125. [PMID: 34846667 PMCID: PMC8630992 DOI: 10.1007/s11356-021-17824-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/24/2021] [Indexed: 04/16/2023]
Abstract
Vasoactive intestinal peptide (VIP) is a neuropeptide that is produced by the lymphoid cells and plays a major role in immunological functions for controlling the homeostasis of the immune system. VIP has been identified as a potent anti-inflammatory factor, in boosting both innate and adaptive immunity. Since December 2019, SARS-Cov-2 was found responsible for the disease COVID-19 which has spread worldwide. No specific therapies or 100% effective vaccines are yet available for the treatment of COVID-19. Drug repositioning may offer a strategy and several drugs have been repurposed, including lopinavir/ritonavir, remdesivir, favipiravir, and tocilizumab. This paper describes the main pharmacological properties of synthetic VIP drug (Aviptadil) which is now under clinical trials. A patented formulation of vasoactive intestinal polypeptide (VIP), named RLF-100 (Aviptadil), was developed and finally got approved for human trials by FDA in 2001 and in European medicines agency in 2005. It was awarded Orphan Drug Designation in 2001 by the US FDA for the treatment of acute respiratory distress syndrome and for the treatment of pulmonary arterial hypertension in 2005. Investigational new drug (IND) licenses for human trials of Aviptadil was guaranteed by both the US FDA and EMEA. Preliminary clinical trials seem to support Aviptadil's benefit. However, such drugs like Aviptadil in COVID-19 patients have peculiar safety profiles. Thus, adequate clinical trials are necessary for these compounds.
Collapse
Affiliation(s)
- Tuhin Mukherjee
- Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, West Bengal, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Sanchay Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, India
| | - Jasleen Kaur
- Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, West Bengal, India
| | - Ratandeep Kaur
- Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, West Bengal, India
| | - Mayukh Das
- Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, West Bengal, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
46
|
Wettstein L, Kirchhoff F, Münch J. The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment. Int J Mol Sci 2022; 23:1351. [PMID: 35163273 PMCID: PMC8836196 DOI: 10.3390/ijms23031351] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023] Open
Abstract
TMPRSS2 is a type II transmembrane protease with broad expression in epithelial cells of the respiratory and gastrointestinal tract, the prostate, and other organs. Although the physiological role of TMPRSS2 remains largely elusive, several endogenous substrates have been identified. TMPRSS2 serves as a major cofactor in SARS-CoV-2 entry, and primes glycoproteins of other respiratory viruses as well. Consequently, inhibiting TMPRSS2 activity is a promising strategy to block viral infection. In this review, we provide an overview of the role of TMPRSS2 in the entry processes of different respiratory viruses. We then review the different classes of TMPRSS2 inhibitors and their clinical development, with a focus on COVID-19 treatment.
Collapse
Affiliation(s)
| | | | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (L.W.); (F.K.)
| |
Collapse
|
47
|
Ng JW, Chong ETJ, Lee PC. An Updated Review on the Role of Single Nucleotide Polymorphisms in COVID-19 Disease Severity: A Global Aspect. Curr Pharm Biotechnol 2022; 23:1596-1611. [DOI: 10.2174/1389201023666220114162347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and recently has become a serious global pandemic. Age, gender, and comorbidities are known to be common risk factors for severe COVID-19 but are not enough to fully explain the magnitude of their effect on the risk of severity of the disease. Single nucleotide polymorphisms (SNPs) in several genes have been reported as a genetic factor contributing to COVID-19 severity. This comprehensive review focuses on the association between SNPs in four important genes and COVID-19 severity in a global aspect. We discuss a total of 39 SNPs in this review: five SNPs in the ABO gene, nine SNPs in the angiotensin-converting enzyme 2 (ACE2) gene, 19 SNPs in the transmembrane protease serine 2 (TMPRSS2) gene, and six SNPs in the toll-like receptor 7 (TLR7) gene. These SNPs data could assist in monitoring an individual's risk of severe COVID-19 disease, and therefore personalized management and pharmaceutical treatment could be planned in COVID-19 patients.
Collapse
Affiliation(s)
- Jun Wei Ng
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Eric Tzyy Jiann Chong
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Ping-Chin Lee
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
48
|
Abramczyk U, Nowaczyński M, Słomczyński A, Wojnicz P, Zatyka P, Kuzan A. Consequences of COVID-19 for the Pancreas. Int J Mol Sci 2022; 23:864. [PMID: 35055050 PMCID: PMC8776154 DOI: 10.3390/ijms23020864] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Although coronavirus disease 2019 (COVID-19)-related major health consequences involve the lungs, a growing body of evidence indicates that COVID-19 is not inert to the pancreas either. This review presents a summary of the molecular mechanisms involved in the development of pancreatic dysfunction during the course of COVID-19, the comparison of the effects of non-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on pancreatic function, and a summary of how drugs used in COVID-19 treatment may affect this organ. It appears that diabetes is not only a condition that predisposes a patient to suffer from more severe COVID-19, but it may also develop as a consequence of infection with this virus. Some SARS-CoV-2 inpatients experience acute pancreatitis due to direct infection of the tissue with the virus or due to systemic multiple organ dysfunction syndrome (MODS) accompanied by elevated levels of amylase and lipase. There are also reports that reveal a relationship between the development and treatment of pancreatic cancer and SARS-CoV-2 infection. It has been postulated that evaluation of pancreatic function should be increased in post-COVID-19 patients, both adults and children.
Collapse
Affiliation(s)
- Urszula Abramczyk
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Maciej Nowaczyński
- Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.N.); (A.S.); (P.W.); (P.Z.)
| | - Adam Słomczyński
- Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.N.); (A.S.); (P.W.); (P.Z.)
| | - Piotr Wojnicz
- Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.N.); (A.S.); (P.W.); (P.Z.)
| | - Piotr Zatyka
- Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.N.); (A.S.); (P.W.); (P.Z.)
| | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
49
|
Abstract
The unprecedented public health and economic impact of the COVID-19 pandemic caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been met with an equally unprecedented scientific response. Much of this response has focused, appropriately, on the mechanisms of SARS-CoV-2 entry into host cells, and in particular the binding of the spike (S) protein to its receptor, angiotensin-converting enzyme 2 (ACE2), and subsequent membrane fusion. This Review provides the structural and cellular foundations for understanding the multistep SARS-CoV-2 entry process, including S protein synthesis, S protein structure, conformational transitions necessary for association of the S protein with ACE2, engagement of the receptor-binding domain of the S protein with ACE2, proteolytic activation of the S protein, endocytosis and membrane fusion. We define the roles of furin-like proteases, transmembrane protease, serine 2 (TMPRSS2) and cathepsin L in these processes, and delineate the features of ACE2 orthologues in reservoir animal species and S protein adaptations that facilitate efficient human transmission. We also examine the utility of vaccines, antibodies and other potential therapeutics targeting SARS-CoV-2 entry mechanisms. Finally, we present key outstanding questions associated with this critical process.
Collapse
Affiliation(s)
- Cody B Jackson
- Department of Immunology and Microbiology, Scripps Research, Jupiter, FL, USA
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, Scripps Research, Jupiter, FL, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Hyeryun Choe
- Department of Immunology and Microbiology, Scripps Research, Jupiter, FL, USA.
| |
Collapse
|
50
|
Wade H, Duan Q, Su Q. Interaction between Sars-CoV-2 structural proteins and host cellular receptors: From basic mechanisms to clinical perspectives. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:243-277. [PMID: 36088078 PMCID: PMC9182089 DOI: 10.1016/bs.apcsb.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) has caused a global pandemic that has affected the lives of billions of individuals. Sars-CoV-2 primarily infects human cells by binding of the viral spike protein to angiotensin-converting enzyme 2 (ACE2). In addition, novel means of viral entry are currently being investigated, including Neuropillin 1, toll-like receptors (TLRs), cluster of differentiation 147 (CD147), and integrin α5β1. Enriched expression of these proteins across metabolic regulatory organs/tissues, including the circulatory system, liver, pancreas, and intestine contributes to major clinical complications among COVID-19 patients, particularly the development of hypertension, myocardial injury, arrhythmia, acute coronary syndrome and increased coagulation in the circulatory system during and post-infection. Pre-existing metabolic disease, such as cardiovascular disease, obesity, diabetes, and non-alcoholic fatty liver disease, is associated with increased risk of hospitalization, persistent post-infection complications and worse outcomes in patients with COVID-19. This review overviews the biological features of Sars-CoV-2, highlights recent findings that delineate the pathological mechanisms of COVID-19 and the consequent clinical diseases.
Collapse
|