1
|
Verma N, Raghuvanshi DS, Singh RV. Recent advances in the chemistry and biology of oleanolic acid and its derivatives. Eur J Med Chem 2024; 276:116619. [PMID: 38981335 DOI: 10.1016/j.ejmech.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/01/2024] [Accepted: 06/22/2024] [Indexed: 07/11/2024]
Abstract
The pentacyclic triterpenes represent a significant class of plant bioactives with a variety of structures and a wide array of biological activities. These are biosynthetically produced via the mevalonate pathway although occasionally mixed pathways may also occur to introduce structural divergence. Oleanolic acid is one of the most explored bioactive from this class of compounds and possesses a broad spectrum of pharmacological and biological activities including liver protection, anti-cancer, atherosclerosis, anti-inflammation, antibacterial, anti-HIV, anti-oxidative, anti-diabetic etc. This review provides an overview of the latest research findings, highlighting the versatile medicinal and biological potential of oleanolic and its future prospects.
Collapse
Affiliation(s)
- Narsingh Verma
- R&D, Technology, and Innovation, Merck-Life Science, Jigani, Bangalore, 560100, India
| | | | - Ravindra Vikram Singh
- R&D, Technology, and Innovation, Merck-Life Science, Jigani, Bangalore, 560100, India.
| |
Collapse
|
2
|
Lachica M, Borrás-Linares I, Borges TH, Nieto R, Seiquer I, García-Contreras C, Lara L, Arráez-Román D, Segura-Carretero A, Pinilla JM, Quintela JC, Fernández-Fígares I. Bioavailability of Supplemented Free Oleanolic Acid and Cyclodextrin-Oleanolic Acid in Growing Pigs, and Effects on Growth Performance, Nutrient Digestibility and Plasma Metabolites. Animals (Basel) 2024; 14:2826. [PMID: 39409775 PMCID: PMC11475709 DOI: 10.3390/ani14192826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Oleanolic acid (OLA) has beneficial health effects in animals, but in vivo efficacy in monogastric animals is questioned due to its low bioavailability. To gain further insight on the nutritional effects of OLA it was administered as part of a diet. We investigated digestibility and plasma OLA in pigs and the associated influence on growth, organs, digestibility of nutrients and plasma biochemical profile. Twenty-four crossbred barrows (23.7 ± 1.0 kg BW) were assigned one of three treatments: Control (basal diet without OLA), OLA-1 (basal diet with 260 mg/free OLA) and OLA-2 (basal diet with 260 mg/kg cyclodextrin-OLA). Diets included chromium oxide to estimate digestibility. Blood samples were collected on day 14 for OLA analysis and feces on days 22-24 for determining digestibility. Pigs were slaughtered on day 31 (39.9 ± 2.43 kg BW) and their blood collected for analysis. Growth and organ weights were not affected (p > 0.05). OLA-1 decreased apparent total tract digestibility (ATTD) of energy (p < 0.05). OLA-2 increased ATTD of dry and organic matter compared with Control pigs (p < 0.05). OLA-1 increased plasma calcium and alkaline phosphatase (p < 0.05). Ileal digestibility of OLA was not affected (0.88), although OLA ATTD increased in OLA-1 compared to Control pigs (0.75 vs. 0.82; p < 0.05). OLA-1 and OLA-2 increased plasma OLA compared to Control pigs (p < 0.05 and p = 0.083). In conclusion, although the OLA was digested and absorbed, plasma concentration was low (4.29 µg/L), and pig growth, organs and plasma parameters were not affected.
Collapse
Affiliation(s)
- Manuel Lachica
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armilla, 18100 Granada, Spain; (M.L.); (R.N.); (I.S.); (C.G.-C.); (L.L.)
| | - Isabel Borrás-Linares
- Research and Development Functional Food Centre (CIDAF), Edificio Bioregión, Avenida del Conocimiento, 37, Armilla, 18016 Granada, Spain;
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain; (D.A.-R.); (A.S.-C.)
| | - Thays Helena Borges
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armilla, 18100 Granada, Spain; (M.L.); (R.N.); (I.S.); (C.G.-C.); (L.L.)
| | - Rosa Nieto
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armilla, 18100 Granada, Spain; (M.L.); (R.N.); (I.S.); (C.G.-C.); (L.L.)
| | - Isabel Seiquer
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armilla, 18100 Granada, Spain; (M.L.); (R.N.); (I.S.); (C.G.-C.); (L.L.)
| | - Consolación García-Contreras
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armilla, 18100 Granada, Spain; (M.L.); (R.N.); (I.S.); (C.G.-C.); (L.L.)
| | - Luis Lara
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armilla, 18100 Granada, Spain; (M.L.); (R.N.); (I.S.); (C.G.-C.); (L.L.)
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain; (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain; (D.A.-R.); (A.S.-C.)
| | - José María Pinilla
- Natac Biotech S.L.U. Rita Levi Montalcini 14, Getafe, 28906 Madrid, Spain; (J.M.P.); (J.C.Q.)
| | - José Carlos Quintela
- Natac Biotech S.L.U. Rita Levi Montalcini 14, Getafe, 28906 Madrid, Spain; (J.M.P.); (J.C.Q.)
| | - Ignacio Fernández-Fígares
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armilla, 18100 Granada, Spain; (M.L.); (R.N.); (I.S.); (C.G.-C.); (L.L.)
| |
Collapse
|
3
|
Wasim M, Bergonzi MC. Unlocking the Potential of Oleanolic Acid: Integrating Pharmacological Insights and Advancements in Delivery Systems. Pharmaceutics 2024; 16:692. [PMID: 38931816 PMCID: PMC11206505 DOI: 10.3390/pharmaceutics16060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
The growing interest in oleanolic acid (OA) as a triterpenoid with remarkable health benefits prompts an emphasis on its efficient use in pharmaceutical research. OA exhibits a range of pharmacological effects, including antidiabetic, anti-inflammatory, immune-enhancing, gastroprotective, hepatoprotective, antitumor, and antiviral properties. While OA demonstrates diverse pharmacological effects, optimizing its therapeutic potential requires overcoming significant challenges. In the field of pharmaceutical research, the exploration of efficient drug delivery systems is essential to maximizing the therapeutic potential of bioactive compounds. Efficiently delivering OA faces challenges, such as poor aqueous solubility and restricted bioavailability, and to unlock its full therapeutic efficacy, novel formulation strategies are imperative. This discussion thoroughly investigates different approaches and advancements in OA drug delivery systems with the aim of enhancing the biopharmaceutical features and overall efficacy in diverse therapeutic contexts.
Collapse
Affiliation(s)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
4
|
Sun Y, Wei X, Zhao T, Shi H, Hao X, Wang Y, Zhang H, Yao Z, Zheng M, Ma T, Fu T, Lu J, Luo X, Yan Y, Wang H. Oleanolic acid alleviates obesity-induced skeletal muscle atrophy via the PI3K/Akt signaling pathway. FEBS Open Bio 2024; 14:584-597. [PMID: 38366735 PMCID: PMC10988678 DOI: 10.1002/2211-5463.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Oleanolic acid (OA) is a pentacyclic triterpene with reported protective effects against various diseases, including diabetes, hepatitis, and different cancers. However, the effects of OA on obesity-induced muscle atrophy remain largely unknown. This study investigated the effects of OA on skeletal muscle production and proliferation of C2C12 cells. We report that OA significantly increased skeletal muscle mass and improved glucose intolerance and insulin resistance. OA inhibited dexamethasone (Dex)-induced muscle atrophy in C2C12 myoblasts by regulating the PI3K/Akt signaling pathway. In addition, it also inhibited expression of MuRF1 and Atrogin1 genes in skeletal muscle of obese mice suffering from muscle atrophy, and increased the activation of PI3K and Akt, thereby promoting protein synthesis, and eventually alleviating muscle atrophy. Taken together, these findings suggest OA may have potential for the prevention and treatment of muscle atrophy.
Collapse
Affiliation(s)
- Yaqin Sun
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaofang Wei
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Tong Zhao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Hongwei Shi
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaojing Hao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Yue Wang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Huiling Zhang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Zhichao Yao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Minxing Zheng
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Tianyun Ma
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Tingting Fu
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Jiayin Lu
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Xiaomao Luo
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Yi Yan
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Haidong Wang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| |
Collapse
|
5
|
Luo Q, Wei Y, Lv X, Chen W, Yang D, Tuo Q. The Effect and Mechanism of Oleanolic Acid in the Treatment of Metabolic Syndrome and Related Cardiovascular Diseases. Molecules 2024; 29:758. [PMID: 38398510 PMCID: PMC10892503 DOI: 10.3390/molecules29040758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolic syndromes (MetS) and related cardiovascular diseases (CVDs) pose a serious threat to human health. MetS are metabolic disorders characterized by obesity, dyslipidemia, and hypertension, which increase the risk of CVDs' initiation and development. Although there are many availabile drugs for treating MetS and related CVDs, some side effects also occur. Considering the low-level side effects, many natural products have been tried to treat MetS and CVDs. A five-cyclic triterpenoid natural product, oleanolic acid (OA), has been reported to have many pharmacologic actions such as anti-hypertension, anti-hyperlipidemia, and liver protection. OA has specific advantages in the treatment of MetS and CVDs. OA achieves therapeutic effects through a variety of pathways, attracting great interest and playing a vital role in the treatment of MetS and CVDs. Consequently, in this article, we aim to review the pharmacological actions and potential mechanisms of OA in treating MetS and related CVDs.
Collapse
Affiliation(s)
- Quanye Luo
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| | - Yu Wei
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| | - Xuzhen Lv
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, The School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Wen Chen
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| | - Dongmei Yang
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| | - Qinhui Tuo
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| |
Collapse
|
6
|
Liu T, Wang J, Tong Y, Wu L, Xie Y, He P, Lin S, Hu X. Integrating network pharmacology and animal experimental validation to investigate the action mechanism of oleanolic acid in obesity. J Transl Med 2024; 22:86. [PMID: 38246999 PMCID: PMC10802007 DOI: 10.1186/s12967-023-04840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Obesity, a condition associated with the development of widespread cardiovascular disease, metabolic disorders, and other health complications, has emerged as a significant global health issue. Oleanolic acid (OA), a pentacyclic triterpenoid compound that is widely distributed in various natural plants, has demonstrated potential anti-inflammatory and anti-atherosclerotic properties. However, the mechanism by which OA fights obesity has not been well studied. METHOD Network pharmacology was utilized to search for potential targets and pathways of OA against obesity. Molecular docking and molecular dynamics simulations were utilized to validate the interaction of OA with core targets, and an animal model of obesity induced by high-fat eating was then employed to confirm the most central of these targets. RESULTS The network pharmacology study thoroughly examined 42 important OA targets for the treatment of obesity. The key biological processes (BP), cellular components (CC), and molecular functions (MF) of OA for anti-obesity were identified using GO enrichment analysis, including intracellular receptor signaling, intracellular steroid hormone receptor signaling, chromatin, nucleoplasm, receptor complex, endoplasmic reticulum membrane, and RNA polymerase II transcription Factor Activity. The KEGG/DAVID database enrichment study found that metabolic pathways, PPAR signaling pathways, cancer pathways/PPAR signaling pathways, insulin resistance, and ovarian steroidogenesis all play essential roles in the treatment of obesity and OA. The protein-protein interaction (PPI) network was used to screen nine main targets: PPARG, PPARA, MAPK3, NR3C1, PTGS2, CYP19A1, CNR1, HSD11B1, and AGTR1. Using molecular docking technology, the possible binding mechanism and degree of binding between OA and each important target were validated, demonstrating that OA has a good binding potential with each target. The molecular dynamics simulation's Root Mean Square Deviation (RMSD), and Radius of Gyration (Rg) further demonstrated that OA has strong binding stability with each target. Additional animal studies confirmed the significance of the core target PPARG and the core pathway PPAR signaling pathway in OA anti-obesity. CONCLUSION Overall, our study utilized a multifaceted approach to investigate the value and mechanisms of OA in treating obesity, thereby providing a novel foundation for the identification and development of natural drug treatments.
Collapse
Affiliation(s)
- Tianfeng Liu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Jiliang Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Ying Tong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Lele Wu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Ying Xie
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Ping He
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Shujue Lin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Xuguang Hu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Waihuan East Road, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
7
|
Poulios E, Koukounari S, Psara E, Vasios GK, Sakarikou C, Giaginis C. Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity. Curr Med Chem 2024; 31:25-61. [PMID: 37198988 DOI: 10.2174/0929867330666230517124033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
Obesity is a complex, chronic and inflammatory disease that affects more than one-third of the world's population, leading to a higher incidence of diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and some types of cancer. Several phytochemicals are used as flavoring and aromatic compounds, also exerting many benefits for public health. This study aims to summarize and scrutinize the beneficial effects of the most important phytochemicals against obesity. Systematic research of the current international literature was carried out in the most accurate scientific databases, e.g., Pubmed, Scopus, Web of Science and Google Scholar, using a set of critical and representative keywords, such as phytochemicals, obesity, metabolism, metabolic syndrome, etc. Several studies unraveled the potential positive effects of phytochemicals such as berberine, carvacrol, curcumin, quercetin, resveratrol, thymol, etc., against obesity and metabolic disorders. Mechanisms of action include inhibition of adipocyte differentiation, browning of the white adipose tissue, inhibition of enzymes such as lipase and amylase, suppression of inflammation, improvement of the gut microbiota, and downregulation of obesity-inducing genes. In conclusion, multiple bioactive compounds-phytochemicals exert many beneficial effects against obesity. Future molecular and clinical studies must be performed to unravel the multiple molecular mechanisms and anti-obesity activities of these naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Efthymios Poulios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Stergia Koukounari
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Georgios K Vasios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
8
|
Roh YJ, Lee SJ, Kim JE, Jin YJ, Seol A, Song HJ, Park J, Park SH, Douangdeuane B, Souliya O, Choi SI, Hwang DY. Dipterocarpus tuberculatus as a promising anti-obesity treatment in Lep knockout mice. Front Endocrinol (Lausanne) 2023; 14:1167285. [PMID: 37334306 PMCID: PMC10273273 DOI: 10.3389/fendo.2023.1167285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction The therapeutic effects and mechanisms of Dipterocarpus tuberculatus (D. tuberculatus) extracts have been examined concerning inflammation, photoaging, and gastritis; however, their effect on obesity is still being investigated. Methods We administered a methanol extract of D. tuberculatus (MED) orally to Lep knockout (KO) mice for 4 weeks to investigate the therapeutic effects on obesity, weight gain, fat accumulation, lipid metabolism, inflammatory response, and β-oxidation. Results In Lep KO mice, MED significantly reduced weight gains, food intake, and total cholesterol and glyceride levels. Similar reductions in fat weights and adipocyte sizes were also observed. Furthermore, MED treatment reduced liver weight, lipid droplet numbers, the expressions of adipogenesis and lipogenesis-related genes, and the expressions of lipolysis regulators in liver tissues. Moreover, the iNOS-mediated COX-2 induction pathway, the inflammasome pathway, and inflammatory cytokine levels were reduced, but β-oxidation was increased, in the livers of MED-treated Lep KO mice. Conclusion The results of this study suggest that MED ameliorates obesity and has considerable potential as an anti-obesity treatment.
Collapse
Affiliation(s)
- Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Jumin Park
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan, Republic of Korea
| | - So Hae Park
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | | | - Onevilay Souliya
- Institute of Traditional Medicine, Ministry of Health, Vientiane, Laos
| | - Sun Il Choi
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
- Longevity Wellbeing Research Center/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| |
Collapse
|
9
|
Jaime-Lara RB, Brooks BE, Vizioli C, Chiles M, Nawal N, Ortiz-Figueroa RSE, Livinski AA, Agarwal K, Colina-Prisco C, Iannarino N, Hilmi A, Tejeda HA, Joseph PV. A systematic review of the biological mediators of fat taste and smell. Physiol Rev 2023; 103:855-918. [PMID: 36409650 PMCID: PMC9678415 DOI: 10.1152/physrev.00061.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Taste and smell play a key role in our ability to perceive foods. Overconsumption of highly palatable energy-dense foods can lead to increased caloric intake and obesity. Thus there is growing interest in the study of the biological mediators of fat taste and associated olfaction as potential targets for pharmacologic and nutritional interventions in the context of obesity and health. The number of studies examining mechanisms underlying fat taste and smell has grown rapidly in the last 5 years. Therefore, the purpose of this systematic review is to summarize emerging evidence examining the biological mechanisms of fat taste and smell. A literature search was conducted of studies published in English between 2014 and 2021 in adult humans and animal models. Database searches were conducted using PubMed, EMBASE, Scopus, and Web of Science for key terms including fat/lipid, taste, and olfaction. Initially, 4,062 articles were identified through database searches, and a total of 84 relevant articles met inclusion and exclusion criteria and are included in this review. Existing literature suggests that there are several proteins integral to fat chemosensation, including cluster of differentiation 36 (CD36) and G protein-coupled receptor 120 (GPR120). This systematic review will discuss these proteins and the signal transduction pathways involved in fat detection. We also review neural circuits, key brain regions, ingestive cues, postingestive signals, and genetic polymorphism that play a role in fat perception and consumption. Finally, we discuss the role of fat taste and smell in the context of eating behavior and obesity.
Collapse
Affiliation(s)
- Rosario B. Jaime-Lara
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Brianna E. Brooks
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Carlotta Vizioli
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mari Chiles
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,4Section of Neuromodulation and Synaptic Integration, Division of Intramural Research, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Nafisa Nawal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Rodrigo S. E. Ortiz-Figueroa
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alicia A. Livinski
- 3NIH Library, Office of Research Services, Office of the Director, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Khushbu Agarwal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Claudia Colina-Prisco
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Natalia Iannarino
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Aliya Hilmi
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Hugo A. Tejeda
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Paule V. Joseph
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,2Section of Sensory Science and Metabolism, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
10
|
Krajewska M, Dopierała K, Prochaska K. The Biomimetic System of Oleanolic Acid and Oleic Acid at the Air-Water Interface-Interactions in Terms of Nanotechnology-Based Drug Delivery Systems. MEMBRANES 2022; 12:1215. [PMID: 36557123 PMCID: PMC9782233 DOI: 10.3390/membranes12121215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Oleanolic acid (OLA) and oleic acid (OA) are ubiquitous in the plant kingdom, exhibiting a therapeutic effect on human health, and are components of novel pharmaceutical formulations. Since OLA has limited solubility, the utilization of nanotechnology-based drug delivery systems enhancing bioavailability is highly advantageous. We report on the interfacial behavior of the OLA:OA system at various molar ratios, using the Langmuir technique to assess the dependence of the molar composition on miscibility and rheological properties affecting film stability. Specifically, we evaluate the interfacial properties (morphology, thermodynamics, miscibility, and viscoelasticity) of the OLA:OA binary system in various molar ratios, and indicate how the OLA:OA system exhibits the most favorable molecular interactions. We apply the Langmuir monolayer technique along with the complementary techniques of Brewster angle microscopy, dilatational interfacial rheology, and excess free energy calculations. Results demonstrate that the properties of mixed monolayers depend on OLA:OA molar ratio. Most of the systems (OLA:OA 2:1, 1:1, 1:5) are assumed to be immiscible at surface pressures >10 mN/m. Moreover, the OLA:OA 1:2 is immiscible over the entire surface pressure range. However, the existence of miscibility between molecules of OLA and OA in the 5:1 for every surface pressure tested suggests that OA molecules incorporate into the OLA lattice structure, improving the stability of the mixed film. The results are discussed in terms of providing physicochemical insights into the behavior of the OLA:OA systems at the interface, which is of high interest in pharmaceutical design.
Collapse
Affiliation(s)
- Martyna Krajewska
- Correspondence: (M.K.); (K.D.); Tel.: +48-61-665-33-42 (M.K.); +48-61-665-37-72 (K.D.)
| | - Katarzyna Dopierała
- Correspondence: (M.K.); (K.D.); Tel.: +48-61-665-33-42 (M.K.); +48-61-665-37-72 (K.D.)
| | | |
Collapse
|
11
|
González-Rámila S, Mateos R, García-Cordero J, Seguido MA, Bravo-Clemente L, Sarriá B. Olive Pomace Oil versus High Oleic Sunflower Oil and Sunflower Oil: A Comparative Study in Healthy and Cardiovascular Risk Humans. Foods 2022; 11:foods11152186. [PMID: 35892771 PMCID: PMC9331821 DOI: 10.3390/foods11152186] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Olive pomace oil (OPO) is mainly a source of monounsaturated fat together with a wide variety of bioactive compounds, such as triterpenic acids and dialcohols, squalene, tocopherols, sterols and aliphatic fatty alcohols. To date, two long-term intervention studies have evaluated OPO’s health effects in comparison with high oleic sunflower oil (HOSO, study-1) and sunflower oil (SO, study-2) in healthy and cardiovascular risk subjects. The present study integrates the health effects observed with the three oils. Two randomized, blinded, cross-over controlled clinical trials were carried out in 65 normocholesterolemic and 67 moderately hypercholesterolemic subjects. Each study lasted fourteen weeks, with two four-week intervention phases (OPO versus HOSO or SO), each preceded by a three-week run-in or washout period. Regular OPO consumption reduced total cholesterol (p = 0.017) and LDL cholesterol (p = 0.018) levels as well as waist circumference (p = 0.026), and only within the healthy group did malondialdehyde (p = 0.004) levels decrease after OPO intake versus HOSO. Contrarily, after the SO intervention, apolipoprotein (Apo) B (p < 0.001) and Apo B/Apo A ratio (p < 0.001) increased, and to a lower extent Apo B increased with OPO. There were no differences between the study groups. OPO intake may improve cardiometabolic risk, particularly through reducing cholesterol-related parameters and waist circumference in healthy and hypercholesterolemic subjects.
Collapse
|
12
|
Chang YH, Hung HY. Recent advances in natural anti-obesity compounds and derivatives based on in vivo evidence: A mini-review. Eur J Med Chem 2022; 237:114405. [PMID: 35489224 DOI: 10.1016/j.ejmech.2022.114405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/25/2022]
Abstract
Obesity is not only viewed as a chronic aggressive disorder but is also associated with an increased risk for various diseases. Nonetheless, new anti-obesity drugs are an urgent need since few pharmacological choices are available on the market. Natural compounds have served as templates for drug discovery, whereas modified molecules from the leads identified based on in vitro models often reveal noncorresponding bioactivity between in vitro and in vivo studies. Therefore, to provide inspiration for the exploration of innovative anti-obesity agents, recent discoveries of natural anti-obesity compounds with in vivo evidence have been summarized according to their chemical structures, and the comparable efficacy of these compounds is categorized using animal models. In addition, several synthetic derivatives optimized from the phytochemicals are also provided to discuss medicinal chemistry achievements guided by natural sources.
Collapse
Affiliation(s)
- Yi-Han Chang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
| |
Collapse
|
13
|
Claro-Cala CM, Jiménez-Altayó F, Zagmutt S, Rodriguez-Rodriguez R. Molecular Mechanisms Underlying the Effects of Olive Oil Triterpenic Acids in Obesity and Related Diseases. Nutrients 2022; 14:nu14081606. [PMID: 35458168 PMCID: PMC9024864 DOI: 10.3390/nu14081606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
Dietary components exert protective effects against obesity and related metabolic and cardiovascular disturbances by interfering with the molecular pathways leading to these pathologies. Dietary biomolecules are currently promising strategies to help in the management of obesity and metabolic syndrome, which are still unmet medical issues. Olive oil, a key component of the Mediterranean diet, provides an exceptional lipid matrix highly rich in bioactive molecules. Among them, the pentacyclic triterpenic acids (i.e., oleanolic acid) have gained clinical relevance in the last decade due to their wide range of biological actions, particularly in terms of vascular function, obesity and insulin resistance. Considering the promising effects of these triterpenic compounds as nutraceuticals and components of functional foods against obesity and associated complications, the aim of our review is to decipher and discuss the main molecular mechanisms underlying these effects driven by olive oil triterpenes, in particular by oleanolic acid. Special attention is paid to their signaling and targets related to glucose and insulin homeostasis, lipid metabolism, adiposity and cardiovascular dysfunction in obesity. Our study is aimed at providing a better understanding of the impact of dietary components of olive oil in the long-term management of obesity and metabolic syndrome in humans.
Collapse
Affiliation(s)
- Carmen M. Claro-Cala
- Departament of Pharmacology, Pediatríc y Radiology, Faculty of Medicine, University of Seville, 41009 Seville, Spain;
| | - Francesc Jiménez-Altayó
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Sebastián Zagmutt
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Valles, Spain;
| | - Rosalia Rodriguez-Rodriguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Valles, Spain;
- Correspondence: ; Tel.: +34-935-042-002
| |
Collapse
|
14
|
Pentacyclic triterpene oleanolic acid protects against cardiac aging through regulation of mitophagy and mitochondrial integrity. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166402. [PMID: 35346820 DOI: 10.1016/j.bbadis.2022.166402] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Advanced aging exhibits altered cardiac geometry and function involving mitochondrial anomaly. Natural compounds display promises in the regulation of cardiac homeostasis via governance of mitochondrial integrity in aging. This study examined the effect of oleanolic acid (OA), a natural pentacyclic triterpenoid with free radical scavenging and P450 cyclooxygenase-regulating properties, on cardiac aging and mechanisms involved with a focus on mitophagy. Young (4-5 month-old) and old (22-24 month-old) mice were treated with OA for 6 weeks prior to assessment of cardiac function, morphology, ultrastructure, mitochondrial integrity, cell death and autophagy. Our data revealed that OA treatment alleviated aging-induced changes in myocardial remodeling (increased heart weight, chamber size, cardiomyocyte area and interstitial fibrosis), contractile function and intracellular Ca2+ handling, apoptosis, necroptosis, inflammation, autophagy and mitophagy (LC3B, p62, TOM20 and FUNDC1 but not BNIP3 and Parkin). OA treatment rescued aging-induced anomalies in mitochondrial ultrastructure (loss of myofilament alignment, swollen mitochondria, increased circularity), mitochondrial biogenesis and O2- production without any notable effect at young age. Interestingly, OA-offered benefit against cardiomyocyte aging was nullified by deletion of the mitophagy receptor FUNDC1 using FUNDC1 knockout mice, denoting an obligatory role for FUNDC1 in OA-elicited preservation of mitophagy. OA reconciled aging-induced changes in E3 ligase MARCH5 but not FBXL2, and failed to affect aging-induced rises in IP3R3. Taken together, our data indicated a beneficial role for OA in attenuating cardiac remodeling and contractile dysfunction in aging through a FUNDC1-mediated mechanism.
Collapse
|
15
|
Oleanolic Acid: Extraction, Characterization and Biological Activity. Nutrients 2022; 14:nu14030623. [PMID: 35276982 PMCID: PMC8838233 DOI: 10.3390/nu14030623] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
Oleanolic acid, a pentacyclic triterpenoid ubiquitously present in the plant kingdom, is receiving outstanding attention from the scientific community due to its biological activity against multiple diseases. Oleanolic acid is endowed with a wide range of biological activities with therapeutic potential by means of complex and multifactorial mechanisms. There is evidence suggesting that oleanolic acid might be effective against dyslipidemia, diabetes and metabolic syndrome, through enhancing insulin response, preserving the functionality and survival of β-cells and protecting against diabetes complications. In addition, several other functions have been proposed, including antiviral, anti-HIV, antibacterial, antifungal, anticarcinogenic, anti-inflammatory, hepatoprotective, gastroprotective, hypolipidemic and anti-atherosclerotic activities, as well as interfering in several stages of the development of different types of cancer; however, due to its hydrophobic nature, oleanolic acid is almost insoluble in water, which has led to a number of approaches to enhance its biopharmaceutical properties. In this scenario, the present review aimed to summarize the current knowledge and the research progress made in the last years on the extraction and characterization of oleanolic acid and its biological activities and the underlying mechanisms of action.
Collapse
|
16
|
Xue C, Lv H, Li Y, Dong N, Wang Y, Zhou J, Shi B, Shan A. Oleanolic acid reshapes the gut microbiota and alters immune-related gene expression of intestinal epithelial cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:764-773. [PMID: 34227118 DOI: 10.1002/jsfa.11410] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Oleanolic acid (OA) is a pentacyclic triterpenoid compound that is present at high levels in olive oil and has several promising pharmacological effects, such as liver protection and anti-inflammatory, antioxidant, and anticancer effects. The purpose of the present study was to assess whether OA treatment affects gut health compared to a control condition, including gut microbiota and intestinal epithelial immunity. RESULTS Illumina MiSeq sequencing (16S rRNA gene) was used to investigate the effect of OA on the microbial community of the intestinal tract, while Illumina HiSeq (RNA-seq) technology was used to investigate the regulatory effect of OA on gene expression in intestinal epithelial cells, which allowed for a comprehensive analysis of the effects of OA on intestinal health. The results showed that the consumption of OA initially controlled weight gain in mice and altered the composition of the gut microbiota. At the phylum level, OA significantly increased the relative abundances of cecum Firmicutes but decreased the abundance of Actinobacteria, and at the genus level it increased the relative abundance of potentially beneficial bacteria such as Oscillibacter and Ruminiclostridium 9. Oleanolic acid treatment also altered the expression of 12 genes involved in the Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways of complement and coagulation cascades, hematopoietic cell lineage, and leukocyte transendothelial migration in intestinal epithelial cells to improve gut immunity. CONCLUSION Intake of OA can contribute beneficial effects by optimizing gut microbiota and altering the immune function of intestinal epithelial cells, potentially to improve intestinal health status. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China
| | - Hao Lv
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China
| | - Ying Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China
| | - Yanhui Wang
- The Institute of Animal Nutrition, Heilongjiang Polytechnic, Shuangcheng, P. R. China
| | - Jiale Zhou
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China
| | - Baoming Shi
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
17
|
Abstract
During the last couples of years, a number of studies have increasingly accumulated on the gustatory perception of dietary fatty acids in rodent models and human beings in health and disease. There is still a debate to coin a specific term for the gustatory perception of dietary fatty acids either as the sixth basic taste quality or as an alimentary taste. Indeed, the psycho-physical cues of orosensory detection of dietary lipids are not as distinctly perceived as other taste qualities like sweet or bitter. The cellular and molecular pharmacological mechanisms, triggered by the binding of dietary long-chain fatty acids (LCFAs) to tongue taste bud lipid receptors like CD36 and GPR120, involve Ca2+ signaling as other five basic taste qualities. We have not only elucidated the role of Ca2+ signaling but also identified different components of the second messenger cascade like STIM1 and MAP kinases, implicated in fat taste perception. We have also demonstrated the implication of Calhm1 voltage-gated channels and store-operated Ca2+ (SOC) channels like Orai1, Orai1/3, and TRPC3 in gustatory perception of dietary fatty acids. We have not only employed siRNA technology in vitro and ex vivo on tissues but also used animal models of genetic invalidation of STIM1, ERK1, Orai1, Calhm1 genes to explore their implications in fat taste signal transduction. Moreover, our laboratory has also demonstrated the importance of LCFAs detection dysfunction in obesity in animal models and human beings.
Collapse
Affiliation(s)
- Aziz Hichami
- Physiologie de la Nutrition and Toxicologie (NUTox), UMR1231 INSERM/Université de Bourgogne, Dijon, France
| | - Amira Sayed Khan
- Physiologie de la Nutrition and Toxicologie (NUTox), UMR1231 INSERM/Université de Bourgogne, Dijon, France
| | - Naim Akhtar Khan
- Physiologie de la Nutrition and Toxicologie (NUTox), UMR1231 INSERM/Université de Bourgogne, Dijon, France.
| |
Collapse
|
18
|
Li W, Zeng H, Xu M, Huang C, Tao L, Li J, Zhang T, Chen H, Xia J, Li C, Li X. Oleanolic Acid Improves Obesity-Related Inflammation and Insulin Resistance by Regulating Macrophages Activation. Front Pharmacol 2021; 12:697483. [PMID: 34393781 PMCID: PMC8361479 DOI: 10.3389/fphar.2021.697483] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
The chronic low-grade inflammation of adipose tissues, primarily mediated by adipose tissue macrophages (ATMs), is the key pathogenic link between obesity and metabolic disorders. Oleanolic acid (OA) is a natural triterpenoid possessing anti-diabetic and anti-inflammation effects, but the machinery is poorly understood. This study investigated the detailed mechanisms of OA on adipose tissue inflammation in obese mice. C57BL/6J mice were fed with high-fat diet (HFD) for 12 weeks, then daily intragastric administrated with vehicle, 25 and 50 mg/kg OA for 4 weeks. Comparing with vehicle, OA administration in obese mice greatly improved insulin resistance, and reduced adipose tissue hypertrophy, ATM infiltration as well as the M1/M2 ratio. The pro-inflammatory markers were significantly down-regulated by OA in both adipose tissue of obese mice and RAW264.7 macrophages treated with interferon gamma/lipopolysaccharide (IFN-γ/LPS). Furthermore, it was found that OA suppressed activation of mitogen-activated protein kinase (MAPK) signaling and NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome through decreasing voltage dependent anion channels (VDAC) expression and reactive oxygen species (ROS) production. This is the first report that oleanolic acid exerts its benefits by affecting mitochondrial function and macrophage activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chunli Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Xue C, Li Y, Lv H, Zhang L, Bi C, Dong N, Shan A, Wang J. Oleanolic Acid Targets the Gut-Liver Axis to Alleviate Metabolic Disorders and Hepatic Steatosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7884-7897. [PMID: 34251802 DOI: 10.1021/acs.jafc.1c02257] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study investigated the effects of oleanolic acid (OA) on hepatic lipid metabolism and gut-liver axis homeostasis in an obesity-related non-alcoholic fatty liver disease (NAFLD) nutritional animal model and explored possible molecular mechanisms behind its effects. The results revealed that OA ameliorated the development of metabolic disorders, insulin resistance, and hepatic steatosis in obese rats. Meanwhile, OA restored high-fat-diet (HFD)-induced intestinal barrier dysfunction and endotoxin-mediated induction of toll-like-receptor-4-related pathways, subsequently inhibiting endotoxemia and systemic inflammation and balancing the homeostasis of the gut-liver axis. OA also reshaped the composition of the gut microbiota of HFD-fed rats by reducing the Firmicutes/Bacteroidetes ratio and increasing the abundance of butyrate-producing bacteria. Our results support the applicability of OA as a treatment for obesity-related NAFLD through its anti-inflammatory, antioxidant, and prebiotic integration responses mediated by the gut-liver axis.
Collapse
Affiliation(s)
- Chenyu Xue
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Ying Li
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Hao Lv
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Lei Zhang
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Chongpeng Bi
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Jiali Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| |
Collapse
|
20
|
Olive leaf extract prevents obesity, cognitive decline, and depression and improves exercise capacity in mice. Sci Rep 2021; 11:12495. [PMID: 34127683 PMCID: PMC8203715 DOI: 10.1038/s41598-021-90589-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/27/2021] [Indexed: 01/07/2023] Open
Abstract
Obesity is a risk factor for development of metabolic diseases and cognitive decline; therefore, obesity prevention is of paramount importance. Neuronal mitochondrial dysfunction induced by oxidative stress is an important mechanism underlying cognitive decline. Olive leaf extract contains large amounts of oleanolic acid, a transmembrane G protein-coupled receptor 5 (TGR5) agonist, and oleuropein, an antioxidant. Activation of TGR5 results in enhanced mitochondrial biogenesis, which suggests that olive leaf extract may help prevent cognitive decline through its mitochondrial and antioxidant effects. Therefore, we investigated olive leaf extract’s effects on obesity, cognitive decline, depression, and endurance exercise capacity in a mouse model. In physically inactive mice fed a high-fat diet, olive leaf extract administration suppressed increases in fat mass and body weight and prevented cognitive declines, specifically decreased working memory and depressive behaviors. Additionally, olive leaf extract increased endurance exercise capacity under atmospheric and hypoxic conditions. Our study suggests that these promising effects may be related to oleanolic acid’s improvement of mitochondrial function and oleuropein’s increase of antioxidant capacity.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW From single cells to entire organisms, biological entities are in constant communication with their surroundings, deciding what to 'allow' in, and what to reject. In very different ways, the immune and taste systems both fulfill this function, with growing evidence suggesting a relationship between the two, through shared signaling pathways, receptors, and feedback loops. The purpose of this review was to explore recent reports on taste and immunity in model animals and in humans to explore our understanding of the interplay between these systems. RECENT FINDINGS Acute infections in the upper airway, as with SARS-CoV-2, are associated with a proinflammatory state, and blunted taste perception. Further, recent findings highlight taste receptors working as immune sentinels throughout the body. Work in humans and mice also points to inflammation from obesity impacting taste, altering taste bud abundance and composition. There is accumulating evidence that taste cells, and particularly their receptors, play a role in airway and gut immunity, responsive to invading organisms. Inflammation itself may further act on taste buds and other taste receptor expressing cells throughout the body as a form of homeostatic control.
Collapse
Affiliation(s)
- Jason R Goodman
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Robin Dando
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
22
|
Gu S. Oleanolic Acid Improved Inflammatory Response and Apoptosis of PC12 Cells Induced by OGD/R Through Downregulating miR-142-5P. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211018019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Oleanolic acid (OA) has notable anti-inflammatory and anti-tumor effects, but the role of OA in cerebral ischemia-reperfusion injury (CIRI) has not been reported so far. Methods Oxygen and glucose deprivation/reoxygenation (OGD/R) model was induced in PC12 cells. MTT assay was used to detect the cell viability of PC12 cells, while ELISA assay detected the expression of TNF-α, IL-1β and IL-6. The expression of superoxide dismutase (SOD), malondialdehyde (MDA) and reactive oxygen species (ROS) was detected by the appropriate kits, and cell apoptosis by Tunel technique. Western blot assay detected the expression of apoptosis-related proteins. The cell transfection technique overexpressed miR-142‐5p. After overexpressing miR-142‐5p by cell transfection technique, the expression of miR-142‐5p was detected by RT-qPCR. Results Besides the ability to promote cell acitivity, OA ameliorated OGD/R-induced inflammatory response and apoptosis in PC12 cells. Moreover, the capability of OA to alleviate OGD/R-induced inflammation and apoptosis in PC12 cells was observed to be related to the down-regulation of miR-142‐5p. Conclusion OA improved inflammatory response and apoptosis of PC12 cells induced by OGD/R through downregulating miR-142‐5P
Collapse
Affiliation(s)
- Song Gu
- Department of Rehabilitation Medicine, Nanjing Luhe People’s Hospital, Jiangsu, China
| |
Collapse
|
23
|
Shi Y, Leng Y, Liu D, Liu X, Ren Y, Zhang J, Chen F. Research Advances in Protective Effects of Ursolic Acid and Oleanolic Acid Against Gastrointestinal Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:413-435. [PMID: 33622215 DOI: 10.1142/s0192415x21500191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intestinal tract plays an essential role in protecting tissues from the invasion of external harmful substances due to impaired barrier function. Furthermore, it participates in immunomodulation by intestinal microorganisms, which is important in health. When the intestinal tract is destroyed, it can lose its protective function, resulting in multiple systemic complications. In severe cases, it may lead to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS). Thus far, there are no curative therapies for intestinal mucosal barrier injury, other than a few drugs that can relieve symptoms. Thus, the development of novel curative agents for gastrointestinal diseases remains a challenge. Ursolic acid (UA) and its isomer, Oleanolic acid (OA), are pentacyclic triterpene acid compounds. Both their aglycone and glycoside forms have anti-oxidative, anti-inflammatory, anti-ulcer, antibacterial, antiviral, antihypertensive, anti-obesity, anticancer, antidiabetic, cardio protective, hepatoprotective, and anti-neurodegenerative properties in living organisms. In recent years, several studies have shown that UA and OA can reduce the risk of intestinal pathological injury, alleviate intestinal dysfunction, and restore intestinal barrier function. The present study evaluated the beneficial effects of UA and OA on intestinal damage and diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC).
Collapse
Affiliation(s)
- Yajing Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
| | - Yufang Leng
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Disheng Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Xin Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Yixing Ren
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
| | - Jianmin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
| | - Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
24
|
Development and Evaluation of Oleanolic Acid Dosage Forms and Its Derivatives. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1308749. [PMID: 33299854 PMCID: PMC7710427 DOI: 10.1155/2020/1308749] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/18/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
Oleanolic acid is a pentacyclic triterpenoid compound that exists widely in medicinal herbs and other plants. Because of the extensive pharmacological activity, oleanolic acid has attracted more and more attention. However, the structural characteristics of oleanolic acid prevent it from being directly made into new drugs, which limits the application of oleanolic acid. Through the application of modern preparation techniques and methods, different oleanolic acid dosage forms and derivatives have been designed and synthesized. These techniques can improve the water solubility and bioavailability of oleanolic acid and lay a foundation for the new drug development. In this review, the recent progress in understanding the oleanolic acid dosage forms and its derivatives are discussed. Furthermore, these products were evaluated comprehensively from the perspective of characterization and pharmacokinetics, and this work may provide ideas and references for the development of oleanolic acid preparations.
Collapse
|
25
|
Castellano JM, Espinosa JM, Perona JS. Modulation of Lipid Transport and Adipose Tissue Deposition by Small Lipophilic Compounds. Front Cell Dev Biol 2020; 8:555359. [PMID: 33163484 PMCID: PMC7591460 DOI: 10.3389/fcell.2020.555359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Small lipophilic molecules present in foods of plant origin have relevant biological activities at rather low concentrations. Evidence suggests that phytosterols, carotenoids, terpenoids, and tocopherols can interact with different metabolic pathways, exerting beneficial effects against a number of metabolic diseases. These small molecules can modulate triacylglycerol absorption in the intestine and the biosynthesis of chylomicrons, the lipid carriers in the blood. Once in the bloodstream, they can impact lipoprotein clearance from blood, thereby affecting fatty acid release, incorporation into adipocytes and triglyceride reassembling and deposit. Consequently, some of these molecules can regulate pathophysiological processes associated to obesity and its related conditions, such as insulin resistance, metabolic syndrome and type-2 diabetes. The protective capacity of some lipophilic small molecules on oxidative and chemotoxic stress, can modify the expression of key genes in the adaptive cellular response, such as transcription factors, contributing to prevent the inflammatory status of adipose tissue. These small lipophilic compounds can be incorporated into diet as natural parts of food but they can also be employed to supplement other dietary and pharmacologic products as nutraceuticals, exerting protective effects against the development of metabolic diseases in which inflammation is involved. The aim of this review is to summarize the current knowledge of the influence of dietary lipophilic small biomolecules (phytosterols, carotenoids, tocopherols, and triterpenes) on lipid transport, as well as on the effects they may have on pathophysiological metabolic states, related to obesity, insulin resistance and inflammation, providing an evidence-based summary of their main beneficial effects on human health.
Collapse
Affiliation(s)
- José M Castellano
- Group of Bioactive Compounds, Nutrition and Health, Department of Food and Health, Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Juan M Espinosa
- Group of Bioactive Compounds, Nutrition and Health, Department of Food and Health, Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Javier S Perona
- Group of Bioactive Compounds, Nutrition and Health, Department of Food and Health, Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
26
|
Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 2020; 8:1767-1792. [PMID: 32518769 PMCID: PMC7262697 DOI: 10.12998/wjcc.v8.i10.1767] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023] Open
Abstract
Oleanolic acid (OA) and its derivatives are widely found in diverse plants and are naturally effective pentacyclic triterpenoid compounds with broad prophylactic and therapeutic roles in various diseases such as ulcerative colitis, multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers. This review assembles and presents the latest in vivo reports on the impacts of OA and OA derivatives from various plant sources and the biological mechanisms of OA activities. Thus, this review presents sufficient data proposing that OA and its derivatives are potential alternative and complementary therapies for the treatment and management of several diseases.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| |
Collapse
|
27
|
Preference for dietary fat: From detection to disease. Prog Lipid Res 2020; 78:101032. [PMID: 32343988 DOI: 10.1016/j.plipres.2020.101032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Recent advances in the field of taste physiology have clarified the role of different basic taste modalities and their implications in health and disease and proposed emphatically that there might be a distinct cue for oro-sensory detection of dietary long-chain fatty acids (LCFAs). Hence, fat taste can be categorized as a taste modality. During mastication, LCFAs activate tongue lipid sensors like CD36 and GPR120 triggering identical signaling pathways as the basic taste qualities do; however, the physico-chemical perception of fat is not as distinct as sweet or bitter or other taste sensations. The question arises whether "fat taste" is a basic or "alimentary" taste. There is compelling evidence that fat-rich dietary intervention modulates fat taste perception where an increase or a decrease in lipid contents in the diet results, respectively, in downregulation or upregulation of fat taste sensitivity. Evidently, a decrease in oro-sensory detection of LCFAs leads to high fat intake and, consequently, to obesity. In this article, we discuss recent relevant advances made in the field of fat taste physiology with regard to dietary fat preference and lipid sensors that can be the target of anti-obesity strategies.
Collapse
|
28
|
Jeepipalli SPK, Du B, Sabitaliyevich UY, Xu B. New insights into potential nutritional effects of dietary saponins in protecting against the development of obesity. Food Chem 2020; 318:126474. [PMID: 32151922 DOI: 10.1016/j.foodchem.2020.126474] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/10/2020] [Accepted: 02/23/2020] [Indexed: 12/22/2022]
Abstract
Excessive energy intake, poor physical exercise and genetics/epigenetics are instrumental for the development of obesity. Because of rapidly emerging evidences related to off-target effects and toxicity of anti-obesity drugs, there is a need to search for more effective and targeted drugs for treatment of obesity. Substantial studies have found the nutritional effects of dietary saponins (bio-detergents) in terms of decreasing the synthesis of lipids, suppressing adipogenesis, inhibiting intestinal absorption of lipids, and promoting fecal excretion of bile acids and triglycerides. Dietary saponin have been approved as potent pancreatic lipase inhibitors, disaccharidase enzyme inhibitors, antagonistic to in vitro lipogenesis and in vivo appetite suppressants, antioxidants, immune-regulators, prevent fatty liver formation, protects epithelial vasculature and regulate body weight. Many dietary saponins, such as sibutramine, morgoside, sessiloside, soysaponin B, and diosgenin, have treatment potential against the development of obesity. Excellent scientific achievements have been developed for a better understanding the mechanism of saponins in preventing obesity.
Collapse
Affiliation(s)
- Syam P K Jeepipalli
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Bin Du
- Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066600, China
| | | | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
29
|
Rajan L, Palaniswamy D, Mohankumar SK. Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacol Res 2020; 155:104681. [PMID: 32045666 DOI: 10.1016/j.phrs.2020.104681] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
Abstract
The prevalence of obesity is alarmingly increasing in the last few decades and leading to many serious public health concerns worldwide. The dysregulated lipid homeostasis due to various genetic, environmental and lifestyle factors is considered one of the critical putative pathways mediating obesity. Nonetheless, the scientific advancements unleashing the molecular dynamics of lipid metabolism have provided deeper insights on the emerging roles of lipid hydrolysing enzymes, including pancreatic lipase. It is hypothesized that inhibiting pancreatic lipase would prevent the breakdown of triglyceride and delays the absorption of fatty acids into the systemic circulation and adipocytes. Whilst, orlistat is the only conventional pancreatic lipase enzyme inhibitor available in clinics, identifying the safe clinical alternatives from plants to inhibit pancreatic lipase has been considered a significant advancement. Consequently, plants which have shown significant potential to combat obesity are now revisited for its abilities to inhibit pancreatic lipase. In this regard, our review surveyed the potential of medicinal plants and its phytoconstituents to inhibit pancreatic lipase and to elicit anti-obesity effects. Thus, the review collate and critically appraise the potential of medicinal plants and phyto-molecules inhibiting pancreatic lipase enzyme and consequently modulating triglyceride absorption in gut, and discuss its implications in the development of novel therapeutic strategies to combat obesity.
Collapse
Affiliation(s)
- Logesh Rajan
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty, 643001, Tamil Nadu, India
| | - Dhanabal Palaniswamy
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty, 643001, Tamil Nadu, India
| | - Suresh Kumar Mohankumar
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty, 643001, Tamil Nadu, India.
| |
Collapse
|
30
|
Claro-Cala CM, Quintela JC, Pérez-Montero M, Miñano J, Alvarez de Sotomayor M, Herrera MD, Rodríguez-Rodríguez R. Pomace Olive Oil Concentrated in Triterpenic Acids Restores Vascular Function, Glucose Tolerance and Obesity Progression in Mice. Nutrients 2020; 12:nu12020323. [PMID: 31991894 PMCID: PMC7071211 DOI: 10.3390/nu12020323] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pomace olive oil, an olive oil sub-product, is a promising source of bioactive triterpenoids such as oleanolic acid and maslinic acid. Considering the vascular actions of pomace olive oil and the potential effects of the isolated oleanolic acid on metabolic complications of obesity, this study investigates for the first time the dietary intervention with a pomace olive oil with high concentrations of the triterpenic acids (POCTA), oleanolic and maslinic acid, during diet-induced obesity in mice. The results demonstrate that obese mice, when switched to a POCTA-diet for 10 weeks, show a substantial reduction of body weight, insulin resistance, adipose tissue inflammation, and particularly, improvement of vascular function despite high caloric intake. This study reveals the potential of a functional food based on pomace olive oil and its triterpenic fraction against obesity progression. Our data also contribute to understanding the health-promoting effects attributable to the Mediterranean diet.
Collapse
Affiliation(s)
- Carmen Maria Claro-Cala
- Department of Pharmacology, Pediatric and Radiology, Faculty of Medicine, University of Sevilla, E-41009 Sevilla, Spain;
- Correspondence: (C.M.C.-C.); (R.R.-R.); Tel.: +34-954-550-988 (C.M.C.-C.); +34-935-042-002 (R.R.-R.)
| | | | - Marta Pérez-Montero
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain;
| | - Javier Miñano
- Department of Pharmacology, Pediatric and Radiology, Faculty of Medicine, University of Sevilla, E-41009 Sevilla, Spain;
| | - María Alvarez de Sotomayor
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain; (M.A.d.S.); (M.D.H.)
| | - María Dolores Herrera
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain; (M.A.d.S.); (M.D.H.)
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain;
- Correspondence: (C.M.C.-C.); (R.R.-R.); Tel.: +34-954-550-988 (C.M.C.-C.); +34-935-042-002 (R.R.-R.)
| |
Collapse
|
31
|
Bile acid receptor TGR5 is critically involved in preference for dietary lipids and obesity. J Nutr Biochem 2019; 76:108298. [PMID: 31812910 DOI: 10.1016/j.jnutbio.2019.108298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022]
Abstract
We investigated the implication of Takeda G protein-coupled receptor 5 (TGR5) in fat preference and fat sensing in taste bud cells (TBC) in C57BL/6 wild-type (WT) and TGR5 knock out (TGR5-/-) male mice maintained for 20 weeks on a high-fat diet (HFD). We also assessed the implication of TGR5 single nucleotide polymorphism (SNP) in young obese humans. The high-fat diet (HFD)-fed TGR5-/- mice were more obese, marked with higher liver weight, lipidemia and steatosis than WT obese mice. The TGR5-/- obese mice exhibited high daily food/energy intake, fat mass and inflammatory status. WT obese mice lost the preference for dietary fat, but the TGR5-/- obese mice exhibited no loss towards the attraction for lipids. In lingual TBC, the fatty acid-triggered Ca2+ signaling was decreased in WT obese mice; however, it was increased in TBC from TGR5-/- obese mice. Fatty acid-induced in vitro release of GLP-1 was higher, but PYY concentrations were lower, in TBC from TGR5-/- obese mice than those in WT obese mice. We noticed an association between obesity and variations in TGR5 rs11554825 SNP. Finally, we can state that TGR5 modulates fat eating behavior and obesity.
Collapse
|
32
|
Fernández-Aparicio Á, Schmidt-RioValle J, Perona JS, Correa-Rodríguez M, Castellano JM, González-Jiménez E. Potential Protective Effect of Oleanolic Acid on the Components of Metabolic Syndrome: A Systematic Review. J Clin Med 2019; 8:jcm8091294. [PMID: 31450844 PMCID: PMC6780804 DOI: 10.3390/jcm8091294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
The high prevalence of obesity is a serious public health problem in today’s world. Both obesity and insulin resistance favor the development of metabolic syndrome (MetS), which is associated with a number of pathologies, especially type 2 diabetes mellitus, and cardiovascular diseases. This serious problem highlights the need to search for new natural compounds to be employed in therapeutic and preventive strategies, such as oleanolic acid (OA). This research aimed to systematically review the effects of OA on the main components of MetS as well as oxidative stress in clinical trials and experimental animal studies. Databases searched included PubMed, Medline, Web of Science, Scopus, EMBASE, Cochrane, and CINAHL from 2013 to 2019. Thus, both animal studies (n = 23) and human clinical trials (n = 1) were included in our review to assess the effects of OA formulations on parameters concerning insulin resistance and the MetS components. The methodological quality assessment was performed through using the SYRCLE’s Risk of Bias for animal studies and the Jadad scale. According to the studies in our review, OA improves blood pressure levels, hypertriglyceridemia, hyperglycemia, oxidative stress, and insulin resistance. Although there is scientific evidence that OA has beneficial effects in the prevention and treatment of MetS and insulin resistance, more experimental studies and randomized clinical trials are needed to guarantee its effectiveness.
Collapse
Affiliation(s)
- Ángel Fernández-Aparicio
- Department of Nursing, Faculty of Health Sciences, University of Granada, Av. Ilustración, 60, 18016 Granada, Spain
| | - Jacqueline Schmidt-RioValle
- Department of Nursing, Faculty of Health Sciences, University of Granada, Av. Ilustración, 60, 18016 Granada, Spain.
| | - Javier S Perona
- Instituto de la Grasa, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013 Seville, Spain
| | - María Correa-Rodríguez
- Department of Nursing, Faculty of Health Sciences, University of Granada, Av. Ilustración, 60, 18016 Granada, Spain
| | - Jose M Castellano
- Instituto de la Grasa, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013 Seville, Spain
| | - Emilio González-Jiménez
- Department of Nursing, Faculty of Health Sciences, University of Granada, Av. Ilustración, 60, 18016 Granada, Spain
| |
Collapse
|
33
|
Olive Leaf Extract (OleaVita) Suppresses Inflammatory Cytokine Production and NLRP3 Inflammasomes in Human Placenta. Nutrients 2019; 11:nu11050970. [PMID: 31035323 PMCID: PMC6566934 DOI: 10.3390/nu11050970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
The placenta is essential for pregnancy and produces both pro-inflammatory and anti-inflammatory cytokines. Excessive production of inflammatory cytokines, involving interleukin-1β (IL-1β), IL-6, and IL-8, from placental tissues is associated with pregnancy complications. Olive leaf extract has several health benefits, including anti-inflammatory functions. OleaVita is a new commercial olive leaf extract; it is hypothesized to suppress placental inflammation. In human placental tissue culture, OleaVita treatment inhibited the secretion of inflammatory cytokines and NF-κB p65 protein expression. OleaVita also suppressed toll-like receptor ligands-induced IL-1β secretion in human placental tissues. IL-1β is regulated by the NLRP3 inflammasomes, a pivotal regulator of various diseases. OleaVita significantly decreased NLRP3 and pro-IL-1β protein expression, suggesting that it has an inhibitory effect on NLRP3 inflammasome activation. Thus, OleaVita is beneficial as an inhibitor of inflammation and NLRP3 inflammasome activation, and may be used as a supplement for the treatment and prevention of inflammatory diseases.
Collapse
|