1
|
Galisteo C, Puente-Sánchez F, de la Haba RR, Bertilsson S, Sánchez-Porro C, Ventosa A. Metagenomic insights into the prokaryotic communities of heavy metal-contaminated hypersaline soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175497. [PMID: 39151617 DOI: 10.1016/j.scitotenv.2024.175497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Saline soils and their microbial communities have recently been studied in response to ongoing desertification of agricultural soils caused by anthropogenic impacts and climate change. Here we describe the prokaryotic microbiota of hypersaline soils in the Odiel Saltmarshes Natural Area of Southwest Spain. This region has been strongly affected by mining and industrial activity and feature high levels of certain heavy metals. We sequenced 18 shotgun metagenomes through Illumina NovaSeq from samples obtained from three different areas in 2020 and 2021. Taxogenomic analyses demonstrate that these soils harbored equal proportions of archaea and bacteria, with Methanobacteriota, Pseudomonadota, Bacteroidota, Gemmatimonadota, and Balneolota as most abundant phyla. Functions related to the transport of heavy metal outside the cytoplasm are among the most relevant features of the community (i.e., ZntA and CopA enzymes). They seem to be indispensable to avoid the increase of zinc and copper concentration inside the cell. Besides, the archaeal phylum Methanobacteriota is the main arsenic detoxifier within the microbiota although arsenic related genes are widely distributed in the community. Regarding the osmoregulation strategies, "salt-out" mechanism was identified in part of the bacterial population, whereas "salt-in" mechanism was present in both domains, Bacteria and Archaea. De novo biosynthesis of two of the most universal compatible solutes was detected, with predominance of glycine betaine biosynthesis (betAB genes) over ectoine (ectABC genes). Furthermore, doeABCD gene cluster related to the use of ectoine as carbon and energy source was solely identified in Pseudomonadota and Methanobacteriota.
Collapse
Affiliation(s)
- Cristina Galisteo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Fernando Puente-Sánchez
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
2
|
Iglesias Pastrana C, Sgobba MN, Navas González FJ, Delgado Bermejo JV, Pierri CL, Lentini G, Musio B, Osman TKS, Gallo V, Duarte IF, Guerra L, Ciani E. Factors influencing the bioactivity of natural matrices: The case of osmolarity-dependent modulation of cell viability by different dilutions of camel urines. Res Vet Sci 2024; 180:105419. [PMID: 39341022 DOI: 10.1016/j.rvsc.2024.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
The widespread practice of dromedary urinotherapy as a remedy for various illnesses, including cancer, is well-established in traditional dromedary countries. Researchers attempted to demonstrate anticancer properties of camel urine through in vitro experiments with debated outcomes. Notably, two critical aspects remained unexplored in those assays: (i) the osmolarity of tested urines, which can significantly influence in vitro results; (ii) the potential morphological changes of cells, following exposure to camel urines. In this study, we addressed these gaps by evaluating the osmolarity-dependent modulation of cell viability in human renal cell lines. In this regard, we assessed the impact of hyperosmolar mannitol-based solutions and dromedary urine on the viability and morphology of human non-tumor (HK2) and tumor renal cells (Caki-1). The results indicate that cell viability or morphology in both HK2 and Caki-1 cells are not significantly affected only if mannitol-induced hyperosmolarity is lower than 500 mOsm/L. Notably, when exposed to urine solution, diluted to <500 mOsm/L, statistically significant antiproliferative effects were observed primarily in Caki-1 cells (in presence of two out of ten tested urine samples). Conversely, alterations in cell morphology were observed exclusively in HK2 cells when exposed to the same diluted camel urines. In order to investigate, at molecular level, the observed antiproliferative effects, a preliminary metabolomics analysis of the tested urine samples was performed to identify potential bioactive compounds. The Nuclear Magnetic Resonance (NMR) metabolic profiling revealed the presence of three antioxidant compounds, namely trigonelline, pyruvic acid and N-acetylglucosamine. In conclusion, our results highlight the importance of considering the critical role of osmolarity when evaluating the bioactive properties of camel urine in vitro, which should not be used to treat any illness as it is. Conversely, it can be considered the possibility to use camel urines as a source of bioactive compounds.
Collapse
Affiliation(s)
- Carlos Iglesias Pastrana
- Faculty of Veterinary Sciences, Department of Genetics, University of Córdoba, 14071 Córdoba, Spain
| | - Maria Noemi Sgobba
- Department of Biosciences, Biotechnologies and Environment, University of Bari 'Aldo Moro', 70125 Bari, Italy
| | | | | | - Ciro Leonardo Pierri
- Department of Pharmacy- Pharmaceutical Sciences, University of Bari 'Aldo Moro', 70125 Bari, Italy.
| | - Giovanni Lentini
- Department of Pharmacy- Pharmaceutical Sciences, University of Bari 'Aldo Moro', 70125 Bari, Italy
| | - Biagia Musio
- Department of Civil, Environmental, Land, Construction Engineering and Chemistry (DICATECh), Polytechnic University of Bari, 70125 Bari, Italy
| | | | - Vito Gallo
- Department of Civil, Environmental, Land, Construction Engineering and Chemistry (DICATECh), Polytechnic University of Bari, 70125 Bari, Italy; Innovative Solutions S.r.l, Spin Off Company at Polytechnic University of Bari, 70015 Noci (BA), Italy
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari 'Aldo Moro', 70125 Bari, Italy.
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Environment, University of Bari 'Aldo Moro', 70125 Bari, Italy
| |
Collapse
|
3
|
da Cunha ET, Pedrolo AM, Arisi ACM. Thermal and salt stress effects on the survival of plant growth-promoting bacteria Azospirillum brasilense in inoculants for maize cultivation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5360-5367. [PMID: 38324183 DOI: 10.1002/jsfa.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND The plant growth-promoting bacteria (PGPB) Azospirillum brasilense is widely used as an inoculant for important grass crops, providing numerous benefits to the plants. However, one limitation to develop viable commercial inoculants is the control of PGPB survival, requiring strategies that guarantee their survival during handling and field application. The application of sublethal stress appears to be a promising strategy to increase bacterial cells tolerance to adverse environmental conditions since previous stress induces the activation of physiological protection in bacterial cell. In this work, we evaluated the effects of thermal and salt stresses on the survival of inoculant containing A. brasilense Ab-V5 and Ab-V6 strains and we monitored A. brasilense viability in inoculated maize roots after stress treatment of inoculant. RESULTS Thermal stress application (> 35 °C) in isolated cultures for both strains, as well as salt stress [sodium chloride (NaCl) concentrations > 0.3 mol L-1], resulted in growth rate decline. The A. brasilense enumeration in maize roots obtained by propidium monoazide quantitative polymerase chain reaction (PMA-qPCR), for inoculated maize seedlings grown in vitro for 7 days, showed that there is an increased number of viable cells after the salt stress treatment, indicating that A. brasilense Ab-V5 and Ab-V6 strains are able to adapt to salt stress (0.3 mol L-1 NaCl) growth conditions. CONCLUSION Azospirillum brasilense Ab-V5 and Ab-V6 strains had potential for osmoadaptation and salt stress, resulting in increased cell survival after inoculation in maize plants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elisandra Triches da Cunha
- CAL CCA UFSC, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ana Marina Pedrolo
- CAL CCA UFSC, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ana Carolina Maisonnave Arisi
- CAL CCA UFSC, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
4
|
Al-Daghistani HI, Zein S, Abbas MA. Microbial communities in the Dead Sea and their potential biotechnological applications. Commun Integr Biol 2024; 17:2369782. [PMID: 38919836 PMCID: PMC11197920 DOI: 10.1080/19420889.2024.2369782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
The Dead Sea is unique compared to other extreme halophilic habitats. Its salinity exceeds 34%, and it is getting saltier. The Dead Sea environment is characterized by a dominance of divalent cations, with magnesium chloride (MgCl2) levels approaching the predicted 2.3 M upper limit for life, an acidic pH of 6.0, and high levels of absorbed ultraviolet radiation. Consequently, only organisms adapted to such a polyextreme environment can survive in the surface, sinkholes, sediments, muds, and underwater springs of the Dead Sea. Metagenomic sequence analysis and amino acid profiling indicated that the Dead Sea is predominantly composed of halophiles that have various adaptation mechanisms and produce metabolites that can be utilized for biotechnological purposes. A variety of products have been obtained from halophilic microorganisms isolated from the Dead Sea, such as antimicrobials, bioplastics, biofuels, extremozymes, retinal proteins, colored pigments, exopolysaccharides, and compatible solutes. These resources find applications in agriculture, food, biofuel production, industry, and bioremediation for the detoxification of wastewater and soil. Utilizing halophiles as a bioprocessing platform offers advantages such as reduced energy consumption, decreased freshwater demand, minimized capital investment, and continuous production.
Collapse
Affiliation(s)
- Hala I. Al-Daghistani
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Sima Zein
- Department of Pharmaceutical Biotechnology, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Manal A. Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
5
|
Mizutani K, Yoshida Y, Nakanishi E, Miyata Y, Tokumoto S, Fuse H, Gusev O, Kikuta S, Kikawada T. A sodium-dependent trehalose transporter contributes to anhydrobiosis in insect cell line, Pv11. Proc Natl Acad Sci U S A 2024; 121:e2317254121. [PMID: 38551840 PMCID: PMC10998604 DOI: 10.1073/pnas.2317254121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/13/2024] [Indexed: 04/02/2024] Open
Abstract
Pv11 is the only animal cell line that, when preconditioned with a high concentration of trehalose, can be preserved in the dry state at room temperature for more than one year while retaining the ability to resume proliferation. This extreme desiccation tolerance is referred to as anhydrobiosis. Here, we identified a transporter that contributes to the recovery of Pv11 cells from anhydrobiosis. In general, the solute carrier 5 (SLC5)-type secondary active transporters cotransport Na+ and carbohydrates including glucose. The heterologous expression systems showed that the transporter belonging to the SLC5 family, whose expression increases upon rehydration, exhibits Na+-dependent trehalose transport activity. Therefore, we named it STRT1 (sodium-ion trehalose transporter 1). We report an SLC5 family member that transports a naturally occurring disaccharide, such as trehalose. Knockout of the Strt1 gene significantly reduced the viability of Pv11 cells upon rehydration after desiccation. During rehydration, when intracellular trehalose is no longer needed, Strt1-knockout cells released the disaccharide more slowly than the parental cell line. During rehydration, Pv11 cells became roughly spherical due to osmotic pressure changes, but then returned to their original spindle shape after about 30 min. Strt1-knockout cells, however, required about 50 min to adopt their normal morphology. STRT1 probably regulates intracellular osmolality by releasing unwanted intracellular trehalose with Na+, thereby facilitating the recovery of normal cell morphology during rehydration. STRT1 likely improves the viability of dried Pv11 cells by rapidly alleviating the significant physical stresses that arise during rehydration.
Collapse
Affiliation(s)
- Kosuke Mizutani
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba277-8562, Japan
| | - Yuki Yoshida
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki305-8634, Japan
| | - Eita Nakanishi
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba277-8562, Japan
| | - Yugo Miyata
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo113-8510, Japan
| | - Shoko Tokumoto
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki305-8634, Japan
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo113-8421, Japan
| | - Hiroto Fuse
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba277-8562, Japan
| | - Oleg Gusev
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo113-8421, Japan
| | - Shingo Kikuta
- Department of Regional and Comprehensive Agriculture, College of Agriculture, Ibaraki University, Ami, Ibaraki300-0393, Japan
| | - Takahiro Kikawada
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba277-8562, Japan
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki305-8634, Japan
| |
Collapse
|
6
|
Zhang F, Yu Q, Huang Y, Luo Y, Qin J, Chen L, Li E, Wang X. Study on the osmotic response and function of myo-inositol oxygenase in euryhaline fish nile tilapia ( Oreochromis niloticus). Am J Physiol Cell Physiol 2024; 326:C1054-C1066. [PMID: 38344798 DOI: 10.1152/ajpcell.00513.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 03/13/2024]
Abstract
To understand the role of myo-inositol oxygenase (miox) in the osmotic regulation of Nile tilapia, its expression was analyzed in various tissues. The results showed that the expression of miox gene was highest in the kidney, followed by the liver, and was significantly upregulated in the kidney and liver under 1 h hyperosmotic stress. The relative luminescence efficiency of the miox gene transcription starting site (-4,617 to +312 bp) under hyperosmotic stress was measured. Two fragments (-1,640/-1,619 and -620/-599) could induce the luminescence activity. Moreover, the -1,640/-1,619 and -620/-599 responded to hyperosmotic stress and high-glucose stimulation by base mutation, suggesting that osmotic and carbohydrate response elements may exist in this region. Finally, the salinity tolerance of Nile tilapia was significantly reduced after the knocking down of miox gene. The accumulation of myo-inositol was affected, and the expression of enzymes in glucose metabolism was significantly reduced after the miox gene was knocked down. Furthermore, hyperosmotic stress can cause oxidative stress, and MIOX may help maintain the cell redox balance under hyperosmotic stress. In summary, MIOX is essential in osmotic regulation to enhance the salinity tolerance of Nile tilapia by affecting myo-inositol accumulation, glucose metabolism, and antioxidant performance.NEW & NOTEWORTHY Myo-inositol oxygenase (MIOX) is the rate-limiting enzyme that catalyzes the first step of MI metabolism and determines MI content in aquatic animals. To understand the role of miox in the osmotic regulation of Nile tilapia, we analyzed its expression in different tissues and its function under hyperosmotic stress. This study showed that miox is essential in osmotic regulation to enhance the salinity tolerance of Nile tilapia by affecting myo-inositol accumulation, glucose metabolism, and antioxidant performance.
Collapse
Affiliation(s)
- Fan Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Qiuran Yu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Knight LS, Knight TA. Making the case for prophylactic use of betaine to promote brain health in young (15-24 year old) athletes at risk for concussion. Front Neurosci 2023; 17:1214976. [PMID: 37811321 PMCID: PMC10556504 DOI: 10.3389/fnins.2023.1214976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Betaine supplementation in the context of human nutrition, athletic performance, and clinical therapy demonstrate that the osmolyte and methyl donor, betaine, is cytoprotective and beneficial to human health. These studies also demonstrate that betaine supplementation in healthy humans is straight-forward with no reported adverse effects. Here, we explore betaine uptake in the central nervous system (CNS) and contribute to evidence that betaine may be uniquely protective to the brain. We specifically describe the therapeutic potential of betaine and explore the potential implications of betaine on inhibition mediated by GABA and glycine neurotransmission. The influence of betaine on neurophysiology complement betaine's role as an osmolyte and metabolite and is consistent with clinical evidence of betaine-mediated improvements to cognitive function (reported in elderly populations) and its anti-convulsant properties. Betaine's therapeutic potential in neurological disorders including epilepsy and neurodegenerative diseases combined with benefits of betaine supplementation on athletic performance support the unique application of betaine as a prophylaxis to concussion. As an example, we identify young athletes (15-24 years old), especially females, for prophylactic betaine supplementation to promote brain health and resilience in a cohort at high risk for concussion and for developing Alzheimer's disease.
Collapse
Affiliation(s)
| | - Thomas A. Knight
- Biology Department, Whitman College, Walla Walla, WA, United States
| |
Collapse
|
8
|
Wang J, Shan H, Li P, Liu Y, Zhang X, Xu J, Li S. Antibacterial Effects of Theaflavins against Staphylococcus aureus and Salmonella paratyphi B: Role of Environmental Factors and Food Matrices. Foods 2023; 12:2615. [PMID: 37444352 DOI: 10.3390/foods12132615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to investigate the effects of different environmental factors (temperature, pH, and NaCl) and food matrices (skimmed milk powder, lecithin, and sucrose) on the antibacterial activity of theaflavins (TFs) against Staphylococcus aureus (S. aureus) and Salmonella paratyphi B (S. paratyphi B). TFs showed a larger diameter of inhibition zone (DIZ, 12.58 ± 0.09 mm-16.36 ± 0.12 mm) value against S. aureus than that of S. paratyphi B (12.42 ± 0.43 mm-15.81 ± 0.24 mm) at the same concentration (2-10 mg/mL). When temperatures were 25-121 °C, the DIZ of TFs against both S. aureus and S. paratyphi B was not significantly different. As pH increased from 2 to 10, their DIZ values decreased significantly from 16.78 ± 0.23 mm to 13.43 ± 0.08 mm and 15.63 ± 0.42 mm to 12.18 ± 0.14 mm, respectively. Their DIZ values increased slightly as the NaCl concentration increased from 0.2 mol/L to 0.8 mol/L, while their DIZ values decreased significantly for skimmed milk powder concentrations in the range of 20-120 g/L. Regarding the concentrations of lecithin and sucrose were 2-12 g/L and 10-60 g/L, their DIZ values showed no significant change against S. paratyphi B, but an increased trend for S. aureus. Under the above different environmental factors and food matrices, TFs maintained excellent antibacterial activity against S. aureus and S. paratyphi B, providing a theoretical guidance for applying TFs as novel antibacterial additives in the food industry.
Collapse
Affiliation(s)
- Jun Wang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Hongyan Shan
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Ping Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yanan Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Xun Zhang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Jingguo Xu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Khan S, Siraj S, Shahid M, Haque MM, Islam A. Osmolytes: Wonder molecules to combat protein misfolding against stress conditions. Int J Biol Macromol 2023; 234:123662. [PMID: 36796566 DOI: 10.1016/j.ijbiomac.2023.123662] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
The proper functioning of any protein depends on its three dimensional conformation which is achieved by the accurate folding mechanism. Keeping away from the exposed stress conditions leads to cooperative unfolding and sometimes partial folding, forming the structures like protofibrils, fibrils, aggregates, oligomers, etc. leading to several neurodegenerative diseases like Parkinson's disease, Alzheimer's, Cystic fibrosis, Huntington, Marfan syndrome, and also cancers in some cases, too. Hydration of proteins is necessary, which may be achieved by the presence of organic solutes called osmolytes within the cell. Osmolytes belong to different classes in different organisms and play their role by preferential exclusion of osmolytes and preferential hydration of water molecules and achieves the osmotic balance in the cell otherwise it may cause problems like cellular infection, cell shrinkage leading to apoptosis and cell swelling which is also the major injury to the cell. Osmolyte interacts with protein, nucleic acids, intrinsically disordered proteins by non-covalent forces. Stabilizing osmolytes increases the Gibbs free energy of the unfolded protein and decreases that of folded protein and vice versa with denaturants (urea and guanidinium hydrochloride). The efficacy of each osmolyte with the protein is determined by the calculation of m value which reflects its efficiency with protein. Hence osmolytes can be therapeutically considered and used in drugs.
Collapse
Affiliation(s)
- Sobia Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Seerat Siraj
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box: 173, Al Kharj, Saudi Arabia
| | | | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
10
|
da Cunha ET, Pedrolo AM, Arisi ACM. Effects of sublethal stress application on the survival of bacterial inoculants: a systematic review. Arch Microbiol 2023; 205:190. [PMID: 37055599 DOI: 10.1007/s00203-023-03542-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
The use of commercial bacterial inoculants formulated with plant-growth promoting bacteria (PGPB) in agriculture has shown significant prominence in recent years due to growth-promotion benefits provided to plants through different mechanisms. However, the survival and viability of bacterial cells in inoculants are affected during use and may decrease their effectiveness. Physiological adaptation strategies have attracted attention to solve the viability problem. This review aims to provide an overview of research on selecting sublethal stress strategies to increase the effectiveness of bacterial inoculants. The searches were performed in November 2021 using Web of Science, Scopus, PubMed, and Proquest databases. The keywords "nitrogen-fixing bacteria", "plant growth-promoting rhizobacteria", "azospirillum", "pseudomonas", "rhizobium", "stress pre-conditioning", "adaptation", "metabolic physiological adaptation", "cellular adaptation", "increasing survival", "protective agent" and "protective strategy" were used in the searches. A total of 2573 publications were found, and 34 studies were selected for a deeper study of the subject. Based on the studies analysis, gaps and potential applications related to sublethal stress were identified. The most used strategies included osmotic, thermal, oxidative, and nutritional stress, and the primary cell response mechanism to stress was the accumulation of osmolytes, phytohormones, and exopolysaccharides (EPS). Under sublethal stress, the inoculant survival showed positive increments after lyophilization, desiccation, and long-term storage processes. The effectiveness of inoculant-plants interaction also had positive increments after sublethal stress, improving plant development, disease control, and tolerance to environmental stresses compared to unappealed inoculants.
Collapse
Affiliation(s)
- Elisandra Triches da Cunha
- CAL CCA UFSC, Food Science and Technology Department, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil
| | - Ana Marina Pedrolo
- CAL CCA UFSC, Food Science and Technology Department, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil
| | - Ana Carolina Maisonnave Arisi
- CAL CCA UFSC, Food Science and Technology Department, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil.
| |
Collapse
|
11
|
Hu C, Sun X, Zhang L, Wang H, Dong L, Li S. Long-term stability of reactor microbiome through bioaugmentation with Alcaligenes aquatilis AS1 promotes nitrogen removal of piggery wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117146. [PMID: 36586372 DOI: 10.1016/j.jenvman.2022.117146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Bioaugmentation is considered as an attractive method for nitrogen removal in water treatment, but its effectiveness in actual high-strength piggery wastewater has not been adequately verified and the mechanism of bioaugmentation in actual wastewater treatment system is not very clear especially from the perspectives of microbial communities and functional genes. This study investigated the mechanisms of a heterotrophic nitrifying-aerobic denitrifying strain Alcaligenes aquatilis AS1 in the bioaugmentation of continuous biological nitrogen removal of actual piggery wastewater at laboratory scale. The addition of strain AS1 significantly improved the nitrogen removal efficiency (more than 95% of NH4+-N and 75% of TN were removed) and raised the activated sludge resistance to shock loading. AS1 addition also significantly shifted the microbiota structure and interactions among microbial networks were enhanced to obtain the stable bacterial communities. Moreover, strain AS1 achieved effective proliferation and long-term colonization in activated sludge with a relative abundance of genus Alcaligenes more than 70% during the whole operation process and played a dominant role in biological nitrogen removal, while different genera were respectively enriched and involved in pollutants removal at different stages in the control group. In addition, the abundances of most functional genes involved in carbon (C) degradation, carbon fixation and nitrogen (N), phosphorus (P), sulfur (S) cycling in activated sludge were significantly increased in reactor AS1, indicating that strain AS1 not only relied on its unique C and N metabolic activities, but also recruited microorganisms with diverse functions to jointly remove pollutants in wastewater, which could be a common bioaugmentation mechanism in open reactors. This study proves the promising application prospect of strain AS1 in the treatment of high-strength piggery wastewater and shows great importance for guiding bioaugmentation application of functional strains in practical wastewater treatment systems.
Collapse
Affiliation(s)
- Chengcheng Hu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianyun Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Zhang
- Shandong Jinniu Group Co., Ltd., Jinan, 250001, China
| | - Hongzhi Wang
- Xinjiang Herun Water Industry Co., Ltd., Urumqi, 830000, China
| | - Liang Dong
- Xinjiang Herun Water Industry Co., Ltd., Urumqi, 830000, China
| | - Shaojie Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Esimbekova EN, Kirillova MA, Kratasyuk VA. Immobilization of Firefly Bioluminescent System: Development and Application of Reagents. BIOSENSORS 2022; 13:47. [PMID: 36671882 PMCID: PMC9855680 DOI: 10.3390/bios13010047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The present study describes the method of preparing reagents containing firefly luciferase (FLuc) and its substrate, D-luciferin, immobilized into gelatin gel separately or together. The addition of stabilizers dithiothreitol (DTT) and bovine serum albumin (BSA) to the reagent is a factor in achieving higher activity of reagents and their stability during storage. The use of immobilized reagents substantially simplifies the procedure of assay for microbial contamination. The mechanism of action of the reagents is based on the relationship between the intensity of the bioluminescent signal and the level of ATP contained in the solution of the lysed bacterial cells. The highest sensitivity to ATP is achieved by using immobilized FLuc or reagents containing separately immobilized FLuc and D-luciferase. The limit of detection of ATP by the developed reagents is 0.3 pM, which corresponds to 20,000 cells·mL-1. The linear response range is between 0.3 pM and 3 nM ATP. The multicomponent reagent, containing co-immobilized FLuc and D-luciferin, shows insignificantly lower sensitivity to ATP-0.6 pM. Moreover, the proposed method of producing an immobilized firefly luciferin-luciferase system holds considerable promise for the development of bioluminescent biosensors intended for the analysis of microbial contamination.
Collapse
Affiliation(s)
- Elena N. Esimbekova
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Avenue, 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Maria A. Kirillova
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Avenue, 660041 Krasnoyarsk, Russia
| | - Valentina A. Kratasyuk
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Avenue, 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| |
Collapse
|
13
|
Jimenez V, Miranda K, Ingrid A. The old and the new about the contractile vacuole of Trypanosoma cruzi. J Eukaryot Microbiol 2022; 69:e12939. [PMID: 35916682 PMCID: PMC11178379 DOI: 10.1111/jeu.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
Osmoregulation is a conserved cellular process required for the survival of all organisms. In protists, the need for robust compensatory mechanisms that can maintain cell volume and tonicity within physiological range is even more relevant, as their life cycles are often completed in different environments. Trypanosoma cruzi, the protozoan pathogen responsible for Chagas disease, is transmitted by an insect vector to multiple types of mammalian hosts. The contractile vacuole complex (CVC) is an organelle that senses and compensates osmotic changes in the parasites, ensuring their survival upon ionic and osmotic challenges. Recent work shows that the contractile vacuole is also a key component of the secretory and endocytic pathways, regulating the selective targeting of surface proteins during differentiation. Here we summarize our current knowledge of the mechanisms involved in the osmoregulatory processes that take place in the vacuole, and we explore the new and exciting functions of this organelle in cell trafficking and signaling.
Collapse
Affiliation(s)
- Veronica Jimenez
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Kildare Miranda
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Augusto Ingrid
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Harpke M, Pietschmann S, Ueberschaar N, Krüger T, Kniemeyer O, Brakhage AA, Nietzsche S, Kothe E. Salt and Metal Tolerance Involves Formation of Guttation Droplets in Species of the Aspergillus versicolor Complex. Genes (Basel) 2022; 13:genes13091631. [PMID: 36140799 PMCID: PMC9498632 DOI: 10.3390/genes13091631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Three strains of the Aspergillus versicolor complex were isolated from a salty marsh at a former uranium mining site in Thuringia, Germany. The strains from a metal-rich environment were not only highly salt tolerant (up to 20% NaCl), but at the same time could sustain elevated Cs and Sr (both up to 100 mM) concentrations as well as other (heavy) metals present in the environment. During growth experiments when screening for differential cell morphology, the occurrence of guttation droplets was observed, specifically when elevated Sr concentrations of 25 mM were present in the media. To analyze the potential of metal tolerance being promoted by these excretions, proteomics and metabolomics of guttation droplets were performed. Indeed, proteins involved in up-regulated metabolic activities as well as in stress responses were identified. The metabolome verified the presence of amino sugars, glucose homeostasis-regulating substances, abscisic acid and bioactive alkaloids, flavones and quinones.
Collapse
Affiliation(s)
- Marie Harpke
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Sebastian Pietschmann
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Nico Ueberschaar
- Mass Spectrometry Platform, Friedrich Schiller University Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Adolf-Reichwein-St. 23, 07745 Jena, Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Adolf-Reichwein-St. 23, 07745 Jena, Germany
| | - Axel A. Brakhage
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Adolf-Reichwein-St. 23, 07745 Jena, Germany
| | - Sandor Nietzsche
- Elektronenmikroskopisches Zentrum, Universitätsklinikum Jena, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
15
|
Chen P, Zhang F, Zhang L, Liu H, Zhang Q, Xing Z, Zhao T. Characterization of a novel salt-tolerant strain Sphingopyxis sp. CY-10 capable of heterotrophic nitrification and aerobic denitrification. BIORESOURCE TECHNOLOGY 2022; 358:127353. [PMID: 35605774 DOI: 10.1016/j.biortech.2022.127353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
A novel heterotrophic nitrification and aerobic denitrification (HN-AD) strain CY-10 was isolated and identified as Sphingopyxis sp. When ammonium, nitrate or nitrite was used as the sole nitrogen source (300 mg/L), the maximum nitrogen removal efficiency of strain CY-10 were 100%, 91.1% and 68.5%, respectively. The optimal salinity for ammonia nitrogen removal by strain CY-10 was in the range of 0-5%. At the salinity of 5%, a maximum nitrogen removal rate of 6.25 mg/(L·h) was realized. Metabonomics data showed that the metabolic levels of sucrose and D-tagatose increased significantly at 5% salinity condition, enabling the strain to regulate osmotic pressure and survive in high-salt environments. Functional genes were successfully amplified by quantitative PCR, and HN-AD pathway of strain CY-10 followed NH4+-N → NH2OH → NO2--N → NO → N2O → N2. These findings show that strain CY-10 has great potential in nitrogen removal treatment of saline wastewater.
Collapse
Affiliation(s)
- Peipei Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Fupan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lijie Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hao Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
16
|
Srivastava AK, Srivastava R, Sharma A, Bharati AP, Yadav J, Singh AK, Tiwari PK, Srivatava AK, Chakdar H, Kashyap PL, Saxena AK. Transcriptome Analysis to Understand Salt Stress Regulation Mechanism of Chromohalobacter salexigens ANJ207. Front Microbiol 2022; 13:909276. [PMID: 35847097 PMCID: PMC9279137 DOI: 10.3389/fmicb.2022.909276] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Soil salinity is one of the major global issues affecting soil quality and agricultural productivity. The plant growth-promoting halophilic bacteria that can thrive in regions of high salt (NaCl) concentration have the ability to promote the growth of plants in salty environments. In this study, attempts have been made to understand the salinity adaptation of plant growth-promoting moderately halophilic bacteria Chromohalobacter salexigens ANJ207 at the genetic level through transcriptome analysis. In order to identify the stress-responsive genes, the transcriptome sequencing of C. salexigens ANJ207 under different salt concentrations was carried out. Among the 8,936 transcripts obtained, 93 were upregulated while 1,149 were downregulated when the NaCl concentration was increased from 5 to 10%. At 10% NaCl concentration, genes coding for lactate dehydrogenase, catalase, and OsmC-like protein were upregulated. On the other hand, when salinity was increased from 10 to 25%, 1,954 genes were upregulated, while 1,287 were downregulated. At 25% NaCl, genes coding for PNPase, potassium transporter, aconitase, excinuclease subunit ABC, and transposase were found to be upregulated. The quantitative real-time PCR analysis showed an increase in the transcript of genes related to the biosynthesis of glycine betaine coline genes (gbcA, gbcB, and L-pro) and in the transcript of genes related to the uptake of glycine betaine (OpuAC, OpuAA, and OpuAB). The transcription of the genes involved in the biosynthesis of L-hydroxyproline (proD and proS) and one stress response proteolysis gene for periplasmic membrane stress sensing (serP) were also found to be increased. The presence of genes for various compatible solutes and their increase in expression at the high salt concentration indicated that a coordinated contribution by various compatible solutes might be responsible for salinity adaptation in ANJ207. The investigation provides new insights into the functional roles of various genes involved in salt stress tolerance and oxidative stress tolerance produced by high salt concentration in ANJ207 and further support the notion regarding the utilization of bacterium and their gene(s) in ameliorating salinity problem in agriculture.
Collapse
Affiliation(s)
- Alok Kumar Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Ruchi Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Anjney Sharma
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Akhilendra Pratap Bharati
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India.,Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Jagriti Yadav
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Alok Kumar Singh
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Praveen Kumar Tiwari
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Anchal Kumar Srivatava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Hillol Chakdar
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Prem Lal Kashyap
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Kumar Saxena
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| |
Collapse
|
17
|
Tejaswi Naidu K, Prakash Prabhu N. An able-cryoprotectant and a moderate denaturant: distinctive character of ethylene glycol on protein stability. J Biomol Struct Dyn 2022; 40:820-832. [DOI: 10.1080/07391102.2020.1819422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- K. Tejaswi Naidu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - N. Prakash Prabhu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
18
|
Biomineralization by Extremely Halophilic and Metal-Tolerant Community Members from a Sulfate-Dominated Metal-Rich Environment. Microorganisms 2021; 10:microorganisms10010079. [PMID: 35056528 PMCID: PMC8780871 DOI: 10.3390/microorganisms10010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
The adaptation to adverse environmental conditions can lead to adapted microbial communities that may be screened for mechanisms involved in halophily and, in this case, metal tolerance. At a former uranium mining and milling site in Seelingstädt, Germany, microbial communities from surface waters and sediment soils were screened for isolates surviving high salt and metal concentrations. The high salt contents consisted mainly of chloride and sulfate, both in soil and riverbed sediment samples, accompanied by high metal loads with presence of cesium and strontium. The community structure was dominated by Chloroflexi, Proteobacteria and Acidobacteriota, while only at the highest contaminations did Firmicutes and Desulfobacterota reach appreciable percentages in the DNA-based community analysis. The extreme conditions providing high stress were mirrored by low numbers of cultivable strains. Thirty-four extremely halotolerant bacteria (23 Bacillus sp. and another 4 Bacillales, 5 Actinobacteria, and 1 Gamma-Proteobacterium) surviving 25 to 100 mM SrCl2, CsCl, and Cs2SO4 were further analyzed. Mineral formation of strontium- or cesium-struvite could be observed, reducing bioavailability and thereby constituting the dominant metal and salt resistance strategy in this environment.
Collapse
|
19
|
Rosas-Rodríguez JA, Valenzuela-Soto EM. The glycine betaine role in neurodegenerative, cardiovascular, hepatic, and renal diseases: Insights into disease and dysfunction networks. Life Sci 2021; 285:119943. [PMID: 34516992 DOI: 10.1016/j.lfs.2021.119943] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022]
Abstract
Glycine betaine (N, N, N-trimethyl amine) is an osmolyte accumulated in cells that is key for cell volume and turgor regulation, is the principal methyl donor in the methionine cycle and is a DNA and proteins stabilizer. In humans, glycine betaine is synthesized from choline and can be obtained from some foods. Glycine betaine (GB) roles are illustrated in chemical, metabolic, agriculture, and clinical medical studies due to its chemical and physiological properties. Several studies have extensively described GB role and accumulation related to specific pathologies, focusing mainly on analyzing its positive and negative role in these pathologies. However, it is necessary to explain the relationship between glycine betaine and different pathologies concerning its role as an antioxidant, ability to methylate DNA, interact with transcription factors and cell receptors, and participate in the control of homocysteine concentration in liver, kidney and brain. This review summarizes the most important findings and integrates GB role in neurodegenerative, cardiovascular, hepatic, and renal diseases. Furthermore, we discuss GB impact on other dysfunctions as inflammation, oxidative stress, and glucose metabolism, to understand their cross-talks and provide reliable data to establish a base for further investigations.
Collapse
Affiliation(s)
- Jesús A Rosas-Rodríguez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Navojoa, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Sonora, Mexico.
| |
Collapse
|
20
|
Cuevas-Velazquez CL, Vellosillo T, Guadalupe K, Schmidt HB, Yu F, Moses D, Brophy JAN, Cosio-Acosta D, Das A, Wang L, Jones AM, Covarrubias AA, Sukenik S, Dinneny JR. Intrinsically disordered protein biosensor tracks the physical-chemical effects of osmotic stress on cells. Nat Commun 2021; 12:5438. [PMID: 34521831 DOI: 10.1101/2021.02.17.431712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/27/2021] [Indexed: 05/17/2023] Open
Abstract
Cell homeostasis is perturbed when dramatic shifts in the external environment cause the physical-chemical properties inside the cell to change. Experimental approaches for dynamically monitoring these intracellular effects are currently lacking. Here, we leverage the environmental sensitivity and structural plasticity of intrinsically disordered protein regions (IDRs) to develop a FRET biosensor capable of monitoring rapid intracellular changes caused by osmotic stress. The biosensor, named SED1, utilizes the Arabidopsis intrinsically disordered AtLEA4-5 protein expressed in plants under water deficit. Computational modeling and in vitro studies reveal that SED1 is highly sensitive to macromolecular crowding. SED1 exhibits large and near-linear osmolarity-dependent changes in FRET inside living bacteria, yeast, plant, and human cells, demonstrating the broad utility of this tool for studying water-associated stress. This study demonstrates the remarkable ability of IDRs to sense the cellular environment across the tree of life and provides a blueprint for their use as environmentally-responsive molecular tools.
Collapse
Affiliation(s)
- Cesar L Cuevas-Velazquez
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico.
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | - Tamara Vellosillo
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Karina Guadalupe
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA, 95343, USA
- Chemistry and Chemical Biology Program, University of California, Merced, CA, 95343, USA
| | - Hermann Broder Schmidt
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Feng Yu
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA, 95343, USA
- Quantitative Systems Biology Program, University of California, Merced, CA, 95343, USA
| | - David Moses
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA, 95343, USA
- Chemistry and Chemical Biology Program, University of California, Merced, CA, 95343, USA
| | - Jennifer A N Brophy
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Dante Cosio-Acosta
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Alakananda Das
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Lingxin Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | | | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico.
| | - Shahar Sukenik
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA, 95343, USA.
- Chemistry and Chemical Biology Program, University of California, Merced, CA, 95343, USA.
- Quantitative Systems Biology Program, University of California, Merced, CA, 95343, USA.
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
| |
Collapse
|
21
|
Cuevas-Velazquez CL, Vellosillo T, Guadalupe K, Schmidt HB, Yu F, Moses D, Brophy JAN, Cosio-Acosta D, Das A, Wang L, Jones AM, Covarrubias AA, Sukenik S, Dinneny JR. Intrinsically disordered protein biosensor tracks the physical-chemical effects of osmotic stress on cells. Nat Commun 2021; 12:5438. [PMID: 34521831 PMCID: PMC8440526 DOI: 10.1038/s41467-021-25736-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cell homeostasis is perturbed when dramatic shifts in the external environment cause the physical-chemical properties inside the cell to change. Experimental approaches for dynamically monitoring these intracellular effects are currently lacking. Here, we leverage the environmental sensitivity and structural plasticity of intrinsically disordered protein regions (IDRs) to develop a FRET biosensor capable of monitoring rapid intracellular changes caused by osmotic stress. The biosensor, named SED1, utilizes the Arabidopsis intrinsically disordered AtLEA4-5 protein expressed in plants under water deficit. Computational modeling and in vitro studies reveal that SED1 is highly sensitive to macromolecular crowding. SED1 exhibits large and near-linear osmolarity-dependent changes in FRET inside living bacteria, yeast, plant, and human cells, demonstrating the broad utility of this tool for studying water-associated stress. This study demonstrates the remarkable ability of IDRs to sense the cellular environment across the tree of life and provides a blueprint for their use as environmentally-responsive molecular tools.
Collapse
Affiliation(s)
- Cesar L Cuevas-Velazquez
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico.
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | - Tamara Vellosillo
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Karina Guadalupe
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA, 95343, USA
- Chemistry and Chemical Biology Program, University of California, Merced, CA, 95343, USA
| | - Hermann Broder Schmidt
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Feng Yu
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA, 95343, USA
- Quantitative Systems Biology Program, University of California, Merced, CA, 95343, USA
| | - David Moses
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA, 95343, USA
- Chemistry and Chemical Biology Program, University of California, Merced, CA, 95343, USA
| | - Jennifer A N Brophy
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Dante Cosio-Acosta
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Alakananda Das
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Lingxin Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | | | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico.
| | - Shahar Sukenik
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA, 95343, USA.
- Chemistry and Chemical Biology Program, University of California, Merced, CA, 95343, USA.
- Quantitative Systems Biology Program, University of California, Merced, CA, 95343, USA.
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
| |
Collapse
|
22
|
Sharma GS, Krishna S, Khan S, Dar TA, Khan KA, Singh LR. Protecting thermodynamic stability of protein: The basic paradigm against stress and unfolded protein response by osmolytes. Int J Biol Macromol 2021; 177:229-240. [PMID: 33607142 DOI: 10.1016/j.ijbiomac.2021.02.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/10/2023]
Abstract
Organic osmolytes are known to play important role in stress protection by stabilizing macromolecules and suppressing harmful effects on functional activity. There is existence of several reports in the literature regarding their effects on structural, functional and thermodynamic aspects of many enzymes and the interaction parameters with proteins have been explored. Osmolytes are compatible with enzyme function and therefore, can be accumulated up to several millimolar concentrations. From the thermodynamic point of view, osmolyte raises mid-point of thermal denaturation (Tm) of proteins while having no significant effect on ΔGD° (free energy change at physiological condition). Unfavorable interaction with the peptide backbone due to preferential hydration is the major driving force for folding of unfolded polypeptide in presence of osmolyte. However, the thermodynamic basis of stress protection and origin of compatibility paradigm has been a debatable issue. In the present manuscript, we attempt to elaborate the origin of stress protection and compatibility paradigm of osmolytes based on the effect on thermodynamic stability of proteins. We also infer that protective effects of osmolytes on ΔGD° (of proteins) could also indicate its potential involvement in unfolded protein response and overall stress biology on macromolecular level.
Collapse
Affiliation(s)
- Gurumayum Suraj Sharma
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Snigdha Krishna
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sheeza Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, J&K, India
| | - Khurshid A Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | | |
Collapse
|
23
|
Laroute V, Mazzoli R, Loubière P, Pessione E, Cocaign-Bousquet M. Environmental Conditions Affecting GABA Production in Lactococcus lactis NCDO 2118. Microorganisms 2021; 9:microorganisms9010122. [PMID: 33430203 PMCID: PMC7825684 DOI: 10.3390/microorganisms9010122] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/19/2023] Open
Abstract
GABA (γ-aminobutyric acid) production has been widely described as an adaptive response to abiotic stress, allowing bacteria to survive in harsh environments. This work aimed to clarify and understand the relationship between GABA production and bacterial growth conditions, with particular reference to osmolarity. For this purpose, Lactococcus lactis NCDO 2118, a GABA-producing strain, was grown in glucose-supplemented chemically defined medium containing 34 mM L-glutamic acid, and different concentrations of salts (chloride, sulfate or phosphate ions) or polyols (sorbitol, glycerol). Unexpectedly, our data demonstrated that GABA production was not directly related to osmolarity. Chloride ions were the most significant factor influencing GABA yield in response to acidic stress while sulfate ions did not enhance GABA production. We demonstrated that the addition of chloride ions increased the glutamic acid decarboxylase (GAD) synthesis and the expression of the gadBC genes. Finally, under fed-batch conditions in a complex medium supplemented with 0.3 M NaCl and after a pH shift to 4.6, L. lactis NCDO 2118 was able to produce up to 413 mM GABA from 441 mM L-glutamic acid after only 56 h of culture, revealing the potential of L. lactis strains for intensive production of this bioactive molecule.
Collapse
Affiliation(s)
- Valérie Laroute
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France;
- Correspondence: (V.L.); (M.C.-B.)
| | - Roberto Mazzoli
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.M.); (E.P.)
| | - Pascal Loubière
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France;
| | - Enrica Pessione
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.M.); (E.P.)
| | - Muriel Cocaign-Bousquet
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France;
- Correspondence: (V.L.); (M.C.-B.)
| |
Collapse
|
24
|
Cruz-Valencia R, Arvizu-Flores AA, Rosas-Rodríguez JA, Valenzuela-Soto EM. Effect of the drug cyclophosphamide on the activity of porcine kidney betaine aldehyde dehydrogenase. Mol Cell Biochem 2021; 476:1467-1475. [PMID: 33389495 DOI: 10.1007/s11010-020-04010-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/28/2020] [Indexed: 01/17/2023]
Abstract
The enzyme betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) catalyzes the synthesis of glycine betaine (GB), an osmolyte and osmoprotectant. Also, it participates in several metabolic pathways in humans. All BADHs known have cysteine in the active site involved in the aldehyde binding, whereas the porcine kidney enzyme (pkBADH) also has a neighborhood cysteine, both sensitive to oxidation. The antineoplastic and immuno-suppressant pre-drug cyclophosphamide (CTX), and its bioactivation products, have two highly oxidating chlorine atoms. This work aimed to analyze the effect of CTX in the activity of porcine kidney betaine aldehyde dehydrogenase. PkBADH was incubated with varying CTX concentration (0 to 2.0 mM) at 25 °C and lost 50 % of its activity with 2.0 mM CTX. The presence of the coenzyme NAD+ (0.5 mM) decreased 95% the activity in 2.0 mM CTX. The substrate betaine aldehyde (0.05 and 0.4 mM, and the products NADH (0.1-0.5 mM) and GB (1 and 10 mM) did not have an effect on the enzyme inactivation by CTX. The reducing agents, dithiothreitol and β-mercaptoethanol, reverted the pkBADH inactivation, but reduced glutathione (GSH) was unable to restore the enzyme activity. Molecular docking showed that CTX could enter at the enzyme active site, where its chlorine atoms may interact with the catalytic and the neighboring cysteines. The results obtained show that CTX inactivates the pkBADH due to oxidation of the catalytic cysteine or because it oxidizes catalytic and neighborhood cysteine, forming a disulfide bridge with a concomitant decrease in the activity of the enzyme.
Collapse
Affiliation(s)
- Ramses Cruz-Valencia
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, 83304, Sonora, México
| | - Aldo A Arvizu-Flores
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, 83000, Sonora, México
| | - Jesús A Rosas-Rodríguez
- Departamento de Ciencias, Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Navojoa, 85880, Sonora, México
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, 83304, Sonora, México.
| |
Collapse
|
25
|
Abstract
Dehydration of cells by acute hyperosmotic stress has profound effects upon cell structure and function. Interphase chromatin and mitotic chromosomes collapse ("congelation"). HL-60/S4 cells remain ~100% viable for, at least, 1 hour, exhibiting shrinkage to ~2/3 their original volume, when placed in 300mM sucrose in tissue culture medium. Fixed cells were imaged by immunostaining confocal and STED microscopy. At a "global" structural level (μm), mitotic chromosomes congeal into a residual gel with apparent (phase) separations of Ki67, CTCF, SMC2, RAD21, H1 histones and HMG proteins. At an "intermediate" level (sub-μm), radial distribution analysis of STED images revealed a most probable peak DNA density separation of ~0.16 μm, essentially unchanged by hyperosmotic stress. At a "local" structural level (~1-2 nm), in vivo crosslinking revealed essentially unchanged crosslinked products between H1, HMG and inner histones. Hyperosmotic cellular stress is discussed in terms of concepts of mitotic chromosome structure and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Ada L Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, USA
| | - Travis J Gould
- Department of Physics & Astronomy, Bates College, Lewiston, ME,USA
| | - Logan Boyd
- Department of Physics & Astronomy, Bates College, Lewiston, ME,USA
| | - Bettina Sarg
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Donald E Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, USA
| |
Collapse
|
26
|
Ye XY, Qiu XM, Sun YY, Li ZG. Interplay between hydrogen sulfide and methylglyoxal initiates thermotolerance in maize seedlings by modulating reactive oxidative species and osmolyte metabolism. PROTOPLASMA 2020; 257:1415-1432. [PMID: 32474849 DOI: 10.1007/s00709-020-01516-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/23/2020] [Indexed: 05/12/2023]
Abstract
Hydrogen sulfide (H2S) and methylglyoxal (MG) were supposed to be novel signaling molecules in plants. However, whether interplay between H2S and MG can initiate thermotolerance in maize seedlings and in relation to metabolism of reactive oxygen species (ROS) and osmolytes is little known. In this study, watering with MG and NaHS (H2S donor) alone or in combination elevated survival and tissue vigor of maize seedlings under heat stress and coped with an increase in the biomembrane injury (as indicated in membrane lipid peroxidation and electrolyte leakage). The above-mentioned effects were separately weakened by MG scavengers (N-acetyl cysteine: NAC; aminoguanidine: AG) and H2S inhibitor (DL-propargylglycine, PAG) and scavenger (hypotaurine, HT). These suggested that the interplay between H2S and MG initiated the thermotolerance in maize seedlings. The further data indicated that, under non-heat stress and heat stress conditions, MG and NaHS alone or in combination modulated ROS metabolism by regulating the activities of antioxidant enzymes (catalase, ascorbate peroxidase, guaiacol peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase) and the contents of non-enzymatic antioxidants (ascorbic acid, glutathione, flavonoids, and carotenoids) in maize seedlings. In addition, MG and NaHS alone or in combination also separately modulated the metabolism of osmolytes (proline, trehalose, glycine betaine, and total soluble sugar), H2S (L-cysteine desulfhydrase and O-acetylserine (thione) lyase), and MG (glyoxalase I, glyoxalase II, and MG reductase). These physiological effects also were separately impaired by NAC, AG, PAG, and HT. The current data illustrated that the interplay between H2S and MG initiated the thermotolerance in maize seedlings by modulating ROS, osmolyte, H2S, and MG metabolism.
Collapse
Affiliation(s)
- Xin-Yu Ye
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, 650092, Yunnan Province, People's Republic of China
| | - Xue-Mei Qiu
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, 650092, Yunnan Province, People's Republic of China
| | - Yu-Ying Sun
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, 650092, Yunnan Province, People's Republic of China
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China.
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China.
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, 650092, Yunnan Province, People's Republic of China.
| |
Collapse
|
27
|
Wang J, Zhou J, Wang Y, Wen Y, He L, He Q. Efficient nitrogen removal in a modified sequencing batch biofilm reactor treating hypersaline mustard tuber wastewater: The potential multiple pathways and key microorganisms. WATER RESEARCH 2020; 177:115734. [PMID: 32278165 DOI: 10.1016/j.watres.2020.115734] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
This study first compared the efficiencies and mechanisms of the nitrogen removal in an aerobic sequencing batch biofilm reactor (SBBR) treating mustard tuber wastewater from high salt (30 gNaCl L-1) to ultra-high salt (70 gNaCl L-1). High-efficiency maintaining of nitrification was observed. Despite of high BOD5/TN (5.5-9), distinct denitrification decline for lack of carbon in response to salt stress was observed. Considering the high concentrations of sulfate in mustard wastewater, and the existence of sulfur-reducing bacteria (SRB) and sulfur-driven denitrifiers (DNSOB) in the aerobic SBBR, sulfate reduction-sulfur autotrophic denitrification process is a feasible idea to solve this problem. By modified to intermittent aeration mode, sulfur cycle was developed in SBBR. The average removal efficiency of COD, TN reached 85.20% and 98.56%, respectively. By batch activity tests and microbial community analysis, ammonia oxidation activity by ammonia-oxidizing archaea (AOA) was observed, and high abundance of AOA (Arch-amoA/AOB amoA: 2.38 × 102) together with ammonia-oxidizing bacteria (AOB) of Nitrosomonas_halophila (1.23%) ensured the high efficient nitrification. After running mode change, specific sulfur-driven NO3--N reduction rate increased and the abundance of dominant SRB and DNSOB rose from 3.95% to 10.79% and 2.22% to 9.95%, respectively. The sulfate-reducing process during anaerobic phase provided electron donors for subsequent autotrophic denitrification, making outlet NO3--N concentrations reduced from 18.26 mg L-1 to 1.93 mg L-1. The sulfur activity batch test showed that 73.80%∼80.92% of sulfate were circulation utilized, and rest of them conversed to the gaseous H2S and S0. In addition to DNSOB, anoxic denitrifier of Halomonas (22.91%), aerobic denitrifier of Phaeodactylibacter (2.75%) and endogenous denitrifier of Defluviicoccus (3.18%) were also dominant heterotrophic bacteria (all halophilic or halotolerant) in the intermittent aeration SBBR. Batch activity tests and periodic laws have also verified the existence of corresponding denitrification pathways. This study shows that the enrichment of special halophilic functional bacteria with multiple nitrogen removal pathways is a good idea for the efficient treatment of high-concentrated hypersaline industrial wastewater.
Collapse
Affiliation(s)
- Jiale Wang
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yuhui Wen
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
28
|
Orfanoudaki M, Hartmann A, Miladinovic H, Nguyen Ngoc H, Karsten U, Ganzera M. Bostrychines A-F, Six Novel Mycosporine-Like Amino-Acids and a Novel Betaine from the Red Alga Bostrychia scorpioides. Mar Drugs 2019; 17:md17060356. [PMID: 31207903 PMCID: PMC6627687 DOI: 10.3390/md17060356] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Various red algae have repeatedly been reported to produce a variety of UV-absorbing mycosporine-like amino acids (MAAs), compounds that are well-known as natural sun-screens, as well as a plethora of betaines, metabolites which contribute to the osmotic balance under salt stress. Among other Rhodophyta, Bostrychia scorpioides, which is thriving as epiphyte on salt marsh plants in Europe and hence experiences extreme environmental conditions such as desiccation, UV-stress and osmotic stress, has barely been investigated for its secondary metabolites. In the present study, seven mycosporine like-amino acids and two betaines were isolated from Bostrychia scorpioides using various chromatographic techniques. Their structures were confirmed by Nuclear Magnetic Resonance (NMR) spectroscopy and High Resolution Mass Spectrometry (HRMS). Six MAAs and one betaine were chemically characterized as new natural products.
Collapse
Affiliation(s)
- Maria Orfanoudaki
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Anja Hartmann
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Helena Miladinovic
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Hieu Nguyen Ngoc
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology & Phycology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany.
| | - Markus Ganzera
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|