1
|
Brimmer S, Ji P, Birla AK, Keswani SG, Caldarone CA, Birla RK. Recent advances in biological pumps as a building block for bioartificial hearts. Front Bioeng Biotechnol 2023; 11:1061622. [PMID: 36741765 PMCID: PMC9895798 DOI: 10.3389/fbioe.2023.1061622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
The field of biological pumps is a subset of cardiac tissue engineering and focused on the development of tubular grafts that are designed generate intraluminal pressure. In the simplest embodiment, biological pumps are tubular grafts with contractile cardiomyocytes on the external surface. The rationale for biological pumps is a transition from planar 3D cardiac patches to functional biological pumps, on the way to complete bioartificial hearts. Biological pumps also have applications as a standalone device, for example, to support the Fontan circulation in pediatric patients. In recent years, there has been a lot of progress in the field of biological pumps, with innovative fabrication technologies. Examples include the use of cell sheet engineering, self-organized heart muscle, bioprinting and in vivo bio chambers for vascularization. Several materials have been tested for biological pumps and included resected aortic segments from rodents, type I collagen, and fibrin hydrogel, to name a few. Multiple bioreactors have been tested to condition biological pumps and replicate the complex in vivo environment during controlled in vitro culture. The purpose of this article is to provide an overview of the field of the biological pumps, outlining progress in the field over the past several years. In particular, different fabrication methods, biomaterial platforms for tubular grafts and examples of bioreactors will be presented. In addition, we present an overview of some of the challenges that need to be overcome for the field of biological pumps to move forward.
Collapse
Affiliation(s)
- Sunita Brimmer
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Pengfei Ji
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Aditya K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Christopher A. Caldarone
- Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Ravi K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States,*Correspondence: Ravi K. Birla,
| |
Collapse
|
2
|
Lindner M, Laporte A, Elomaa L, Lee-Thedieck C, Olmer R, Weinhart M. Flow-induced glycocalyx formation and cell alignment of HUVECs compared to iPSC-derived ECs for tissue engineering applications. Front Cell Dev Biol 2022; 10:953062. [PMID: 36133919 PMCID: PMC9483120 DOI: 10.3389/fcell.2022.953062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
The relevance of cellular in vitro models highly depends on their ability to mimic the physiological environment of the respective tissue or cell niche. Static culture conditions are often unsuitable, especially for endothelial models, since they completely neglect the physiological surface shear stress and corresponding reactions of endothelial cells (ECs) such as alignment in the direction of flow. Furthermore, formation and maturation of the glycocalyx, the essential polysaccharide layer covering all endothelial surfaces and regulating diverse processes, is highly dependent on applied fluid flow. This fragile but utterly important macromolecular layer is hard to analyze, its importance is often underestimated and accordingly neglected in many endothelial models. Therefore, we exposed human umbilical vein ECs (HUVECs) and human induced pluripotent stem cell-derived ECs (iPSC-ECs) as two relevant EC models in a side-by-side comparison to static and physiological dynamic (6.6 dyn cm-2) culture conditions. Both cell types demonstrated an elongation and alignment along the flow direction, some distinct changes in glycocalyx composition on the surface regarding the main glycosaminoglycan components heparan sulfate, chondroitin sulfate or hyaluronic acid as well as an increased and thereby improved glycocalyx thickness and functionality when cultured under homogeneous fluid flow. Thus, we were able to demonstrate the maturity of the employed iPSC-EC model regarding its ability to sense fluid flow along with the general importance of physiological shear stress for glycocalyx formation. Additionally, we investigated EC monolayer integrity with and without application of surface shear stress, revealing a comparable existence of tight junctions for all conditions and a reorganization of the cytoskeleton upon dynamic culture leading to an increased formation of focal adhesions. We then fabricated cell sheets of EC monolayers after static and dynamic culture via non-enzymatic detachment using thermoresponsive polymer coatings as culture substrates. In a first proof-of-concept we were able to transfer an aligned iPSC-EC sheet to a 3D-printed scaffold thereby making a step in the direction of vascular modelling. We envision these results to be a valuable contribution to improvements of in vitro endothelial models and vascular engineering in the future.
Collapse
Affiliation(s)
- Marcus Lindner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anna Laporte
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz Universität Hannover, Hannover, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- REBIRTH–Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
3
|
Jiang Z, He J, Wang X, Zhu D, Li N, Ren L, Yang G. Nanomaterial-based cell sheet technology for regenerative medicine and tissue engineering. Colloids Surf B Biointerfaces 2022; 217:112661. [PMID: 35777168 DOI: 10.1016/j.colsurfb.2022.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Nanomaterial-based cell sheet technology has been reported to be an effective method in regenerative medicine and tissue engineering. Here, we summarized several types of nanomaterials used to harvest cell sheets. Currently, the technology is divided into four categories according to the mechanisms: light-induced cell sheet technology, thermo-responsive cell sheet technology, magnetic-controlled cell sheet technology, and reactive oxygen species (ROS)-induced cell sheet technology. Furthermore, some studies have been conducted to show that nanomaterial-based cell sheets produce satisfying outcomes in the regeneration of bone, skeletal muscle, cardiac tissue, and tendon, as well as angiogenesis and osseointegration. Nevertheless, some shortcomings still exist, such as comprehensive preparation, unclear safety, and cell quality. Thus, future studies should aim to produce more types of nanomaterials to solve this problem.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
4
|
Krishnan A, Wang H, MacArthur JW. Applications of Tissue Decellularization Techniques in Ventricular Myocardial Biofabrication. Front Bioeng Biotechnol 2022; 10:802283. [PMID: 35265593 PMCID: PMC8899393 DOI: 10.3389/fbioe.2022.802283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic heart disease is the leading cause of death around the world, and though the advent of coronary revascularization has revolutionized its treatment, many patients who sustain ischemic injury to the heart will go on to develop heart failure. Biofabrication of ventricular myocardium for replacement of irreversibly damaged ischemic myocardium is sought after as a potential therapy for ischemic heart failure, though challenges in reliably producing this biomaterial have limited its clinical application. One method that shows promise for generation of functional myocardium is the use of tissue decellularization to serve as a scaffold for biofabrication. This review outlines the methods, materials, challenges, and prospects of tissue decellularization techniques for ventricular myocardium biofabrication. Decellularization aims to preserve the architecture and composition of the extracellular matrix of the tissue it is applied to, allowing for the subsequent implantation of stem cells of the desired cell type. Decellularization can be achieved with multiple reagents, most of which have detergent properties. A variety of cell types can be implanted in the resulting scaffold, including cardiac progenitor cells, and embryonic or induced pluripotent stem cells to generate a range of tissue, from patches to beating myocardium. The future of this biofabrication method will likely emphasize patient specific tissue engineering to generate complex 3-dimensional constructs that can replace dysfunctional cardiac structures.
Collapse
Affiliation(s)
- Aravind Krishnan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - John Ward MacArthur
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
5
|
Sekine H, Okano T. Tubular Cardiac Tissue Bioengineered from Multi-Layered Cell Sheets for Use in the Treatment of Heart Failure. Methods Mol Biol 2022; 2485:227-242. [PMID: 35618909 DOI: 10.1007/978-1-0716-2261-2_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter describes a method for creating tubular cardiac tissue in vitro. Thick cardiac tissue in a tubular configuration is prepared by stacking cell sheets stepwise on the inner wall of a segment of small intestine, which functions as a blood vessel bed. The capillaries of the small intestinal segment are fed by an artery and drained by a vein. Therefore, perfusion culture of the cardiac tissue is achieved by continuously infusing culture medium into the arterial vessel that supplies the segment of small intestine. The aim of this technique is to fabricate tubular cardiac tissue that can function as a pump by sequentially implanting and culturing cardiac cell sheets on the inner wall of a perfused segment of small intestine.
Collapse
Affiliation(s)
- Hidekazu Sekine
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Center for Advanced Medical and Life Science, Tokyo Women's Medical University, Tokyo, Japan
- Cell Sheet Tissue Engineering Center (CSTEC), School of Medicine and College of Pharmacy, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.
- Center for Advanced Medical and Life Science, Tokyo Women's Medical University, Tokyo, Japan.
- Cell Sheet Tissue Engineering Center (CSTEC), School of Medicine and College of Pharmacy, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast. NPJ Regen Med 2021; 6:18. [PMID: 33782415 PMCID: PMC8007731 DOI: 10.1038/s41536-021-00133-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/24/2021] [Indexed: 02/01/2023] Open
Abstract
Cell-based scaffold-free therapies seek to develop in vitro organotypic three-dimensional (3D) tissue-like surrogates, capitalising upon the inherent capacity of cells to create tissues with efficiency and sophistication that is still unparalleled by human-made devices. Although automation systems have been realised and (some) success stories have been witnessed over the years in clinical and commercial arenas, in vitro organogenesis is far from becoming a standard way of care. This limited technology transfer is largely attributed to scalability-associated costs, considering that the development of a borderline 3D implantable device requires very high number of functional cells and prolonged ex vivo culture periods. Herein, we critically discuss advancements and shortfalls of scaffold-free cell-based tissue engineering strategies, along with pioneering concepts that have the potential to transform regenerative and reparative medicine.
Collapse
|
7
|
House A, Atalla I, Lee EJ, Guvendiren M. Designing Biomaterial Platforms for Cardiac Tissue and Disease Modeling. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000022. [PMID: 33709087 PMCID: PMC7942203 DOI: 10.1002/anbr.202000022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heart disease is one of the leading causes of death in the world. There is a growing demand for in vitro cardiac models that can recapitulate the complex physiology of the cardiac tissue. These cardiac models can provide a platform to better understand the underlying mechanisms of cardiac development and disease and aid in developing novel treatment alternatives and platforms towards personalized medicine. In this review, a summary of engineered cardiac platforms is presented. Basic design considerations for replicating the heart's microenvironment are discussed considering the anatomy of the heart. This is followed by a detailed summary of the currently available biomaterial platforms for modeling the heart tissue in vitro. These in vitro models include 2D surface modified structures, 3D molded structures, porous scaffolds, electrospun scaffolds, bioprinted structures, and heart-on-a-chip devices. The challenges faced by current models and the future directions of in vitro cardiac models are also discussed. Engineered in vitro tissue models utilizing patients' own cells could potentially revolutionize the way we develop treatment and diagnostic alternatives.
Collapse
Affiliation(s)
- Andrew House
- Instructive Biomaterials and Additive Manufacturing Laboratory, Otto H. York Chemical and Materials Engineering, 138 York Center, University Heights, Newark, NJ 07102, USA
| | - Iren Atalla
- Instructive Biomaterials and Additive Manufacturing Laboratory, Otto H. York Chemical and Materials Engineering, 138 York Center, University Heights, Newark, NJ 07102, USA
| | - Eun Jung Lee
- Instructive Biomaterials and Additive Manufacturing Laboratory, Otto H. York Chemical and Materials Engineering, 138 York Center, University Heights, Newark, NJ 07102, USA
| | - Murat Guvendiren
- Instructive Biomaterials and Additive Manufacturing Laboratory, Otto H. York Chemical and Materials Engineering, 138 York Center, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
8
|
Parfenov VA, Koudan EV, Krokhmal AA, Annenkova EA, Petrov SV, Pereira FDAS, Karalkin PA, Nezhurina EK, Gryadunova AA, Bulanova EA, Sapozhnikov OA, Tsysar SA, Liu K, Oosterwijk E, van Beuningen H, van der Kraan P, Granneman S, Engelkamp H, Christianen P, Kasyanov V, Khesuani YD, Mironov VA. Biofabrication of a Functional Tubular Construct from Tissue Spheroids Using Magnetoacoustic Levitational Directed Assembly. Adv Healthc Mater 2020; 9:e2000721. [PMID: 32809273 DOI: 10.1002/adhm.202000721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Indexed: 12/15/2022]
Abstract
In traditional tissue engineering, synthetic or natural scaffolds are usually used as removable temporal support, which involves some biotechnology limitations. The concept of "scaffield" approach utilizing the physical fields instead of biomaterial scaffold has been proposed recently. In particular, a combination of intense magnetic and acoustic fields can enable rapid levitational bioassembly of complex-shaped 3D tissue constructs from tissue spheroids at low concentration of paramagnetic agent (gadolinium salt) in the medium. In the current study, the tissue spheroids from human bladder smooth muscle cells (myospheres) are used as building blocks for assembling the tubular 3D constructs. Levitational assembly is accomplished at low concentrations of gadolinium salts in the high magnetic field at 9.5 T. The biofabricated smooth muscle constructs demonstrate contraction after the addition of vasoconstrictive agent endothelin-1. Thus, hybrid magnetoacoustic levitational bioassembly is considered as a new technology platform in the emerging field of formative biofabrication. This novel technology of scaffold-free, nozzle-free, and label-free bioassembly opens a unique opportunity for rapid biofabrication of 3D tissue and organ constructs with complex geometry.
Collapse
Affiliation(s)
- Vladislav A. Parfenov
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
- A. A. Baikov Institute of Metallurgy and Material Science Russian Academy of Sciences Moscow 119334 Russia
| | - Elizaveta V. Koudan
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Alisa A. Krokhmal
- Department of Physics Lomonosov Moscow State University Moscow 119991 Russia
| | - Elena A. Annenkova
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Stanislav V. Petrov
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | | | - Pavel A. Karalkin
- P. A. Hertsen Moscow Oncology Research Center National Medical Research Radiological Center Moscow 125284 Russia
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) Moscow 119991 Russia
| | - Elizaveta K. Nezhurina
- P. A. Hertsen Moscow Oncology Research Center National Medical Research Radiological Center Moscow 125284 Russia
| | - Anna A. Gryadunova
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Elena A. Bulanova
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Oleg A. Sapozhnikov
- Department of Physics Lomonosov Moscow State University Moscow 119991 Russia
| | - Sergey A. Tsysar
- Department of Physics Lomonosov Moscow State University Moscow 119991 Russia
| | - Kaizheng Liu
- Department of Urology Radboud University Medical Center Nijmegen 9102 The Netherlands
| | - Egbert Oosterwijk
- Department of Urology Radboud University Medical Center Nijmegen 9102 The Netherlands
| | - Henk van Beuningen
- Department of Experimental Rheumatology Radboud University Medical Center Nijmegen 9102 The Netherlands
| | - Peter van der Kraan
- Department of Experimental Rheumatology Radboud University Medical Center Nijmegen 9102 The Netherlands
| | - Sanne Granneman
- High Field Magnet Laboratory (HFML‐EMFL) Radboud University Toernooiveld 7 Nijmegen 9010 The Netherlands
| | - Hans Engelkamp
- High Field Magnet Laboratory (HFML‐EMFL) Radboud University Toernooiveld 7 Nijmegen 9010 The Netherlands
| | - Peter Christianen
- High Field Magnet Laboratory (HFML‐EMFL) Radboud University Toernooiveld 7 Nijmegen 9010 The Netherlands
| | - Vladimir Kasyanov
- Riga Stradins University Riga LV‐1007 Latvia
- Riga Technical University Riga LV‐1658 Latvia
| | - Yusef D. Khesuani
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Vladimir A. Mironov
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) Moscow 119991 Russia
| |
Collapse
|
9
|
Sakaguchi K, Takahashi H, Tobe Y, Sasaki D, Matsuura K, Iwasaki K, Shimizu T, Umezu M. Measuring the Contractile Force of Multilayered Human Cardiac Cell Sheets. Tissue Eng Part C Methods 2020; 26:485-492. [PMID: 32799760 DOI: 10.1089/ten.tec.2020.0164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) cardiac tissue reconstruction using tissue engineering technology is a rapidly growing area of regenerative medicine and drug screening development. However, there remains an urgent need for the development of a method capable of accurately measuring the contractile force of physiologically relevant 3D myocardial tissues to facilitate the prediction of human heart tissue drug sensitivity. To this end, our laboratory has developed a novel drug screening model that measures the contractile force of cardiac cell sheets prepared using temperature-responsive culture dishes. To circumvent the difficulties that commonly arise during the stacking of cardiomyocyte sheets, we established a stacking method using centrifugal force, making it possible to measure 3D myocardial tissue. Human induced pluripotent stem cell-derived cardiomyocytes were seeded in a temperature-responsive culture dish and processed into a sheet. The cardiac cell sheets were multilayered to construct 3D cardiac tissue. Measurement of the contractile force and cross-sectional area of the multilayered 3D cardiac tissue were then obtained and used to determine the relationship between the cross-sectional area of the cardiac tissue and its contractile force. The contractile force of the 1-, 3-, and 5-layer tissues increased linearly in proportion to the cross-sectional area. A result of 6.4 mN/mm2, accounting for one-seventh of the contractile force found in adult tissue, was obtained. However, with 7-layer tissues, there was a sudden drop in the contractile force, possibly because of limited oxygen and nutrient supply. In conclusion, we established a method wherein the thickness of the cell sheets was controlled through layering, thus enabling accurate evaluation of the cardiac contractile function. This method may enable comparisons with living heart tissue while providing information applicable to regenerative medicine and drug screening models.
Collapse
Affiliation(s)
- Katsuhisa Sakaguchi
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Hiroaki Takahashi
- Department of Modern Mechanical Engineering, School of Creative Science and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Yusuke Tobe
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Daisuke Sasaki
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Tokyo, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Tokyo, Japan
| | - Kiyotaka Iwasaki
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, TWIns, Waseda University, Tokyo, Japan.,Department of Modern Mechanical Engineering, School of Creative Science and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Tokyo, Japan
| | - Mitsuo Umezu
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, TWIns, Waseda University, Tokyo, Japan.,Department of Modern Mechanical Engineering, School of Creative Science and Engineering, TWIns, Waseda University, Tokyo, Japan
| |
Collapse
|
10
|
Gao B, Matsuura K, Shimizu T. Recent progress in induced pluripotent stem cell-derived cardiac cell sheets for tissue engineering. Biosci Trends 2020; 13:292-298. [PMID: 31527326 DOI: 10.5582/bst.2019.01227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The past decade has witnessed remarkable development in tissue engineering technologies and stem cells. Our lab has developed a novel technology - "cell sheet technology" for tissue engineering. After the confluent cells are cultured on an innovative temperature-responsive culture dish, the cells can be harvested as an intact sheet by lowering temperature. We have successfully created multiple cell sheet-based tissues for therapies of a vast variety of diseases, in particular, myocardial diseases. On the other side, the discovery of human induced pluripotent stem cells (hiPSC) enables stable production of defined tissue-specific cell types and thus makes it possible to regenerate tissues or even organs for clinical application and in vitro drug screening/disease modeling. Recently, we have combined cell sheet technology and hiPSC-derived cardiac cells for fabrication of functional human cardiac tissues. This review summarizes ongoing challenges in this field and our progresses in solving issues, such as large scale culture of hiPSC-derived cardiac cells, elimination of undifferentiated iPSCs to decrease the risk of tumor formation as well as myocardial tissue fabrication technologies.
Collapse
Affiliation(s)
- Botao Gao
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University
| |
Collapse
|
11
|
Gaspar VM, Lavrador P, Borges J, Oliveira MB, Mano JF. Advanced Bottom-Up Engineering of Living Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903975. [PMID: 31823448 DOI: 10.1002/adma.201903975] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/30/2019] [Indexed: 05/08/2023]
Abstract
Bottom-up tissue engineering is a promising approach for designing modular biomimetic structures that aim to recapitulate the intricate hierarchy and biofunctionality of native human tissues. In recent years, this field has seen exciting progress driven by an increasing knowledge of biological systems and their rational deconstruction into key core components. Relevant advances in the bottom-up assembly of unitary living blocks toward the creation of higher order bioarchitectures based on multicellular-rich structures or multicomponent cell-biomaterial synergies are described. An up-to-date critical overview of long-term existing and rapidly emerging technologies for integrative bottom-up tissue engineering is provided, including discussion of their practical challenges and required advances. It is envisioned that a combination of cell-biomaterial constructs with bioadaptable features and biospecific 3D designs will contribute to the development of more robust and functional humanized tissues for therapies and disease models, as well as tools for fundamental biological studies.
Collapse
Affiliation(s)
- Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Lavrador
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João Borges
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
12
|
Park J, Anderson CW, Sewanan LR, Kural MH, Huang Y, Luo J, Gui L, Riaz M, Lopez CA, Ng R, Das SK, Wang J, Niklason L, Campbell SG, Qyang Y. Modular design of a tissue engineered pulsatile conduit using human induced pluripotent stem cell-derived cardiomyocytes. Acta Biomater 2020; 102:220-230. [PMID: 31634626 PMCID: PMC7227659 DOI: 10.1016/j.actbio.2019.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/05/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022]
Abstract
Single ventricle heart defects (SVDs) are congenital disorders that result in a variety of complications, including increased ventricular mechanical strain and mixing of oxygenated and deoxygenated blood, leading to heart failure without surgical intervention. Corrective surgery for SVDs are traditionally handled by the Fontan procedure, requiring a vascular conduit for completion. Although effective, current conduits are limited by their inability to aid in pumping blood into the pulmonary circulation. In this report, we propose an innovative and versatile design strategy for a tissue engineered pulsatile conduit (TEPC) to aid circulation through the pulmonary system by producing contractile force. Several design strategies were tested for production of a functional TEPC. Ultimately, we found that porcine extracellular matrix (ECM)-based engineered heart tissue (EHT) composed of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and primary cardiac fibroblasts (HCF) wrapped around decellularized human umbilical artery (HUA) made an efficacious basal TEPC. Importantly, the TEPCs showed effective electrical and mechanical function. Initial pressure readings from our TEPC in vitro (0.68 mmHg) displayed efficient electrical conductivity enabling them to follow electrical pacing up to a 2 Hz frequency. This work represents a proof of principle study for our current TEPC design strategy. Refinement and optimization of this promising TEPC design will lay the groundwork for testing the construct's therapeutic potential in the future. Together this work represents a progressive step toward developing an improved treatment for SVD patients. STATEMENT OF SIGNIFICANCE: Single Ventricle Cardiac defects (SVD) are a form of congenital disorder with a morbid prognosis without surgical intervention. These patients are treated through the Fontan procedure which requires vascular conduits to complete. Fontan conduits have been traditionally made from stable or biodegradable materials with no pumping activity. Here, we propose a tissue engineered pulsatile conduit (TEPC) for use in Fontan circulation to alleviate excess strain in SVD patients. In contrast to previous strategies for making a pulsatile Fontan conduit, we employ a modular design strategy that allows for the optimization of each component individually to make a standalone tissue. This work sets the foundation for an in vitro, trainable human induced pluripotent stem cell based TEPC.
Collapse
Affiliation(s)
- Jinkyu Park
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, New Haven, CT 06511, United States; Yale Stem Cell Center, 10 Amistad street, New Haven, CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06510, United States
| | - Christopher W Anderson
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, New Haven, CT 06511, United States; Yale Stem Cell Center, 10 Amistad street, New Haven, CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06510, United States; Department of Pathology, Yale University, New Haven, CT 06510, United States
| | - Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | - Mehmet H Kural
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06510, United States; Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT 06511, United States
| | - Yan Huang
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, New Haven, CT 06511, United States; Yale Stem Cell Center, 10 Amistad street, New Haven, CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06510, United States
| | - Jiesi Luo
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, New Haven, CT 06511, United States; Yale Stem Cell Center, 10 Amistad street, New Haven, CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06510, United States
| | - Liqiong Gui
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06510, United States; Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT 06511, United States
| | - Muhammad Riaz
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, New Haven, CT 06511, United States; Yale Stem Cell Center, 10 Amistad street, New Haven, CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06510, United States
| | - Colleen A Lopez
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, New Haven, CT 06511, United States; Yale Stem Cell Center, 10 Amistad street, New Haven, CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06510, United States
| | - Ronald Ng
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | - Subhash K Das
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, New Haven, CT 06511, United States; Yale Stem Cell Center, 10 Amistad street, New Haven, CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06510, United States
| | - Juan Wang
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06510, United States; Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT 06511, United States
| | - Laura Niklason
- Yale Stem Cell Center, 10 Amistad street, New Haven, CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06510, United States; Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States; Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT 06511, United States
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | - Yibing Qyang
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, New Haven, CT 06511, United States; Yale Stem Cell Center, 10 Amistad street, New Haven, CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06510, United States; Department of Pathology, Yale University, New Haven, CT 06510, United States.
| |
Collapse
|
13
|
Engineering of functional cardiac tubes by stepwise transplantation of cardiac cell sheets onto intestinal mesentery. Heart Vessels 2020; 35:859-867. [DOI: 10.1007/s00380-019-01550-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023]
|
14
|
Iijima K, Ichikawa S, Ishikawa S, Matsukuma D, Yataka Y, Otsuka H, Hashizume M. Preparation of Cell-Paved and -Incorporated Polysaccharide Hollow Fibers Using a Microfluidic Device. ACS Biomater Sci Eng 2019; 5:5688-5697. [PMID: 33405700 DOI: 10.1021/acsbiomaterials.8b01500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular constructs having hollow tubular structures are expected to be used as artificial blood vessels. We have recently demonstrated that water-insoluble polyion complexes (PICs) were formed from water-soluble polysaccharides with opposite charges at the interface of coaxial flows, which resulted in the formation of hollow fibers. In this study, both inside- and outside-cell-laden chondroitin sulfate C (CS)/chitosan (CHI) hollow fibers were prepared by utilizing a microfluidic device and modification with cell adhesive molecules. Loading of type I collagen (COL) and surface modification with fibronectin and gelatin using layer-by-layer assembly techniques improved the adhesion and spreading of fibroblast cells to/on the surface of CS/CHI hollow fibers. On the other hand, by suspending mesenchymal stem cells (MSCs) in the core flow solution, cells were successfully loaded in the walls of the hollow fibers. As the culture time extended, cells trapped in the PIC structures constituting the wall of the hollow fibers migrated to the interface between the hollow fibers and the medium: cells adhered to and stretched "on" the lumen surfaces in the COL-loaded fibers. In contrast, for the case of unmodified hollow fibers, it was difficult for cells to adhere to the lumen surfaces. Therefore, cell aggregates were formed "in" the lumen. Results of the live/dead assay and MTT assay clearly demonstrated that MSCs possessed certain levels of cell viability and proliferated for up to 10 days, especially for the cases of COL-loaded hollow fibers. On the basis of these results, the utility of the present hollow fibers in the formation of cellular constructs corresponding to blood vessels is also discussed.
Collapse
|
15
|
Tsuruyama S, Matsuura K, Sakaguchi K, Shimizu T. Pulsatile tubular cardiac tissues fabricated by wrapping human iPS cells-derived cardiomyocyte sheets. Regen Ther 2019; 11:297-305. [PMID: 31667209 PMCID: PMC6813561 DOI: 10.1016/j.reth.2019.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/10/2019] [Accepted: 09/03/2019] [Indexed: 01/11/2023] Open
Abstract
The purpose of this study was to fabricate pulsatile tubular cardiac tissue using cell sheet based-tissue engineering. First, we fabricated human induced pluripotent stem cell (hiPSc)-derived cardiomyocyte sheets and normal human dermal fibroblast (NHDF) sheets which are harvested from temperature responsive culture dishes only by lowering the temperature. Then tubular cardiac tissues are formed by wrapping one hiPSc-derived cardiomyocyte sheet and three NHDF sheets around an octagonal column, and both ends of the tubular tissue were covered with fibrin and collagen gel. The octagonal column with the tubular tissue was connected to an in vitro circulation system in a culture box. After four-day culture, the cardiac tissue survived and pulsated spontaneously in the circulation system. Furthermore, the analysis with a Millar catheter inserted into the cardiac tubes revealed significant inner pressure changes generated by their beating. In addition, the tubular cardiac tissue pulsated in response to the electrical stimulation. Although histological analyses demonstrated that cardiac troponin T-positive cells stratified the inner surface of the tubular tissues, gene expression analyses showed an immature state of these cardiomyocytes. Thus, cell sheet-based tissue engineering realized human pulsatile tubular cardiac tissue fabrication and we believe that these tubular cardiac tissues should contribute to future drug screening and regenerative therapy for heart diseases.
Collapse
Affiliation(s)
- Shinpei Tsuruyama
- Cell Processing and Culture Department, Regenerative Medicine Manufacturing Systems Division, SHIBUYA CORPORATION, 2-1 Hokuyodai, Kanazawa-shi, Ishikawa, 920-0177, Japan.,Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Katsuhisa Sakaguchi
- Faculty of Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
16
|
Hu L, Zhao B, Gao Z, Xu J, Fan Z, Zhang C, Wang J, Wang S. Regeneration characteristics of different dental derived stem cell sheets. J Oral Rehabil 2019; 47 Suppl 1:66-72. [PMID: 31211857 DOI: 10.1111/joor.12839] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/29/2019] [Accepted: 06/09/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Although cell sheets have gained much interest as a non-scaffold strategy for tissue regeneration, the regenerative features of different cell sheets remain unclear. OBJECTIVE In this study, we aimed to compare the regeneration characteristics of cell sheets derived from dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs) and stem cells of the apical papilla (SCAPs). METHODS Dental pulp stem cells, PDLSCs and SCAPs from the same individual were acquired and induced to form sheets using 20 μg/mL vitamin C. Immunofluorescence staining was used to detect the expression of collagen I, fibronectin, integrin β1 and vimentin. Real-time PCR was used to determine NANOG, OCT4, SOX2 and TERT gene expression. The cell sheets with hydroxyapatite/tricalcium phosphate were transplanted into nude mice subcutaneously to evaluate tissue regeneration characteristics. RESULTS No obvious differences were found in the histological structure and extracellular matrix protein expression between DPSC, PDLSC and SCAP sheets. Dental pulp stem cell sheet showed higher expression of OCT4 and TERT than PDLSC and SCAP sheets. All three cell sheets displayed the ability of mineral tissue formation and highly expressed periostin. The tissue derived from DPSC sheet showed higher CD31 expression and porous fibres compared with that from the others. The tissue fibres formed from PDLSC sheet were directionally arranged, while the tissue derived from SCAP sheet showed highest mineral tissue formation. CONCLUSION Although in vitro DPSC, PDLSC and SCAP cell sheets have similar characteristics, their regenerative characteristics in vivo are different, with each showing potential application for regeneration of different tissues.
Collapse
Affiliation(s)
- Lei Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Prosthodontics, Capital Medical University School of Stomatology, Beijing, China
| | - Bin Zhao
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Zhenhua Gao
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Junji Xu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Jinsong Wang
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Khorramirouz R, Kameli SM, Fendereski K, Daryabari SS, Kajbafzadeh AM. Evaluating the efficacy of tissue-engineered human amniotic membrane in the treatment of myocardial infarction. Regen Med 2019; 14:113-126. [PMID: 30741604 DOI: 10.2217/rme-2018-0024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM The aim of this study was to evaluate the efficacy of tissue-engineered amniotic membrane (AM) in the treatment of myocardial infarction lesions. MATERIALS & METHODS 20 rats were subjected to coronary arterial ligation in order to induce myocardial infarction injury. Decellularized human AMs were seeded with 2 × 105 adipose-derived mesenchymal stem cells and were implanted in the infarcted hearts. RESULTS & CONCLUSION Histological and immunohistochemical evaluations indicated the regeneration of cardiomyocytes and reduction of inflammation and fibrosis in the patch-implanted group compared with a control group, 14 days after the surgery. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick-end labeling assay was suggestive for apoptosis reduction in the patch-implanted specimens. This study suggested that human AM can be developed into a novel treatment for treating postmyocardial infarction.
Collapse
Affiliation(s)
- Reza Khorramirouz
- Pediatric Urology & Regenerative Medicine Research Center, Section of Tissue Engineering & Stem Cells Therapy, Pediatric Center of Excellence, Tehran University of Medical Sciences, Children's Hospital Medical Center, Tehran 1419433151, Iran
| | - Seyedeh M Kameli
- Pediatric Urology & Regenerative Medicine Research Center, Section of Tissue Engineering & Stem Cells Therapy, Pediatric Center of Excellence, Tehran University of Medical Sciences, Children's Hospital Medical Center, Tehran 1419433151, Iran
| | - Kiarad Fendereski
- Pediatric Urology & Regenerative Medicine Research Center, Section of Tissue Engineering & Stem Cells Therapy, Pediatric Center of Excellence, Tehran University of Medical Sciences, Children's Hospital Medical Center, Tehran 1419433151, Iran
| | - Seyedeh S Daryabari
- Pediatric Urology & Regenerative Medicine Research Center, Section of Tissue Engineering & Stem Cells Therapy, Pediatric Center of Excellence, Tehran University of Medical Sciences, Children's Hospital Medical Center, Tehran 1419433151, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology & Regenerative Medicine Research Center, Section of Tissue Engineering & Stem Cells Therapy, Pediatric Center of Excellence, Tehran University of Medical Sciences, Children's Hospital Medical Center, Tehran 1419433151, Iran
| |
Collapse
|
18
|
Sasaki D, Matsuura K, Seta H, Haraguchi Y, Okano T, Shimizu T. Contractile force measurement of human induced pluripotent stem cell-derived cardiac cell sheet-tissue. PLoS One 2018; 13:e0198026. [PMID: 29791489 PMCID: PMC5965888 DOI: 10.1371/journal.pone.0198026] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
We have developed our original tissue engineering technology “cell sheet engineering” utilizing temperature-responsive culture dishes. The cells are confluently grown on a temperature-responsive culture dish and can be harvested as a cell sheet by lowering temperature without enzymatic digestion. Cell sheets are high-cell-density tissues similar to actual living tissues, maintaining their structure and function. Based on this “cell sheet engineering”, we are trying to create functional cardiac tissues from human induced pluripotent stem cells, for regenerative therapy and in vitro drug testing. Toward this purpose, it is necessary to evaluate the contractility of engineered cardiac cell sheets. Therefore, in the present study, we developed a contractile force measurement system and evaluated the contractility of human iPSC-derived cardiac cell sheet-tissues. By attaching the cardiac cell sheets on fibrin gel sheets, we created dynamically beating cardiac cell sheet-tissues. They were mounted to the force measurement system and the contractile force was measured stably and clearly. The absolute values of contractile force were around 1 mN, and the mean force value per cross-sectional area was 3.3 mN/mm2. These values are equivalent to or larger than many previously reported values, indicating the functionality of our engineered cardiac cell sheets. We also confirmed that both the contractile force and beating rate were significantly increased by the administration of adrenaline, which are the physiologically relevant responses for cardiac tissues. In conclusion, the force measurement system developed in the present study is valuable for the evaluation of engineered cardiac cell sheet-tissues, and for in vitro drug testing as well.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hiroyoshi Seta
- Department of Cardiovascular Surgery, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
19
|
Li X, Liu L, Zhang X, Xu T. Research and development of 3D printed vasculature constructs. Biofabrication 2018; 10:032002. [PMID: 29637901 DOI: 10.1088/1758-5090/aabd56] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Artificial blood vessels must be strong, flexible, and must not lead to blockage after implantation. It is therefore important to select an appropriate fabrication process for products to meet these requirements. This review discusses the current methods for making artificial blood vessels, focusing on fabrication principle, materials, and applications. Among these methods, 3D printing is very promising since it has the unique capability to make complicated three-dimensional structures with multiple types of materials, and can be completely digitalized. Therefore, new developments in 3D printing of artificial blood vessels are also summarized here. This review provides a reference for the fusion of multiple processes and further improvement of artificial blood vessel fabrication.
Collapse
Affiliation(s)
- Xinda Li
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
20
|
Rodríguez-Cabello JC, González de Torre I, Ibañez-Fonseca A, Alonso M. Bioactive scaffolds based on elastin-like materials for wound healing. Adv Drug Deliv Rev 2018; 129:118-133. [PMID: 29551651 DOI: 10.1016/j.addr.2018.03.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/06/2018] [Accepted: 03/13/2018] [Indexed: 01/08/2023]
Abstract
Wound healing is a complex process that, in healthy tissues, starts immediately after the injury. Even though it is a natural well-orchestrated process, large trauma wounds, or injuries caused by acids or other chemicals, usually produce a non-elastic deformed tissue that not only have biological reduced properties but a clear aesthetic effect. One of the main drawbacks of the scaffolds used for wound dressing is the lack of elasticity, driving to non-elastic and contracted tissues. In the last decades, elastin based materials have gained in importance as biomaterials for tissue engineering applications due to their good cyto- and bio-compatibility, their ease handling and design, production and modification. Synthetic elastin or elastin like-peptides (ELPs) are the two main families of biomaterials that try to mimic the outstanding properties of natural elastin, elasticity amongst others; although there are no in vivo studies that clearly support that these two families of elastin based materials improve the elasticity of the artificial scaffolds and of the regenerated skin. Within the next pages a review of the different forms (coacervates, fibres, hydrogels and biofunctionalized surfaces) in which these two families of biomaterials can be processed to be applied in the wound healing field have been done. Here, we explore the mechanical and biological properties of these scaffolds as well as the different in vivo approaches in which these scaffolds have been used.
Collapse
Affiliation(s)
- J Carlos Rodríguez-Cabello
- BIOFORGE, CIBER-BBN, Edificio Lucia, Universidad de Valladolid, Paseo Belén 19, 47011 Valladolid, Spain; G.I.R. BIOFORGE, Universidad de Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain.
| | - I González de Torre
- BIOFORGE, CIBER-BBN, Edificio Lucia, Universidad de Valladolid, Paseo Belén 19, 47011 Valladolid, Spain; G.I.R. BIOFORGE, Universidad de Valladolid, Paseo Belén 9 A, 47011 Valladolid, Spain.
| | - A Ibañez-Fonseca
- BIOFORGE, CIBER-BBN, Edificio Lucia, Universidad de Valladolid, Paseo Belén 19, 47011 Valladolid, Spain; G.I.R. BIOFORGE, Universidad de Valladolid, Paseo Belén 9 A, 47011 Valladolid, Spain.
| | - M Alonso
- BIOFORGE, CIBER-BBN, Edificio Lucia, Universidad de Valladolid, Paseo Belén 19, 47011 Valladolid, Spain; G.I.R. BIOFORGE, Universidad de Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain.
| |
Collapse
|
21
|
Daley MC, Fenn SL, Black LD. Applications of Cardiac Extracellular Matrix in Tissue Engineering and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1098:59-83. [PMID: 30238366 DOI: 10.1007/978-3-319-97421-7_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of the cardiac extracellular matrix (cECM) in providing biophysical and biochemical cues to the cells housed within during disease and development has become increasingly apparent. These signals have been shown to influence many fundamental cardiac cell behaviors including contractility, proliferation, migration, and differentiation. Consequently, alterations to cell phenotype result in directed remodeling of the cECM. This bidirectional communication means that the cECM can be envisioned as a medium for information storage. As a result, the reprogramming of the cECM is increasingly being employed in tissue engineering and regenerative medicine as a method with which to treat disease. In this chapter, an overview of the composition and structure of the cECM as well as its role in cardiac development and disease will be provided. Additionally, therapeutic modulation of cECM for cardiac regeneration as well as bottom-up and top-down approaches to ECM-based cardiac tissue engineering is discussed. Finally, lingering questions regarding the role of cECM in tissue engineering and regenerative medicine are offered as a catalyst for future research.
Collapse
Affiliation(s)
- Mark C Daley
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Spencer L Fenn
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- Center for Biomedical Career Development, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
- Cellular, Molecular and Developmental Biology Program, Sackler School for Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
22
|
Seta H, Matsuura K, Sekine H, Yamazaki K, Shimizu T. Tubular Cardiac Tissues Derived from Human Induced Pluripotent Stem Cells Generate Pulse Pressure In Vivo. Sci Rep 2017; 7:45499. [PMID: 28358136 PMCID: PMC5371992 DOI: 10.1038/srep45499] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/28/2017] [Indexed: 11/15/2022] Open
Abstract
Human induced pluripotent stem (iPS) cell-derived cardiac cells provide the possibility to fabricate cardiac tissues for transplantation. However, it remains unclear human bioengineered cardiac tissues function as a functional pump in vivo. Human iPS cells induced to cardiomyocytes in suspension were cultured on temperature-responsive dishes to fabricate cardiac cell sheets. Two pairs of triple-layered sheets were transplanted to wrap around the inferior vena cava (IVC) of nude rats. At 4 weeks after transplantation, inner pressure changes in the IVC were synchronized with electrical activations of the graft. Under 80 pulses per minute electrical stimulation, the inner pressure changes at 8 weeks increased to 9.1 ± 3.2 mmHg, which were accompanied by increases in the baseline inner pressure of the IVC. Immunohistochemical analysis revealed that 0.5-mm-thick cardiac troponin T-positive cardiac tissues, which contained abundant human mitochondria, were clearly engrafted lamellar around the IVC and surrounded by von Willebrand factor-positive capillary vessels. The mRNA expression of several contractile proteins in cardiac tissues at 8 weeks in vivo was significantly upregulated compared with those at 4 weeks. We succeeded in generating pulse pressure by tubular human cardiac tissues in vivo. This technology might lead to the development of a bioengineered heart assist pump.
Collapse
Affiliation(s)
- Hiroyoshi Seta
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan.,Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan.,Department of Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Hidekazu Sekine
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Kenji Yamazaki
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| |
Collapse
|
23
|
Ghanizadeh Tabriz A, Mills CG, Mullins JJ, Davies JA, Shu W. Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating. Front Bioeng Biotechnol 2017; 5:13. [PMID: 28286747 PMCID: PMC5323421 DOI: 10.3389/fbioe.2017.00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/08/2017] [Indexed: 11/18/2022] Open
Abstract
Development of a simple, straightforward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biology laboratory. The fabrication method involves micro dip-coating of cell-laden hydrogels covering the surface of a metal bar, into the cross-linking reagents calcium chloride or barium chloride to form hollow tubular structures. This method can be used to form single layers with thickness ranging from 126 to 220 µm or multilayered tubular structures. This fabrication method uses alginate hydrogel as the primary biomaterial and a secondary biomaterial can be added depending on the desired application. We demonstrate the feasibility of this method, with survival rate over 75% immediately after fabrication and normal responsiveness of cells within these tubular structures using mouse dermal embryonic fibroblast cells and human embryonic kidney 293 cells containing a tetracycline-responsive, red fluorescent protein (tHEK cells).
Collapse
Affiliation(s)
| | - Christopher G Mills
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK; Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - John J Mullins
- Centre for Cardiovascular Science, University of Edinburgh , Edinburgh , UK
| | - Jamie A Davies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK; Centre for Synthetic Biology, University of Edinburgh, Edinburgh, UK
| | - Wenmiao Shu
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK; Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
24
|
Tanaka RI, Sakaguchi K, Umezu S. Fundamental characteristics of printed gelatin utilizing micro 3D printer. ARTIFICIAL LIFE AND ROBOTICS 2017. [DOI: 10.1007/s10015-016-0348-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Design and cytocompatibility of chitosan-based thermoresponsive cell culture plates. J Appl Biomater Funct Mater 2016; 14:e404-e412. [PMID: 27647386 DOI: 10.5301/jabfm.5000276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The aim of this study was to develop a novel thermoresponsive material suited for tissue engineering and investigate the growth and harmless detachment of cells cultured on the surface of thermoresponsive tissue culture polystyrene (TCPS). METHODS Thermoresponsive N-isopropylacrylamide (NIPAAm) and biocompatible chitosan (CS) were grafted onto the surface of TCPS by ultraviolet (UV)-induced graft polymerization. The chemical composition, surface morphology and thermoresponsiveness of the modified TCPS were investigated by X-ray photoelectron spectroscopy (XPS), atom force microscopy (AFM) and contact angle (CA), respectively. Furthermore, the growth and detachment behaviors of mouse fibroblast cells (L929) on the surface of the modified TCPS were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS The modified TCPS exhibited good hydrophobic/hydrophilic property alterations in response to temperature. The cytocompatibility of the materials was improved due to the introduction of CS. Cells could be spontaneously detached from the surface without any damage, by controlling environmental temperature. The viability of cells obtained by temperature induction was higher than that obtained by enzymatic digestion. CONCLUSIONS This study developed a simple and economical method to fabricate thermoresponsive cell culture dishes and provided new thoughts and experimental bases for exploring novel material applied in tissue engineering.
Collapse
|
26
|
Kim PH, Cho JY. Myocardial tissue engineering using electrospun nanofiber composites. BMB Rep 2016; 49:26-36. [PMID: 26497579 PMCID: PMC4914209 DOI: 10.5483/bmbrep.2016.49.1.165] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 01/18/2023] Open
Abstract
Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed. [BMB Reports 2016; 49(1): 26-36]
Collapse
Affiliation(s)
- Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon 35365, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
27
|
Roura S, Gálvez-Montón C, Bayes-Genis A. Fibrin, the preferred scaffold for cell transplantation after myocardial infarction? An old molecule with a new life. J Tissue Eng Regen Med 2016; 11:2304-2313. [PMID: 27061269 DOI: 10.1002/term.2129] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/13/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022]
Abstract
Fibrin is a topical haemostat, sealant and tissue glue, which consists of concentrated fibrinogen and thrombin. It has broad medical and research uses. Recently, several studies have shown that engineered patches comprising mixtures of biological or synthetic materials and progenitor cells showed therapeutic promise for regenerating damaged tissues. In that context, fibrin maintains cell adherence at the site of injury, where cells are required for tissue repair, and offers a nurturing environment that protects implanted cells without interfering with their expected benefit. Here we review the past, present and future uses of fibrin, with a focus on its use as a scaffold material for cardiac repair. Fibrin patches filled with regenerative cells can be placed over the scarring myocardium; this methodology avoids many of the drawbacks of conventional cell-infusion systems. Advantages of using fibrin also include extraction from the patient's blood, an easy readjustment and implantation procedure, increase in viability and early proliferation of delivered cells, and benefits even with the patch alone. In line with this, we discuss the numerous preclinical studies that have used fibrin-cell patches, the practical issues inherent in their generation, and the necessary process of scaling-up from animal models to patients. In the light of the data presented, fibrin stands out as a valuable biomaterial for delivering cells to damaged tissue and for promoting beneficial effects. However, before the fibrin scaffold can be translated from bench to bedside, many issues must be explored further, including suboptimal survival and limited migration of the implanted cells to underlying ischaemic myocardium. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Santiago Roura
- Heart Failure and Cardiac Regeneration (ICREC) Research Programme, Germans Trias i Pujol Health Science Research Institute, Badalona, Barcelona, Spain.,Center of Regenerative Medicine in Barcelona, Barcelona, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Programme, Germans Trias i Pujol Health Science Research Institute, Badalona, Barcelona, Spain
| | - Antoni Bayes-Genis
- Heart Failure and Cardiac Regeneration (ICREC) Research Programme, Germans Trias i Pujol Health Science Research Institute, Badalona, Barcelona, Spain.,Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
28
|
Affiliation(s)
- Mo Li
- From the Gene Expression Laboratory, the Salk Institute for Biological Studies, La Jolla, CA (M.L., J.C.I.B.); and Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, Murcia, Spain (M.L.)
| | - Juan Carlos Izpisua Belmonte
- From the Gene Expression Laboratory, the Salk Institute for Biological Studies, La Jolla, CA (M.L., J.C.I.B.); and Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, Murcia, Spain (M.L.)
| |
Collapse
|
29
|
Masuda S, Shimizu T. Three-dimensional cardiac tissue fabrication based on cell sheet technology. Adv Drug Deliv Rev 2016; 96:103-9. [PMID: 25980939 DOI: 10.1016/j.addr.2015.05.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
Abstract
Cardiac tissue engineering is a promising therapeutic strategy for severe heart failure. However, conventional tissue engineering methods by seeding cells into biodegradable scaffolds have intrinsic limitations such as inflammatory responses and fibrosis arising from the degradation of scaffolds. On the other hand, we have developed cell sheet engineering as a scaffold-free approach for cardiac tissue engineering. Confluent cultured cells are harvested as an intact cell sheet using a temperature-responsive culture surface. By layering cardiac cell sheets, it is possible to form electrically communicative three-dimensional cardiac constructs. Cell sheet transplantation onto damaged hearts in several animal models has revealed improvements in heart functions. Because of the lack of vasculature, the thickness of viable cardiac cell sheet-layered tissues is limited to three layers. Pre-vascularized structure formation within cardiac tissue and multi-step transplantation methods has enabled the formation of thick vascularized tissues in vivo. Furthermore, development of original bioreactor systems with vascular beds has allowed reconstruction of three-dimensional cardiac tissues with a functional vascular structure in vitro. Large-scale culture systems to generate pluripotent stem cell-derived cardiac cells can create large numbers of cardiac cell sheets. Three-dimensional cardiac tissues fabricated by cell sheet engineering may be applied to treat heart disease and tissue model construction.
Collapse
Affiliation(s)
- Shinako Masuda
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan.
| |
Collapse
|
30
|
Yeo GC, Aghaei-Ghareh-Bolagh B, Brackenreg EP, Hiob MA, Lee P, Weiss AS. Fabricated Elastin. Adv Healthc Mater 2015; 4:2530-2556. [PMID: 25771993 PMCID: PMC4568180 DOI: 10.1002/adhm.201400781] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/09/2015] [Indexed: 12/18/2022]
Abstract
The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement.
Collapse
Affiliation(s)
- Giselle C. Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Behnaz Aghaei-Ghareh-Bolagh
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Edwin P. Brackenreg
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Matti A. Hiob
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Pearl Lee
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Anthony S. Weiss
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
- Bosch Institute, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
31
|
Effect of decellularized tissue powders on a rat model of acute myocardial infarction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:494-500. [PMID: 26249619 DOI: 10.1016/j.msec.2015.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/18/2015] [Accepted: 07/09/2015] [Indexed: 12/22/2022]
Abstract
Many research groups are currently investigating new treatment modalities for myocardial infarction. Numerous aspects need to be considered for the clinical application of these therapies, such as low cell integration and engraftment rates of cell injection techniques. Decellularized tissues are considered good materials for promoting regeneration of traumatic tissues. The properties of the decellularized tissues are sustained after processing to powder form. In this study, we examined the use of decellularized tissue powder in a rat model of acute myocardial infarction. The decellularized tissue powders, especially liver powder, promoted cell integration and neovascularization both in vitro and in vivo. Decellularized liver powder induced neovascularization in the infarct area, resulting in the suppression of myocardial necrosis. The results of this study suggest that decellularized liver powder has good potential for application as a blood supply material for the treatment of myocardial infarction.
Collapse
|
32
|
Othman R, E Morris G, Shah DA, Hall S, Hall G, Wells K, Shakesheff KM, Dixon JE. An automated fabrication strategy to create patterned tubular architectures at cell and tissue scales. Biofabrication 2015; 7:025003. [DOI: 10.1088/1758-5090/7/2/025003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Mohamed MA, Hogan MK, Patel NM, Tao ZW, Gutierrez L, Birla RK. Establishing the Framework for Tissue Engineered Heart Pumps. Cardiovasc Eng Technol 2015; 6:220-9. [DOI: 10.1007/s13239-015-0211-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 01/08/2015] [Indexed: 12/26/2022]
|
34
|
Buikema JW, Van Der Meer P, Sluijter JPG, Domian IJ. Concise review: Engineering myocardial tissue: the convergence of stem cells biology and tissue engineering technology. Stem Cells 2015; 31:2587-98. [PMID: 23843322 DOI: 10.1002/stem.1467] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/09/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
Abstract
Advanced heart failure represents a leading public health problem in the developed world. The clinical syndrome results from the loss of viable and/or fully functional myocardial tissue. Designing new approaches to augment the number of functioning human cardiac muscle cells in the failing heart serve as the foundation of modern regenerative cardiovascular medicine. A number of clinical trials have been performed in an attempt to increase the number of functional myocardial cells by the transplantation of a diverse group of stem or progenitor cells. Although there are some encouraging suggestions of a small early therapeutic benefit, to date, no evidence for robust cell or tissue engraftment has been shown, emphasizing the need for new approaches. Clinically meaningful cardiac regeneration requires the identification of the optimum cardiogenic cell types and their assembly into mature myocardial tissue that is functionally and electrically coupled to the native myocardium. We here review recent advances in stem cell biology and tissue engineering and describe how the convergence of these two fields may yield novel approaches for cardiac regeneration.
Collapse
Affiliation(s)
- Jan Willem Buikema
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
35
|
Sekine H, Shimizu T. Development of Cardiac Tissues with the Ability for Independent Cardiac Assistance Using Cell Sheet Based Tissue Engineering. ACTA ACUST UNITED AC 2015. [DOI: 10.9794/jspccs.31.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Hidekazu Sekine
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns
| |
Collapse
|
36
|
Abstract
In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production.
Collapse
Affiliation(s)
- Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University
| |
Collapse
|
37
|
Mei JC, Wu AYK, Wu PC, Cheng NC, Tsai WB, Yu J. Three-dimensional extracellular matrix scaffolds by microfluidic fabrication for long-term spontaneously contracted cardiomyocyte culture. Tissue Eng Part A 2014; 20:2931-41. [PMID: 24851797 DOI: 10.1089/ten.tea.2013.0549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To repair damaged cardiac tissue, the important principle of in vitro cell culture is to mimic the in vivo cell growth environment. Thus, micro-sized cells are more suitably cultured in three-dimensional (3D) than in two-dimensional (2D) microenvironments (ex: culture dish). With the matching dimensions of works produced by microfluidic technology, chemical engineering and biochemistry applications have used this technology extensively in cellular works. The 3D scaffolds produced in our investigation has essential properties, such has high mass transfer efficiency, and variable pore sizes, to adapt to various needs of different cell types. In addition to the malleability of these innovative scaffolds, fabrication procedure was effortless and fast. Primary neonatal mice cardiomyocytes were successfully harvested and cultured in 3D scaffolds made of gelatin and collagen. Gelatin and gelatin-collagen scaffold were produced by the formation of microbubbles through a microfluidic device, and the mechanical properties of gelatin scaffold and gelatin-collagen scaffold were measured. Cellular properties in the microbubbles were also monitored. Fluorescence staining results assured that cardiomyocytes could maintain in vivo morphology in 3D gelatin scaffold. In addition, it was found that 3D scaffold could prolong the contraction behavior of cardiomyocytes compared with a conventional 2D culture dish. Spontaneously contracted behavior was maintained for the longest (about 1 month) in the 3D gelatin scaffold, about 19 days in the 3D gelatin-collagen scaffold. To sum up, this 3D platform for cell culture has promising potential for myocardial tissue engineering.
Collapse
Affiliation(s)
- Jeng-Chun Mei
- 1 Department of Chemical Engineering, National Taiwan University , Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
38
|
Annabi N, Tsang K, Mithieux SM, Nikkhah M, Ameri A, Khademhosseini A, Weiss AS. Highly Elastic Micropatterned Hydrogel for Engineering Functional Cardiac Tissue. ADVANCED FUNCTIONAL MATERIALS 2013; 23:10.1002/adfm.201300570. [PMID: 24319406 PMCID: PMC3850066 DOI: 10.1002/adfm.201300570] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Heart failure is a major international health issue. Myocardial mass loss and lack of contractility are precursors to heart failure. Surgical demand for effective myocardial repair is tempered by a paucity of appropriate biological materials. These materials should conveniently replicate natural human tissue components, convey persistent elasticity, promote cell attachment, growth and conformability to direct cell orientation and functional performance. Here, microfabrication techniques are applied to recombinant human tropoelastin, the resilience-imparting protein found in all elastic human tissues, to generate photocrosslinked biological materials containing well-defined micropatterns. These highly elastic substrates are then used to engineer biomimetic cardiac tissue constructs. The micropatterned hydrogels, produced through photocrosslinking of methacrylated tropoelastin (MeTro), promote the attachment, spreading, alignment, function, and intercellular communication of cardiomyocytes by providing an elastic mechanical support that mimics their dynamic mechanical properties in vivo. The fabricated MeTro hydrogels also support the synchronous beating of cardiomyocytes in response to electrical field stimulation. These novel engineered micropatterned elastic gels are designed to be amenable to 3D modular assembly and establish a versatile, adaptable foundation for the modeling and regeneration of functional cardiac tissue with potential for application to other elastic tissues.
Collapse
Affiliation(s)
- Nasim Annabi
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Kelly Tsang
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA, Department of Materials Engineering, Monash University, Melbourne, Victoria, Australia
| | - Suzanne M. Mithieux
- School of Molecular Bioscience, University of Sydney Sydney, 2006, Australia
| | - Mehdi Nikkhah
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Afshin Ameri
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Anthony S. Weiss
- School of Molecular Bioscience, University of Sydney Sydney, 2006, Australia, Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia, Bosch Institute, University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
39
|
Evaluation systems of generated forces of skeletal muscle cell-based bio-actuators. J Biosci Bioeng 2013; 115:115-21. [DOI: 10.1016/j.jbiosc.2012.08.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/20/2012] [Accepted: 08/31/2012] [Indexed: 11/20/2022]
|
40
|
Ravi S, Caves JM, Martinez AW, Haller CA, Chaikof EL. Incorporation of fibronectin to enhance cytocompatibility in multilayer elastin-like protein scaffolds for tissue engineering. J Biomed Mater Res A 2012; 101:1915-25. [PMID: 23225639 DOI: 10.1002/jbm.a.34484] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/17/2012] [Accepted: 09/24/2012] [Indexed: 11/07/2022]
Abstract
Recombinant, elastin-like protein (ELP) polymers are of significant interest for the engineering of compliant, resilient soft tissues due to a wide range of tunable mechanical properties, biostability, and biocompatibility. Here, we enhance endothelial cell (EC) and mesenchymal stem cell compatibility with ELP constructs by addition of fibronectin (Fn) to the surface or bulk of ELP hydrogels. We find that cell adhesion, proliferation, and migration can be modulated by Fn addition. Adsorption of Fn to the hydrogel surface is more efficient than bulk blending. Surface immobilization of Fn by genipin crosslinking leads to stability without loss of bioactivity. Gels of varying mechanical modulus do not alter cell adhesion, proliferation, and migration in the range we investigate. However, more compliant gels promote an EC morphology suggesting tubulogenesis or network formation, whereas stiffer gels promote cobblestone morphology. Multilayer structures consisting of thin ELP sheets reinforced with collagen microfiber are fabricated and laminated through the culture of MSCs at layer interfaces. High cell viability in the resulting three-dimensional constructs suggests the applicability of Fn to the design of strong, resilient artificial blood vessels and other soft tissue replacements.
Collapse
Affiliation(s)
- Swathi Ravi
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia 30332, USA
| | | | | | | | | |
Collapse
|
41
|
MCKEON-FISCHER KD, FREEMAN JW. ADDITION OF CONDUCTIVE ELEMENTS TO POLYMERIC SCAFFOLDS FOR MUSCLE TISSUE ENGINEERING. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s1793984412300117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cardiac and skeletal muscles are two tissues that would benefit from an electrically conductive scaffold to regenerate lost or lower functioning areas. By augmenting polymeric scaffolds with conductive elements, the contractile process for both muscles could increase. In this review, the components reviewed include polyaniline (PANi), gold (Au) nanoparticles, and carbon nanotubes (CNT). PANi has been combined with several polymers and increased the conductivity of the scaffolds. It is biocompatible, but increases mechanical properties and decreases scaffold elongation. Tissue engineering using nanoparticles is an emerging area and considerable research focuses on determining possible toxicity due to nanoparticle concentration. Contradicting data exists for both Au nanoparticles and CNT. Smaller Au nanoparticles damage cardiac tissue in vivo while larger ones do not. By comparison, in vitro data shows no harmful results for skeletal muscle cells. Data for CNT is just as diverse as the amount, orientation and further purification or functionalization could all play a role in determining biocompatibility. Future research should focus on establishing the conductivity level needed for each muscle tissue to ascertain the amount of conductive element needed so the most suitable one can be utilized.
Collapse
Affiliation(s)
- K. D. MCKEON-FISCHER
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - J. W. FREEMAN
- Department of Biomedical Engineering, Rutgers University Piscataway, New Jersey 08854, USA
| |
Collapse
|
42
|
Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: A scaffold membrane approach. J Mech Behav Biomed Mater 2012; 13:140-55. [DOI: 10.1016/j.jmbbm.2012.04.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/22/2012] [Accepted: 04/16/2012] [Indexed: 11/18/2022]
|
43
|
Williams C, Xie AW, Emani S, Yamato M, Okano T, Emani SM, Wong JY. A Comparison of Human Smooth Muscle and Mesenchymal Stem Cells as Potential Cell Sources for Tissue-Engineered Vascular Patches. Tissue Eng Part A 2012; 18:986-98. [DOI: 10.1089/ten.tea.2011.0172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Corin Williams
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Angela W. Xie
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Sirisha Emani
- Department of Cardiovascular Surgery, Children's Hospital Boston, Boston, Massachusetts
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Sitaram M. Emani
- Department of Cardiovascular Surgery, Children's Hospital Boston, Boston, Massachusetts
| | - Joyce Y. Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
44
|
Giraud MN, Guex AG, Tevaearai HT. Cell therapies for heart function recovery: focus on myocardial tissue engineering and nanotechnologies. Cardiol Res Pract 2012; 2012:971614. [PMID: 22577591 PMCID: PMC3346974 DOI: 10.1155/2012/971614] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 02/06/2012] [Indexed: 01/01/2023] Open
Abstract
Cell therapies have gained increasing interest and developed in several approaches related to the treatment of damaged myocardium. The results of multiple clinical trials have already been reported, almost exclusively involving the direct injection of stem cells. It has, however, been postulated that the efficiency of injected cells could possibly be hindered by the mechanical trauma due to the injection and their low survival in the hostile environment. It has indeed been demonstrated that cell mortality due to the injection approaches 90%. Major issues still need to be resolved and bed-to-bench followup is paramount to foster clinical implementations. The tissue engineering approach thus constitutes an attractive alternative since it provides the opportunity to deliver a large number of cells that are already organized in an extracellular matrix. Recent laboratory reports confirmed the interest of this approach and already encouraged a few groups to investigate it in clinical studies. We discuss current knowledge regarding engineered tissue for myocardial repair or replacement and in particular the recent implementation of nanotechnological approaches.
Collapse
Affiliation(s)
- Marie-Noëlle Giraud
- Cardiology, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland
| | - Anne Géraldine Guex
- Clinic for Cardiovascular Surgery, Inselspital Berne, Berne University Hospital and University of Berne, Switzerland
- Empa, Swiss Federal Laboratories for Material Science and Technology, 9014 St. Gallen, Switzerland
| | - Hendrik T. Tevaearai
- Clinic for Cardiovascular Surgery, Inselspital Berne, Berne University Hospital and University of Berne, Switzerland
| |
Collapse
|
45
|
Lin YF, Swinburne I, Yelon D. Multiple influences of blood flow on cardiomyocyte hypertrophy in the embryonic zebrafish heart. Dev Biol 2012; 362:242-53. [PMID: 22192888 PMCID: PMC3279915 DOI: 10.1016/j.ydbio.2011.12.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 11/20/2011] [Accepted: 12/02/2011] [Indexed: 01/30/2023]
Abstract
Cardiomyocyte hypertrophy is a complex cellular behavior involving coordination of cell size expansion and myofibril content increase. Here, we investigate the contribution of cardiomyocyte hypertrophy to cardiac chamber emergence, the process during which the primitive heart tube transforms into morphologically distinct chambers and increases its contractile strength. Focusing on the emergence of the zebrafish ventricle, we observed trends toward increased cell surface area and myofibril content. To examine the extent to which these trends reflect coordinated hypertrophy of individual ventricular cardiomyocytes, we developed a method for tracking cell surface area changes and myofibril dynamics in live embryos. Our data reveal a previously unappreciated heterogeneity of ventricular cardiomyocyte behavior during chamber emergence: although cardiomyocyte hypertrophy was prevalent, many cells did not increase their surface area or myofibril content during the observed timeframe. Despite the heterogeneity of cell behavior, we often found hypertrophic cells neighboring each other. Next, we examined the impact of blood flow on the regulation of cardiomyocyte behavior during this phase of development. When blood flow through the ventricle was reduced, cell surface area expansion and myofibril content increase were both dampened, and the behavior of neighboring cells did not seem coordinated. Together, our studies suggest a model in which hemodynamic forces have multiple influences on cardiac chamber emergence: promoting both cardiomyocyte enlargement and myofibril maturation, enhancing the extent of cardiomyocyte hypertrophy, and facilitating the coordination of neighboring cell behaviors.
Collapse
Affiliation(s)
- Yi-Fan Lin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093 USA
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016 USA
| | - Ian Swinburne
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016 USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093 USA
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016 USA
| |
Collapse
|
46
|
Oura M, Kubo H, Yamamori S, Takeda S, Shimizu T, Okano T. Development of cell culture monitoring system and novel non-contact pH measurement. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:22-5. [PMID: 22254241 DOI: 10.1109/iembs.2011.6089887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper describes a cell culture monitoring system for regenerative medicine. To realize this monitoring system, a new culture vessel and a removable measurement unit were proposed. The measurement unit was installed in the culture vessel and it was used to measure important cell culture parameters (e.g., temperature, CO(2) level, and pH). Thus, the status of the culture could be monitored. In addition, we developed a novel noninvasive method based on spectrophotometry for measuring pH. This method is a non-contact method that permits noninvasive and contamination-free pH measurement. The spectroscopic pH measurements agreed well with pH measurements using an electrode. The error was within 0.02; thus, the new pH measurement method is sufficiently accurate for cell culture. This new system is expected to contribute to advances in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- M Oura
- Nihon Kohden Corporation, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Isenberg BC, Backman DE, Kinahan ME, Jesudason R, Suki B, Stone PJ, Davis EC, Wong JY. Micropatterned cell sheets with defined cell and extracellular matrix orientation exhibit anisotropic mechanical properties. J Biomech 2011; 45:756-61. [PMID: 22177672 DOI: 10.1016/j.jbiomech.2011.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2011] [Indexed: 12/19/2022]
Abstract
For an arterial replacement graft to be effective, it must possess the appropriate strength in order to withstand long-term hemodynamic stress without failure, yet be compliant enough that the mismatch between the stiffness of the graft and the native vessel wall is minimized. The native vessel wall is a structurally complex tissue characterized by circumferentially oriented collagen fibers/cells and lamellar elastin. Besides the biochemical composition, the functional properties of the wall, including stiffness, depend critically on the structural organization. Therefore, it will be crucial to develop methods of producing tissues with defined structures in order to more closely mimic the properties of a native vessel. To this end, we sought to generate cell sheets that have specific ECM/cell organization using micropatterned polydimethylsiloxane (PDMS) substrates to guide cell organization and tissue growth. The patterns consisted of large arrays of alternating grooves and ridges. Adult bovine aortic smooth muscle cells cultured on these substrates in the presence of ascorbic acid produced ECM-rich sheets several cell layers thick in which both the cells and ECM exhibited strong alignment in the direction of the micropattern. Moreover, mechanical testing revealed that the sheets exhibited mechanical anisotropy similar to that of native vessels with both the stiffness and strength being significantly larger in the direction of alignment, demonstrating that the microscale control of ECM organization results in functional changes in macroscale material behavior.
Collapse
Affiliation(s)
- Brett C Isenberg
- Department of Biomedical Engineering, Boston University, College of Engineering, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Myocardial tissue engineering: toward a bioartificial pump. Cell Tissue Res 2011; 347:775-82. [PMID: 22095463 DOI: 10.1007/s00441-011-1267-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/19/2011] [Indexed: 01/20/2023]
Abstract
Regenerative therapies, including cell injection and bioengineered tissue transplantation, have the potential to treat severe heart failure. Direct implantation of isolated skeletal myoblasts and bone-marrow-derived cells has already been clinically performed and research on fabricating three-dimensional (3-D) cardiac grafts using tissue engineering technologies has also now been initiated. In contrast to conventional scaffold-based methods, we have proposed cell sheet-based tissue engineering, which involves stacking confluently cultured cell sheets to construct 3-D cell-dense tissues. Upon layering, individual cardiac cell sheets integrate to form a single, continuous, cell-dense tissue that resembles native cardiac tissue. The transplantation of layered cardiac cell sheets is able to repair damaged hearts. As the next step, we have attempted to promote neovascularization within bioengineered myocardial tissues to overcome the longstanding limitations of engineered tissue thickness. Finally, as a possible advanced therapy, we are now trying to fabricate functional myocardial tubes that may have a potential for circulatory support. Cell sheet-based tissue engineering technologies therefore show an enormous promise as a novel approach in the field of myocardial tissue engineering.
Collapse
|
49
|
Creation of mouse embryonic stem cell-derived cardiac cell sheets. Biomaterials 2011; 32:7355-62. [DOI: 10.1016/j.biomaterials.2011.05.042] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 05/12/2011] [Indexed: 12/17/2022]
|
50
|
Video Evaluation of the Kinematics and Dynamics of the Beating Cardiac Syncytium: An Alternative to the Langendorff Method. Int J Artif Organs 2011; 34:546-58. [DOI: 10.5301/ijao.2011.8510] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2011] [Indexed: 01/06/2023]
Abstract
Many important observations and discoveries in heart physiology have been made possible using the isolated heart method of Langendorff. Nevertheless, the Langendorff method has some limitations and disadvantages such as the vulnerability of the excised heart to contusions and injuries, the probability of preconditioning during instrumentation, the possibility of inducing tissue edema, and high oxidative stress, leading to the deterioration of the contractile function. To avoid these drawbacks associated with the use of a whole heart, we alternatively used beating mouse cardiac syncytia cultured in vitro in order to assess possible ergotropic, chronotropic, and inotropic effects of drugs. To achieve this aim, we developed a method based on image processing analysis to evaluate the kinematics and the dynamics of the drug-stimulated beating syncytia starting from the video recording of their contraction movement. In this manner, in comparison with the physiological no-drug condition, we observed progressive positive ergotropic, positive chronotropic, and positive inotropic effects of 10 μM isoproterenol (β-adrenergic agonist) and early positive ergotropic, negative chronotropic, and positive inotropic effects of 10 μM phenylephrine (α-adrenergic agonist), followed by a late phase with negative ergotropic, positive chronotropic, and negative inotropic trends. Our method permitted a systematic study of in vitro beating syncytia, producing results consistent with previous works. Consequently, it could be used in in vitro studies of beating cardiac patches, as an alternative to Langendorff's heart in biochemical and pharmacological studies, and especially when the Langendorff technique is inapplicable (e.g., in studies about human cardiac syncytium in physiological and pathological conditions, patient-tailored therapeutics, and syncytium models derived from induced pluripotent/embryonic stem cells with genetic mutations). Furthermore, the method could be helpful in heart tissue engineering and bioartificial heart research to “engineer the heart piece by piece.” In particular, the proposed method could be useful in the identification of a suitable cell source, in the development and testing of “smart” biomaterials, and in the design and use of novel bioreactors and microperfusion systems.
Collapse
|