1
|
Nastri BM, Chianese A, Giugliano R, Di Clemente L, Capasso C, Monti A, Doti N, Iovane V, Montagnaro S, Pagnini U, Iovane G, Zannella C, De Filippis A, Galdiero M. Oreoch-1: A broad-spectrum virus and host-targeting peptide against animal infections. J Pept Sci 2024; 30:e3593. [PMID: 38471710 DOI: 10.1002/psc.3593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
In recent decades, the global rise of viral emerging infectious diseases has posed a substantial threat to both human and animal health worldwide. The rapid spread and accumulation of mutations into viruses, and the limited availability of antiviral drugs and vaccines, stress the urgent need for alternative therapeutic strategies. Antimicrobial peptides (AMPs) derived from natural sources present a promising avenue due to their specificity and effectiveness against a broad spectrum of pathogens. The present study focuses on investigating the antiviral potential of oreochromicin-1 (oreoch-1), a fish-derived AMP obtained from Nile tilapia, against a wide panel of animal viruses including canine distemper virus (CDV), Schmallenberg virus (SBV), caprine herpesvirus 1 (CpHV-1), and bovine herpesvirus 1 (BoHV-1). Oreoch-1 exhibited a strong antiviral effect, demonstrating an inhibition of infection at concentrations in the micromolar range. The mechanism of action involves the interference with viral entry into host cells and a direct interaction between oreoch-1 and the viral envelope. In addition, we observed that the peptide could also interact with the cell during the CDV infection. These findings not only highlight the efficacy of oreoch-1 in inhibiting viral infection but also emphasize the potential of fish-derived peptides, specifically oreoch-1, as effective antiviral agents against viral infections affecting animals, whose potential to spill into humans is high. This research contributes valuable insights to the ongoing quest for novel antiviral drugs with the potential to mitigate the impact of infectious diseases on a global scale.
Collapse
Affiliation(s)
- Bianca M Nastri
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa Giugliano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Laura Di Clemente
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carla Capasso
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples, Italy
| | - Valentina Iovane
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- UOC of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
2
|
Ahmad F, Ahmad S, Husain A, Pandey N, Khubaib M, Sharma R. Role of inflammatory cytokine burst in neuro-invasion of Japanese Encephalitis virus infection: an immunotherapeutic approaches. J Neurovirol 2024; 30:251-265. [PMID: 38842651 DOI: 10.1007/s13365-024-01212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Japanese Encephalitis remains a significant global health concern, contributing to millions of deaths annually worldwide. Microglial cells, as key innate immune cells within the central nervous system (CNS), exhibit intricate cellular structures and possess molecular phenotypic plasticity, playing pivotal roles in immune responses during CNS viral infections. Particularly under viral inflammatory conditions, microglial cells orchestrate innate and adaptive immune responses to mitigate viral invasion and dampen inflammatory reactions. This review article comprehensively summarizes the pathophysiology of viral invasion into the CNS and the cellular interactions involved, elucidating the roles of various immune mediators, including pro-inflammatory cytokines, in neuroinflammation. Leveraging this knowledge, strategies for modulating inflammatory responses and attenuating hyperactivation of glial cells to mitigate viral replication within the brain are discussed. Furthermore, current chemotherapeutic and antiviral drugs are examined, elucidating their mechanisms of action against viral replication. This review aims to provide insights into therapeutic interventions for Japanese Encephalitis and related viral infections, ultimately contributing to improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Firoz Ahmad
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, 224001 Uttar Pradesh, India., 224001, Faizabad, Uttar Pradesh, India
| | - Adil Husain
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226016, Uttar Pradesh, India
| | - Niharika Pandey
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Mohd Khubaib
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Rolee Sharma
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India.
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur, 228024, Uttar Pradesh, India.
| |
Collapse
|
3
|
Zhang X, Xia H, Wang Q, Cui M, Zhang C, Wang Q, Liu X, Chen K. SOCSs: important regulators of host cell susceptibility or resistance to viral infection. Z NATURFORSCH C 2023; 78:327-335. [PMID: 37233326 DOI: 10.1515/znc-2023-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Suppressors of cytokine signaling (SOCSs) are implicated in viral infection and host antiviral innate immune response. Recent studies demonstrate that viruses can hijack SOCSs to inhibit Janus kinase-signal transducers and activators of transcription (JAK-STAT) pathway, block the production and signaling of interferons (IFNs). At the same time, viruses can hijack SOCS to regulate non-IFN factors to evade antiviral response. Host cells can also regulate SOCSs to resist viral infection. The competition of the control of SOCSs may largely determine the fate of viral infection and the susceptibility or resistance of host cells, which is of significance for development of novel antiviral therapies targeting SOCSs. Accumulating evidence reveal that the regulation and function of SOCSs by viruses and host cells are very complicated, which is determined by characteristics of both viruses and host cell types. This report presents a systematic review to evaluate the roles of SOCSs in viral infection and host antiviral responses. One of messages worth attention is that all eight SOCS members should be investigated to accurately characterize their roles and relative contribution in each viral infection, which may help identify the most effective SOCS to be used in "individualized" antiviral therapy.
Collapse
Affiliation(s)
- Xin Zhang
- Jiangsu University, Zhenjiang, 212013, China
| | - Hengchuan Xia
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qian Wang
- Jiangsu University, Zhenjiang, China
| | - Miao Cui
- Jiangsu University, Zhenjiang, Jiangsu, China
| | - Cong Zhang
- Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | | | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Zhu Y, Chen S, Lurong Q, Qi Z. Recent Advances in Antivirals for Japanese Encephalitis Virus. Viruses 2023; 15:v15051033. [PMID: 37243122 DOI: 10.3390/v15051033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Culex mosquitoes are the primary vectors of the Japanese encephalitis virus (JEV). Since its discovery in 1935, Japanese encephalitis (JE), caused by JEV, has posed a significant threat to human health. Despite the widespread implementation of several JEV vaccines, the transmission chain of JEV in the natural ecosystem has not changed, and the vector of transmission cannot be eradicated. Therefore, JEV is still the focus of attention for flaviviruses. At present, there is no clinically specific drug for JE treatment. JEV infection is a complex interaction between the virus and the host cell, which is the focus of drug design and development. An overview of antivirals that target JEV elements and host factors is presented in this review. In addition, drugs that balance antiviral effects and host protection by regulating innate immunity, inflammation, apoptosis, or necrosis are reviewed to treat JE effectively.
Collapse
Affiliation(s)
- Yongzhe Zhu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Shenglin Chen
- Department of Clinic Laboratory Diagnostics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Qilin Lurong
- Department of Geriatrics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
Srivastava KS, Jeswani V, Pal N, Bohra B, Vishwakarma V, Bapat AA, Patnaik YP, Khanna N, Shukla R. Japanese Encephalitis Virus: An Update on the Potential Antivirals and Vaccines. Vaccines (Basel) 2023; 11:vaccines11040742. [PMID: 37112654 PMCID: PMC10146181 DOI: 10.3390/vaccines11040742] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Japanese encephalitis virus (JEV) is the causal agent behind Japanese encephalitis (JE), a potentially severe brain infection that spreads through mosquito bites. JE is predominant over the Asia-Pacific Region and has the potential to spread globally with a higher rate of morbidity and mortality. Efforts have been made to identify and select various target molecules essential in JEV’s progression, but until now, no licensed anti-JEV drug has been available. From a prophylactic point of view, a few licensed JE vaccines are available, but various factors, viz., the high cost and different side effects imposed by them, has narrowed their global use. With an average occurrence of >67,000 cases of JE annually, there is an urgent need to find a suitable antiviral drug to treat patients at the acute phase, as presently only supportive care is available to mitigate infection. This systematic review highlights the current status of efforts put in to develop antivirals against JE and the available vaccines, along with their effectiveness. It also summarizes epidemiology, structure, pathogenesis, and potential drug targets that can be explored to develop a new range of anti-JEV drugs to combat JEV infection globally.
Collapse
|
6
|
Zhou J, Feng M, Zhang W, Kuang R, Zou Q, Su J, Yuan G. Oral administration of hepcidin and chitosan benefits growth, immunity, and gut microbiota in grass carp ( Ctenopharyngodon idella). Front Immunol 2022; 13:1075128. [PMID: 36591242 PMCID: PMC9798086 DOI: 10.3389/fimmu.2022.1075128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Intensive high-density culture patterns are causing an increasing number of bacterial diseases in fish. Hepcidin links iron metabolism with innate immunity in the process of resisting bacterial infection. In this study, the antibacterial effect of the combination of hepcidin (Cihep) and chitosan (CS) against Flavobacterium columnare was investigated. The dosing regimen was also optimized by adopting a feeding schedule of every three days and every seven days. After 56 days of feeding experiment, grass carp growth, immunity, and gut microbiota were tested. In vitro experiments, Cihep and CS can regulate iron metabolism and antibacterial activity, and that the combination of Cihep and CS had the best protective effect. In vivo experiments, Cihep and CS can improve the growth index of grass carp. After challenge with Flavobacterium columnare, the highest survival rate was observed in the Cihep+CS-3d group. By serum biochemical indicators assay and Prussian blue staining, Cihep and CS can increase iron accumulation and decrease serum iron levels. The contents of lysozyme and superoxide dismutase in Cihep+CS-3d group increased significantly. Meanwhile, Cihep and CS can significantly reduce the pathological damage of gill tissue. The 16S rRNA sequencing results showed that Cihep and CS can significantly increase the abundance and diversity of grass carp gut microbiota. These results indicated that the protective effect of consecutive 3-day feeding followed by a 3-day interval was better than that of consecutive 7-day feeding followed by a 7-day interval, and that the protective effect of Cihep in combination with chitosan was better than that of Cihep alone. Our findings optimize the feeding pattern for better oral administration of Cihep in aquaculture.
Collapse
Affiliation(s)
- Jiancheng Zhou
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China,Wuhan DaBeiNong (DBN) Aquaculture Technology Co. LTD, Wuhan, Hubei, China
| | - Mengzhen Feng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weixiang Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Kuang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qi Zou
- Wuhan DaBeiNong (DBN) Aquaculture Technology Co. LTD, Wuhan, Hubei, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China,*Correspondence: Gailing Yuan,
| |
Collapse
|
7
|
Nie M, Zhou Y, Li F, Deng H, Zhao M, Huang Y, Jiang C, Sun X, Xu Z, Zhu L. Epidemiological investigation of swine Japanese encephalitis virus based on RT-RAA detection method. Sci Rep 2022; 12:9392. [PMID: 35672440 PMCID: PMC9172605 DOI: 10.1038/s41598-022-13604-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
JEV is one of the zoonotic pathogens that cause serious diseases in humans. JEV infection can cause abortion, mummified foetus and stillbirth in sows, orchitis and semen quality decline in boars, causing huge economic losses to pig industry. In order to investigate the epidemiology of JEV in pigs in Sichuan province, a rapid and efficient fluorescent Reverse transcription recombinase-aided amplification (RT-RAA) detection method was established. Aborted fetuses and testicular swollen boar samples were detected by RT-RAA in pigs in the mountain areas around Sichuan Basin, and the detection rate of JEV was 6.49%. The positive samples were identified as JEV GI strain and GIIIstrain by sequencing analysis. We analyzed the whole gene sequence of a positive sample for the GI virus. The Envelope Protein (E protein) phylogenetic tree analysis was far related to the Chinese vaccine strain SA14-14-2, and was most closely related to the JEV GI strains SH17M-07 and SD0810 isolated from China. The results showed that we established an efficient, accurate and sensitive method for clinical detection of JEV, and JEV GI strains were prevalent in Sichuan area. It provides reference for the prevention and control of JEV in Sichuan.
Collapse
|
8
|
Antiviral drug research for Japanese encephalitis: an updated review. Pharmacol Rep 2022; 74:273-296. [PMID: 35182390 PMCID: PMC8964565 DOI: 10.1007/s43440-022-00355-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Japanese encephalitis (JE) caused by the Japanese encephalitis virus (JEV) is one of Asia's most common viral encephalitis. JEV is a flavivirus, common in rural and sub-urban regions of Asian countries. Although only 1% of JEV-infected individuals develop JE, there is a 20-30% chance of death among these individuals and possible neurological sequelae post-infection. No licensed anti-JE drugs are currently available, despite extensive efforts to develop them. Literature search was performed using databases such as PubMed Central, Google Scholar, Wiley Online Library, etc. using keywords such as Japanese encephalitis virus, antiviral drugs, antiviral drug screening, antiviral drug targets, etc. From around 230 papers/abstracts and research reviews retrieved and reviewed for this study, approximately 180 most relevant and important ones have been cited. Different approaches in drug testing and various antiviral drug targets explored so far have been thoroughly searched from the literature and compiled, besides addressing the future perspectives of the antiviral drug development strategies. Although the development of effective anti-JE drugs is an urgent issue, only supportive care is currently available. Recent advancements in understanding the biology of infection and new drug targets have been promising improvements. Despite hindrances such as the unavailability of a proper drug delivery system or a treatment regimen irrespective of the stage of infection, several promising anti-JE candidate molecules are in different phases of clinical trials. Nonetheless, efficient therapy against JEV is expected to be achieved with drug combinations and a highly targeted drug delivery system soon.
Collapse
|
9
|
Sumon TA, Hussain MA, Hasan M, Rashid A, Abualreesh MH, Jang WJ, Sharifuzzaman SM, Brown CL, Lee EW, Hasan MT. Antiviral peptides from aquatic organisms: Functionality and potential inhibitory effect on SARS-CoV-2. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 541:736783. [PMID: 33883784 PMCID: PMC8049179 DOI: 10.1016/j.aquaculture.2021.736783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/26/2021] [Accepted: 04/14/2021] [Indexed: 05/06/2023]
Abstract
Several antiviral peptides (AVPs) from aquatic organisms have been effective in interfering with the actions of infectious viruses, such as Human Immunodeficiency Virus-1 and Herpes Simplex Virus-1 and 2. AVPs are able to block viral attachment or entry into host cells, inhibit internal fusion or replication events by suppressing viral gene transcription, and prevent viral infections by modulating host immunity. Therefore, as promising therapeutics, the potential of aquatic AVPs for use against the COVID-19 pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is considered. At present no therapeutic drugs are yet available. A total of 32 AVPs derived from fish and shellfish species are discussed in this review paper with notes on their properties and mechanisms of action in the inhibition of viral diseases both in humans and animals, emphasizing on SARS-CoV-2. The molecular structure of novel SARS-CoV-2 with its entry mechanisms, clinical signs and symptoms are also discussed. In spite of only a few study of these AVPs against SARS-CoV-2, aquatic AVPs properties and infection pathways (entry, replication and particle release) into coronaviruses are linked in this paper to postulate an analysis of their potential but unconfirmed actions to impair SARS-CoV-2 infection in humans.
Collapse
Affiliation(s)
- Tofael Ahmed Sumon
- Department of Fish Health Management, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Ashraf Hussain
- Department of Fisheries Technology and Quality Control, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Aminur Rashid
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Muyassar Hamid Abualreesh
- Department of Marine Biology, Faculty of Marine Science, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Won Je Jang
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - S M Sharifuzzaman
- Institute of Marine Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Christopher Lyon Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan, South Korea
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Md Tawheed Hasan
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
10
|
Phan-Aram P, Mahasri G, Kayansamruaj P, Amparyup P, Srisapoome P. Immune Regulation, but Not Antibacterial Activity, Is a Crucial Function of Hepcidins in Resistance against Pathogenic Bacteria in Nile Tilapia ( Oreochromis niloticus Linn.). Biomolecules 2020; 10:biom10081132. [PMID: 32751990 PMCID: PMC7464455 DOI: 10.3390/biom10081132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, the functions of a recombinant propeptide (rProOn-Hep1) and the synthetic FITC-labelled mature peptides sMatOn-Hep1 and sMatOn-Hep2 were analyzed. Moreover, sMatOn-Hep1 and sMatOn-Hep2 were mildly detected in the lymphocytes of peripheral blood mononuclear cells (PBMCs) and strongly detected in head kidney macrophages. The in vitro binding and antibacterial activities of these peptides were slightly effective against several pathogenic bacteria. Immune regulation by sMatOn-Hep1 was also analyzed, and only sMatOn-Hep1 significantly enhanced the phagocytic index in vitro (p < 0.05). Interestingly, intraperitoneal injection of sMatOn-Hep1 (10 or 100 µg) significantly elevated the phagocytic activity, phagocytic index, and lysozyme activity and clearly decreased the iron ion levels in the livers of the treated fish (p < 0.05). Additionally, sMatOn-Hep1 enhanced the expression levels of CC and CXC chemokines, transferrin and both On-Hep genes in the liver, spleen and head kidney, for 1–96 h after injection, but did not properly protect the experimental fish from S. agalactiae infection after 7 days of treatment. However, the injection of S. agalactiae and On-Heps indicated that 100 μg of sMatOn-Hep1 was very effective, while 100 μg of rProOn-Hep1 and sMatOn-Hep2 demonstrated moderate protection. Therefore, On-Hep is a crucial iron-regulating molecule and a key immune regulator of disease resistance in Nile tilapia.
Collapse
Affiliation(s)
- Pagaporn Phan-Aram
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (P.P.-A.); (P.K.)
| | - Gunanti Mahasri
- Department of Fish Health Management and Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C Mulyorejo, Surabaya 60115, Indonesia;
| | - Pattanapon Kayansamruaj
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (P.P.-A.); (P.K.)
| | - Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (P.P.-A.); (P.K.)
- Correspondence:
| |
Collapse
|
11
|
Baindara P, Mandal SM. Antimicrobial Peptides and Vaccine Development to Control Multi-drug Resistant Bacteria. Protein Pept Lett 2019; 26:324-331. [PMID: 31237198 DOI: 10.2174/0929866526666190228162751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) reported to increase globally at alarming levels in the recent past. A number of potential alternative solutions discussed and implemented to control AMR in bacterial pathogens. Stringent control over the clinical application of antibiotics for a reduction in uses is a special consideration along with alternative solutions to fight against AMR. Although alternatives to conventional antibiotics like antimicrobial peptides (AMP) might warrant serious consideration to fight against AMR, there is a thriving recognition for vaccines in encountering the problem of AMR. Vaccines can reduce the prevalence of AMR by reducing the number of specific pathogens, which result in cutting down the antimicrobial need and uses. However, conventional vaccines produced using live or attenuated microorganisms while the presence of immunologically redundant biological components or impurities might cause major side effects and health related problems. Here we discussed AMPs based vaccination strategies as an emerging concept to overcome the disadvantages of traditional vaccines while boosting the AMPs to control multidrug resistant bacteria or AMR. Nevertheless, the poor immune response is a major challenge in the case of peptide vaccines as minimal antigenic epitopes used for immunization in peptide vaccines.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Santi M Mandal
- Central Research Facility, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| |
Collapse
|
12
|
Hu H, Guo N, Chen S, Guo X, Liu X, Ye S, Chai Q, Wang Y, Liu B, He Q. Antiviral activity of Piscidin 1 against pseudorabies virus both in vitro and in vivo. Virol J 2019; 16:95. [PMID: 31366370 PMCID: PMC6670175 DOI: 10.1186/s12985-019-1199-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background Swine-origin virus infection spreading widely could cause significant economic loss to porcine industry. Novel antiviral agents need to be developed to control this situation. Methods In this study, we evaluated the activities of five broad-spectrum antimicrobial peptides (AMPs) against several important swine-origin pathogenic viruses by TCID50 assay. Plaque reduction assay and cell apoptosis assay were also used to test the activity of the peptides. Protection effect of piscidin against pseudorabies virus (PRV) was also examined in mouse model. Results Piscidin (piscidin 1), caerin (caerin 1.1) and maculatin (maculatin 1.1) could inhibit PRV by direct interaction with the virus particles in a dose-dependent manner and they could also protect the cells from PRV-induced apoptosis. Among the peptides tested, piscidin showed the strongest activity against PRV. Moreover, in vivo assay showed that piscidin can reduce the mortality of mice infected with PRV. Conclusion In vitro and in vivo experiments indicate that piscidin has antiviral activity against PRV.
Collapse
Affiliation(s)
- Han Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, China
| | - Nan Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuhua Chen
- Pig health substantial innovation center, Wuhan, Hubei, China
| | - Xiaozhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoli Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyi Ye
- Pig health substantial innovation center, Wuhan, Hubei, China
| | - Qingqing Chai
- Feinberg school of medicine, northwestern university, Boston, MA, USA
| | - Yang Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, China
| | - Binlei Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China. .,Pig health substantial innovation center, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Wu SH, Lin HJ, Lin WF, Wu JL, Gong HY. A potent tilapia secreted granulin peptide enhances the survival of transgenic zebrafish infected by Vibrio vulnificus via modulation of innate immunity. FISH & SHELLFISH IMMUNOLOGY 2018; 75:74-90. [PMID: 29408220 DOI: 10.1016/j.fsi.2018.01.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/22/2017] [Accepted: 01/26/2018] [Indexed: 06/07/2023]
Abstract
Progranulin (PGRN) is a multi-functional growth factor that mediates cell proliferation, survival, migration, tumorigenesis, wound healing, development, and anti-inflammation activity. A novel alternatively spliced transcript from the short-form PGRN1 gene encoding a novel, secreted GRN peptide composed of 20-a.a. signal peptide and 41-a.a. GRN named GRN-41 was identified to be abundantly expressed in immune-related organs including spleen, head kidney, and intestine of Mozambique tilapia. The expression of GRN-41 and PGRN1 were further induced in the spleen of tilapia challenged with Vibrio vulnificus at 3 h post infection (hpi) and 6 hpi, respectively. In this study, we established three transgenic zebrafish lines expressing the secreted GRN-41, GRN-A and PGRN1 of Mozambique tilapia specifically in muscle. The relative percent of survival (RPS) was enhanced in adult transgenic zebrafish expressing tilapia GRN-41 (68%), GRN-A (32%) and PGRN1 (36%) compared with control transgenic zebrafish expressing AcGFP after challenge with V. vulnificus. It indicates tilapia GRN-41 is a potent peptide against V. vulnificus infection. The secreted tilapia GRN-41 can induce the expression of innate immune response-related genes, such as TNFa, TNFb, IL-8, IL-1β, IL-6, IL-26, IL-21, IL-10, complement C3, lysozyme (Lyz) and the hepatic antimicrobial peptide hepcidin (HAMP), in adult transgenic zebrafish without V. vulnificus infection. The tilapia GRN-41 peptide can enhance the innate immune response by further elevating TNFb, IL-1β, IL-8, IL-6, and HAMP expression in early responsive time to the V. vulnificus challenge in transgenic zebrafish. Our results suggest that the novel GRN-41 peptide generated from alternative splicing of the tilapia PGRN1 gene is a potent peptide that defends against V. vulnificus in the transgenic zebrafish model by modulation of innate immunity.
Collapse
Affiliation(s)
- Sheng-Han Wu
- Division of Life Science, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hong-Jie Lin
- Division of Life Science, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wen-Fu Lin
- Division of Life Science, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences and Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hong-Yi Gong
- Division of Life Science, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
14
|
Wei X, Sarath Babu V, Lin L, Hu Y, Zhang Y, Liu X, Su J, Li J, Zhao L, Yuan G. Hepcidin protects grass carp (Ctenopharyngodon idellus) against Flavobacterium columnare infection via regulating iron distribution and immune gene expression. FISH & SHELLFISH IMMUNOLOGY 2018; 75:274-283. [PMID: 29452250 DOI: 10.1016/j.fsi.2018.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 06/08/2023]
Abstract
Columnaris disease (CD) caused by Flavobacterium columnare (F. columnare) is lack of knowledge on effective treatment measures. Bacterial pathogens require iron as an essential nutrient to infect the host. While hepcidin acts as a master regulator in iron metabolism, its contribution to host defense is emerging as complex and multifaceted. In vitro, recombinant Ctenopharyngodon idellus (C. idellus) hepcidin (CiHep) and synthetic CiHep both showed the ability to increase the expression of hepcidin and ferritin in C. idellus kidney cells, especially the recombinant CiHep. In vivo, recombinant CiHep improved the survival rate of C. idellus challenged with F. columnare. In addition, the fish fed diet containing recombinant CiHep (group H-1) had a higher survival rate than other pretreatment groups. The study showed that recombinant CiHep regulated iron metabolism causing iron redistribution, decreasing serum iron levels and increasing iron accumulation in the hepatopancreas. Moreover, the expression of iron-related genes was upregulated in various degrees at a different time except for group H-1. Immune-related genes were also evaluated, showing higher expression in the groups pretreated with CiHep at an early stage of infection. Of note, a clear upregulation of more immune genes occurred in the groups pretreated with recombinant CiHep than that pretreated with synthetic CiHep in the late stage of infection. In conclusion, the recombinant CiHep has a protective effect on the host response to bacterial pathogens. We speculate that hepcidin protects C. idellus against F. columnare infection via regulating the iron distribution and immune gene expression.
Collapse
Affiliation(s)
- Xiaolei Wei
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - V Sarath Babu
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Li Lin
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Yazhen Hu
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, China
| | - Yulei Zhang
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, China
| | - Jianguo Su
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, China
| | - Jun Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI 49783, USA; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Lijuan Zhao
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| | - Gailing Yuan
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, China.
| |
Collapse
|
15
|
Karthikeyan A, Shanmuganathan S, Pavulraj S, Prabakar G, Pavithra S, Porteen K, Elaiyaraja G, Malik YS. JAPANESE ENCEPHALITIS, RECENT PERSPECTIVES ON VIRUS GENOME, TRANSMISSION, EPIDEMIOLOGY, DIAGNOSIS AND PROPHYLACTIC INTERVENTIONS. ACTA ACUST UNITED AC 2017. [DOI: 10.18006/2017.5(6).730.748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Yuan L, Wu R, Liu H, Wen X, Huang X, Wen Y, Ma X, Yan Q, Huang Y, Zhao Q, Cao S. Tissue tropism and molecular characterization of a Japanese encephalitis virus strain isolated from pigs in southwest China. Virus Res 2016; 215:55-64. [DOI: 10.1016/j.virusres.2016.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
|
17
|
Gui L, Zhang P, Zhang Q, Zhang J. Two hepcidins from spotted scat (Scatophagus argus) possess antibacterial and antiviral functions in vitro. FISH & SHELLFISH IMMUNOLOGY 2016; 50:191-9. [PMID: 26845697 DOI: 10.1016/j.fsi.2016.01.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 05/06/2023]
Abstract
Hepcidins are small cysteine-rich antimicrobial peptides that play an important role in host immunity against pathogenic organisms. In this study, two hepcidins, SA-hepcidin1 and SA-hepcidin2, were cloned from spotted scat (Scatophagus argus), and the tissue distributions of SA-hepcidins were determined. In addition, mature SA-hepcidin peptides were synthesized to allow evaluation of their antimicrobial and antiviral functions in vitro. SA-hepcidin1 belongs to the HAMP1 class and is widely expressed in all tested tissues from spotted scat, whereas SA-hepcidin2 belongs to the HAMP2 class and present only in the liver. The synthetic SA-hepcidins had similar levels of antibacterial activity against Gram-positive and Gram-negative bacteria; however, the antibacterial activity of SA-hepcidin1 was stronger than that of SA-hepcidin2. The antiviral activities of the synthetic SA-hepcidins were assessed against Siniperca chuatsi rhabdovirus (SCRV) and largemouth bass Micropterus salmoides reovirus (MsReV) in epithelioma papulosum cyprini (EPC) and grass carp fin (GCF) cells. SA-hepcidin2 had antiviral activity, but SA-hepcidin1 did not. The results of this study suggest that SA-hepcidins are important multifunctional proteins in the spotted scat immune system that are involved in resistance to various pathogens.
Collapse
Affiliation(s)
- Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Peipei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qiya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junbin Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
18
|
The Use of a Liposomal Formulation Incorporating an Antimicrobial Peptide from Tilapia as a New Adjuvant to Epirubicin in Human Squamous Cell Carcinoma and Pluripotent Testicular Embryonic Carcinoma Cells. Int J Mol Sci 2015; 16:22711-34. [PMID: 26393585 PMCID: PMC4613332 DOI: 10.3390/ijms160922711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 02/06/2023] Open
Abstract
This study aims to explore the effects and mechanisms of hepcidin, a potential antimicrobial peptide from Tilapia, and epirubicin (Epi), an antineoplastic agent, on the generation of reactive oxygen species (ROS) and link the ROS levels to the reversal mechanisms of multidrug resistance (MDR) by epirubicin and hepcidin in human squamous cell carcinoma SCC15 and human embryonal carcinoma NT2D1 cells. The cells, pretreated with hepcidin, epirubicin, or a combination of these compounds in PEGylated liposomes, were used to validate the molecular mechanisms involved in inhibiting efflux transporters and inducing apoptosis as evaluated by cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of this combination. We found that hepcidin significantly enhanced the cytotoxicity of epirubicin in liposomes. The co-incubation of epirubicin with hepcidin in liposomes intensified the ROS production, including hydrogen peroxide and superoxide free radicals. Hepcidin significantly increased epirubicin intracellular uptake into NT2D1 and SCC15 cells, as supported by the diminished mRNA expressions of MDR1, MDR-associated protein (MRP) 1, and MRP2. Hepcidin and/or epirubicin in liposomes triggered apoptosis, as verified by the reduced mitochondrial membrane potential, increased sub-G1 phase of cell cycle, incremental populations of apoptosis using annexin V/PI assay, and chromatin condensation. As far as we know, this is the first example showing that PEGylated liposomal TH1-5 and epirubicin gives rise to cell death in human squamous carcinoma and testicular embryonic carcinoma cells through the reduced epirubicin efflux via ROS-mediated suppression of P-gp and MRPs and concomitant initiation of mitochondrial apoptosis pathway. Hence, hepcidin in PEGylated liposomes may function as an adjuvant to anticancer drugs, thus demonstrating a novel strategy for reversing MDR.
Collapse
|
19
|
Kundu K, Dutta K, Nazmi A, Basu A. Japanese encephalitis virus infection modulates the expression of suppressors of cytokine signaling (SOCS) in macrophages: implications for the hosts' innate immune response. Cell Immunol 2013; 285:100-10. [PMID: 24140964 DOI: 10.1016/j.cellimm.2013.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 12/29/2022]
Abstract
Viruses have evolved various mechanisms to subvert the host's immune system and one of them is preventing the infected cells from sending out chemotactic signals to activate the adaptive immune response. Japanese encephalitis virus (JEV) is a neuropathologic flavivirus that is responsible for significant number of child mortalities in various parts of South-East Asia. In this study we show that JEV modulates suppressors of cytokine signaling (SOCS)1 and 3 expression in macrophages to bring about changes in the JAK-STAT signaling cascade, so as to inhibit proinflammatory cyto/chemokine release. Using real time PCR, immunoblotting and immunofluorescent staining, we show that the expression of type 1 interferons and intracellular expression of viral genes are also affected over time. Also, following the initial activation of SOCS1 and 3, there is production of interferon-inducible anti-viral proteins in the cells which may be responsible for inhibiting viral replication. However, even at later time points, viral genes were still detected from the macrophages, albeit at lesser quantities, than earlier time points, indicative of intracellular persistence of the virus in a latent form. On knocking down SOCS1 and SOCS3 we found a significant decrease in viral gene expression at an early time point, indicating the dysregulation of the signaling cascade leading to increased production of interferon-inducible anti-viral proteins. Taken together, our study provides an insight into the role of JEV infection in modulating the JAK-STAT pathway with the help of SOCS leading to the generation of an antiviral innate immune response.
Collapse
Affiliation(s)
- Kiran Kundu
- National Brain Research Centre, Manesar 122051, India
| | | | | | | |
Collapse
|
20
|
Abstract
Synthesis and large-scale manufacturing technologies are now available for the commercial production of even the most complex peptide anti-infectives. Married with the potential of this class of molecule as the next generation of effective, resistance-free and safe antimicrobials, and a much better understanding of their biology, pharmacology and pharmacodynamics, the first regulatory approvals and introduction into clinical practice of these promising drug candidates will likely be soon. This is a key juncture in the history/life cycle of peptide anti-infectives and, perhaps, their commercial and therapeutic potential is about to be realized. This review highlights the promise of these agents as the next generation of therapeutics and summarizes the challenges faced in, and lessons learned from, the past.
Collapse
|