1
|
Du J, Chu Y, Hu Y, Liu J, Liu H, Wang H, Yang C, Wang Z, Yu A, Ran J. A multifunctional self-reinforced injectable hydrogel for enhancing repair of infected bone defects by simultaneously targeting macrophages, bacteria, and bone marrow stromal cells. Acta Biomater 2024:S1742-7061(24)00597-X. [PMID: 39396629 DOI: 10.1016/j.actbio.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Injectable hydrogels (IHs) have demonstrated huge potential in promoting repair of infected bone defects (IBDs), but how to endow them with desired anti-bacterial, immunoregulatory, and osteo-inductive properties as well as avoid mechanical failure during their manipulation are challenging. In this regard, we developed a multifunctional AOHA-RA/Lap nanocomposite IH for IBDs repair, which was constructed mainly through two kinds of reversible cross-links: (i) the laponite (Lap) crystals mediated electrostatic interactions; (ii) the phenylboronic acid easter bonds between the 4-aminobenzeneboronic acid grafted oxidized hyaluronic acid (AOHA) and rosmarinic acid (RA). Due to the specific structural composition, the AOHA-RA/Lap IH demonstrated superior injectability, self-recoverability, spatial adaptation, and self-reinforced mechanical properties after being injected to the bone defect site. In addition, the RA molecules could be locally released from the hydrogel following a Weibull model for over 10 days. Systematic in vitro/vivo assays proved the strong anti-bacterial activity of the hydrogel against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, its capability of inducing M2 polarization of macrophages (Mφ) and osteogenic differentiation of bone marrow stromal cells (BMSCs) was verified either, and the mechanism of the former was identified to be related to the JAK1-STAT1 and PI3K-AKT signaling pathways and that of the latter was identified to be related to the calcium signaling pathway, extracellular matrix (ECM) receptor interaction and TGF-β signaling pathway. After being implanted to a S. aureus infected rat skull defect model, the AOHA-RA/Lap IH significantly accelerated repair of IBDs without causing significant systemic toxicity. STATEMENT OF SIGNIFICANCE: Rosmarinic acid and laponite were utilized to develop an injectable hydrogel, promising for accelerating repair of infected bone defects in clinic. The gelation of the hydrogel was completely driven by two kinds of reversible cross-links, which endow the hydrogel superior spatial adaption, self-recoverability, and structural stability. The as-prepared hydrogel demonstrated superior anti-bacterial/anti-biofilm activity and could induce M2 polarization of macrophages and osteogenic differentiation of BMSCs. The mechanism behind macrophages polarization was identified to be related to the JAK1-STAT1 and PI3K-AKT signaling pathways. The mechanism behind osteogenic differentiation of BMSCs was identified to be related to the ECM receptor interaction and calcium signaling/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Jingyi Du
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Ying Chu
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Yan Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430000, China
| | - Jin Liu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Hanghang Liu
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Huimin Wang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Changying Yang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430000, China.
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430000, China.
| | - Jiabing Ran
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
2
|
Huang B, Li S, Dai S, Lu X, Wang P, Li X, Zhao Z, Wang Q, Li N, Wen J, Liu Y, Wang X, Man Z, Li W, Liu B. Ti 3C 2T x MXene-Decorated 3D-Printed Ceramic Scaffolds for Enhancing Osteogenesis by Spatiotemporally Orchestrating Inflammatory and Bone Repair Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400229. [PMID: 38973266 PMCID: PMC11425883 DOI: 10.1002/advs.202400229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/10/2024] [Indexed: 07/09/2024]
Abstract
Inflammatory responses play a central role in coordinating biomaterial-mediated tissue regeneration. However, precise modulation of dynamic variations in microenvironmental inflammation post-implantation remains challenging. In this study, the traditional β-tricalcium phosphate-based scaffold is remodeled via ultrathin MXene-Ti3C2 decoration and Zn2+/Sr2+ ion-substitution, endowing the scaffold with excellent reactive oxygen species-scavenging ability, near-infrared responsivity, and enhanced mechanical properties. The induction of mild hyperthermia around the implant via periodic near-infrared irradiation facilitates spatiotemporal regulation of inflammatory cytokines secreted by a spectrum of macrophage phenotypes. The process initially amplifies the pro-inflammatory response, then accelerates M1-to-M2 macrophage polarization transition, yielding a satisfactory pattern of osteo-immunomodulation during the natural bone healing process. Later, sustained release of Zn2+/Sr2+ ions with gradual degradation of the 3D scaffold maintains the favorable reparative M2-dominated immunological microenvironment that supports new bone mineralization. Precise temporal immunoregulation of the bone healing process by the intelligent 3D scaffold enhances bone regeneration in a rat cranial defect model. This strategy paves the way for the application of β-tricalcium phosphate-based materials to guide the dynamic inflammatory and bone tissue responses toward a favorable outcome, making clinical treatment more predictable and durable. The findings also demonstrate that near-infrared irradiation-derived mild hyperthermia is a promising method of immunomodulation.
Collapse
Affiliation(s)
- Benzhao Huang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Shishuo Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Shimin Dai
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Xiaoqing Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Peng Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Xiao Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Zhibo Zhao
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Qian Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Ningbo Li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P. R. China
| | - Jie Wen
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P. R. China
| | - Yifang Liu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P. R. China
| | - Xin Wang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P. R. China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250062, P. R. China
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Bing Liu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P. R. China
| |
Collapse
|
3
|
Gangrade A, Zehtabi F, Ohe JY, Kouchehbaghi NH, Voskanian L, Haghniaz R, Shepes M, Rashad A, Ermis M, Khademhosseini A, Barros NRD. Engineered Regenerative and Adhesive Hydrogel for Concurrent Sealing and Healing of Enterocutaneous Fistulas. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39046205 DOI: 10.1021/acsami.4c05154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
In addressing the intricate challenges of enterocutaneous fistula (ECF) treatment, such as internal bleeding, effluent leakage, inflammation, and infection, our research is dedicated to introducing a regenerative adhesive hydrogel that can seal and expedite the healing process. A double syringe setup was utilized, with dopagelatin and platelet-rich plasma (PRP) in one syringe and Laponite and sodium periodate in another. The hydrogel begins to cross-link immediately after passing through a mixing tip and exhibits tissue adhesive properties. Results demonstrated that PRP deposits within the pores of the cross-linked hydrogel and releases sustainably, enhancing its regenerative capabilities. The addition of PRP further improved the mechanical properties and slowed down the degradation of the hydrogel. Furthermore, the hydrogel demonstrated cytocompatibility, hemostatic properties, and time-dependent macrophage M1 to M2 phase transition, suggesting the anti-inflammatory response of the material. In an in vitro bench test simulating high-pressure fistula conditions, the hydrogel effectively occluded pressures up to 300 mmHg. In conclusion, this innovative hydrogel holds promise for ECF treatment and diverse fistula cases, marking a significant advancement in its therapeutic approaches.
Collapse
Affiliation(s)
- Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Joo-Young Ohe
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
- Department of Oral & Maxillofacial Surgery, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, 1591634311 Tehran, Iran
| | - Leon Voskanian
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Matan Shepes
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil
| |
Collapse
|
4
|
ten Brink T, Damanik F, Rotmans JI, Moroni L. Unraveling and Harnessing the Immune Response at the Cell-Biomaterial Interface for Tissue Engineering Purposes. Adv Healthc Mater 2024; 13:e2301939. [PMID: 38217464 PMCID: PMC11468937 DOI: 10.1002/adhm.202301939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Biomaterials are defined as "engineered materials" and include a range of natural and synthetic products, designed for their introduction into and interaction with living tissues. Biomaterials are considered prominent tools in regenerative medicine that support the restoration of tissue defects and retain physiologic functionality. Although commonly used in the medical field, these constructs are inherently foreign toward the host and induce an immune response at the material-tissue interface, defined as the foreign body response (FBR). A strong connection between the foreign body response and tissue regeneration is suggested, in which an appropriate amount of immune response and macrophage polarization is necessary to trigger autologous tissue formation. Recent developments in this field have led to the characterization of immunomodulatory traits that optimizes bioactivity, the integration of biomaterials and determines the fate of tissue regeneration. This review addresses a variety of aspects that are involved in steering the inflammatory response, including immune cell interactions, physical characteristics, biochemical cues, and metabolomics. Harnessing the advancing knowledge of the FBR allows for the optimization of biomaterial-based implants, aiming to prevent damage of the implant, improve natural regeneration, and provide the tools for an efficient and successful in vivo implantation.
Collapse
Affiliation(s)
- Tim ten Brink
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Febriyani Damanik
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Joris I. Rotmans
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333ZAThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
5
|
Özcolak B, Erenay B, Odabaş S, Jandt KD, Garipcan B. Effects of bone surface topography and chemistry on macrophage polarization. Sci Rep 2024; 14:12721. [PMID: 38830871 PMCID: PMC11148019 DOI: 10.1038/s41598-024-62484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Surface structure plays a crucial role in determining cell behavior on biomaterials, influencing cell adhesion, proliferation, differentiation, as well as immune cells and macrophage polarization. While grooves and ridges stimulate M2 polarization and pits and bumps promote M1 polarization, these structures do not accurately mimic the real bone surface. Consequently, the impact of mimicking bone surface topography on macrophage polarization remains unknown. Understanding the synergistic sequential roles of M1 and M2 macrophages in osteoimmunomodulation is crucial for effective bone tissue engineering. Thus, exploring the impact of bone surface microstructure mimicking biomaterials on macrophage polarization is critical. In this study, we aimed to sequentially activate M1 and M2 macrophages using Poly-L-Lactic acid (PLA) membranes with bone surface topographical features mimicked through the soft lithography technique. To mimic the bone surface topography, a bovine femur was used as a model surface, and the membranes were further modified with collagen type-I and hydroxyapatite to mimic the bone surface microenvironment. To determine the effect of these biomaterials on macrophage polarization, we conducted experimental analysis that contained estimating cytokine release profiles and characterizing cell morphology. Our results demonstrated the potential of the hydroxyapatite-deposited bone surface-mimicked PLA membranes to trigger sequential and synergistic M1 and M2 macrophage polarizations, suggesting their ability to achieve osteoimmunomodulatory macrophage polarization for bone tissue engineering applications. Although further experimental studies are required to completely investigate the osteoimmunomodulatory effects of these biomaterials, our results provide valuable insights into the potential advantages of biomaterials that mimic the complex microenvironment of bone surfaces.
Collapse
Affiliation(s)
- Birgün Özcolak
- Biomimetic and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Boğaziçi University, 34684, Istanbul, Turkey
- Department of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Berkay Erenay
- Biomimetic and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Boğaziçi University, 34684, Istanbul, Turkey
| | - Sedat Odabaş
- Biomaterials and Tissue Engineering Laboratory (bteLAB), Department of Chemistry, Faculty of Science, Ankara University, 06560, Ankara, Turkey
- Interdisciplinary Research Unit for Advanced Materials (INTRAM), Ankara University, 06560, Ankara, Turkey
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
| | - Bora Garipcan
- Biomimetic and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Boğaziçi University, 34684, Istanbul, Turkey.
| |
Collapse
|
6
|
Moore JV, Burns J, McClelland N, Quinn J, McCoy CP. Understanding the properties of intermittent catheters to inform future development. Proc Inst Mech Eng H 2024; 238:713-727. [PMID: 37300485 PMCID: PMC11318220 DOI: 10.1177/09544119231178468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
Despite the extensive use of intermittent catheters (ICs) in healthcare, various issues persist for long-term IC users, such as pain, discomfort, infection, and tissue damage, including strictures, scarring and micro-abrasions. A lubricous IC surface is considered necessary to reduce patient pain and trauma, and therefore is a primary focus of IC development to improve patient comfort. While an important consideration, other factors should be routinely investigated to inform future IC development. An array of in vitro tests should be employed to assess IC's lubricity, biocompatibility and the risk of urinary tract infection development associated with their use. Herein, we highlight the importance of current in vitro characterisation techniques, the demand for optimisation and an unmet need to develop a universal 'toolkit' to assess IC properties.
Collapse
Affiliation(s)
| | | | | | | | - Colin P McCoy
- School of Pharmacy, Queen’s University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
7
|
Nie R, Zhang QY, Feng ZY, Huang K, Zou CY, Fan MH, Zhang YQ, Zhang JY, Li-Ling J, Tan B, Xie HQ. Hydrogel-based immunoregulation of macrophages for tissue repair and regeneration. Int J Biol Macromol 2024; 268:131643. [PMID: 38643918 DOI: 10.1016/j.ijbiomac.2024.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
The rational design of hydrogel materials to modulate the immune microenvironment has emerged as a pivotal approach in expediting tissue repair and regeneration. Within the immune microenvironment, an array of immune cells exists, with macrophages gaining prominence in the field of tissue repair and regeneration due to their roles in cytokine regulation to promote regeneration, maintain tissue homeostasis, and facilitate repair. Macrophages can be categorized into two types: classically activated M1 (pro-inflammatory) and alternatively activated M2 (anti-inflammatory and pro-repair). By regulating the physical and chemical properties of hydrogels, the phenotypic transformation and cell behavior of macrophages can be effectively controlled, thereby promoting tissue regeneration and repair. A full understanding of the interaction between hydrogels and macrophages can provide new ideas and methods for future tissue engineering and clinical treatment. Therefore, this paper reviews the effects of hydrogel components, hardness, pore size, and surface morphology on cell behaviors such as macrophage proliferation, migration, and phenotypic polarization, and explores the application of hydrogels based on macrophage immune regulation in skin, bone, cartilage, and nerve tissue repair. Finally, the challenges and future prospects of macrophage-based immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zi-Yuan Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Kai Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yue-Qi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bo Tan
- Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, PR China.
| |
Collapse
|
8
|
Kong Q, Gao S, Li P, Sun H, Zhang Z, Yu X, Deng F, Wang T. Calcitonin gene-related peptide-modulated macrophage phenotypic alteration regulates angiogenesis in early bone healing. Int Immunopharmacol 2024; 130:111766. [PMID: 38452411 DOI: 10.1016/j.intimp.2024.111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVES This study aimed to investigate the effect of calcitonin gene-related peptide (CGRP) on the temporal alteration of macrophage phenotypes and macrophage-regulated angiogenesis duringearlybonehealing and preliminarily elucidate the mechanism. METHODS In vivo, the rat mandibular defect models were established with inferior alveolar nerve transection (IANT) or CGRP receptor antagonist injection. Radiographicandhistologic assessments for osteogenesis, angiogenesis, and macrophage phenotypic alteration within bone defects were performed. In vitro, the effect and mechanism of CGRP on macrophage polarization and phenotypic alteration were analyzed. Then the conditioned medium (CM) from CGRP-treated M1 or M2 macrophages was used to culture human umbilical vein endothelial cells (HUVECs), and the CGRP's effect on macrophage-regulated angiogenesis was detected. RESULTS Comparable changes following IANT and CGRP blockade within bone defects were observed, including the suppression of early osteogenesis and angiogenesis, the prolonged M1 macrophage infiltration and the prohibited transition toward M2 macrophages around vascular endothelium. In vitro experiments showed that CGRP promoted M2 macrophage polarization while upregulating the expression of interleukin 6 (IL-6), a major cytokine that facilitates the transition from M1 to M2-dominant stage, in M1 macrophages via the activation of Yes-associated protein 1. Moreover, CGRP-treated macrophage-CM showed an anabolic effect on HUVECs angiogenesis compared with macrophage-CM and might prevail over the direct effect of CGRP on HUVECs. CONCLUSIONS Collectively, our results reveal the effect of CGRP on M1 to M2 macrophage phenotypic alteration possibly via upregulating IL-6 in M1 macrophages, and demonstrate the macrophage-regulated pro-angiogenic potential of CGRP in early bone healing.
Collapse
Affiliation(s)
- Qingci Kong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Siyong Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Pugeng Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Hanyu Sun
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhengchuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xiaolin Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Tianlu Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
9
|
Piatnitskaia S, Rafikova G, Bilyalov A, Chugunov S, Akhatov I, Pavlov V, Kzhyshkowska J. Modelling of macrophage responses to biomaterials in vitro: state-of-the-art and the need for the improvement. Front Immunol 2024; 15:1349461. [PMID: 38596667 PMCID: PMC11002093 DOI: 10.3389/fimmu.2024.1349461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024] Open
Abstract
The increasing use of medical implants in various areas of medicine, particularly in orthopedic surgery, oncology, cardiology and dentistry, displayed the limitations in long-term integration of available biomaterials. The effective functioning and successful integration of implants requires not only technical excellence of materials but also consideration of the dynamics of biomaterial interaction with the immune system throughout the entire duration of implant use. The acute as well as long-term decisions about the efficiency of implant integration are done by local resident tissue macrophages and monocyte-derived macrophages that start to be recruited during tissue damage, when implant is installed, and are continuously recruited during the healing phase. Our review summarized the knowledge about the currently used macrophages-based in vitro cells system that include murine and human cells lines and primary ex vivo differentiated macrophages. We provided the information about most frequently examined biomarkers for acute inflammation, chronic inflammation, foreign body response and fibrosis, indicating the benefits and limitations of the model systems. Particular attention is given to the scavenging function of macrophages that controls dynamic composition of peri-implant microenvironment and ensures timely clearance of microorganisms, cytokines, metabolites, extracellular matrix components, dying cells as well as implant debris. We outline the perspective for the application of 3D systems for modelling implant interaction with the immune system in human tissue-specific microenvironment avoiding animal experimentation.
Collapse
Affiliation(s)
- Svetlana Piatnitskaia
- Cell Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Guzel Rafikova
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
- Laboratory of Immunology, Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, Russia
| | - Azat Bilyalov
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Svyatoslav Chugunov
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Iskander Akhatov
- Laboratory of Mathematical modeling, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Julia Kzhyshkowska
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, Mannheim, Germany
| |
Collapse
|
10
|
He Y, Cen Y, Tian M. Immunomodulatory hydrogels for skin wound healing: cellular targets and design strategy. J Mater Chem B 2024; 12:2435-2458. [PMID: 38284157 DOI: 10.1039/d3tb02626d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Skin wounds significantly impact the global health care system and represent a significant burden on the economy and society due to their complicated dynamic healing processes, wherein a series of immune events are required to coordinate normal and sequential healing phases, involving multiple immunoregulatory cells such as neutrophils, macrophages, keratinocytes, and fibroblasts, since dysfunction of these cells may impede skin wound healing presenting persisting inflammation, impaired vascularization, and excessive collagen deposition. Therefore, cellular target-based immunomodulation is promising to promote wound healing as cells are the smallest unit of life in immune response. Recently, immunomodulatory hydrogels have become an attractive avenue to promote skin wound healing. However, a detailed and comprehensive review of cellular targets and related hydrogel design strategies remains lacking. In this review, the roles of the main immunoregulatory cells participating in skin wound healing are first discussed, and then we highlight the cellular targets and state-of-the-art design strategies for immunomodulatory hydrogels based on immunoregulatory cells that cover defect, infected, diabetic, burn and tumor wounds and related scar healing. Finally, we discuss the barriers that need to be addressed and future prospects to boost the development and prosperity of immunomodulatory hydrogels.
Collapse
Affiliation(s)
- Yinhai He
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Cen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Tian
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Xiao B, Adjei-Sowah E, Benoit DSW. Integrating osteoimmunology and nanoparticle-based drug delivery systems for enhanced fracture healing. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 56:102727. [PMID: 38056586 PMCID: PMC10872334 DOI: 10.1016/j.nano.2023.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Fracture healing is a complex interplay of molecular and cellular mechanisms lasting from days to weeks. The inflammatory phase is the first stage of fracture healing and is critical in setting the stage for successful healing. There has been growing interest in exploring the role of the immune system and novel therapeutic strategies, such as nanoparticle drug delivery systems in enhancing fracture healing. Advancements in nanotechnology have revolutionized drug delivery systems to the extent that they can modulate immune response during fracture healing by leveraging unique physiochemical properties. Therefore, understanding the intricate interactions between nanoparticle-based drug delivery systems and the immune response, specifically macrophages, is essential for therapeutic efficacy. This review provides a comprehensive overview of the relationship between the immune system and nanoparticles during fracture healing. Specifically, we highlight the influence of nanoparticle characteristics, such as size, surface properties, and composition, on macrophage activation, polarization, and subsequent immune responses. IMPACT STATEMENT: This review provides valuable insights into the interplay between fracture healing, the immune system, and nanoparticle-based drug delivery systems. Understanding nanoparticle-macrophage interactions can advance the development of innovative therapeutic approaches to enhance fracture healing, improve patient outcomes, and pave the way for advancements in regenerative medicine.
Collapse
Affiliation(s)
- Baixue Xiao
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY 14623, USA; Materials Science Program, University of Rochester, Rochester, NY 14623, USA; Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
12
|
Miszuk J, Sun H. Biomimetic Therapeutics for Bone Regeneration: A Perspective on Antiaging Strategies. Macromol Biosci 2024; 24:e2300248. [PMID: 37769439 PMCID: PMC10922069 DOI: 10.1002/mabi.202300248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Advances in modern medicine and the significant reduction in infant mortality have steadily increased the population's lifespan. As more and more people in the world grow older, incidence of chronic, noncommunicable disease is anticipated to drastically increase. Recent studies have shown that improving the health of the aging population is anticipated to provide the most cost-effective and impactful improvement in quality of life during aging-driven disease. In bone, aging is tightly linked to increased risk of fracture, and markedly decreased regenerative potential, deeming it critical to develop therapeutics to improve aging-driven bone regeneration. Biomimetics offer a cost-effective method in regenerative therapeutics for bone, where there are numerous innovations improving outcomes in young models, but adapting biomimetics to aged models is still a challenge. Chronic inflammation, accumulation of reactive oxygen species, and cellular senescence are among three of the more unique challenges facing aging-induced defect repair. This review dissects many of the innovative biomimetic approaches research groups have taken to tackle these challenges, and discusses the further uncertainties that need to be addressed to push the field further. Through these research innovations, it can be noted that biomimetic therapeutics hold great potential for the future of aging-complicated defect repair.
Collapse
Affiliation(s)
- Jacob Miszuk
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, 801 Newton Road, Iowa City, IA, 52242, United States
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, 801 Newton Road, Iowa City, IA, 52242, United States
| | - Hongli Sun
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, 801 Newton Road, Iowa City, IA, 52242, United States
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, 801 Newton Road, Iowa City, IA, 52242, United States
| |
Collapse
|
13
|
Zhang E, Miramini S, Zhang L. The impact of osteoporosis and diabetes on fracture healing under different loading conditions. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107952. [PMID: 38039922 DOI: 10.1016/j.cmpb.2023.107952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Osteoporosis and diabetes are two prevalent conditions among the elderly population. Each of these conditions can profoundly influence the fracture healing process by disturbing the associated inflammatory process. However, the combined effects of osteoporosis and diabetes on fracture healing remain unclear. Therefore, the purpose of the present study is to investigate the role of osteoporosis and diabetes in fracture healing and the underlying mechanisms by developing numerical models. METHOD This study introduces a numerical model that consists of a three-dimensional model of a tibia fracture stabilized by a Locking Compression Plate (LCP), coupled with a two-dimensional axisymmetric model which illustrates the transport and reactions of cells and cytokines throughout the inflammatory phase in early fracture healing. First, the model parameters were calibrated using available experimental data. The model was then implemented to predict the healing outcomes of fractures under five varied conditions, consisting of both osteoporotic and non-osteoporotic bones, each subjected to different physiological loads. RESULTS The instability of the fracture callus can significantly escalate in osteoporotic fractures (e.g., when a 150 N physiological load is applied, the unstable region of the osteoporotic fracture callus can reach 26 %, in contrast to 12 % in non-osteoporotic fractures). Additionally, the mesenchymal stem cells (MSCs) proliferation and differentiation can be disrupted in osteoporotic fracture compared to non-osteoporotic fractures (e.g., on the 10th day post-fracture, the decrease in the concentration of MSCs, osteoblasts, and chondrocytes in osteoporotic fractures is nearly double that in non-osteoporotic fractures under a 150 N). Finally, the healing process of fractures can suffer significant impairment when osteoporosis coexists with diabetes (e.g., the concentration of MSCs can be drastically reduced by nearly 37 % in osteoporotic fractures under diabetic conditions when subjected to a load of 200 N) CONCLUSIONS: Fracture calluses destabilized by osteoporosis can negatively affect the fracture healing process by disrupting the proliferation and differentiation of mesenchymal stem cells (MSCs). Moreover, when osteoporosis coexists with diabetes, the fracture healing process can severely impair the fracture healing outcomes.
Collapse
Affiliation(s)
- Enhao Zhang
- Department of Infrastructure Engineering, The University of Melbourne, 700 Swanston St, Parkville, VIC 3010, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, 700 Swanston St, Parkville, VIC 3010, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, 700 Swanston St, Parkville, VIC 3010, Australia.
| |
Collapse
|
14
|
Hu Y, Tang L, Wang Z, Yan H, Yi X, Wang H, Ma L, Yang C, Ran J, Yu A. Inducing in situ M2 macrophage polarization to promote the repair of bone defects via scaffold-mediated sustained delivery of luteolin. J Control Release 2024; 365:889-904. [PMID: 37952829 DOI: 10.1016/j.jconrel.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Immunoregulation mediated bone tissue engineering (BTE) has demonstrated huge potential in promoting repair of critical-size bone defects (CSBDs). The trade-off between stable immunoregulation function and extended immunoregulation period has posed a great challenge to this strategy. Here, we reported a 3D porous biodegradable Poly(HEMA-co-3APBA)/LUT scaffold, in which reversible boronic acid ester bond was formed between the 3APBA moiety and the catechol moiety of luteolin (LUT). The boronic acid ester bond not only protected the bioactivity of LUT but also extended the release period of LUT. The rationale behind the phenomenon of sustained LUT release was explained using a classical transition state theory. In vitro/in vivo assays proved the immunoregulation function of the scaffold in inducing M2 polarization of both M0 and M1 Mφ. The crosstalk between the scaffold treated Raw 264.7 and BMSCs were also investigated through the in vitro co-culture assay. The results demonstrated that the scaffold could induce immunoregulation mediated osteogenic differentiation of BMSCs. In addition, CSBDs model of SD rats was also applied, and the corresponding data proved that the scaffold could accelerate new bone formation, therefore promoting repair of CSBDs. The as-prepared scaffold might be a promising candidate for repair of CSBDs in the future.
Collapse
Affiliation(s)
- Yan Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430000, China
| | - Lixi Tang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430000, China
| | - Honghan Yan
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xinzeyu Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430000, China
| | - Huimin Wang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Liya Ma
- Core Facility of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Changying Yang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Jiabing Ran
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
15
|
Fang X, Sun D, Li Y, Han X, Gan Y, Jiao J, Jiang M, Gong H, Qi Y, Zhao J. Macrophages in the process of osseointegration around the implant and their regulatory strategies. Connect Tissue Res 2024; 65:1-15. [PMID: 38166507 DOI: 10.1080/03008207.2023.2300455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/15/2023] [Indexed: 01/04/2024]
Abstract
PURPOSE/AIM OF THE STUDY To summarize and discuss macrophage properties and their roles and mechanisms in the process of osseointegration in a comprehensive manner, and to provide theoretical support and research direction for future implant surface modification efforts. MATERIALS AND METHODS Based on relevant high-quality articles, this article reviews the role of macrophages in various stages of osseointegration and methods of implant modification. RESULTS AND CONCLUSIONS Macrophages not only promote osseointegration through immunomodulation, but also secrete a variety of cytokines, which play a key role in the angiogenic and osteogenic phases of osseointegration. There is no "good" or "bad" difference between the M1 and M2 phenotypes of macrophages, but their timely presence and sequential switching play a crucial role in implant osseointegration. In the implant surface modification strategy, the induction of sequential activation of the M1 and M2 phenotypes of macrophages is a brighter prospect for implant surface modification than inducing the polarization of macrophages to the M1 or M2 phenotypes individually, which is a promising pathway to enhance the effect of osseointegration and increase the success rate of implant surgery.
Collapse
Affiliation(s)
- Xin Fang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Duo Sun
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Yongli Li
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Xiao Han
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Yulu Gan
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Junjie Jiao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Mengyuan Jiang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Heyi Gong
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Yuanzheng Qi
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Jinghui Zhao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
- Jilin Province Key Laboratory of Tooth Department and Bone Remodeling, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Zhang Y, Wei J, Yu X, Chen L, Ren R, Dong Y, Wang S, Zhu M, Ming N, zhu Z, Gao C, Xiong W. CXCL chemokines-mediated communication between macrophages and BMSCs on titanium surface promotes osteogenesis via the actin cytoskeleton pathway. Mater Today Bio 2023; 23:100816. [PMID: 37859997 PMCID: PMC10582501 DOI: 10.1016/j.mtbio.2023.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
The refined functional cell subtypes in the immune microenvironment of specific titanium (Ti) surface and their collaborative role in promoting bone marrow mesenchymal stem cells (BMSCs) driven bone integration need to be comprehensively characterized. This study employed a simplified co-culture system to investigate the dynamic, temporal crosstalk between macrophages and BMSCs on the Ti surface. The M2-like sub-phenotype of macrophages, characterized by secretion of CXCL chemokines, emerges as a crucial mediator for promoting BMSC osteogenic differentiation and bone integration in the Ti surface microenvironment. Importantly, these two cells maintain their distinct functional phenotypes through a mutually regulatory interplay. The secretion of CXCL3, CXCL6, and CXCL14 by M2-like macrophages plays a pivotal role. The process activates CXCR2 and CCR1 receptors, triggering downstream regulatory effects on the actin cytoskeleton pathway within BMSCs, ultimately fostering osteogenic differentiation. Reciprocally, BMSCs secrete pleiotrophin (PTN), a key player in regulating macrophage differentiation. This secretion maintains the M2-like phenotype via the Sdc3 receptor-mediated cell adhesion molecules pathway. Our findings provide a novel insight into the intricate communication and mutual regulatory mechanisms operating between BMSCs and macrophages on the Ti surface, highlight specific molecular events governing cell-cell interactions in the osteointegration, inform the surface design of orthopedic implants, and advance our understanding of osteointegration.
Collapse
Affiliation(s)
- Yayun Zhang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Jiemao Wei
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xingbang Yu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Liangxi Chen
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Ranyue Ren
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yimin Dong
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Sibo Wang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Meipeng Zhu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Nannan Ming
- The State Key Laboratory of Refractories and Metallurgy Institute of Advanced Materials and Nanotechnology Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Ziwei zhu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Chenghao Gao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Wei Xiong
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| |
Collapse
|
17
|
Li X, Luo X, He Y, Xu K, Ding Y, Gao P, Tao B, Li M, Tan M, Liu S, Liu P, Cai K. Micronano Titanium Accelerates Mesenchymal Stem Cells Aging through the Activation of Senescence-Associated Secretory Phenotype. ACS NANO 2023; 17:22885-22900. [PMID: 37947356 DOI: 10.1021/acsnano.3c07807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Stem cell senescence is one of the most representative events of organism aging and is responsible for many physiological abnormalities and disorders. In the scenario of orthopedic disease treatment, stem cell aging may affect the implantation outcome and even lead to operation failure. To explore whether stem cell aging will affect the osteointegration effect of titanium implant, a widely used micronano titanium (MNT) was fabricated. We first verified the expected osteointegration effect of the MNT, which could be attributed to the improvement of stem cell adhesion and osteogenic differentiation. Then, we obtained aged-derived bone marrow mesenchymal stem cells (BMSCs) and studied their biological behaviors on MNT both in vitro and in vivo. We found that compared with normal rats, MNT did not significantly improve the osteointegration in aged rats. Compared with normal rats, fewer endogenous stem cells were observed at the implant-host interface, and the expression of p21 (senescence marker) was also higher. We further confirmed that MNT promoted the nuclear localization of NF-κB in senescent stem cells through the activation of p38 MAPK, thereby inducing the occurrence of the senescence-associated secretory phenotype (SASP) and ultimately leading to the depletion of the stem-cell pool at the implant-host interface. However, the activation of p38 MAPK can still promote the osteogenic differentiation of nonsenescent BMSCs. These results showed an interesting paradoxical balance between osteogenesis and senescence on MNT surfaces and also provided insights for the design of orthopedic implants for aging patients.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Xinxin Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Yao Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Meng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Meijun Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Shaopeng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University Chongqing 400044, P. R. China
| |
Collapse
|
18
|
Ji ZZ, Chan MKK, Chan ASW, Leung KT, Jiang X, To KF, Wu Y, Tang PMK. Tumour-associated macrophages: versatile players in the tumour microenvironment. Front Cell Dev Biol 2023; 11:1261749. [PMID: 37965573 PMCID: PMC10641386 DOI: 10.3389/fcell.2023.1261749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Tumour-Associated Macrophages (TAMs) are one of the pivotal components of the tumour microenvironment. Their roles in the cancer immunity are complicated, both pro-tumour and anti-cancer activities are reported, including not only angiogenesis, extracellular matrix remodeling, immunosuppression, drug resistance but also phagocytosis and tumour regression. Interestingly, TAMs are highly dynamic and versatile in solid tumours. They show anti-cancer or pro-tumour activities, and interplay between the tumour microenvironment and cancer stem cells and under specific conditions. In addition to the classic M1/M2 phenotypes, a number of novel dedifferentiation phenomena of TAMs are discovered due to the advanced single-cell technology, e.g., macrophage-myofibroblast transition (MMT) and macrophage-neuron transition (MNT). More importantly, emerging information demonstrated the potential of TAMs on cancer immunotherapy, suggesting by the therapeutic efficiency of the checkpoint inhibitors and chimeric antigen receptor engineered cells based on macrophages. Here, we summarized the latest discoveries of TAMs from basic and translational research and discussed their clinical relevance and therapeutic potential for solid cancers.
Collapse
Affiliation(s)
- Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
19
|
Kumar HS, Yi Z, Tong S, Annamalai RT. Magnetic nanocomplexes coupled with an external magnetic field modulate macrophage phenotype - a non-invasive strategy for bone regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.02.556050. [PMID: 37732259 PMCID: PMC10508738 DOI: 10.1101/2023.09.02.556050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Chronic inflammation is a major cause for the pathogenesis of musculoskeletal diseases such as fragility fracture, and nonunion. Studies have shown that modulating the immune phenotype of macrophages from proinflammatory to prohealing mode can heal recalcitrant bone defects. Current therapeutic strategies predominantly apply biochemical cues, which often lack target specificity and controlling their release kinetics in vivo is challenging spatially and temporally. We show a magnetic iron-oxide nanocomplexes (MNC)-based strategy to resolve chronic inflammation in the context of promoting fracture healing. MNC internalized pro-inflammatory macrophages, when coupled with an external magnetic field, exert an intracellular magnetic force on the cytoskeleton, which promotes a prohealing phenotype switch. Mechanistically, the intracellular magnetic force perturbs actin polymerization, thereby significantly reducing nuclear to cytoplasm redistribution of MRTF-A and HDAC3, major drivers of inflammatory and osteogenic gene expressions. This significantly reduces Nos2 gene expression and subsequently downregulates the inflammatory response, as confirmed by quantitative PCR analysis. These findings are a proof of concept to develop MNC-based resolution-centric therapeutic intervention to direct macrophage phenotype and function towards healing and can be translated either to supplement or replace the currently used anti-inflammatory therapies for fracture healing.
Collapse
|
20
|
Kubi JA, Brah AS, Cheung KMC, Lee YL, Lee KF, Sze SCW, Qiao W, Yeung KWK. A new osteogenic protein isolated from Dioscorea opposita Thunb accelerates bone defect healing through the mTOR signaling axis. Bioact Mater 2023; 27:429-446. [PMID: 37152710 PMCID: PMC10160600 DOI: 10.1016/j.bioactmat.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
Delayed bone defect repairs lead to severe health and socioeconomic impacts on patients. Hence, there are increasing demands for medical interventions to promote bone defect healing. Recombinant proteins such as BMP-2 have been recognized as one of the powerful osteogenic substances that promote mesenchymal stem cells (MSCs) to osteoblast differentiation and are widely applied clinically for bone defect repairs. However, recent reports show that BMP-2 treatment has been associated with clinical adverse side effects such as ectopic bone formation, osteolysis and stimulation of inflammation. Here, we have identified one new osteogenic protein, named 'HKUOT-S2' protein, from Dioscorea opposita Thunb. Using the bone defect model, we have shown that the HKUOT-S2 protein can accelerate bone defect repair by activating the mTOR signaling axis of MSCs-derived osteoblasts and increasing osteoblastic biomineralization. The HKUOT-S2 protein can also modulate the transcriptomic changes of macrophages, stem cells, and osteoblasts, thereby enhancing the crosstalk between the polarized macrophages and MSCs-osteoblast differentiation to facilitate osteogenesis. Furthermore, this protein had no toxic effects in vivo. We have also identified HKUOT-S2 peptide sequence TKSSLPGQTK as a functional osteogenic unit that can promote osteoblast differentiation in vitro. The HKUOT-S2 protein with robust osteogenic activity could be a potential alternative osteoanabolic agent for promoting osteogenesis and bone defect repairs. We believe that the HKUOT-S2 protein may potentially be applied clinically as a new class of osteogenic agent for bone defect healing.
Collapse
Affiliation(s)
- John Akrofi Kubi
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong S.A.R., PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Augustine Suurinobah Brah
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong S.A.R., PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Kenneth Man Chee Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong S.A.R., PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, HKU, 21 Sassoon Road, Hong Kong S.A.R, PR China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, HKU- Shenzhen Hospital, Shenzhen, PR China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, HKU, 21 Sassoon Road, Hong Kong S.A.R, PR China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, HKU- Shenzhen Hospital, Shenzhen, PR China
| | - Stephen Cho Wing Sze
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R, PR China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R, PR China
| | - Wei Qiao
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Hong Kong S.A.R, PR China
| | - Kelvin Wai-Kwok Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong S.A.R., PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| |
Collapse
|
21
|
Jiang P, Zhang Y, Hu R, Shi B, Zhang L, Huang Q, Yang Y, Tang P, Lin C. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact Mater 2023; 27:15-57. [PMID: 37035422 PMCID: PMC10074421 DOI: 10.1016/j.bioactmat.2023.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Titanium (Ti) and its alloys have been widely used as orthopedic implants, because of their favorable mechanical properties, corrosion resistance and biocompatibility. Despite their significant success in various clinical applications, the probability of failure, degradation and revision is undesirably high, especially for the patients with low bone density, insufficient quantity of bone or osteoporosis, which renders the studies on surface modification of Ti still active to further improve clinical results. It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants. Therefore, it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration. This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical, physical and chemical treatments based on the formation mechanism of the modified coatings. Such conventional methods are able to improve bioactivity of Ti implants, but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues. Hence, beyond traditional static design, dynamic responsive avenues are then emerging. The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers. In short, this review surveys recent developments in the surface engineering of Ti materials, with a specific emphasis on advances in static to dynamic functionality, which provides perspectives for improving bioactivity and biocompatibility of Ti implants.
Collapse
Affiliation(s)
- Pinliang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanmei Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ren Hu
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin Shi
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Lihai Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Peifu Tang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Changjian Lin
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
22
|
Su N, Villicana C, Zhang C, Lee J, Sinha S, Yang A, Yang F. Aspirin synergizes with mineral particle-coated macroporous scaffolds for bone regeneration through immunomodulation. Theranostics 2023; 13:4512-4525. [PMID: 37649612 PMCID: PMC10465219 DOI: 10.7150/thno.85946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023] Open
Abstract
Rationale: Mineral particles have been widely used in bone tissue engineering scaffolds due to their osteoconductive and osteoinductive properties. Despite their benefits, mineral particles can induce undesirable inflammation and subsequent bone resorption. Aspirin (Asp) is an inexpensive and widely used anti-inflammatory drug. The goal of this study is to assess the synergistic effect of Asp and optimized mineral particle coating in macroporous scaffolds to accelerate endogenous bone regeneration and reduce bone resorption in a critical-sized bone defect model. Methods: Four commonly used mineral particles with varying composition (hydroxyapatite v.s. tricalcium phosphate) and size (nano v.s. micro) were used. Mineral particles were coated onto gelatin microribbon (µRB) scaffolds. Macrophages (Mφ) were cultured on gelatin µRB scaffolds containing various particles, and Mφ polarization was assessed using PCR and ELISA. The effect of conditioned medium from Mφ on mesenchymal stem cell (MSC) osteogenesis was also evaluated in vitro. Scaffolds containing optimized mineral particles were then combined with varying dosages of Asp to assess the effect in inducing endogenous bone regeneration using a critical-sized cranial bone defect model. In vivo characterization and in vitro cell studies were performed to elucidate the effect of tuning Asp dosage on Mφ polarization, osteoclast (OC) activity, and MSC osteogenesis. Results: Micro-sized tricalcium phosphate (mTCP) particles were identified as optimal in promoting M2 Mφ polarization and rescuing MSC-based bone formation in the presence of conditioned medium from Mφ. When implanted in vivo, incorporating Asp with mTCP-coated µRB scaffolds significantly accelerated endogenous bone formation in a dose-dependent manner. Impressively, mTCP-coated µRB scaffolds containing 20 µg Asp led to almost complete bone healing of a critical-sized cranial bone defect as early as week 2 with no subsequent bone resorption. Asp enhanced M2 Mφ polarization, decreased OC activity, and promoted MSC osteogenesis in a dosage-dependent manner in vivo. These results were further validated using in vitro cell studies. Conclusions: Here, we demonstrate Asp and mineral particle-coated microribbon scaffold provides a promising therapy for repairing critical-sized cranial bone defects via immunomodulation. The leading formulation supports rapid endogenous bone regeneration without the need for exogenous cells or growth factors, making it attractive for translation. Our results also highlight the importance of optimizing mineral particles and Asp dosage to achieve robust bone healing while avoiding bone resorption by targeting Mφ and OCs.
Collapse
Affiliation(s)
- Ni Su
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Cassandra Villicana
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Carl Zhang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jeehee Lee
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sauradeep Sinha
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Andrew Yang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
23
|
Al-Baadani MA, Xu L, Cai K, Yie KHR, Shen Y, Al-Bishari AM, Al-Shaaobi BA, Ma P, Shen X, Liu J. Preparation of co-electrospinning membrane loaded with simvastatin and substance P to accelerate bone regeneration by promoting cell homing, angiogenesis and osteogenesis. Mater Today Bio 2023; 21:100692. [PMID: 37455818 PMCID: PMC10338360 DOI: 10.1016/j.mtbio.2023.100692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Bone regeneration is a complex process that requires the coordination of various biological events. Developing a tissue regeneration membrane that can regulate this cascade of events is challenging. In this study, we aimed to fabricate a membrane that can enrich the damaged area with mesenchymal stem cells, improve angiogenesis, and continuously induce osteogenesis. Our approach involved creating a hierarchical polycaprolactone/gelatin (PCL/GEL) co-electrospinning membrane that incorporated substance P (SP)-loaded GEL fibers and simvastatin (SIM)-loaded PCL fibers. The membrane could initiate a burst release of SP and a slow/sustained release of SIM for over a month. In vitro experiments, including those related to angiogenesis and osteogenesis (e.g., migration, endothelial network formation, alkaline phosphatase activity, mineralization, and gene expression), clearly demonstrated the membrane's superior ability to improve cell homing, revascularization, and osteogenic differentiation. Furthermore, a series of in vivo studies, including immunofluorescence of CD29+/CD90+ double-positive cells and immunohistochemical staining for CD34 and vWF, confirmed the co-electrospinning membrane's ability to enhance MSC migration and revascularization response after five days of implantation. After one month, the Micro-CT and histological (Masson and H&E) results showed accelerated bone regeneration. Our findings suggest that a co-electrospinning membrane with time-tunable drug delivery could advance the development of tissue engineering therapeutic strategies and potentially improve patient outcomes.
Collapse
Affiliation(s)
- Mohammed A. Al-Baadani
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Lihua Xu
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, People's Republic of China
| | - Kexin Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Kendrick Hii Ru Yie
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Yiding Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Abdullrahman M. Al-Bishari
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Bilal A. Al-Shaaobi
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Pingping Ma
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Xinkun Shen
- Science and Education Division, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, 325016, People's Republic of China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| |
Collapse
|
24
|
Teh YC, Chooi MY, Chong SZ. Behind the monocyte's mystique: uncovering their developmental trajectories and fates. DISCOVERY IMMUNOLOGY 2023; 2:kyad008. [PMID: 38567063 PMCID: PMC10917229 DOI: 10.1093/discim/kyad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/11/2023] [Accepted: 07/17/2023] [Indexed: 04/04/2024]
Abstract
Monocytes are circulating myeloid cells that are derived from dedicated progenitors in the bone marrow. Originally thought of as mere precursors for the replacement of tissue macrophages, it is increasingly clear that monocytes execute distinct effector functions and may give rise to monocyte-derived cells with unique properties from tissue-resident macrophages. Recently, the advent of novel experimental approaches such as single-cell analysis and fate-mapping tools has uncovered an astonishing display of monocyte plasticity and heterogeneity, which we believe has emerged as a key theme in the field of monocyte biology in the last decade. Monocyte heterogeneity is now recognized to develop as early as the progenitor stage through specific imprinting mechanisms, giving rise to specialized effector cells in the tissue. At the same time, monocytes must overcome their susceptibility towards cellular death to persist as monocyte-derived cells in the tissues. Environmental signals that preserve their heterogenic phenotypes and govern their eventual fates remain incompletely understood. In this review, we will summarize recent advances on the developmental trajectory of monocytes and discuss emerging concepts that contributes to the burgeoning field of monocyte plasticity and heterogeneity.
Collapse
Affiliation(s)
- Ye Chean Teh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ming Yao Chooi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
25
|
Qiang H, Hou C, Zhang Y, Luo X, Li J, Meng C, Liu K, Lv Z, Chen X, Liu F. CaP-coated Zn-Mn-Li alloys regulate osseointegration via influencing macrophage polarization in the osteogenic environment. Regen Biomater 2023; 10:rbad051. [PMID: 37324238 PMCID: PMC10267298 DOI: 10.1093/rb/rbad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/17/2023] Open
Abstract
Immune response is an important factor in determining the fate of bone replacement materials, in which macrophages play an important role. It is a new idea to design biomaterials with immunomodulatory function to reduce inflammation and promote bone integration by regulating macrophages polarization. In this work, the immunomodulatory properties of CaP Zn-Mn-Li alloys and the specific mechanism of action were investigated. We found that the CaP Zn0.8Mn0.1Li alloy promoted the polarization of macrophages toward M2 and reduced inflammation, which could effectively upregulate osteogenesis-related factors and promote new bone formation, indicating the important role of macrophages polarization in biomaterial induction of osteogenesis. In vivo studies further demonstrated that CaP Zn0.8Mn0.1Li alloy could stimulate osteogenesis better than other Zn-Mn-Li alloys implantations by regulating macrophages polarization and reducing inflammation. In addition, transcriptome results showed that CaP Zn0.8Mn0.1Li played an important regulatory role in the life process of macrophages, activating Toll-like receptor signaling pathway, which participated in the activation and attenuation of inflammation, and accelerated bone integration. Thus, by preparing CaP coatings on the surface of Zn-Mn-Li alloys and combining the bioactive ingredient with controlled release, the biomaterial will be imbibed with beneficial immunomodulatory properties that promote bone integration.
Collapse
Affiliation(s)
| | | | - Yujue Zhang
- Liaocheng People’s Hospital, Liaocheng Dongchangfu People’s Hospital, Liaocheng 252000, China
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Xin Luo
- Liaocheng People’s Hospital, Liaocheng Dongchangfu People’s Hospital, Liaocheng 252000, China
| | - Jun Li
- Liaocheng People’s Hospital, Liaocheng Dongchangfu People’s Hospital, Liaocheng 252000, China
| | - Chunxiu Meng
- Liaocheng People’s Hospital, Liaocheng Dongchangfu People’s Hospital, Liaocheng 252000, China
| | - Kun Liu
- Liaocheng People’s Hospital, Liaocheng Dongchangfu People’s Hospital, Liaocheng 252000, China
| | - Zhaoyong Lv
- Correspondence address. E-mail: (Z.L.); (X.C.); (F.L.)
| | - Ximeng Chen
- Correspondence address. E-mail: (Z.L.); (X.C.); (F.L.)
| | - Fengzhen Liu
- Correspondence address. E-mail: (Z.L.); (X.C.); (F.L.)
| |
Collapse
|
26
|
Kropp DR, Hodes GE. Sex differences in depression: An immunological perspective. Brain Res Bull 2023; 196:34-45. [PMID: 36863664 DOI: 10.1016/j.brainresbull.2023.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Depression is a heterogenous disorder with symptoms that present differently across individuals. In a subset of people depression is associated with alterations of the immune system that may contribute to disorder onset and symptomology. Women are twice as likely to develop depression and on average have a more sensitive adaptive and innate immune system when compared to men. Sex differences in pattern recognition receptors (PRRs), release of damage-associated molecular patterns (DAMPs), cell populations, and circulating cytokines play a critical role in inflammation onset. Sex differences in innate and adaptive immunity change the response of and repair to damage caused by dangerous pathogens or molecules in the body. This article reviews the evidence for sex specific immune responses that contribute to the sex differences in symptoms of depression that may account for the higher rate of depression in women.
Collapse
Affiliation(s)
- Dawson R Kropp
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Georgia E Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
27
|
Zhang Q, Sun W, Li T, Liu F. Polarization Behavior of Bone Macrophage as Well as Associated Osteoimmunity in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. J Inflamm Res 2023; 16:879-894. [PMID: 36891172 PMCID: PMC9986469 DOI: 10.2147/jir.s401968] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a disabling disease with high mortality in China but the detailed molecular and cellular mechanisms remain to be investigated. Macrophages are considered the key cells in osteoimmunology, and the cross-talk between bone macrophages and other cells in the microenvironment is involved in maintaining bone homeostasis. M1 polarized macrophages launch a chronic inflammatory response and secrete a broad spectrum of cytokines (eg, TNF-α, IL-6 and IL-1β) and chemokines to initiate a chronic inflammatory state in GIONFH. M2 macrophage is the alternatively activated anti-inflammatory type distributed mainly in the perivascular area of the necrotic femoral head. In the development of GIONFH, injured bone vascular endothelial cells and necrotic bone activate the TLR4/NF-κB signal pathway, promote dimerization of PKM2 and subsequently enhance the production of HIF-1, inducing metabolic transformation of macrophage to the M1 phenotype. Considering these findings, putative interventions by local chemokine regulation to correct the imbalance between M1/M2 polarized macrophages by switching macrophages to an M2 phenotype, or inhibiting the adoption of an M1 phenotype appear to be plausible regimens for preventing or intervening GIONFH in the early stage. However, these results were mainly obtained by in vitro tissue or experimental animal model. Further studies to completely elucidate the alterations of the M1/M2 macrophage polarization and functions of macrophages in glucocorticoid-induced osteonecrosis of the femoral head are imperative.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Wei Sun
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Orthopaedic Department, China Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Tengqi Li
- Department of Orthopedics, Peking University Shougang Hospital, Beijing, People's Republic of China.,Department of Orthopedics, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
| | - Fanxiao Liu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
28
|
Xu Z, Wu L, Tang Y, Xi K, Tang J, Xu Y, Xu J, Lu J, Guo K, Gu Y, Chen L. Spatiotemporal Regulation of the Bone Immune Microenvironment via Dam-Like Biphasic Bionic Periosteum for Bone Regeneration. Adv Healthc Mater 2023; 12:e2201661. [PMID: 36189833 PMCID: PMC11469314 DOI: 10.1002/adhm.202201661] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Indexed: 02/03/2023]
Abstract
The bone immune microenvironment (BIM) regulates bone regeneration and affects the prognosis of fractures. However, there is currently no effective strategy that can precisely modulate macrophage polarization to improve BIM for bone regeneration. Herein, a hybridized biphasic bionic periosteum, inspired by the BIM and functional structure of the natural periosteum, is presented. The gel phase is composed of genipin-crosslinked carboxymethyl chitosan and collagen self-assembled hybrid hydrogels, which act as the "dam" to intercept IL-4 released during the initial burst from the bionic periosteum fiber phase, thus maintaining the moderate inflammatory response of M1 macrophages for mesenchymal stem cell recruitment and vascular sprouting at the acute fracture. With the degradation of the gel phase, released IL-4 cooperates with collagen to promote the polarization towards M2 macrophages, which reconfigure the local microenvironment by secreting PDGF-BB and BMP-2 to improve vascular maturation and osteogenesis twofold. In rat cranial defect models, the controlled regulation of the BIM is validated with the temporal transition of the inflammatory/anti-inflammatory process to achieve faster and better bone defect repair. This strategy provides a drug delivery system that constructs a coordinated BIM, so as to break through the predicament of the contradiction between immune response and bone tissue regeneration.
Collapse
Affiliation(s)
- Zonghan Xu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Liang Wu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Yu Tang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Kun Xi
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Jincheng Tang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Yichang Xu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Jingzhi Xu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Jian Lu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Kaijin Guo
- Department of Orthopedicsthe Affiliated Hospital of Xuzhou Medical University99 Huaihai West RoadXuzhouJiangsu221000P. R. China
| | - Yong Gu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Liang Chen
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| |
Collapse
|
29
|
Ren L, Gong P, Gao X, Wang Q, Xie L, Tang W, Long J, Liu C, Tian W, He M. Metal-phenolic networks acted as a novel bio-filler of a barrier membrane to improve guided bone regeneration via manipulating osteoimmunomodulation. J Mater Chem B 2022; 10:10128-10138. [PMID: 36468640 DOI: 10.1039/d2tb01804g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A guided bone tissue regeneration membrane (GBRM) is traditionally viewed as an inert physical barrier to isolate soft tissue from the bone defect area. However, as a "foreign body", the implantation of a GBRM would inevitably modulate immune response and subsequently affect bone dynamics. Herein, we developed strontium ion (Sr2+)-based metal-phenolic network complexes (MPNs) as a novel type of bio-filler to manipulate the osteoimmunomodulation of the advanced GBRM. For controllable delivery of Sr2+ depending on the difference in affinity between phenolic ligands and Sr2+, tannic acid (TA), epigallocatechin gallate (EGCG), and epigallocatechin (EGC) were selected to chelate with Sr2+. The formed MPNs were incorporated into PCL nanofibrous membranes by blending electrospinning. Among them, TA/Sr based MPN particles displayed the most sustainable release profile of phenolic ligands and Sr2+. Further investigations demonstrated that Sr2+ could not only directly promote osteogenic differentiation of BMSCs, but also manipulate an anti-inflammatory osteoimmune microenvironment in a synergistic manner with TA, thus enhancing osteogenesis and inhibiting bone resorption. The rat alveolar bone defect model also confirmed that the TA/Sr nanoparticle modified membrane displayed better bone regeneration performance than the pure PCL membrane via inhibiting bone resorption. This work provides a new platform for controllable delivery of bioactive nutrient elements, and holds great promise for advancing multi-functional biocomposites.
Collapse
Affiliation(s)
- Lulu Ren
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pei Gong
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinghui Gao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Li Xie
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Tang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Long
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Can Liu
- Beijing Jimafei Technology Development Co., LTD, Beijing, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min He
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
30
|
Redox-Activation of Neutrophils Induced by Pericardium Scaffolds. Int J Mol Sci 2022; 23:ijms232415468. [PMID: 36555108 PMCID: PMC9779008 DOI: 10.3390/ijms232415468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Implantation of scaffolds causes a local inflammatory response whereby the early recruitment of neutrophils is of great importance not only for fighting the infection, but also for facilitating effective regeneration. We used luminol-dependent chemiluminescence, flow cytometry, ELISA, and confocal microscopy to assess the responses of neutrophils after the exposure to the scaffold-decellularized bovine pericardium (collagen type I) crosslinked with genipin (DBPG). We demonstrated that DBPG activated neutrophils in whole blood causing respiratory burst, myeloperoxidase (MPO) secretion, and formation of neutrophil extracellular trap-like structures (NETs). In addition, we studied platelets, another important player of the immediate immune host response. We found that platelets triggered redox-activation of isolated neutrophils by the pericardium scaffold, and likely participate in the NETs formation. Free radicals generated by neutrophils and hypochlorous acid produced by MPO are potent oxidizing agents which can oxidatively degrade biological structures. Understanding the mechanisms and consequences of redox activation of neutrophils by pericardium scaffolds is important for the development of new approaches to increase the efficiency of tissue regeneration.
Collapse
|
31
|
Tan J, Zhang QY, Song YT, Huang K, Jiang YL, Chen J, Wang R, Zou CY, Li QJ, Qin BQ, Sheng N, Nie R, Feng ZY, Yang DZ, Yi WH, Xie HQ. Accelerated bone defect regeneration through sequential activation of the M1 and M2 phenotypes of macrophages by a composite BMP-2@SIS hydrogel: An immunomodulatory perspective. COMPOSITES PART B: ENGINEERING 2022; 243:110149. [DOI: 10.1016/j.compositesb.2022.110149] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
32
|
Zhao T, Chu Z, Ma J, Ouyang L. Immunomodulation Effect of Biomaterials on Bone Formation. J Funct Biomater 2022; 13:jfb13030103. [PMID: 35893471 PMCID: PMC9394331 DOI: 10.3390/jfb13030103] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Traditional bone replacement materials have been developed with the goal of directing the osteogenesis of osteoblastic cell lines toward differentiation and therefore achieving biomaterial-mediated osteogenesis, but the osteogenic effect has been disappointing. With advances in bone biology, it has been revealed that the local immune microenvironment has an important role in regulating the bone formation process. According to the bone immunology hypothesis, the immune system and the skeletal system are inextricably linked, with many cytokines and regulatory factors in common, and immune cells play an essential role in bone-related physiopathological processes. This review combines advances in bone immunology with biomaterial immunomodulatory properties to provide an overview of biomaterials-mediated immune responses to regulate bone regeneration, as well as methods to assess the bone immunomodulatory properties of bone biomaterials and how these strategies can be used for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Tong Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (T.Z.); (Z.C.)
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Zhuangzhuang Chu
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (T.Z.); (Z.C.)
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Jun Ma
- Department of General Practitioners, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Correspondence: (L.O.); (J.M.); Tel.: +86-21-52039999 (L.O.); +86-21-52039999 (J.M.)
| | - Liping Ouyang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (T.Z.); (Z.C.)
- Correspondence: (L.O.); (J.M.); Tel.: +86-21-52039999 (L.O.); +86-21-52039999 (J.M.)
| |
Collapse
|
33
|
Wu H, Zhao C, Lin K, Wang X. Mussel-Inspired Polydopamine-Based Multilayered Coatings for Enhanced Bone Formation. Front Bioeng Biotechnol 2022; 10:952500. [PMID: 35875492 PMCID: PMC9301208 DOI: 10.3389/fbioe.2022.952500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/17/2022] [Indexed: 12/03/2022] Open
Abstract
Repairing bone defects remains a challenge in clinical practice and the application of artificial scaffolds can enhance local bone formation, but the function of unmodified scaffolds is limited. Considering different application scenarios, the scaffolds should be multifunctionalized to meet specific demands. Inspired by the superior adhesive property of mussels, polydopamine (PDA) has attracted extensive attention due to its universal capacity to assemble on all biomaterials and promote further adsorption of multiple external components to form PDA-based multilayered coatings with multifunctional property, which can induce synergistic enhancement of new bone formation, such as immunomodulation, angiogenesis, antibiosis and antitumor property. This review will summarize mussel-inspired PDA-based multilayered coatings for enhanced bone formation, including formation mechanism and biofunction of PDA coating, as well as different functional components. The synergistic enhancement of multiple functions for better bone formation will also be discussed. This review will inspire the design and fabrication of PDA-based multilayered coatings for different application scenarios and promote deeper understanding of their effect on bone formation, but more efforts should be made to achieve clinical translation. On this basis, we present a critical conclusion, and forecast the prospects of PDA-based multilayered coatings for bone regeneration.
Collapse
Affiliation(s)
| | | | - Kaili Lin
- *Correspondence: Kaili Lin, ; Xudong Wang,
| | | |
Collapse
|
34
|
Oirschot BV, zhang Y, Alghamdi HS, cordeiro JM, nagay B, barão VA, de avila ED, van den Beucken J. Surface engineering for dental implantology: favoring tissue responses along the implant
. Tissue Eng Part A 2022; 28:555-572. [DOI: 10.1089/ten.tea.2021.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Bart van Oirschot
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
| | - yang zhang
- Shenzhen University, 47890, School of Stomatology, Health Science Center, Shenzhen, Guangdong, China,
| | - Hamdan S Alghamdi
- King Saud University College of Dentistry, 204573, Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia,
| | - jairo m cordeiro
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - bruna nagay
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - valentim ar barão
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - erica dorigatti de avila
- UNESP, 28108, Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Sao Paulo, SP, Brazil,
| | - Jeroen van den Beucken
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
- RU RIMLS, 59912, Nijmegen, Gelderland, Netherlands,
| |
Collapse
|
35
|
Li X, Xue S, Zhan Q, Sun X, Chen N, Li S, Zhao J, Hou X, Yuan X. Sequential Delivery of Different MicroRNA Nanocarriers Facilitates the M1-to-M2 Transition of Macrophages. ACS OMEGA 2022; 7:8174-8183. [PMID: 35284756 PMCID: PMC8908531 DOI: 10.1021/acsomega.2c00297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 06/01/2023]
Abstract
The early-stage repair of bone injuries dominated by the inflammatory phase is significant for successful bone healing, and the phenotypic transition of macrophages in the inflammatory phase plays indispensable roles during the bone healing process. The goal of this paper is to design a microRNA delivery nanocarrier for strictly temporal guidance of the polarization of macrophages by the sequential delivery of different microRNAs. The results showed that microRNA nanocarriers, synthesized through free radical polymerization, could be internalized by macrophages with about a cellular uptake efficiency of 80%, and the sequential delivery of microRNA-155 nanocarriers and microRNA-21 nanocarriers proved, for the first time, that it could promote an efficient and timely switch from the M1 to the M2 phenotype along the time point of bone tissue repair. The strategy proposed in this paper holds potential for controlling sequential M1-to-M2 polarization of macrophages, which provides another perspective for the treatment of bone tissue regeneration.
Collapse
Affiliation(s)
- Xueping Li
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Suling Xue
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qi Zhan
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaolei Sun
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ning Chen
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Sidi Li
- College
of Chemistry and Chemical Engineering, Yantai
University, Yantai 264005, Shandong Province, China
| | - Jin Zhao
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xin Hou
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xubo Yuan
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
36
|
Yang Y, Chu C, Xiao W, Liu L, Man Y, Lin J, Qu Y. Strategies for advanced particulate bone substitutes regulating the osteo-immune microenvironment. Biomed Mater 2022; 17. [PMID: 35168224 DOI: 10.1088/1748-605x/ac5572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/15/2022] [Indexed: 02/05/2023]
Abstract
The usage of bone substitute granule materials has improved the clinical results of alveolar bone deficiencies treatment and thus broadened applications in implant dentistry. However, because of the complicated mechanisms controlling the foreign body response, no perfect solution can avoid the fibrotic encapsulation of materials till now, which may impair the results of bone regeneration, even cause the implant materials rejection. Recently, the concept of 'osteoimmunology' has been stressed. The outcomes of bone regeneration are proved to be related to the bio-physicochemical properties of biomaterials, which allow them to regulate the biological behaviours of both innate and adaptive immune cells. With the development of single cell transcriptome, the truly heterogeneity of osteo-immune cells has been clarifying, which is helpful to overcome the limitations of traditional M1/M2 macrophage nomenclature and drive the advancements of particulate biomaterials applications. This review aims at introducing the mechanisms of optimal osseointegration regulated by immune systems and provides feasible strategies for the design of next generation 'osteoimmune-smart' particulate bone substitute materials in dental clinic.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chenyu Chu
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wenlan Xiao
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yi Man
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jie Lin
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yili Qu
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
37
|
Mo Y, Zhao F, Lin Z, Cao X, Chen DF, Chen X. Local delivery of naringin in beta-cyclodextrin modified mesoporous bioactive glass promotes bone regeneration:From anti-inflammatory to synergistic osteogenesis and osteoclastogenesis. Biomater Sci 2022; 10:1697-1712. [DOI: 10.1039/d1bm01842f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bone immune response dominated by macrophages plays an indispensable role in the osteogenesis of bone defects. Moreover, moderate polarization of macrophages against inflammatory M2 has been proved to promote...
Collapse
|
38
|
Zhang L, Liang Z, Chen C, Yang X, Fu D, Bao H, Li M, Shi S, Yu G, Zhang Y, Zhang C, Zhang W, Xue C, Sun B. Engineered Hydroxyapatite Nanoadjuvants with Controlled Shape and Aspect Ratios Reveal Their Immunomodulatory Potentials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59662-59672. [PMID: 34894655 DOI: 10.1021/acsami.1c17804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydroxyapatite (HAP) has been formulated as adjuvants in vaccines for human use. However, the optimal properties required for HAP nanoparticles to elicit adjuvanticity and the underlying immunopotentiation mechanisms have not been fully elucidated. Herein, a library of HAP nanorods and nanospheres was synthesized to explore the effect of the particle shape and aspect ratio on the immune responses in vitro and adjuvanticity in vivo. It was demonstrated that long aspect ratio HAP nanorods induced a higher degree of cell membrane depolarization and subsequent uptake, and the internalized particles elicited cathepsin B release and mitochondrial reactive oxygen species generation, which further led to pro-inflammatory responses. Furthermore, the physicochemical property-dependent immunostimulation capacities were correlated with their humoral responses in a murine hepatitis B surface antigen immunization model, with long aspect ratio HAP nanorods inducing higher antigen-specific antibody productions. Importantly, HAP nanorods significantly up-regulated the IFN-γ secretion and CD107α expression on CD8+ T cells in immunized mice. Further mechanistic studies demonstrated that HAP nanorods with defined properties exerted immunomodulatory effects by enhanced antigen persistence and immune cell recruitments. Our study provides a rational design strategy for engineered nanomaterial-based vaccine adjuvants.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Xuecheng Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Duo Fu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Hang Bao
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Shuting Shi
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yixuan Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Caiqiao Zhang
- NCPC Genetech Biotechnology Co., Ltd., Shijiazhuang 050035, P. R. China
| | - Weiting Zhang
- NCPC Genetech Biotechnology Co., Ltd., Shijiazhuang 050035, P. R. China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
39
|
Um SH, Lee J, Song IS, Ok MR, Kim YC, Han HS, Rhee SH, Jeon H. Regulation of cell locomotion by nanosecond-laser-induced hydroxyapatite patterning. Bioact Mater 2021; 6:3608-3619. [PMID: 33869901 PMCID: PMC8022786 DOI: 10.1016/j.bioactmat.2021.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 02/08/2023] Open
Abstract
Hydroxyapatite, an essential mineral in human bones composed mainly of calcium and phosphorus, is widely used to coat bone graft and implant surfaces for enhanced biocompatibility and bone formation. For a strong implant-bone bond, the bone-forming cells must not only adhere to the implant surface but also move to the surface requiring bone formation. However, strong adhesion tends to inhibit cell migration on the surface of hydroxyapatite. Herein, a cell migration highway pattern that can promote cell migration was prepared using a nanosecond laser on hydroxyapatite coating. The developed surface promoted bone-forming cell movement compared with the unpatterned hydroxyapatite surface, and the cell adhesion and movement speed could be controlled by adjusting the pattern width. Live-cell microscopy, cell tracking, and serum protein analysis revealed the fundamental principle of this phenomenon. These findings are applicable to hydroxyapatite-coated biomaterials and can be implemented easily by laser patterning without complicated processes. The cell migration highway can promote and control cell movement while maintaining the existing advantages of hydroxyapatite coatings. Furthermore, it can be applied to the surface treatment of not only implant materials directly bonded to bone but also various implanted biomaterials implanted that require cell movement control.
Collapse
Affiliation(s)
- Seung-Hoon Um
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jaehong Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - In-Seok Song
- Department of Oral and Maxillofacial Surgery, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Myoung-Ryul Ok
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yu-Chan Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyung-Seop Han
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sang-Hoon Rhee
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
40
|
Martin KE, García AJ. Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomater 2021; 133:4-16. [PMID: 33775905 PMCID: PMC8464623 DOI: 10.1016/j.actbio.2021.03.038] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are a highly heterogeneous and plastic population of cells that are crucial for tissue repair and regeneration. This has made macrophages a particularly attractive target for biomaterial-directed regenerative medicine strategies. However, macrophages also contribute to adverse inflammatory and fibrotic responses to implanted biomaterials, typically related to the foreign body response (FBR). The traditional model in the field asserts that the M2 macrophage phenotype is pro-regenerative and associated with positive wound healing outcomes, whereas the M1 phenotype is pro-inflammatory and associated with pathogenesis. However, recent studies indicate that both M1 and M2 macrophages play different, but equally vital, roles in promoting tissue repair. Furthermore, recent technological developments such as single-cell RNA sequencing have allowed for unprecedented insights into the heterogeneity within the myeloid compartment, related to activation state, niche, and ontogenetic origin. A better understanding of the phenotypic and functional characteristics of macrophages critical to tissue repair and FBR processes will allow for rational design of biomaterials to promote biomaterial-tissue integration and regeneration. In this review, we discuss the role of temporal and ontogenetic macrophage heterogeneity on tissue repair processes and the FBR and the potential implications for biomaterial-directed regenerative medicine applications. STATEMENT OF SIGNIFICANCE: This review outlines the contributions of different macrophage phenotypes to different phases of wound healing and angiogenesis. Pathological outcomes, such as chronic inflammation, fibrosis, and the foreign body response, related to disruption of the macrophage inflammation-resolution process are also discussed. We summarize recent insights into the vast heterogeneity of myeloid cells related to their niche, especially the biomaterial microenvironment, and ontogenetic origin. Additionally, we present a discussion on novel tools that allow for resolution of cellular heterogeneity at the single-cell level and how these can be used to build a better understanding of macrophage heterogeneity in the biomaterial immune microenvironment to better inform immunomodulatory biomaterial design.
Collapse
Affiliation(s)
- Karen E Martin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
41
|
Whitaker R, Hernaez-Estrada B, Hernandez RM, Santos-Vizcaino E, Spiller KL. Immunomodulatory Biomaterials for Tissue Repair. Chem Rev 2021; 121:11305-11335. [PMID: 34415742 DOI: 10.1021/acs.chemrev.0c00895] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All implanted biomaterials are targets of the host's immune system. While the host inflammatory response was once considered a detrimental force to be blunted or avoided, in recent years, it has become a powerful force to be leveraged to augment biomaterial-tissue integration and tissue repair. In this review, we will discuss the major immune cells that mediate the inflammatory response to biomaterials, with a focus on how biomaterials can be designed to modulate immune cell behavior to promote biomaterial-tissue integration. In particular, the intentional activation of monocytes and macrophages with controlled timing, and modulation of their interactions with other cell types involved in wound healing, have emerged as key strategies to improve biomaterial efficacy. To this end, careful design of biomaterial structure and controlled release of immunomodulators can be employed to manipulate macrophage phenotype for the maximization of the wound healing response with enhanced tissue integration and repair, as opposed to a typical foreign body response characterized by fibrous encapsulation and implant isolation. We discuss current challenges in the clinical translation of immunomodulatory biomaterials, such as limitations in the use of in vitro studies and animal models to model the human immune response. Finally, we describe future directions and opportunities for understanding and controlling the biomaterial-immune system interface, including the application of new imaging tools, new animal models, the discovery of new cellular targets, and novel techniques for in situ immune cell reprogramming.
Collapse
Affiliation(s)
- Ricardo Whitaker
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Beatriz Hernaez-Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
42
|
Kong Y, Liu F, Ma B, Duan J, Yuan W, Sang Y, Han L, Wang S, Liu H. Wireless Localized Electrical Stimulation Generated by an Ultrasound-Driven Piezoelectric Discharge Regulates Proinflammatory Macrophage Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100962. [PMID: 34258169 PMCID: PMC8261497 DOI: 10.1002/advs.202100962] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/31/2021] [Indexed: 05/08/2023]
Abstract
Proinflammatory (M1) macrophages play a vital role in antitumor immunity, and regulation of proinflammatory macrophage polarization is critical for immunotherapy. The polarization of macrophages can be regulated by biological or chemical stimulation, but investigations of the regulatory effect of physical stimulation are limited. Herein, regulating macrophage polarization with localized electrical signals derived from a piezoelectric β-phase poly(vinylidene fluoride) (β-PVDF) film in a wireless mode is proposed. Charges released on the surface of the β-PVDF film driven by ultrasonic irradiation can significantly enhance the M1 polarization of macrophages. Mechanistic investigation confirms that electrical potentials rather than reactive oxygen species and mechanical forces enable Ca2+ influx through voltage-gated channels and establishment of the Ca2+-CAMK2A-NF-κB axis to promote the proinflammatory macrophage response during ultrasound treatment. Piezoelectric material-mediated electrical signal-activated proinflammatory macrophages significantly inhibit tumor cell proliferation. A method for electrogenetic regulation of immune cells as well as a powerful tool for engineering macrophages for immunotherapy is provided here.
Collapse
Affiliation(s)
- Ying Kong
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100China
| | - Feng Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100China
| | - Baojin Ma
- Department of PeriodontologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinanShandong250012China
| | - Jiazhi Duan
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100China
| | - Wenhu Yuan
- Jinan Biobase Biotech Co., LtdJinan250100China
| | - Yuanhua Sang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100China
| | - Lin Han
- Institue of Marine Science and TechnologyShandong UniversityQingdaoShandong266200China
| | - Shuhua Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100China
- Advanced Medical Research InstituteShandong UniversityJinanShandong250100China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100China
- Institute for Advanced Interdisciplinary ResearchUniversity of JinanJinanShandong250022China
| |
Collapse
|
43
|
Blatt SE, Lurier EB, Risser GE, Spiller KL. Characterizing the Macrophage Response to Immunomodulatory Biomaterials Through Gene Set Analyses. Tissue Eng Part C Methods 2021; 26:156-169. [PMID: 32070241 DOI: 10.1089/ten.tec.2019.0309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The primary regulators of the innate immune response to implanted biomaterials are macrophages, which change phenotype over time to regulate multiple phases of the tissue repair process. Immunomodulatory biomaterials that target macrophage phenotype are a promising approach for promoting tissue repair. Although expression of multiple markers has been widely used to characterize macrophage phenotype, the complexity of the macrophage response to biomaterials makes interpretation difficult. The aim of this study was to put forth an objective method to characterize macrophage phenotype with respect to specific biological processes or standard phenotypes of interest. We investigated the utility of gene set analyses to analyze macrophages as they respond to model biomaterials in comparison to "reference" M1 and M2a macrophage phenotypes. Primary human macrophages were seeded onto crosslinked collagen scaffolds with or without adsorption of the proinflammatory cytokine interferon-gamma (IFNg). Gene expression of a custom-curated panel of 48 genes, representing the M1 and M2a gene signatures as well as other genes important for angiogenesis and tissue repair, was quantified using NanoString on days 3, 5, and 8 of culture. A dataset of phenotype controls, consisting of M0, M1, and M2a macrophages, was used as a source of comparison and to validate the methods of characterization. Gene expression of M1 and M2a markers showed mixed upregulation and downregulation by macrophages seeded on collagen and IFNg-adsorbed collagen scaffolds, highlighting the need for more holistic analyses. Euclidean distance measurements to the reference phenotypes were unable to resolve differences between groups. In contrast, rotation gene set testing with and without gene weighting based on the genes' ability to differentiate between M1, M2a, and M0 controls, followed by gene set variation analysis, showed that collagen scaffolds inhibited the classic M1 phenotype without promoting a classic M2a phenotype, and that IFNg-adsorbed collagen scaffolds promoted the M1 phenotype and inhibited the M2a phenotype. In summary, this work demonstrates a powerful, objective methodology for characterizing the macrophage response to biomaterials in comparison to reference macrophage phenotypes. With the addition of more macrophage phenotypes with defined gene expression signatures, this method could prove beneficial for characterizing complex hybrid phenotypes.
Collapse
Affiliation(s)
- Sarah E Blatt
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Emily B Lurier
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Gregory E Risser
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Kara L Spiller
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
44
|
Yang L, Ullah I, Yu K, Zhang W, Zhou J, Sun T, Shi L, Yao S, Chen K, Zhang X, Guo X. Bioactive Sr 2+/Fe 3+co-substituted hydroxyapatite in cryogenically 3D printed porous scaffolds for bone tissue engineering. Biofabrication 2021; 13. [PMID: 33260162 DOI: 10.1088/1758-5090/abcf8d] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
Developing multi-doped bioceramics that possess biological multifunctionality is becoming increasingly attractive and promising for bone tissue engineering. In this view innovative Sr2+/Fe3+co-substituted nano-hydroxyapatite with gradient doping concentrations fixed at 10 mol% has been deliberately designed previously. Herein, to evaluate their therapeutic potentials for bone healing, novel gradient SrFeHA/PCL scaffolds are fabricated by extrusion cryogenic 3D printing technology with subsequent lyophilization. The obtained scaffolds exhibit desired 3D interconnected porous structure and rough microsurface, along with appreciable release of bioactive Sr2+/Fe3+from SrFeHA components. These favorable physicochemical properties render printed scaffolds realizing effective biological applications bothin vitroandin vivo, particularly the moderate co-substituted Sr7.5Fe2.5HA and Sr5Fe5HA groups exhibit remarkably enhanced bioactivity that not only promotes the functions of MC3T3 osteoblasts and HUVECs directly, but also energetically manipulates favorable macrophages activation to concurrently facilitate osteogenesis/angiogenesis. Moreover,in vivosubcutaneous implantation and cranial defects repair outcomes further confirm their superior capacity to dictate immune reaction, implants vascularization andin situbone regeneration, mainly dependent on the synergetic effects of released Sr2+/Fe3+. Accordingly, for the first time, present study highlights the great potential of Sr7.5Fe2.5HA and Sr5Fe5HA for ameliorating bone regeneration process by coupling of immunomodulation with enhanced angio- and osteogenesis and hence may provide a new promising alternative for future bone tissue engineering.
Collapse
Affiliation(s)
- Liang Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,L Yang, I Ullah and K D Yu contributed equally to this work
| | - Ismat Ullah
- State Key Laboratory of Materials Processing and Die/Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,L Yang, I Ullah and K D Yu contributed equally to this work
| | - Keda Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,L Yang, I Ullah and K D Yu contributed equally to this work
| | - Wancheng Zhang
- State Key Laboratory of Materials Processing and Die/Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jinge Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Tingfang Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Lei Shi
- State Key Laboratory of Materials Processing and Die/Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Sheng Yao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Kaifang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xianglin Zhang
- State Key Laboratory of Materials Processing and Die/Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
45
|
Sadowska JM, Ginebra MP. Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B 2021; 8:9404-9427. [PMID: 32970087 DOI: 10.1039/d0tb01379j] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The regulatory role of the immune system in maintaining bone homeostasis and restoring its functionality, when disturbed due to trauma or injury, has become evident in recent years. The polarization of macrophages, one of the main constituents of the immune system, into the pro-inflammatory or anti-inflammatory phenotype has great repercussions for cellular crosstalk and the subsequent processes needed for proper bone regeneration such as angiogenesis and osteogenesis. In certain scenarios, the damaged osseous tissue requires the placement of synthetic bone grafts to facilitate the healing process. Inorganic biomaterials such as bioceramics or bioactive glasses are the most widely used due to their resemblance to the mineral phase of bone and superior osteogenic properties. The immune response of the host to the inorganic biomaterial, which is of an exogenous nature, might determine its fate, leading either to active bone regeneration or its failure. Therefore, various strategies have been employed, like the modification of structural/chemical features or the incorporation of bioactive molecules, to tune the interplay with the immune cells. Understanding how these particular modifications impact the polarization of macrophages and further osteogenic and osteoclastogenic events is of great interest in view of designing a new generation of osteoimmunomodulatory materials that support the regeneration of osseous tissue during all stages of bone healing.
Collapse
Affiliation(s)
- Joanna M Sadowska
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Ireland
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 16, 08019 Barcelona, Spain. and Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
46
|
Negrescu AM, Cimpean A. The State of the Art and Prospects for Osteoimmunomodulatory Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1357. [PMID: 33799681 PMCID: PMC7999637 DOI: 10.3390/ma14061357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
The critical role of the immune system in host defense against foreign bodies and pathogens has been long recognized. With the introduction of a new field of research called osteoimmunology, the crosstalk between the immune and bone-forming cells has been studied more thoroughly, leading to the conclusion that the two systems are intimately connected through various cytokines, signaling molecules, transcription factors and receptors. The host immune reaction triggered by biomaterial implantation determines the in vivo fate of the implant, either in new bone formation or in fibrous tissue encapsulation. The traditional biomaterial design consisted in fabricating inert biomaterials capable of stimulating osteogenesis; however, inconsistencies between the in vitro and in vivo results were reported. This led to a shift in the development of biomaterials towards implants with osteoimmunomodulatory properties. By endowing the orthopedic biomaterials with favorable osteoimmunomodulatory properties, a desired immune response can be triggered in order to obtain a proper bone regeneration process. In this context, various approaches, such as the modification of chemical/structural characteristics or the incorporation of bioactive molecules, have been employed in order to modulate the crosstalk with the immune cells. The current review provides an overview of recent developments in such applied strategies.
Collapse
Affiliation(s)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| |
Collapse
|
47
|
Montoya C, Du Y, Gianforcaro AL, Orrego S, Yang M, Lelkes PI. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Res 2021; 9:12. [PMID: 33574225 PMCID: PMC7878740 DOI: 10.1038/s41413-020-00131-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023] Open
Abstract
The demand for biomaterials that promote the repair, replacement, or restoration of hard and soft tissues continues to grow as the population ages. Traditionally, smart biomaterials have been thought as those that respond to stimuli. However, the continuous evolution of the field warrants a fresh look at the concept of smartness of biomaterials. This review presents a redefinition of the term "Smart Biomaterial" and discusses recent advances in and applications of smart biomaterials for hard tissue restoration and regeneration. To clarify the use of the term "smart biomaterials", we propose four degrees of smartness according to the level of interaction of the biomaterials with the bio-environment and the biological/cellular responses they elicit, defining these materials as inert, active, responsive, and autonomous. Then, we present an up-to-date survey of applications of smart biomaterials for hard tissues, based on the materials' responses (external and internal stimuli) and their use as immune-modulatory biomaterials. Finally, we discuss the limitations and obstacles to the translation from basic research (bench) to clinical utilization that is required for the development of clinically relevant applications of these technologies.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
| | - Yu Du
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anthony L Gianforcaro
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Peter I Lelkes
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA.
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
48
|
Yan Z, Qi Z, Yang X, Ji N, Wang Y, Shi Q, Li M, Zhang J, Zhu Y. The NLRP3 inflammasome: Multiple activation pathways and its role in primary cells during ventricular remodeling. J Cell Physiol 2021; 236:5547-5563. [PMID: 33469931 DOI: 10.1002/jcp.30285] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
Inflammasomes are a group of multiprotein signaling complexes located in the cytoplasm. Several inflammasomes have been identified, including NLRP1, NLRP2, NLRP3, AIM2, and NLRC4. Among them, NLRP3 was investigated in most detail, and it was reported that it can be activated by many different stimuli. Increased NLRP3 protein expression and inflammasome assembly lead to caspase-1 mediated maturation and release of IL-1β, which triggers inflammation and pyroptosis. The activation of the NLRP3 inflammasome has been widely reported in studies of tumors and neurological diseases, but relatively few studies on the cardiovascular system. Ventricular remodeling (VR) is an important factor contributing to heart failure (HF) after myocardial infarction (MI). Consequently, delaying VR is of great significance for improving heart function. Studies have shown that the NLRP3 inflammasome plays an essential role in the process of VR. Here, we reviewed the latest studies on the activation pathway of the NLRP3 inflammasome, focusing on the effects of the NLRP3 inflammasome in primary cells during VR, and finally discuss future research directions in this field.
Collapse
Affiliation(s)
- Zhipeng Yan
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhongwen Qi
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoya Yang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Ji
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yueyao Wang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Shi
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Li
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaping Zhu
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
49
|
Chen R, Chen HB, Xue PP, Yang WG, Luo LZ, Tong MQ, Zhong B, Xu HL, Zhao YZ, Yuan JD. HA/MgO nanocrystal-based hybrid hydrogel with high mechanical strength and osteoinductive potential for bone reconstruction in diabetic rats. J Mater Chem B 2021; 9:1107-1122. [PMID: 33427267 DOI: 10.1039/d0tb02553d] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone repair and regeneration processes are markedly impaired in diabetes mellitus (DM). Intervening approaches similar to those developed for normal healing conditions have been adopted to combat DM-associated bone regeneration. However, limited outcomes were achieved for these approaches. Hence, together with osteoconductive hydroxyapatite (HA) nanocrystals, osteoinductive magnesium oxide (MgO) nanocrystals were uniformly mounted into the network matrix of an organic hydrogel composed of cysteine-modified γ-polyglutamic acid (PGA-Cys) to construct a hybrid and rough hydrogel scaffold. It was hypothesized that the HA/MgO nanocrystal hybrid hydrogel (HA/MgO-H) scaffold can significantly promote bone repair in DM rats via the controlled release of Mg2+. The HA/MgO-H scaffold exhibited a sponge-like morphology with porous 3D networks inside it and displayed higher mechanical strength than a PGA-Cys scaffold. Meanwhile, the HA/MgO-H scaffold gradually formed a tough hydrogel with G' of more than 1000 Pa after hydration, and its high hydration swelling ratio was still retained. Moreover, after the chemical degradation of the dispersed MgO nanocrystals, slow release of Mg2+ from the hydrogel matrix was achieved for up to 8 weeks because of the chelation between Mg2+ and the carboxyl groups of PGA-Cys. In vitro cell studies showed that the HA/MgO-H scaffold could not only effectively promote the migration and proliferation of BMSCs but could also induce osteogenic differentiation. Moreover, in the 8th week after implanting the HA/MgO-H scaffold into femur bone defect zones of DM rats, more effective bone repair was presented by micro-CT imaging. The bone mineral density (397.22 ± 16.36 mg cm-3), trabecular thickness (0.48 ± 0.07 mm), and bone tissue volume/total tissue volume (79.37 ± 7.96%) in the HA/MgO-H group were significantly higher than those in the other groups. Moreover, higher expression of COL-I and OCN after treatment with HA/MgO-H was also displayed. The bone repair mechanism of the HA/MgO-H scaffold was highly associated with reduced infiltration of pro-inflammatory macrophages (CD80+) and higher angiogenesis (CD31+). Collectively, the HA/MgO-H scaffold without the usage of bioactive factors may be a promising biomaterial to accelerate bone defect healing under diabetes mellitus.
Collapse
Affiliation(s)
- Rui Chen
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Niu Y, Wang Z, Shi Y, Dong L, Wang C. Modulating macrophage activities to promote endogenous bone regeneration: Biological mechanisms and engineering approaches. Bioact Mater 2021; 6:244-261. [PMID: 32913932 PMCID: PMC7451865 DOI: 10.1016/j.bioactmat.2020.08.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023] Open
Abstract
A coordinated interaction between osteogenesis and osteoimmune microenvironment is essential for successful bone healing. In particular, macrophages play a central regulatory role in all stages of bone repair. Depending on the signals they sense, these highly plastic cells can mediate the host immune response against the exterior signals of molecular stimuli and implanted scaffolds, to exert regenerative potency to a varying extent. In this article, we first encapsulate the immunomodulatory functions of macrophages during bone regeneration into three aspects, as sweeper, mediator and instructor. We introduce the phagocytic role of macrophages in different bone healing periods ('sweeper') and overview a variety of paracrine cytokines released by macrophages either mediating cell mobilisation, vascularisation and matrix remodelling ('mediator'), or directly driving the osteogenic differentiation of bone progenitors and bone repair ('instructor'). Then, we systematically classify and discuss the emerging engineering strategies to recruit, activate and modulate the phenotype transition of macrophages, to exploit the power of endogenous macrophages to enhance the performance of engineered bone tissue.
Collapse
Affiliation(s)
- Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Zhenzhen Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Yuchen Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| |
Collapse
|