1
|
Anichina K, Lumov N, Bakov V, Yancheva D, Georgiev N. Recent Advances in the Application of Nitro(het)aromatic Compounds for Treating and/or Fluorescent Imaging of Tumor Hypoxia. Molecules 2024; 29:3475. [PMID: 39124883 PMCID: PMC11314162 DOI: 10.3390/molecules29153475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
This review delves into recent advancements in the field of nitro(het)aromatic bioreductive agents tailored for hypoxic environments. These compounds are designed to exploit the low-oxygen conditions typically found in solid tumors, making them promising candidates for targeted cancer therapies. Initially, this review focused on their role as gene-directed enzyme prodrugs, which are inert until activated by specific enzymes within tumor cells. Upon activation, these prodrugs undergo chemical transformations that convert them into potent cytotoxic agents, selectively targeting cancerous tissue while sparing healthy cells. Additionally, this review discusses recent developments in prodrug conjugates containing nitro(het)aromatic moieties, designed to activate under low-oxygen conditions within tumors. This approach enhances their efficacy and specificity in cancer treatment. Furthermore, this review covers innovative research on using nitro(het)aromatic compounds as fluorescent probes for imaging hypoxic tumors. These probes enable non-invasive visualization of low-oxygen regions within tumors, providing valuable insights for the diagnosis, treatment planning, and monitoring of therapeutic responses. We hope this review will inspire researchers to design and synthesize improved compounds for selective cancer treatment and early diagnostics.
Collapse
Affiliation(s)
- Kameliya Anichina
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
| | - Nikolay Lumov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | - Ventsislav Bakov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
| | - Denitsa Yancheva
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | - Nikolai Georgiev
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
| |
Collapse
|
2
|
Hussein AS, Lafzi F, Bayindir S, Kilic H, Toprak M. A Novel Rhodamine-Phenolphthalein Architecture for Selective Mercury Ion Detection in Aqueous Media. Chempluschem 2024; 89:e202300649. [PMID: 38179811 DOI: 10.1002/cplu.202300649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
In this study, the primary objective is to synthesize a novel fluorescent Rh-PP-Rh compound and explore its extensive range of photochemical behaviors. Initially, the synthesis of the novel Rh-PP-Rh was carried out for this purpose. Subsequently, UV-Vis and fluorescence spectroscopy were employed to investigate the interactions between Rh-PP-Rh and a diverse array of ions in aqueous solvent systems. Through fluorescence and UV-Vis studies, it was observed that Rh-PP-Rh demonstrated turn-on sensor properties in the presence of Hg2+ ions. Furthermore, the limits of detection (LOD) and association constant (Ka) values for Rh-PP-Rh/Hg2+ were determined as 334 nM and 9.13×1011 M-2, respectively. Additionally, the reversible studies demonstrated a switchable on/off response upon alternate addition of HgCl2 and [Bu4N]F to Rh-PP-Rh. These findings suggest that the probe Rh-PP-Rh also possesses specific sensor properties for F- ions in the presence of mercury. In addition, the investigation encompassed an assessment of the visual analysis of the color alterations of Rh-PP-Rh both on filter paper and in an EtOH/H2O solution. The findings demonstrated that Rh-PP-Rh can be successfully utilized in solutions containing mercury, as it generates significant color transformations.
Collapse
Affiliation(s)
- Abdullah Saleh Hussein
- Department of Chemistry Faculty of Sciences and Arts, Bingöl University, 12000, Bingöl, Türkiye
- College of Education Chemistry Department, Salahaddin University-Erbil, 44002, Erbil, Iraq
| | - Ferruh Lafzi
- Department of Chemistry Faculty of Sciences, Atatürk University, 25240, Erzurum, Turkey
| | - Sinan Bayindir
- Department of Chemistry Faculty of Sciences and Arts, Bingöl University, 12000, Bingöl, Türkiye
| | - Haydar Kilic
- Department of Chemistry Faculty of Sciences, Atatürk University, 25240, Erzurum, Turkey
| | - Mahmut Toprak
- Department of Chemistry Faculty of Sciences and Arts, Bingöl University, 12000, Bingöl, Türkiye
| |
Collapse
|
3
|
Guo C, Wu M, Guo Z, Zhang R, Wang Z, Peng X, Dong J, Sun X, Zhang Z, Xiao P, Gong T. Hypoxia-Responsive Golgi-Targeted Prodrug Assembled with Anthracycline for Improved Antitumor and Antimetastasis Efficacy. ACS NANO 2023; 17:24972-24987. [PMID: 38093174 DOI: 10.1021/acsnano.3c07183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Tumor metastasis is an intricate multistep process regulated via various proteins and enzymes modified and secreted by swollen Golgi apparatus in tumor cells. Thus, Golgi complex is considered as an important target for the remedy of metastasis. Currently, Golgi targeting technologies are mostly employed in Golgi-specific fluorescent probes for diagnosis, but their applications in therapy are rarely reported. Herein, we proposed a prodrug (INR) that can target and destroy the Golgi apparatus, which consisted of indomethacin (IMC) as the Golgi targeting moiety and retinoic acid (RA), a Golgi disrupting agent. The linker between IMC and RA was designed as a hypoxia-responsive nitroaromatic structure, which ensured the release of the prototype drugs in the hypoxic tumor microenvironment. Furthermore, INR could be assembled with pirarubicin (THP), an anthracycline, to form a carrier-free nanoparticle (NP) by emulsion-solvent evaporation method. A small amount of mPEG2000-DSPE was added to shield the positive charges and improve the stability of the nanoparticle to obtain PEG-modified nanoparticle (PNP). It was proved that INR released the prototype drugs in tumor cells and hypoxia promoted the release. The Golgi destructive effect of RA in INR was amplified owing to the Golgi targeting ability of IMC, and IMC also inhibited the protumor COX-2/PGE2 signaling. Finally, PNP exhibited excellent curative efficacy on 4T1 primary tumor and its pulmonary and hepatic metastasis. The small molecular therapeutic prodrug targeting Golgi apparatus could be adapted to multifarious drug delivery systems and disease models, which expanded the application of Golgi targeting tactics in disease treatment.
Collapse
Affiliation(s)
- Chenqi Guo
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Mengying Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhaofei Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rongping Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zijun Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiong Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jianxia Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Peihong Xiao
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Mittal S, Mallia MB. Molecular imaging of tumor hypoxia: Evolution of nitroimidazole radiopharmaceuticals and insights for future development. Bioorg Chem 2023; 139:106687. [PMID: 37406518 DOI: 10.1016/j.bioorg.2023.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Though growing evidence has been collected in support of the concept of dose escalation based on the molecular level images indicating hypoxic tumor sub-volumes that could be radio-resistant, validation of the concept is still a work in progress. Molecular imaging of tumor hypoxia using radiopharmaceuticals is expected to provide the required input to plan dose escalation through Image Guided Radiation Therapy (IGRT) to kill/control the radio-resistant hypoxic tumor cells. The success of the IGRT, therefore, is heavily dependent on the quality of images obtained using the radiopharmaceutical and the extent to which the image represents the true hypoxic status of the tumor in spite of the heterogeneous nature of tumor hypoxia. Available literature on radiopharmaceuticals for imaging hypoxia is highly skewed in favor of nitroimidazole as the pharmacophore given their ability to undergo oxygen dependent reduction in hypoxic cells. In this context, present review on nitroimidazole radiopharmaceuticals would be immensely helpful to the researchers to obtain a birds-eye view on what has been achieved so far and what can be tried differently to obtain a better hypoxia imaging agent. The review also covers various methods of radiolabeling that could be utilized for developing radiotracers for hypoxia targeting applications.
Collapse
Affiliation(s)
- Sweety Mittal
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India.
| | - Madhava B Mallia
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
5
|
Boopathi E, Den RB, Thangavel C. Innate Immune System in the Context of Radiation Therapy for Cancer. Cancers (Basel) 2023; 15:3972. [PMID: 37568788 PMCID: PMC10417569 DOI: 10.3390/cancers15153972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Radiation therapy (RT) remains an integral component of modern oncology care, with most cancer patients receiving radiation as a part of their treatment plan. The main goal of ionizing RT is to control the local tumor burden by inducing DNA damage and apoptosis within the tumor cells. The advancement in RT, including intensity-modulated RT (IMRT), stereotactic body RT (SBRT), image-guided RT, and proton therapy, have increased the efficacy of RT, equipping clinicians with techniques to ensure precise and safe administration of radiation doses to tumor cells. In this review, we present the technological advancement in various types of RT methods and highlight their clinical utility and associated limitations. This review provides insights into how RT modulates innate immune signaling and the key players involved in modulating innate immune responses, which have not been well documented earlier. Apoptosis of cancer cells following RT triggers immune systems that contribute to the eradication of tumors through innate and adoptive immunity. The innate immune system consists of various cell types, including macrophages, dendritic cells, and natural killer cells, which serve as key mediators of innate immunity in response to RT. This review will concentrate on the significance of the innate myeloid and lymphoid lineages in anti-tumorigenic processes triggered by RT. Furthermore, we will explore essential strategies to enhance RT efficacy. This review can serve as a platform for researchers to comprehend the clinical application and limitations of various RT methods and provides insights into how RT modulates innate immune signaling.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert B. Den
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Chellappagounder Thangavel
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
6
|
Fu Y, Jang MS, Liu C, Li Y, Lee JH, Yang HY. Oxygen-Generating Organic/Inorganic Self-Assembled Nanocolloids for Tumor-Activated Dual-Model Imaging-Guided Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37478563 DOI: 10.1021/acsami.3c07008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Tumor phototheranostics is usually compromised by the hypoxic tumor microenvironment and poor theranostic efficiency. The interplay between organic polymers and inorganic nanoparticles in novel nanocomposites has proven to be advantageous, overcoming previous limitations and harnessing their full potential through activation via the tumor microenvironment. This study successfully fabricated hypoxia-activated nanocolloids called HOISNDs through a process of self-assembly involving superparamagnetic iron oxide nanoparticles (SPIONs) and an organic polymer ligand called tetrakis(4-carboxyphenyl) porphyrin (TCPP)-engineered organic polymer ligand [methoxy poly(ethyleneglycol)-block-poly(dopamine-ethylenediamine-conjugated-4-nitrobenzyl chloroformate)-l-glutamate, mPEG-b-P(Dopa-EDA-co-NBCF)LG-TCPP)]. The SPIONs act as an oxygen generator to overcome the challenges posed by hypoxic tumors and enable the use of hypoxic-activatable MR/fluorescence dual-modal imaging-guided photodynamic therapy (PDT). The colloid stability of these HOISNDs proved to be exceptional in diverse biomimetic environments. Furthermore, they not only augment T2-weighted contrast capability as an MRI contrast agent but also function as an oxygen-producing device to amplify the generation and release of reactive oxygen species (ROS). The HOISNDs can significantly target to tumor sites through the enhanced permeability and retention (EPR) effect with prolonged blood circulation time and subsequently are effectively endocytosed into a hypoxic intracellular environment that "turn on" the imaging function and photodynamic activity. Moreover, HOISNDs possess the ability to effectively decompose naturally occurring H2O2 into oxygen (O2) within the tumor utilizing the Fenton reaction. This method can mitigate the impact of hypoxia on oxygen-dependent PDT. The outcomes of in vivo diagnostic and therapeutic evaluations indicated that HOISNDs are a highly promising tool for dual-model imaging-guided cancer theranosis by ameliorating hypoxic conditions and augmenting PDT efficiency.
Collapse
Affiliation(s)
- Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University, School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, The Republic of Korea
| | - Changling Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute (NRI), Jiaxing University, Jiaxing City 314001, Zhejiang Province, PR China
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University, School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, The Republic of Korea
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| |
Collapse
|
7
|
O’Mari O, Vullev VI. Optical Window to Polarity of Electrolyte Solutions. Molecules 2023; 28:4360. [PMID: 37298836 PMCID: PMC10254283 DOI: 10.3390/molecules28114360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Medium polarity plays a crucial role in charge-transfer processes and electrochemistry. The added supporting electrolyte in electrochemical setups, essential for attaining the needed electrical conductivity, sets challenges for estimating medium polarity. Herein, we resort to Lippert-Mataga-Ooshika (LMO) formalism for estimating the Onsager polarity of electrolyte organic solutions pertinent to electrochemical analysis. An amine derivative of 1,8-naphthalimide proves to be an appropriate photoprobe for LMO analysis. An increase in electrolyte concentration enhances the polarity of the solutions. This effect becomes especially pronounced for low-polarity solvents. Adding 100 mM tetrabutylammonium hexafluorophosphate to chloroform results in solution polarity exceeding that of neat dichloromethane and 1,2-dichloroethane. Conversely, the observed polarity enhancement that emerges upon the same electrolyte addition to solvents such as acetonitrile and N,N-dimethylformamide is hardly as dramatic. Measured refractive indices provide a means for converting Onsager to Born polarity, which is essential for analyzing medium effects on electrochemical trends. This study demonstrates a robust optical means, encompassing steady-state spectroscopy and refractometry, for characterizing solution properties important for charge-transfer science and electrochemistry.
Collapse
Affiliation(s)
- Omar O’Mari
- Department of Bioengineering, University of California, Riverside, CA 92521, USA;
| | - Valentine I. Vullev
- Department of Bioengineering, University of California, Riverside, CA 92521, USA;
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
- Material Science and Engineering Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Wang Z, Zhang S, Kong Z, Li S, Sun J, Zheng Y, He Z, Ye H, Luo C. Self-adaptive nanoassembly enabling turn-on hypoxia illumination and periphery/center closed-loop tumor eradication. Cell Rep Med 2023; 4:101014. [PMID: 37075700 PMCID: PMC10140616 DOI: 10.1016/j.xcrm.2023.101014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
Solid tumors are regarded as complex evolving systems rather than simple diseases. Self-adaptive synthetic therapeutics are required to cope with the challenges of entire tumors; however, limitations in accurate positioning and destruction of hypoxic niches seriously hinder complete tumor eradication. In this study, we engineer a molecular nanoassembly of sorafenib and a hypoxia-sensitive cyanine probe (CNO) to facilitate periphery/center synergistic cancer therapies. The self-adaptive nanoassembly with cascade drug release features not only effectively kills the peripheral tumor cells in normoxic rims but precisely illuminates hypoxic niches following the reduction of CNO by nitroreductase. More important, CNO is found to synergistically induce tumor ferroptosis with sorafenib via nicotinamide adenine dinucleotide phosphate (NADPH) depletion in hypoxic niches. As expected, the engineered nanoassembly demonstrates self-adaptive hypoxic illumination and periphery/center synergetic tumor eradication in colon and breast cancer BALB/c mouse xenograft models. This study advances turn-on hypoxia illumination and chemo-ferroptosis toward clinical applicability.
Collapse
Affiliation(s)
- Ziyue Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Zhiqiang Kong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Songhao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Hao Ye
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, 8092 Zurich, Switzerland.
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China.
| |
Collapse
|
9
|
Zhang C, Kang T, Wang X, Song J, Zhang J, Li G. Stimuli-responsive platinum and ruthenium complexes for lung cancer therapy. Front Pharmacol 2022; 13:1035217. [PMID: 36324675 PMCID: PMC9618881 DOI: 10.3389/fphar.2022.1035217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide. More efficient treatments are desperately needed. For decades, the success of platinum-based anticancer drugs has promoted the exploration of metal-based agents. Four ruthenium-based complexes have also entered clinical trials as candidates of anticancer metallodrugs. However, systemic toxicity, severe side effects and drug-resistance impeded their applications and efficacy. Stimuli-responsiveness of Pt- and Ru-based complexes provide a great chance to weaken the side effects and strengthen the clinical efficacy in drug design. This review provides an overview on the stimuli-responsive Pt- and Ru-based metallic anticancer drugs for lung cancer. They are categorized as endo-stimuli-responsive, exo-stimuli-responsive, and dual-stimuli-responsive prodrugs based on the nature of stimuli. We describe various representative examples of structure, response mechanism, and potential medical applications in lung cancer. In the end, we discuss the future opportunities and challenges in this field.
Collapse
Affiliation(s)
- Cheng Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tong Kang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xinyi Wang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jia Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jia Zhang, ; Guanying Li,
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jia Zhang, ; Guanying Li,
| |
Collapse
|
10
|
Olenin AY, Yagov VV. Using the Turn-On Fluorescence Effect in Chemical and Biochemical Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822090088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Evolving a novel red-emitting two-photon dye with optically tunable amino group for monitoring the degree of hypoxia during liver fibrosis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Optical molecular imaging and theranostics in neurological diseases based on aggregation-induced emission luminogens. Eur J Nucl Med Mol Imaging 2022; 49:4529-4550. [PMID: 35781601 PMCID: PMC9606072 DOI: 10.1007/s00259-022-05894-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
Abstract
Optical molecular imaging and image-guided theranostics benefit from special and specific imaging agents, for which aggregation-induced emission luminogens (AIEgens) have been regarded as good candidates in many biomedical applications. They display a large Stokes shift, high quantum yield, good biocompatibility, and resistance to photobleaching. Neurological diseases are becoming a substantial burden on individuals and society that affect over 50 million people worldwide. It is urgently needed to explore in more detail the brain structure and function, learn more about pathological processes of neurological diseases, and develop more efficient approaches for theranostics. Many AIEgens have been successfully designed, synthesized, and further applied for molecular imaging and image-guided theranostics in neurological diseases such as cerebrovascular disease, neurodegenerative disease, and brain tumor, which help us understand more about the pathophysiological state of brain through noninvasive optical imaging approaches. Herein, we focus on representative AIEgens investigated on brain vasculature imaging and theranostics in neurological diseases including cerebrovascular disease, neurodegenerative disease, and brain tumor. Considering different imaging modalities and various therapeutic functions, AIEgens have great potential to broaden neurological research and meet urgent needs in clinical practice. It will be inspiring to develop more practical and versatile AIEgens as molecular imaging agents for preclinical and clinical use on neurological diseases.
Collapse
|
13
|
Lu M, Huang X, Cai X, Sun J, Liu X, Weng L, Zhu L, Luo Q, Chen Z. Hypoxia-Responsive Stereocomplex Polymeric Micelles with Improved Drug Loading Inhibit Breast Cancer Metastasis in an Orthotopic Murine Model. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20551-20565. [PMID: 35476401 DOI: 10.1021/acsami.1c23737] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor metastasis is a leading cause of breast cancer-related death. Taxane-loaded polymeric formulations, such as Genexol PM and Nanoxel M using poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) micelles as drug carriers, have been approved for the treatment of metastatic breast cancer. Unfortunately, the physical instability of PEG-PLA micelles, leading to poor drug loading, premature drug leakage, and consequently limited drug delivery to tumors, largely hinders their therapeutic outcome. Inspired by the enantiomeric nature of PLA, this work developed stereocomplex PEG-PLA micelles through stereoselective interactions of enantiomeric PLA, which are further incorporated with a hypoxia-responsive moiety used as a hypoxia-cleavable linker of PEG and PLA, to maximize therapeutic outcomes. The results showed that the obtained micelles had high structural stability, showing improved drug loading for effective drug delivery to tumors as well as other tissues. Especially, they were capable of sensitively responding to the hypoxic tumor environment for drug release, reversing hypoxia-induced drug resistance and hypoxia-promoted cell migration for enhanced bioavailability under hypoxia. In vivo results further showed that the micelles, especially at a high dose, inhibited the growth of the primary tumor and improved tumor pathological conditions, consequently remarkably inhibiting its metastasis to the lungs and liver, while not causing any systemic toxicity. Hypoxia-responsive stereocomplex micelles thus emerge as a reliable drug delivery system to treat breast cancer metastasis.
Collapse
Affiliation(s)
- Min Lu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Xu Huang
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Xiaohui Cai
- Department of Hematology, Nanjing Medical University, Affiliated Changzhou No. 2 People's Hospital, Changzhou 213000, People's Republic of China
| | - Jiajia Sun
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Xuemeng Liu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Lingyan Weng
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Li Zhu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Qianqian Luo
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Zhongping Chen
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|
14
|
Recent Developments on 1,8-Naphthalimide Moiety as Potential Target for Anticancer Agents. Bioorg Chem 2022; 121:105677. [DOI: 10.1016/j.bioorg.2022.105677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 01/07/2023]
|
15
|
Kumari R, R. V, Sunil D, N. V. AK, Ningthoujam RS, Pandey BN, D. Kulkarni S, Varadavenkatesan T, Venkatachalam G. Dinitro Derivative of Naphthalimide as a Fluorescent Probe for Tumor Hypoxia Imaging. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2009525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rashmi Kumari
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vasumathy R.
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anil Kumar N. V.
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghumani Singh Ningthoujam
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Badri Narain Pandey
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Suresh D. Kulkarni
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ganesh Venkatachalam
- Electrodics and Electrocatalysis (EEC) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu, India
| |
Collapse
|
16
|
Fan X, Ren T, Yang W, Zhang X, Yuan L. Activatable photoacoustic/fluorescent dual-modal probe for monitoring of drug-induced liver hypoxia in vivo. Chem Commun (Camb) 2021; 57:8644-8647. [PMID: 34369955 DOI: 10.1039/d1cc02999a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Effective monitoring of liver hypoxia status is crucial for the detection and treatment of drug-induced liver injury. Here, a novel photoacoustic and fluorescent dual-modal probe (NO2-CS) was rationally developed and applied to image isoniazid-induced liver hypoxia through detecting the over-expressed nitroreductase.
Collapse
Affiliation(s)
- Xiaopeng Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | | | | | | | | |
Collapse
|
17
|
Kumari R, R V, Sunil D, Ningthoujam RS, Pandey BN, Kulkarni SD, Varadavenkatesan T, Venkatachalam G, V AKN. A Nitronaphthalimide Probe for Fluorescence Imaging of Hypoxia in Cancer Cells. J Fluoresc 2021; 31:1665-1673. [PMID: 34383168 PMCID: PMC8545720 DOI: 10.1007/s10895-021-02800-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 12/18/2022]
Abstract
The bioreductive enzymes typically upregulated in hypoxic tumor cells can be targeted for developing diagnostic and drug delivery applications. In this study, a new fluorescent probe 4-(6-nitro-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)benzaldehyde (NIB) based on a nitronaphthalimide skeleton that could respond to nitroreductase (NTR) overexpressed in hypoxic tumors is designed and its application in imaging tumor hypoxia is demonstrated. The docking studies revealed favourable interactions of NIB with the binding pocket of NTR-Escherichia coli. NIB, which is synthesized through a simple and single step imidation of 4-nitro-1,8-naphthalic anhydride displayed excellent reducible capacity under hypoxic conditions as evidenced from cyclic voltammetry investigations. The fluorescence measurements confirmed the formation of identical products (NIB-red) during chemical as well as NTR-aided enzymatic reduction in the presence of NADH. The potential fluorescence imaging of hypoxia based on NTR-mediated reduction of NIB is confirmed using in-vitro cell culture experiments using human breast cancer (MCF-7) cells, which displayed a significant change in the fluorescence colour and intensity at low NIB concentration within a short incubation period in hypoxic conditions.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vasumathy R
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Raghumani Singh Ningthoujam
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Badri Narain Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Suresh D Kulkarni
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ganesh Venkatachalam
- Electrodics and Electrocatalysis (EEC) Division, CSIR - Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, 630003, Tamil Nadu, India
| | - Anil Kumar N V
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
18
|
Shi H, Kasparkova J, Soulié C, Clarkson GJ, Imberti C, Novakova O, Paterson MJ, Brabec V, Sadler PJ. DNA-Intercalative Platinum Anticancer Complexes Photoactivated by Visible Light. Chemistry 2021; 27:10711-10716. [PMID: 34046954 PMCID: PMC8361943 DOI: 10.1002/chem.202101168] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/14/2022]
Abstract
Photoactivatable agents offer the prospect of highly selective cancer therapy with low side effects and novel mechanisms of action that can combat current drug resistance. 1,8-Naphthalimides with their extended π system can behave as light-harvesting groups, fluorescent probes and DNA intercalators. We conjugated N-(carboxymethyl)-1,8-naphthalimide (gly-R-Nap) with an R substituent on the naphthyl group to photoactive diazido PtIV complexes to form t,t,t-[Pt(py)2 (N3 )2 (OH)(gly-R-Nap)], R=H (1), 3-NO2 (2) or 4-NMe2 (3). They show enhanced photo-oxidation, cellular accumulation and promising photo-cytotoxicity in human A2780 ovarian, A549 lung and PC3 prostate cancer cells with visible light activation, and low dark cytotoxicity. Complexes 1 and 2 exhibit pre-intercalation into DNA, resulting in enhanced photo-induced DNA crosslinking. Complex 3 has a red-shifted absorption band at 450 nm, allowing photoactivation and photo-cytotoxicity with green light.
Collapse
Affiliation(s)
- Huayun Shi
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Jana Kasparkova
- Institute of BiophysicsCzech Academy of SciencesKralovopolska 13561265BrnoCzech Republic
| | - Clément Soulié
- Institute of Chemical SciencesSchool of Engineering & Physical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Guy J. Clarkson
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Cinzia Imberti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Olga Novakova
- Institute of BiophysicsCzech Academy of SciencesKralovopolska 13561265BrnoCzech Republic
| | - Martin J. Paterson
- Institute of Chemical SciencesSchool of Engineering & Physical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Viktor Brabec
- Institute of BiophysicsCzech Academy of SciencesKralovopolska 13561265BrnoCzech Republic
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
19
|
|
20
|
Izawa H, Yasufuku F, Nokami T, Ifuku S, Saimoto H, Matsui T, Morihashi K, Sumita M. Unique Photophysical Properties of 1,8-Naphthalimide Derivatives: Generation of Semi-stable Radical Anion Species by Photo-Induced Electron Transfer from a Carboxy Group. ACS OMEGA 2021; 6:13456-13465. [PMID: 34056493 PMCID: PMC8158823 DOI: 10.1021/acsomega.1c01685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The development of anion sensors for selective detection of a specific anion is a crucial research topic. We previously reported a selective photo-induced colorimetric reaction of 1-methyl-3-(N-(1,8-naphthalimidyl)ethyl)imidazolium (MNEI) having a cationic receptor in the presence of molecules having multiple carboxy groups, such as succinate, citrate, and polyacrylate. However, the mechanism underlying this reaction was not clarified. Here, we investigate the photo-induced colorimetric reaction of N-[2-(trimethylammonium)ethyl]-1,8-naphthalimide (TENI), which has a different cationic receptor from MNEI and undergoes the photo-induced colorimetric reaction, and its analogues to clarify the reaction mechanism. The TENI analogues having substituents on the naphthalene ring provide important evidence, suggesting that the colorimetric chemical species were radical anions generated via photo-induced electron transfer from carboxylate to the naphthalimide derivative. The generation of the naphthalimide-based radical anion is verified by 1H NMR and cyclic voltammetry analyses, and photo-reduction of methylene blue is mediated by TENI. In addition, the role of the cationic receptor for the photo-induced colorimetric reaction is investigated with TENI analogues having different hydrophilic groups instead of the trimethylammonium group. Interestingly, the photo-induced colorimetric reaction is observed in a nonionic analogue having a polyethylene glycol group, indicating that the colorimetric reaction does not require a cationic receptor. On the other hand, we reveal that the trimethylammonium group stabilizes the radical anion species. These generation and stabilization phenomena of naphthalimide-based radical anion species will contribute to the development of sophisticated detection systems specific for carboxylate.
Collapse
Affiliation(s)
- Hironori Izawa
- Department
of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
- Center
for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
| | - Fumika Yasufuku
- Graduate
School of Sustainable Science, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
| | - Toshiki Nokami
- Department
of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
- Center
for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
| | - Shinsuke Ifuku
- Department
of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
- Center
for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
| | - Hiroyuki Saimoto
- Department
of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
- Center
for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
| | - Toru Matsui
- Department
of Chemistry, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Kenji Morihashi
- Department
of Chemistry, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Masato Sumita
- Center
for Advanced Intelligence Project, RIKEN, Nihombashi 1-chome Mitsui Building, 15th Floor,
1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
21
|
Staszak K, Wieszczycka K, Bajek A, Staszak M, Tylkowski B, Roszkowski K. Achievement in active agent structures as a power tools in tumor angiogenesis imaging. Biochim Biophys Acta Rev Cancer 2021; 1876:188560. [PMID: 33965512 DOI: 10.1016/j.bbcan.2021.188560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
According to World Health Organization (WHO) cancer is the second most important cause of death globally. Because angiogenesis is considered as an essential process of growth, proliferation and tumor progression, within this review we decided to shade light on recent development of chemical compounds which play a significant role in its imaging and monitoring. Indeed, the review gives insight about the current achievements of active agents structures involved in imaging techniques such as: positron emission computed tomography (PET), magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT), as well as combination PET/MRI and PET/CT. The review aims to provide the journal audience with a comprehensive and in-deep understanding of chemistry policy in tumor angiogenesis imaging.
Collapse
Affiliation(s)
- Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Anna Bajek
- Department of Tissue Engineering, Collegium Medicum Nicolaus Copernicus University, Karlowicza St. 24, 85-092 Bydgoszcz, Poland
| | - Maciej Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, C/Marcellí Domingo s/n, 43007 Tarragona, Spain
| | - Krzysztof Roszkowski
- Department of Oncology, Collegium Medicum Nicolaus Copernicus University, Romanowskiej St. 2, 85-796 Bydgoszcz, Poland.
| |
Collapse
|
22
|
Thomas C, Gwenin CD. The Role of Nitroreductases in Resistance to Nitroimidazoles. BIOLOGY 2021; 10:388. [PMID: 34062712 PMCID: PMC8147198 DOI: 10.3390/biology10050388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/14/2023]
Abstract
Antimicrobial resistance is a major challenge facing modern medicine, with an estimated 700,000 people dying annually and a global cost in excess of $100 trillion. This has led to an increased need to develop new, effective treatments. This review focuses on nitroimidazoles, which have seen a resurgence in interest due to their broad spectrum of activity against anaerobic Gram-negative and Gram-positive bacteria. The role of nitroreductases is to activate the antimicrobial by reducing the nitro group. A decrease in the activity of nitroreductases is associated with resistance. This review will discuss the resistance mechanisms of different disease organisms, including Mycobacterium tuberculosis, Helicobacter pylori and Staphylococcus aureus, and how these impact the effectiveness of specific nitroimidazoles. Perspectives in the field of nitroimidazole drug development are also summarised.
Collapse
Affiliation(s)
- Carol Thomas
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK;
| | - Christopher D. Gwenin
- Department of Chemistry, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
23
|
Kumar G, Singh I, Goel R, Paul K, Luxami V. Dual-channel ratiometric recognition of Al 3+ and F - ions through an ESIPT-ESICT signalling mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119112. [PMID: 33189981 DOI: 10.1016/j.saa.2020.119112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/11/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
An optical probe 1 has been synthesized comprising naphthalimide unit conjugated with Schiff base, exhibiting excited state intramolecular proton transfer and intramolecular charge transfer as a potential sensor for Al3+ and F- ions using standard spectroscopic techniques. The probe 1 exhibited local and charge-transfer excitation at 340 nm and 460 nm, respectively. On excitation at 460 nm, probe 1 displayed two emission bands at 510 nm and 610 nm, accompanied by Stokes' shift of 50 nm and 150 nm, respectively. The solvatochromic effect and theoretical calculation depicted that the representative emissions resulted from the ESICT/ESIPT phenomenon. Upon addition of Al3+ ions, the charge transfer excitation at 460 nm was enhanced ratiometrically to local excitation at 340 nm and showed a color change from orange to yellow. Similarily, probe 1.Al3+ displayed emission enhancement at 540 nm in H2O/CH3CN (1:9; v/v) and showed a color change from yellow to blue-green emission. Following the detection of Al3+ ions, hydrolysis of probe 1 to its reacting precursors was observed. The detection of Al3+ ions was also demonstrated in surfactant-containing water. The limit of detection (LOD) of probe 1 (H2O/CH3CN (1:9; v/v)) towards Al3+ ions was measured to be 3.2 × 10-8 M. The probe 1 displayed a ratiometric absorption response towards F- ions with a new peak at 570 nm and showed a color change from orange to purple. The probe 1.F- displayed a decrease in emission at 635 nm. The LOD of probe 1 (CH3CN) towards F- ions was measured to be 7.5 × 10-7 M.
Collapse
Affiliation(s)
- Gulshan Kumar
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - Iqubal Singh
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - Richa Goel
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| |
Collapse
|
24
|
Cheng MHY, Mo Y, Zheng G. Nano versus Molecular: Optical Imaging Approaches to Detect and Monitor Tumor Hypoxia. Adv Healthc Mater 2021; 10:e2001549. [PMID: 33241672 DOI: 10.1002/adhm.202001549] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia is a ubiquitous feature of solid tumors, which plays a key role in tumor angiogenesis and resistance development. Conventional hypoxia detection methods lack continuous functional detection and are generally less suitable for dynamic hypoxia measurement. Optical sensors hereby provide a unique opportunity to noninvasively image hypoxia with high spatiotemporal resolution and enable real-time detection. Therefore, these approaches can provide a valuable tool for personalized treatment planning against this hallmark of aggressive cancers. Many small optical molecular probes can enable analyte triggered response and their photophysical properties can also be fine-tuned through structural modification. On the other hand, optical nanoprobes can acquire unique intrinsic optical properties through nanoconfinement as well as enable simultaneous multimodal imaging and drug delivery. Furthermore, nanoprobes provide biological advantages such as improving bioavailability and systemic delivery of the sensor to enhance bioavailability. This review provides a comprehensive overview of the physical, chemical, and biological analytes for cancer hypoxia detection and focuses on discussing the latest nano- and molecular developments in various optical imaging approaches (fluorescence, phosphorescence, and photoacoustic) in vivo. Finally, this review concludes with a perspective toward the potentials of these optical imaging approaches in hypoxia detection and the challenges with molecular and nanotechnology design strategies.
Collapse
Affiliation(s)
- Miffy Hok Yan Cheng
- Princess Margaret Cancer Centre University Health Network 101 College Street, PMCRT 5–354 Toronto Ontario M5G 1L7 Canada
| | - Yulin Mo
- Princess Margaret Cancer Centre University Health Network 101 College Street, PMCRT 5–354 Toronto Ontario M5G 1L7 Canada
- Institute of Medical Science University of Toronto 101 College Street Toronto Ontario M5G 1L7 Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre University Health Network 101 College Street, PMCRT 5–354 Toronto Ontario M5G 1L7 Canada
- Institute of Medical Science University of Toronto 101 College Street Toronto Ontario M5G 1L7 Canada
- Department of Medical Biophysics University of Toronto 101 College Street Toronto Ontario M5G 1L7 Canada
| |
Collapse
|
25
|
G. Keller S, Kamiya M, Urano Y. Recent Progress in Small Spirocyclic, Xanthene-Based Fluorescent Probes. Molecules 2020; 25:E5964. [PMID: 33339370 PMCID: PMC7766215 DOI: 10.3390/molecules25245964] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
The use of fluorescent probes in a multitude of applications is still an expanding field. This review covers the recent progress made in small molecular, spirocyclic xanthene-based probes containing different heteroatoms (e.g., oxygen, silicon, carbon) in position 10'. After a short introduction, we will focus on applications like the interaction of probes with enzymes and targeted labeling of organelles and proteins, detection of small molecules, as well as their use in therapeutics or diagnostics and super-resolution microscopy. Furthermore, the last part will summarize recent advances in the synthesis and understanding of their structure-behavior relationship including novel computational approaches.
Collapse
Affiliation(s)
- Sascha G. Keller
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (S.G.K.); (M.K.)
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (S.G.K.); (M.K.)
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (S.G.K.); (M.K.)
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
26
|
Boddu RS, Perumal O, K D. Microbial nitroreductases: A versatile tool for biomedical and environmental applications. Biotechnol Appl Biochem 2020; 68:1518-1530. [PMID: 33156534 DOI: 10.1002/bab.2073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Nitroreductases, enzymes found mostly in bacteria and also in few eukaryotes, use nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor for their activity and metabolize an enormous list of a diverse nitro group-containing compounds. Nitroreductases that are capable of metabolizing nitroaromatic and nitro heterocyclic compounds have drawn great attention in recent years owing to their biotechnological, biomedical, environmental, and human impact. These enzymes attracted medicinal chemists and pharmacologists because of their prodrug selectivity for activation/reduction of nitro compounds that wipe out pathogens/cancer cells, leaving the host/normal cells unharmed. It is applied in diverse fields of study like prodrug activation in treating cancer and leishmaniasis, designing fluorescent probes for hypoxia detection, cell imaging, ablation of specific cell types, biodegradation of nitro-pollutants, and interpretation of mutagenicity of nitro compounds. Keeping in view the immense prospects of these enzymes and a large number of research contributions in this area, the present review encompasses the enzymatic reaction mechanism, their role in antibiotic resistance, hypoxia sensing, cell imaging, cancer therapy, reduction of recalcitrant nitro chemicals, enzyme variants, and their specificity to substrates, reaction products, and their applications.
Collapse
Affiliation(s)
- Ramya Sree Boddu
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Onkara Perumal
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Divakar K
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, India
| |
Collapse
|
27
|
Hu J, Yu X, Zhang X, Jing C, Liu T, Hu X, Lu S, Uvdal K, Gao HW, Hu Z. Rapid detection of mercury (II) ions and water content by a new rhodamine B-based fluorescent chemosensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118657. [PMID: 32659703 DOI: 10.1016/j.saa.2020.118657] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 05/25/2023]
Abstract
A rhodamine B-based sensor (RS) was designed and synthesized by a combination of the spirolacton rhodamine B (fluorophore) and multidentate chelates (ionophore) with high affinity towards Hg2+. In the presence of Hg2+, the resulting red-orange fluorescence (under UV light) and naked eye red color of RS are supposed to be used for quantitative and qualitative measurement of Hg2+. Further fluorescent titration and analysis demonstrate that RS can selectively detect Hg2+ within 1 s with a low limit of detection (LOD) of 16 nM in acetonitrile media, meanwhile, the association constant (Ka) was calculated to be 0.32 × 105 M-1. More importantly, the resultant complex (RSHg) of RS and Hg2+ has also been successfully applied to detect limited water content in acetonitrile solution.
Collapse
Affiliation(s)
- Jiwen Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Xili Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xin Zhang
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Changcheng Jing
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Tingting Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaochun Hu
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, 200092, PR China
| | - Senlin Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Kajsa Uvdal
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Hong-Wen Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhangjun Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden.
| |
Collapse
|
28
|
Martins VS, Triboni ER, Bonilha JBS, Gonçalves LM, Mortara L, Carvalho LAC, Manda BR, Lacerda CD, Meotti FC, Politi MJ, Chaimovich H, Cuccovia IM. Micellar effects and analytical applications of nitro substitution in 4-Nitro- N-alkyl-1,8-naphthalimide by cysteine derivatives. Heliyon 2020; 6:e04938. [PMID: 32995623 PMCID: PMC7502353 DOI: 10.1016/j.heliyon.2020.e04938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/26/2020] [Accepted: 09/10/2020] [Indexed: 12/03/2022] Open
Abstract
The aromatic nucleophilic substitution reactions of the nitro group of 4-Nitro-N-alkyl-1,8-naphthalimides by thiolate anions produce fluorescent derivatives and their rates are strongly accelerated by micelles of hexadecyltrimethylammonium chloride even at low pH. Acceleration factors of this reactions can reach million-fold. As the products are oxidant-insensible, this reaction allows the determination of SH- containing compounds such as cysteine, glutathione or proteins even in oxidative conditions. Limits of detection are as low as 5 × 10−7 M, ten times lower than the limit for the classic 5,5′-dithiobis-(2-nitrobenzoic) acid method. Moreover, this reaction can be developed at pHs between 6.5 and 7.5 thereby diminishing the rate of spontaneous oxidation of the thiols. In addition, we demonstrated that 4-Nitro-N-alkyl-1,8-naphthalimides can be used to evidence SH groups in peptides, proteins and living cells.
Collapse
Affiliation(s)
- V S Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - E R Triboni
- Escola de Engenharia de Lorena da Universidade de São Paulo, Departamento de Engenharia Química (DEQUI), Lorena, SP, Brazil
| | - J B S Bonilha
- Faculdade de Filosofia Ciências e Letras da Universidade de São Paulo, FFCLRP, Ribeirão Preto, SP, Brazil
| | - L M Gonçalves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - L Mortara
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - L A C Carvalho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - B R Manda
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - C D Lacerda
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - F C Meotti
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - M J Politi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - H Chaimovich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - I M Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| |
Collapse
|
29
|
Huang Y, Jin C, Yu J, Wang L, Lu W. A novel multifunctional 2-nitroimidazole-based bioreductive linker and its application in hypoxia-activated prodrugs. Bioorg Chem 2020; 101:103975. [PMID: 32474180 DOI: 10.1016/j.bioorg.2020.103975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/05/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
Tumor hypoxia has been widely explored over the years as a diagnostic and therapeutic marker. Herein, we designed, optimized and synthesized a new multifunctional bioreductive linker (12) containing an alkynyl group (potential click chemistry fragment); the linker is based on 2-nitroimidazole which was expected to simultaneously overcome the drawbacks of hypoxia-activated prodrugs (poor selectivity and unsatisfactory water solubility). Furthermore, a hypoxia-activated, water-soluble SN-38 prodrug was obtained, and it was stable under physiological conditions and was rapidly released as an active drug under hypoxic conditions.
Collapse
Affiliation(s)
- Ying Huang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Chen Jin
- Xingliu (Shanghai) Pharmaceutical Technology Co., Ltd, Room A406, 1#Building, No. 1976 Middle Gaoke Road, Shanghai 201210, PR China
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Lei Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China.
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
30
|
Jin J, Hou J, Long W, Zhang X, Lu YJ, Li D, Zhang K, Wong WL. Synthesis of fluorescent G-quadruplex DNA binding ligands for the comparison of terminal group effects in molecular interaction: Phenol versus methoxybenzene. Bioorg Chem 2020; 99:103821. [PMID: 32279036 DOI: 10.1016/j.bioorg.2020.103821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 01/25/2023]
Abstract
A number of new fluorescent nucleic acid binding ligands were synthesized by utilizing the non-specific thiazole orange dye as the basic scaffold for molecular design. Under simple synthetic conditions, the molecular scaffold of thiazole orange bridged with a terminal side-group (phenol or methoxybenzene) becomes more flexible because the newly added ethylene bridge is relatively less rigid than the methylene of thiazole orange. It was found that these molecules showed better selectivity towards G-quadruplex DNA structure in molecular interactions with different type of nucleic acids. The difference in terms of induced DNA-ligand interaction signal, selectivity, and binding affinity of the ligands with the representative nucleic acids including single-stranded DNA, double-stranded DNA, telomere and promoter G4-DNA and ribosomal RNA were investigated. The position of the terminal methoxyl groups was found showing strong influence both on binding affinity and fluorescent discrimination among 19 nucleic acids tested. The ligand with a methoxyl group substituted at the meta-position of the styryl moiety exhibited the best fluorescent recognition performance towards telo21 G4-DNA. A good linear relationship between the induced fluorescent binding signal and the concentration of telo21 was obtained. The comparison of ligand-DNA interaction properties including equilibrium binding constants, molecular docking, G4-conformation change and stabilization ability for G4-structures was also conducted. Two cancer cell lines (human prostate cancer cell (PC3) and human hepatoma cell (hepG2)) were selected to explore the inhibitory effect of the ligands on the cancer cell growth. The IC50 values obtained in the MTT assay for the two cancer cells were found in the range of 3.4-10.8 μM.
Collapse
Affiliation(s)
- Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University and Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| | - Wei Long
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xinyue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Yu-Jing Lu
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| |
Collapse
|
31
|
Sharma H, Tan NK, Trinh N, Yeo JH, New EJ, Pfeffer FM. A fluorescent naphthalimide NADH mimic for continuous and reversible sensing of cellular redox state. Chem Commun (Camb) 2020; 56:2240-2243. [DOI: 10.1039/c9cc09748a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A new naphthalimide based NADH mimic that functions as a fully reversible fluorescent “on off” probe for redox state has been synthesised and evaluated.
Collapse
Affiliation(s)
- Hemant Sharma
- School of Life and Environmental Sciences
- Deakin University
- Australia
| | - Nian Kee Tan
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | - Natalie Trinh
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | - Jia Hao Yeo
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | | | | |
Collapse
|