1
|
Ávila G, Bonnet M, Viala D, Dejean S, Grilli G, Lecchi C, Ceciliani F. Citrus pectin modulates chicken peripheral blood mononuclear cell proteome in vitro. Poult Sci 2024; 103:104293. [PMID: 39288719 PMCID: PMC11421475 DOI: 10.1016/j.psj.2024.104293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Citrus pectin (CP) is a dietary fiber used in animal nutrition with anti-inflammatory properties. CP downregulates chicken immunoregulatory monocytes' functions, like chemotaxis and phagocytosis, in vitro. The molecular underlying background is still unknown. This study investigated the activity of CP on chicken peripheral blood mononuclear cells (PBMC) proteome. An overall number of 1503 proteins were identified and quantified. The supervised sparse variant partial least squares-discriminant analysis (sPLS-DA) for paired data highlighted 373 discriminant proteins between CP-treated and the control group, of which 50 proteins with the highest abundance in CP and 137 in the control group were selected for Gene Ontology (GO) analyses using ProteINSIDE. Discriminant Protein highly abundant in CP-treated cells were involved in actin cytoskeleton organization and negative regulation of cell migration. Interestingly, MARCKSL1, a chemotaxis inhibitor, was upregulated in CP-treated cells. On the contrary, CP incubation downregulated MARCKS, LGALS3, and LGALS8, which are involved in cytoskeleton rearrangements, cell migration, and phagocytosis. In conclusion, these results provide a proteomics background to the anti-inflammatory activity of CP, demonstrating that the in vitro downregulation of phagocytosis and chemotaxis is related to changes in proteins related to the cytoskeleton.
Collapse
Affiliation(s)
- G Ávila
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy
| | - M Bonnet
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
| | - D Viala
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France; INRAE, Metabolomic and Proteomic Exploration Facility, Proteomic Component (PFEMcp), F-63122 Saint-Genès-Champanelle, France
| | - S Dejean
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - G Grilli
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy
| | - C Lecchi
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy
| | - F Ceciliani
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy.
| |
Collapse
|
2
|
Zheng J, Li S, He J, Liu H, Huang Y, Jiang X, Zhao X, Li J, Feng B, Che L, Fang Z, Xu S, Lin Y, Hua L, Zhuo Y, Wu D. A Gestational Pectin Diet Could Improve the Health of Multiparous Sows by Modulating the Gut Microbiota and Cytokine Level during Late Pregnancy. Animals (Basel) 2024; 14:1559. [PMID: 38891606 PMCID: PMC11171106 DOI: 10.3390/ani14111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to investigate the effects of the dietary fiber pectin on the gut microbiota and health of parturient sows. A total of 30 parity 5-7, multiparous gestation sows (Large White × Landrace) were randomly assigned to two treatment groups after mating: Con (control, basic diet) and Pec (pectin, 3%). The sows received the two diets during gestation, and all sows were fed the same standard basic diet during lactation. The results of β-diversity showed that the composition of the gut microbiota was different in the Con and Pec groups. Compared with the sows in the Con group, the Pec sows showed a higher abundance of the gut bacteria Clostridium and Romboutsia and a lower abundance of harmful bacteria (Micrococcaceae, Coriobacteriaceae, Dorea, Actinomyces). On the other hand, the SCFA plasma concentration was increased in the Pec group, while pro-inflammatory cytokine (IL-6, IL-1β, and TNF-α) concentrations were decreased. In conclusion, the soluble dietary fiber pectin could improve the reproductive performance and health of sows by increasing the abundance of some commensal bacteria enhancing the metabolite SCFA levels and reducing the pro-inflammatory cytokine plasma levels.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Shuang Li
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Jiaqi He
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Hao Liu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yingyan Huang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Xilun Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| |
Collapse
|
3
|
Gasaly N, Tang X, Chen X, Bellalta S, Hermoso MA, de Vos P. Effects of pectin's degree of methyl esterification on TLR2-mediated IL-8 secretion and tight junction gene expression in intestinal epithelial cells: influence of soluble TLR2. Food Funct 2024; 15:569-579. [PMID: 38170495 DOI: 10.1039/d3fo03673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
This study investigates the anti-inflammatory effects of pectins with different degrees of methyl esterification (DM) on intestinal epithelial cells (IECs) expressing low and high levels of TLR2. It also studies the influence of soluble TLR2 (sTLR2) which may be enhanced in patients with inflammatory bowel syndrome on the inflammation-attenuating effects of pectins. Also, it examines the impact of pectins on tight junction gene expression in IECs. Lemon pectins with DM18 and DM88 were characterized, and their effects on TLR2-1-induced IL8 gene expression and secretion were investigated in low-TLR2 expressing Caco-2 and high-TLR2 expressing DLD-1 cells. The results demonstrate that both DM18 and DM88 pectins can counteract TLR2-1-induced IL-8 expression and secretion, with more pronounced effects observed in DLD-1 cells expressing high levels of TLR2. Furthermore, the presence of sTLR2 does not interfere with the attenuating effects of low DM18 pectin and may even support its anti-inflammatory effects in Caco-2 cells. The impact of pectins and sTLR2 on tight junction gene expression also demonstrates cell-type-dependent effects. Overall, these findings suggest that low DM pectins possess potent anti-inflammatory properties and may influence tight junction gene expression in IECs, thereby contributing to the maintenance of gut homeostasis.
Collapse
Affiliation(s)
- Naschla Gasaly
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Xin Tang
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| | - Xiaochen Chen
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| | - Sofía Bellalta
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| | - Marcela A Hermoso
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
4
|
Donadio JLS, Fabi JP, Sztein MB, Salerno-Gonçalves R. Dietary fiber pectin: challenges and potential anti-inflammatory benefits for preterms and newborns. Front Nutr 2024; 10:1286138. [PMID: 38283907 PMCID: PMC10811139 DOI: 10.3389/fnut.2023.1286138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Pectins, a class of dietary fibers abundant in vegetables and fruits, have drawn considerable interest due to their potential anti-inflammatory properties. Numerous studies have indicated that incorporating pectins into infant formula could be a safe strategy for alleviating infant regurgitation and diarrhea. Moreover, pectins have been shown to modulate cytokine production, macrophage activity, and NF-kB expression, all contributing to their anti-inflammatory effects. Despite this promising evidence, the exact mechanisms through which pectins exert these functions and how their structural characteristics influence these processes remain largely unexplored. This knowledge is particularly significant in the context of gut inflammation in developing preterm babies, a critical aspect of necrotizing enterocolitis (NEC), and in children and adults dealing with inflammatory bowel disease (IBD). Our mini review aims to provide an up-to-date compilation of relevant research on the effects of pectin on gut immune responses, specifically focusing on preterms and newborns. By shedding light on the underlying mechanisms and implications of pectin-mediated anti-inflammatory properties, this review seeks to advance our knowledge in this area and pave the way for future research and potential therapeutic interventions.
Collapse
Affiliation(s)
- Janaina L. S. Donadio
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rosângela Salerno-Gonçalves
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Sultana N. Biological Properties and Biomedical Applications of Pectin and Pectin-Based Composites: A Review. Molecules 2023; 28:7974. [PMID: 38138464 PMCID: PMC10745545 DOI: 10.3390/molecules28247974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Pectin has recently drawn much attention in biomedical applications due to its distinctive chemical and biological properties. Polymers like pectin with cell-instructive properties are attractive natural biomaterials for tissue repair and regeneration. In addition, bioactive pectin and pectin-based composites exhibit improved characteristics to deliver active molecules. Pectin and pectin-based composites serve as interactive matrices or scaffolds by stimulating cell adhesion and cell proliferation and enhancing tissue remodeling by forming an extracellular matrix in vivo. Several bioactive properties, such as immunoregulatory, antibacterial, anti-inflammatory, anti-tumor, and antioxidant activities, contribute to the pectin's and pectin-based composite's enhanced applications in tissue engineering and drug delivery systems. Tissue engineering scaffolds containing pectin and pectin-based conjugates or composites demonstrate essential features such as nontoxicity, tunable mechanical properties, biodegradability, and suitable surface properties. The design and fabrication of pectic composites are versatile for tissue engineering and drug delivery applications. This article reviews the promising characteristics of pectin or pectic polysaccharides and pectin-based composites and highlights their potential biomedical applications, focusing on drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Naznin Sultana
- Texas Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
6
|
Gotoh S, Kitaguchi K, Yabe T. Pectin Modulates Calcium Absorption in Polarized Caco-2 Cells via a Pathway Distinct from Vitamin D Stimulation. J Appl Glycosci (1999) 2023; 70:59-66. [PMID: 38143569 PMCID: PMC10738857 DOI: 10.5458/jag.jag.jag-2022_0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Pectin, a type of soluble fiber, promotes morphological changes in the small intestinal villi. Although its physiological significance is unknown, we hypothesized that changes in villus morphology enhance the efficiency of nutrient absorption in the small intestine and investigated the effect of pectin derived from persimmon on calcium absorption using polarized Caco-2 cells. In polarized Caco-2 cells, pectin altered the mRNA expression levels of substances involved in calcium absorption and the regulation of intracellular calcium concentration and significantly reduced calcium absorption. Although this was comparable to the results of absorption and permeability associated with the addition of active vitamin D, the simultaneous action of pectin and active vitamin D did not show any additive effects. Furthermore, as active vitamin D significantly increases the activity of intestinal alkaline phosphatase (ALP), which is known to be involved in the regulation of intestinal absorption of calcium and lipids, we also investigated the effect of pectin on intestinal ALP activity. As a result, it was found that, unlike the effect of active vitamin D, pectin significantly reduced intestinal ALP activity. These results suggest that pectin stimulates polarized Caco-2 cells through a mechanism distinct from the regulation of calcium absorption by vitamin D, modulating total calcium absorption from the elongated villi through morphological changes in the small intestine by suppressing it at the cellular level.
Collapse
Affiliation(s)
- Saki Gotoh
- The United Graduate School of Agricultural Science, Gifu University
| | - Kohji Kitaguchi
- The United Graduate School of Agricultural Science, Gifu University
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University
- Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study
| | - Tomio Yabe
- The United Graduate School of Agricultural Science, Gifu University
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University
- Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study
- Institute for Glyco-core Research (iGCORE), Gifu University
| |
Collapse
|
7
|
da Paz Leôncio Alves S, Jacob ITT, Arruda MDM, da Silva AR, de Sousa GF, de Souza GA, de Lima MDCA, de Souza IA, de Melo CML, da Cruz Filho IJ, do Nascimento Santos DKD. Pectin-like polysaccharide extracted from leaves Crataeva tapia promotes antioxidant, immunomodulatory and emulsifiers applied in therapeutic formulations. 3 Biotech 2023; 13:114. [PMID: 36909979 PMCID: PMC9998804 DOI: 10.1007/s13205-023-03509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/31/2023] [Indexed: 03/11/2023] Open
Abstract
The objective of this work was to isolate a polysaccharide similar to pectin from Crataeva tapia leaves, not yet reported in the literature, and to evaluate its antioxidant, cytotoxic and immunomodulatory profile. Pectin was extracted from the leaves in three stages, organic solvent followed by acidified water and ethanol precipitation. With the pectin obtained, the physicochemical characterization of the molecule was carried out using high-performance liquid chromatography, Fourier-transform infrared spectroscopy, nuclear magnetic resonance (13C and 1H) and different thermal and elemental analysis. Furthermore, the antioxidant activities were evaluated in vitro, and using human peripheral blood mononuclear cell culture, cytotoxicity and immunostimulatory actions were investigated. Physical and chemical analyses showed characteristic signs of pectin. Antioxidant activity tests showed that pectin had moderate to low antioxidant activity. Furthermore, pectin did not affect the viability of erythrocytes and PBMC and induced an immunostimulatory state when it promoted the production of cytokines IL-6, IL-10 and TNF-α and increased the activation of CD8 + T lymphocytes. This study showed that pectin from Crataeva tapia is not cytotoxic and promoted a pro-inflammatory profile in peripheral blood mononuclear cell with application as an immunostimulating and emulsifying compound.
Collapse
Affiliation(s)
- Simone da Paz Leôncio Alves
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, Recife, PE 50.670-420 Brazil
| | - Iris Trindade Tenório Jacob
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, Recife, PE 50.670-420 Brazil
| | | | - Abdênego Rodrigues da Silva
- Department of Biochemistry, Biosciences Center, Federal University of Pernambuco, Recife, PE 50.670-420 Brazil
| | - Georon Ferreira de Sousa
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, Recife, PE 50.670-420 Brazil
| | - Guilherme Antônio de Souza
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, Recife, PE 50.670-420 Brazil
| | | | - Ivone Antônia de Souza
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, Recife, PE 50.670-420 Brazil
| | | | - Iranildo José da Cruz Filho
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, Recife, PE 50.670-420 Brazil
| | | |
Collapse
|
8
|
Kang MS, Jang J, Jo HJ, Kim WH, Kim B, Chun HJ, Lim D, Han DW. Advances and Innovations of 3D Bioprinting Skin. Biomolecules 2022; 13:55. [PMID: 36671440 PMCID: PMC9856167 DOI: 10.3390/biom13010055] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Three-dimensional (3D) bioprinted skin equivalents are highlighted as the new gold standard for alternative models to animal testing, as well as full-thickness wound healing. In this review, we focus on the advances and innovations of 3D bioprinting skin for skin regeneration, within the last five years. After a brief introduction to skin anatomy, 3D bioprinting methods and the remarkable features of recent studies are classified as advances in materials, structures, and functions. We will discuss several ways to improve the clinical potential of 3D bioprinted skin, with state-of-the-art printing technology and novel biomaterials. After the breakthrough in the bottleneck of the current studies, highly developed skin can be fabricated, comprising stratified epidermis, dermis, and hypodermis with blood vessels, nerves, muscles, and skin appendages. We hope that this review will be priming water for future research and clinical applications, that will guide us to break new ground for the next generation of skin regeneration.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jinju Jang
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Won-Hyeon Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Republic of Korea
| | - Bongju Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Republic of Korea
| | - Heoung-Jae Chun
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dohyung Lim
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
9
|
Hou T, Guo S, Liu Z, Lin H, Song Y, Li Q, Mao X, Wang W, Cao Y, Liu G. Novel Pectic Polysaccharides Isolated from Immature Honey Pomelo Fruit with High Immunomodulatory Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238573. [PMID: 36500662 PMCID: PMC9739730 DOI: 10.3390/molecules27238573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
A novel pectic polysaccharide (HPP-1) with high immunomodulatory activity was extracted and isolated from the immature honey pomelo fruit (Citrus grandis). Characterization of its chemical structure indicated that HPP-1 had a molecular weight of 59,024 D. In addition, HPP-1 was primarily composed of rhamnose, arabinose, fucose, mannose, and galactose at a molar ratio of 1.00:11.12:2.26:0.56:6.40. Fourier-transform infrared spectroscopy, periodic acid oxidation, and Smith degradation results showed that HPP-1 had α- and β-glycosidic linkages and 1 → 2, 1 → 4, 1 → 6, and 1 → 3 glycosidic bonds. 13C NMR and 1H NMR analyses revealed that the main glycogroups included 1,4-D-GalA, 1,6-β-D-Gal, 1,6-β-D-Man, 1,3-α-L-Ara, and 1,2-α-L-Rha. Immunomodulatory bioactivity analysis using a macrophage RAW264.7 model in vitro revealed that NO, TNF-α, and IL-6 secretions were all considerably increased by HPP-1. Moreover, RT-PCR results showed that HPP-1-induced iNOS, TNF-α, and IL-6 expression was significantly increased in macrophages. HPP-1-mediated activation in macrophages was due to the stimulation of the NF-κB and MAPK signaling pathways based on western blot analyses. HPP-1 extracted from immature honey pomelo fruit has potential applications as an immunomodulatory supplement.
Collapse
Affiliation(s)
- Tao Hou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shenglan Guo
- Guangzhou Shuke Industrial Co., Ltd., Guangzhou 510642, China
| | - Zhuokun Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongyu Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yu Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiqi Li
- Chongqing Sweet Pet Products Co., Ltd., Chongqing 402160, China
| | - Xin Mao
- Chongqing Sweet Pet Products Co., Ltd., Chongqing 402160, China
| | - Wencan Wang
- Chongqing Sweet Pet Products Co., Ltd., Chongqing 402160, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.C.); (G.L.); Tel./Fax: +86-020-8586234 (Y.C. & G.L.)
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.C.); (G.L.); Tel./Fax: +86-020-8586234 (Y.C. & G.L.)
| |
Collapse
|
10
|
Marat N, Danowska-Oziewicz M, Narwojsz A. Chaenomeles Species-Characteristics of Plant, Fruit and Processed Products: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:3036. [PMID: 36432767 PMCID: PMC9698592 DOI: 10.3390/plants11223036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
This literature review deals with the characteristics of Chaenomeles species and the physicochemical properties of Chaenomeles fruits. These fruits belong to a group with a low content of monosaccharides and a favorable ratio of fructose to glucose. They exhibit a low pH value and sour taste; therefore, they are not eaten in a raw form. They have a high concentration of bioactive compounds, such as polyphenols, vitamin C, organic acids, dietary fiber and pectins. The physicochemical properties of processed Chaenomeles fruits, i.e., freeze-dried, juices, syrups, candied fruit, jam, powder and chips, are presented in the manuscript. Also mentioned are the seeds and their use in the production of oil and seed gum. Of the products described in the paper, seed oil deserves greater attention, as it is characterized by a high content of unsaturated fatty acids, mainly oleic and linoleic, and low susceptibility to oxidation.
Collapse
|
11
|
Kraskouski A, Hileuskaya K, Kulikouskaya V, Kabanava V, Agabekov V, Pinchuk S, Vasilevich I, Volotovski I, Kuznetsova T, Lapitskaya V. Polyvinyl alcohol and pectin blended films: Preparation, characterization, and mesenchymal stem cells attachment. J Biomed Mater Res A 2021; 109:1379-1392. [PMID: 33252172 DOI: 10.1002/jbm.a.37130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 12/19/2022]
Abstract
The design of novel wound dressings for chronic wound treatment is still of great importance. One of the promising approaches is application of mesenchymal stem cells (MSCs), immobilized on a flexible polymer film, for healing. In this study, blended films based on polyvinyl alcohol (PVA) and pectin with different component ratio have been prepared by solution casting method and evaluated. Physicochemical properties of the formed PVA/pectin films, including their morphology, wettability, swelling, stability, mechanical characteristics, have been studied. We demonstrated that the surface of PVA/pectin films could be modified by ultraviolet or dielectric barrier discharge plasma exposure. After both ultraviolet and plasma treatment, the hydrophilicity of PVA/pectin films increased. It has been shown that additional crosslinking of PVA/pectin films with glutaraldehyde resulted in reinforcement of their structure. MSCs were cultured on neat and modified PVA/pectin samples to evaluate the effects of film characteristics and composition on cell behavior. It has been determined that MSCs effectively adhered to glutaraldehyde-crosslinked PVA/pectin films and formed on them the monolayer culture of fibroblast-like cells. The additional modification of PVA/pectin films with collagen resulted in enhancement of MSCs adhesion. Our results show that the obtained PVA/pectin films with adhered MSCs can be suggested for potential application as a part of novel complex wound dressings.
Collapse
Affiliation(s)
- Aliaksandr Kraskouski
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Viktoryia Kulikouskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Volha Kabanava
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Vladimir Agabekov
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Sergei Pinchuk
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Irina Vasilevich
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Igor Volotovski
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Tatyana Kuznetsova
- A.V. Luikov Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Vasilina Lapitskaya
- A.V. Luikov Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
12
|
Ávila G, De Leonardis D, Grilli G, Lecchi C, Ceciliani F. Anti-inflammatory activity of citrus pectin on chicken monocytes' immune response. Vet Immunol Immunopathol 2021; 237:110269. [PMID: 34023617 DOI: 10.1016/j.vetimm.2021.110269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/16/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023]
Abstract
Pectin is a dietary fibre composed of galacturonic acid, primarily found in the citrus fruits' cell walls. Citrus pectin (CP) has demonstrated antioxidative, anticancer, and anti-inflammatory properties in humans and animals. In broilers, CP supplementation improves energy utilization and nutrient digestibility, but limited information on its effects on chicken immunity is available so far. This study aimed to assess the in vitro impact of CP on chicken monocytes' immune response. Cells were purified from whole blood of healthy chickens and incubated with increasing concentrations (0, 0.25, 0.5, 0.75, 1 mg/mL) of CP to determine CP working concentration. The effects of different CP concentrations on cells' apoptosis and viability were assessed by measuring caspase-3 and -7 and the cells' metabolic activity (MTT assay), respectively. CP had no dose-dependent effect on monocyte apoptosis and viability.Then, the effects of CP (0.5 mg/mL) on chicken monocytes' chemotaxis and phagocytosis were assessed by measuring transwell migration and fluorescein-labelled E. coli incorporation, respectively. CP inhibited both monocytes' chemotaxis and phagocytosis.These data demonstrate that CP exerts an immunomodulatory role in chicken monocytes, supporting its integration in nutrition strategies that might be beneficial for the animal's immunity and health.
Collapse
Affiliation(s)
- G Ávila
- Department of Veterinary Medicine, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| | - D De Leonardis
- Department of Veterinary Medicine, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - G Grilli
- Department of Veterinary Medicine, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - C Lecchi
- Department of Veterinary Medicine, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - F Ceciliani
- Department of Veterinary Medicine, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| |
Collapse
|
13
|
Wu D, Ye X, Linhardt RJ, Liu X, Zhu K, Yu C, Ding T, Liu D, He Q, Chen S. Dietary pectic substances enhance gut health by its polycomponent: A review. Compr Rev Food Sci Food Saf 2021; 20:2015-2039. [PMID: 33594822 DOI: 10.1111/1541-4337.12723] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Pectic substances, one of the cell wall polysaccharides, exist widespread in vegetables and fruits. A surge of recent research has revealed that pectic substances can inhibit gut inflammation and relieve inflammatory bowel disease symptoms. However, physiological functions of pectins are strongly structure dependent. Pectic substances are essentially heteropolysaccharides composed of homogalacturonan and rhamnogalacturonan backbones substituted by various neutral sugar sidechains. Subtle changes in the architecture of pectic substances may remarkably influence the nutritional function of gut microbiota and the host homeostasis of immune system. In this context, developing a structure-function understanding of how pectic substances have an impact on an inflammatory bowel is of primary importance for diet therapy and new drugs. Therefore, the present review has summarized the polycomponent nature of pectic substances, the activities of different pectic polymers, the effects of molecular characteristics and the underlying mechanisms of pectic substances. The immunomodulated property of pectic substances depends on not only the chemical composition but also the physical structure characteristics, such as molecular weight (Mw ) and chain conformation. The potential mechanisms by which pectic substances exert their protective effects are mainly reversing the disordered gut microbiota, regulating immune cells, enhancing barrier function, and inhibiting pathogen adhesion. The manipulation of pectic substances on gut health is sophisticated, and the link between structural specificity of pectins and selective regulation needs further exploration.
Collapse
Affiliation(s)
- Dongmei Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Xuwei Liu
- UMR408, Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), INRAE, Avignon, France
| | - Kai Zhu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Chengxiao Yu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Tian Ding
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Armstrong H, Mander I, Zhang Z, Armstrong D, Wine E. Not All Fibers Are Born Equal; Variable Response to Dietary Fiber Subtypes in IBD. Front Pediatr 2021; 8:620189. [PMID: 33520902 PMCID: PMC7844368 DOI: 10.3389/fped.2020.620189] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Diet provides a safe and attractive alternative to available treatment options in a variety of diseases; however, research has only just begun to elucidate the role of diet in chronic diseases, such as the inflammatory bowel diseases (IBD). The chronic and highly debilitating IBDs, Crohn disease and ulcerative colitis, are hallmarked by intestinal inflammation, immune dysregulation, and dysbiosis; and evidence supports a role for genetics, microbiota, and the environment, including diet, in disease pathogenesis. This is true especially in children with IBD, where diet-based treatments have shown excellent results. One interesting group of dietary factors that readily links microbiota to gut health is dietary fibers. Fibers are not digested by human cells, but rather fermented by the gut microbes within the bowel. Evidence has been mounting over the last decade in support of the importance of dietary fibers in the maintenance of gut health and in IBD; however, more recent studies highlight the complexity of this interaction and importance of understanding the role of each individual dietary fiber subtype, especially during disease. There are roughly ten subtypes of dietary fibers described to date, categorized as soluble or insoluble, with varying chemical structures, and large differences in their fermentation profiles. Many studies to date have described the benefits of the byproducts of fermentation in healthy individuals and the potential health benefits in select disease models. However, there remains a void in our understanding of how each of these individual fibers affect human health in dysbiotic settings where appropriate fermentation may not be achieved. This review highlights the possibilities for better defining the role of individual dietary fibers for use in regulating inflammation in IBD.
Collapse
Affiliation(s)
- Heather Armstrong
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Inderdeep Mander
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, Canada
| | - Zhengxiao Zhang
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - David Armstrong
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Eytan Wine
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Tan H, Nie S. Deciphering diet-gut microbiota-host interplay: Investigations of pectin. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Budtova T, Aguilera DA, Beluns S, Berglund L, Chartier C, Espinosa E, Gaidukovs S, Klimek-Kopyra A, Kmita A, Lachowicz D, Liebner F, Platnieks O, Rodríguez A, Tinoco Navarro LK, Zou F, Buwalda SJ. Biorefinery Approach for Aerogels. Polymers (Basel) 2020; 12:E2779. [PMID: 33255498 PMCID: PMC7760295 DOI: 10.3390/polym12122779] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/30/2022] Open
Abstract
According to the International Energy Agency, biorefinery is "the sustainable processing of biomass into a spectrum of marketable bio-based products (chemicals, materials) and bioenergy (fuels, power, heat)". In this review, we survey how the biorefinery approach can be applied to highly porous and nanostructured materials, namely aerogels. Historically, aerogels were first developed using inorganic matter. Subsequently, synthetic polymers were also employed. At the beginning of the 21st century, new aerogels were created based on biomass. Which sources of biomass can be used to make aerogels and how? This review answers these questions, paying special attention to bio-aerogels' environmental and biomedical applications. The article is a result of fruitful exchanges in the frame of the European project COST Action "CA 18125 AERoGELS: Advanced Engineering and Research of aeroGels for Environment and Life Sciences".
Collapse
Affiliation(s)
- Tatiana Budtova
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Daniel Antonio Aguilera
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Sergejs Beluns
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Linn Berglund
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden;
| | - Coraline Chartier
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Eduardo Espinosa
- Bioagres Group, Chemical Engineering Department, Faculty of Science, Universidad de Córdoba, Campus of Rabanales, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Sergejs Gaidukovs
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Agnieszka Klimek-Kopyra
- Department of Agroecology and Plant Production, Faculty of Agriculture and Economics, University of Agriculture, Aleja Mickieiwcza 21, 31-120 Kraków, Poland;
| | - Angelika Kmita
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (D.L.)
| | - Dorota Lachowicz
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (D.L.)
| | - Falk Liebner
- Department of Chemistry, Institute for Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, A-3430 Tulln an der Donau, Austria;
| | - Oskars Platnieks
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Alejandro Rodríguez
- Bioagres Group, Chemical Engineering Department, Faculty of Science, Universidad de Córdoba, Campus of Rabanales, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Lizeth Katherine Tinoco Navarro
- CEITEC-VUT Central European Institute of Technology—Brno university of Technology, Purkyňova 123, 612 00 Brno-Královo Pole, Czech Republic;
| | - Fangxin Zou
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Sytze J. Buwalda
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| |
Collapse
|
17
|
Charles-Messance H, Mitchelson KA, De Marco Castro E, Sheedy FJ, Roche HM. Regulating metabolic inflammation by nutritional modulation. J Allergy Clin Immunol 2020; 146:706-720. [DOI: 10.1016/j.jaci.2020.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
|
18
|
Busato B, de Almeida Abreu EC, de Oliveira Petkowicz CL, Martinez GR, Rodrigues Noleto G. Pectin from Brassica oleracea var. italica triggers immunomodulating effects in vivo. Int J Biol Macromol 2020; 161:431-440. [DOI: 10.1016/j.ijbiomac.2020.06.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/17/2022]
|
19
|
‘Green’ approach for obtaining stable pectin-capped silver nanoparticles: Physico-chemical characterization and antibacterial activity. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124141] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Ishisono K, Mano T, Yabe T, Kitaguchi K. Dietary Fiber Pectin Ameliorates Experimental Colitis in a Neutral Sugar Side Chain-Dependent Manner. Front Immunol 2019; 10:2979. [PMID: 31921214 PMCID: PMC6930924 DOI: 10.3389/fimmu.2019.02979] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022] Open
Abstract
Dietary fiber, with intake of soluble fibers in particular, has been reported to lower the risk for developing inflammatory bowel diseases (IBD). This is at least partly attributable to the fermentation of dietary fiber by the colonic microbiota to produce short chain fatty acids. Pectin, a widely consumed soluble fiber, is known to exert a protective effect in murine models of IBD, but the underlying mechanism remains elusive. Apart from having a prebiotic effect, it has been suggested that pectin direct influences host cells by modulating the inflammatory response in a manner dependent on its neutral sugar side chains. Here we examined the effect of the side chain content of pectin on the pathogenesis of experimental colitis in mice. Male C57BL/6 mice were fed a pectin-free diet, or a diet supplemented with characteristically high (5% orange pectin) or low (5% citrus pectin) side chain content for 10-14 days, and then administered 2,4,6-trinitrobenzene sulfonic acid or dextran sulfate sodium to induce colitis. We found that the clinical symptoms and tissue damage in the colon were ameliorated in mice that were pre-fed with orange pectin, but not in those pre-fed with citrus pectin. Although the population of CD4+Foxp+ regulatory T cells and CD4+RORγt+ inflammatory T cells in the colon were comparable between citrus and orange pectin-fed mice, colonic interleukin (IL)-1β and IL-6 levels in orange pectin-fed mice were significantly decreased. The fecal concentration of propionic acid in orange pectin-fed mice was slightly but significantly higher than that in control and citrus pectin-fed mice but the cecal concentration of propionic acid after the induction of TNBS colitis was comparable between orange and citrus pectin-fed mice. Furthermore, the protective effect of orange pectin against colitis was observed even in mice treated with antibiotics. IL-6 production from RAW264.7 cells stimulated with the toll-like receptor agonist Pam3CSK4 or lipopolysaccharide was suppressed by pre-treatment with orange pectin in vitro. Taken together, these results suggest that the side chains of pectin not only augment prebiotic effects but also directly regulate IL-6 production from intestinal host cells in a microbiota-independent fashion to attenuate colitis.
Collapse
Affiliation(s)
- Keita Ishisono
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Toshiyuki Mano
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
| | - Tomio Yabe
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan.,Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Kohji Kitaguchi
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan.,Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
21
|
Wastewater Management in Citrus Processing Industries: An Overview of Advantages and Limits. WATER 2019. [DOI: 10.3390/w11122481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Citrus-processing industries produce large volumes of wastewater (CPWW). The large variability of these volumes coupled to physicochemical characteristics of CPWW determine severe constraints for their disposal due to both economic and environmental factors. To minimize the management costs and prevent the negative ecological impacts of CPWW, several systems have been proposed and adopted. However, all these treatment/valorization routes have many issues that are not yet thoroughly known by the scientific community and stakeholders of the citrus-processing chain. This paper reports an overview of the possible treatment/valorization opportunities for CPWW: intensive biological treatment, lagooning, direct land application, energy conversion, and biorefinery uses for the extraction of added-value compounds. Advantages and constraints are presented and discussed, and the following conclusions are achieved: (i) there is not a unique solution for CPWW treatment, since the best management system of CPWW must be chosen case by case, taking into account the quality/quantity of the effluent and the location of the transformation industry; (ii) the adoption of a biorefinery approach can increase the competitiveness and the further development of the whole citrus sector, but the cost of novel technologies (some of which have not been tested at real scale) still limits their development.
Collapse
|
22
|
Gressler M, Heddergott C, N'Go IC, Renga G, Oikonomou V, Moretti S, Coddeville B, Gaifem J, Silvestre R, Romani L, Latgé JP, Fontaine T. Definition of the Anti-inflammatory Oligosaccharides Derived From the Galactosaminogalactan (GAG) From Aspergillus fumigatus. Front Cell Infect Microbiol 2019; 9:365. [PMID: 31781511 PMCID: PMC6851199 DOI: 10.3389/fcimb.2019.00365] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Galactosaminogalactan (GAG) is an insoluble aminosugar polymer produced by Aspergillus fumigatus and has anti-inflammatory properties. Here, the minimum glycosidic sequences required for the induction of IL-1Ra by peripheral blood mononuclear cells (PBMCs) was investigated. Using chemical degradation of native GAG to isolate soluble oligomers, we have found that the de-N-acetylation of galactosamine residues and the size of oligomer are critical for the in vitro immune response. A minimal oligomer size of 20 galactosamine residues is required for the anti-inflammatory response but the presence of galactose residues is not necessary. In a Dextran sulfate induced colitis mouse model, a fraction of de-N-acetylated oligomers of 13 < dp < 20 rescue inflammatory damage like the native GAG polymer in an IL-1Ra dependent pathway. Our results demonstrate the therapeutic suitability of water-soluble GAG oligosaccharides in IL-1 mediated hyper-inflammatory diseases and suggest that α-1,4-galactosamine oligomers chemically synthesized could represent new anti-inflammatory glycodrugs.
Collapse
Affiliation(s)
| | | | - Inés C N'Go
- Unité des Aspergillus, Institut Pasteur, Paris, France
| | - Giorgia Renga
- Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Vasilis Oikonomou
- Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Silvia Moretti
- Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Bernadette Coddeville
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) UMR 8576 CNRS, Université de Lille, Lille, France
| | - Joana Gaifem
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Luigina Romani
- Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | | | | |
Collapse
|
23
|
Sarioglu E, Arabacioglu Kocaaga B, Turan D, Batirel S, Guner FS. Theophylline‐loaded pectin‐based hydrogels. II. Effect of concentration of initial pectin solution, crosslinker type and cation concentration of external solution on drug release profile. J Appl Polym Sci 2019. [DOI: 10.1002/app.48155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Ebru Sarioglu
- Department of Chemical EngineeringIstanbul Technical University Maslak, 34469 Istanbul Turkey
| | | | - Deniz Turan
- Department of Food EngineeringIstanbul Technical University Maslak, 34469 Istanbul Turkey
| | - Saime Batirel
- Department of Medical Biochemistry, School of MedicineMarmara University Maltepe, 34854 Istanbul Turkey
| | - F. Seniha Guner
- Department of Chemical EngineeringIstanbul Technical University Maslak, 34469 Istanbul Turkey
| |
Collapse
|
24
|
Kulikouskaya V, Kraskouski A, Hileuskaya K, Zhura A, Tratsyak S, Agabekov V. Fabrication and characterization of pectin-based three-dimensional porous scaffolds suitable for treatment of peritoneal adhesions. J Biomed Mater Res A 2019; 107:1814-1823. [PMID: 31008569 DOI: 10.1002/jbm.a.36700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 01/03/2023]
Abstract
Formation of peritoneal adhesions is common complication after abdominal and pelvic surgery. They bear a significant health problem with an influence to quality of life and health care expenses. Promising approach for their prevention is using of biodegradable barrier films for physical separation of peritoneal surfaces. In the present study, highly porous pectin-based three-dimensional (3D) scaffolds were obtained by freeze-drying technique. Physico-chemical properties of the formed materials, including their morphology, porosity, density, and stability, have been studied. The evaluation of their biocompatibility, biodegradation, and potential antiadhesion effect was studied by in vivo experiment. To reinforce the scaffolds structure and improve their stability in physiological solutions, pectin chains were cross-linked with divalent cations. We determined optimal cross-linking conditions, which allow obtaining scaffolds with desired biodegradation rate. These cross-linked scaffolds fully dissolved within 8 days in the peritoneal cavity with low presence of complications and some antiadhesive effect. It has also been determined that mesenchymal stem cells from adipose tissue could effectively adhere to the scaffolds with preservation of their viability. Our results show that obtained materials can be suggested as mechanical scaffold for delivery of the stem cells culture to peritoneal surfaces as a part of complex antiadhesive barrier system.
Collapse
Affiliation(s)
- Viktoryia Kulikouskaya
- The Laboratory of Micro- and Nano- Structured Materials, Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Aliaksandr Kraskouski
- The Laboratory of Micro- and Nano- Structured Materials, Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Kseniya Hileuskaya
- The Laboratory of Micro- and Nano- Structured Materials, Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Alexandr Zhura
- Belorussian State Medical University, Minsk, Republic of Belarus
| | | | - Vladimir Agabekov
- The Laboratory of Micro- and Nano- Structured Materials, Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| |
Collapse
|
25
|
Immunomodulatory effect of natural and modified Citrus pectin on cytokine levels in the spleen of BALB/c mice. Int J Biol Macromol 2019; 121:1-5. [DOI: 10.1016/j.ijbiomac.2018.09.189] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/04/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023]
|
26
|
Characteristics and immune-enhancing activity of pectic polysaccharides from sweet cherry (Prunus avium). Food Chem 2018; 254:47-54. [PMID: 29548470 DOI: 10.1016/j.foodchem.2018.01.145] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 10/29/2017] [Accepted: 01/23/2018] [Indexed: 02/06/2023]
|
27
|
Tan H, Chen W, Liu Q, Yang G, Li K. Pectin Oligosaccharides Ameliorate Colon Cancer by Regulating Oxidative Stress- and Inflammation-Activated Signaling Pathways. Front Immunol 2018; 9:1504. [PMID: 30013563 PMCID: PMC6036268 DOI: 10.3389/fimmu.2018.01504] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
Colon cancer (CC) is the third common neoplasm worldwide, and it is still a big challenge for exploring new effective medicine for treating CC. Natural product promoting human health has become a hot topic and attracted many researchers recently. Pectin, a complex polysaccharide in plant cell wall, mainly consists of four major types of polysaccharides: homogalacturonan, xylogalacturonan, rhamnogalacturonan I and II, all of which can be degraded into various pectin oligosaccharides (POS) and may provide abundant resource for exploring potential anticancer drugs. POS have been regarded as a novel class of potential functional food with multiple health-promoting properties. POS have antibacterial activities against some aggressive and recurrent bacterial infection and exert beneficial immunomodulation for controlling CC risk. However, the molecular functional role of POS in the prevention of CC risk and progression remains doubtful. The review focuses on antioxidant and anti-inflammatory roles of POS for promoting human health by regulating some potential oxidative and inflammation-activated pathways, such as ATP-activated protein kinase (AMPK), nuclear factor erythroid-2-related factor-2 (Nrf2), and nuclear factor-κB (NF-κB) pathways. The activation of these signaling pathways increases the antioxidant and antiinflammatory activities, which will result in the apoptosis of CC cells or in the prevention of CC risk and progression. Thus, POS may inhibit CC development by affecting antioxidant and antiinflammatory signaling pathways AMPK, Nrf2, and NF-κB. However, POS also can activate signal transduction and transcriptional activator 1 and 3 signaling pathway, which will reduce antioxidant and anti-inflammatory properties and promote CC progression. Specific structural and structurally modified POS may be associated with their functions and should be deeply explored in the future. The present review paper lacks the important information for the linkage between the specific structure of POS and its function. To further explore the effects of prebiotic potential of POS and their derivatives on human immunomodulation in the prevention of CC, the specific POS with a certain degree of polymerization or purified polymers are highly demanded to be performed in clinical practice.
Collapse
Affiliation(s)
- Haidong Tan
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wei Chen
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qishun Liu
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guojun Yang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Kuikui Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
28
|
Servais AB, Valenzuela CD, Kienzle A, Ysasi AB, Wagner WL, Tsuda A, Ackermann M, Mentzer SJ. Functional Mechanics of a Pectin-Based Pleural Sealant after Lung Injury. Tissue Eng Part A 2018; 24:695-702. [PMID: 28920559 PMCID: PMC5963544 DOI: 10.1089/ten.tea.2017.0299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
Pleural injury and associated air leaks are a major influence on patient morbidity and healthcare costs after lung surgery. Pectin, a plant-derived heteropolysaccharide, has recently demonstrated potential as an adhesive binding to the glycocalyx of visceral mesothelium. Since bioadhesion is a process likely involving the interpenetration of the pectin-based polymer with the glycocalyx, we predicted that the pectin-based polymer may also be an effective sealant for pleural injury. To explore the potential role of an equal (weight%) mixture of high-methoxyl pectin and carboxymethylcellulose as a pleural sealant, we compared the yield strength of the pectin-based polymer to commonly available surgical products. The pectin-based polymer demonstrated significantly greater adhesion to the lung pleura than the comparison products (p < 0.001). In a 25 g needle-induced lung injury model, pleural injury resulted in an air leak and a loss of airway pressures. After application of the pectin-based polymer, there was a restoration of airway pressure and no measurable air leak. Despite the application of large sheets (50 mm2) of the pectin-based polymer, multifrequency lung impedance studies demonstrated no significant increase in tissue damping (G) or hysteresivity (η)(p > 0.05). In 7-day survival experiments, the application of the pectin-based polymer after pleural injury was associated with no observable toxicity, 100% survival (N = 5), and restored lung function. We conclude that this pectin-based polymer is a strong and nontoxic bioadhesive with the potential for clinical application in the treatment of pleural injuries.
Collapse
Affiliation(s)
- Andrew B. Servais
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristian D. Valenzuela
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Arne Kienzle
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexandra B. Ysasi
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Willi L. Wagner
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Steven J. Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Tamiello CS, do Nascimento GE, Iacomini M, Cordeiro LM. Arabinogalactan from edible jambo fruit induces different responses on cytokine secretion by THP-1 macrophages in the absence and presence of proinflammatory stimulus. Int J Biol Macromol 2018; 107:35-41. [DOI: 10.1016/j.ijbiomac.2017.08.148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 01/25/2023]
|
30
|
Galectin Targeted Therapy in Oncology: Current Knowledge and Perspectives. Int J Mol Sci 2018; 19:ijms19010210. [PMID: 29320431 PMCID: PMC5796159 DOI: 10.3390/ijms19010210] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022] Open
Abstract
The incidence and mortality of cancer have increased over the past decades. Significant progress has been made in understanding the underpinnings of this disease and developing therapies. Despite this, cancer still remains a major therapeutic challenge. Current therapeutic research has targeted several aspects of the disease such as cancer development, growth, angiogenesis and metastases. Many molecular and cellular mechanisms remain unknown and current therapies have so far failed to meet their intended potential. Recent studies show that glycans, especially oligosaccharide chains, may play a role in carcinogenesis as recognition patterns for galectins. Galectins are members of the lectin family, which show high affinity for β-galactosides. The galectin–glycan conjugate plays a fundamental role in metastasis, angiogenesis, tumor immunity, proliferation and apoptosis. Galectins’ action is mediated by a structure containing at least one carbohydrate recognition domain (CRD). The potential prognostic value of galectins has been described in several neoplasms and helps clinicians predict disease outcome and determine therapeutic interventions. Currently, new therapeutic strategies involve the use of inhibitors such as competitive carbohydrates, small non-carbohydrate binding molecules and antibodies. This review outlines our current knowledge regarding the mechanism of action and potential therapy implications of galectins in cancer.
Collapse
|
31
|
do Nascimento GE, Winnischofer SMB, Ramirez MI, Iacomini M, Cordeiro LMC. The influence of sweet pepper pectin structural characteristics on cytokine secretion by THP-1 macrophages. Food Res Int 2017; 102:588-594. [DOI: 10.1016/j.foodres.2017.09.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/30/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
|
32
|
Effects of selenylation modification on structural and antioxidant properties of pectic polysaccharides extracted from Ulmus pumila L. Int J Biol Macromol 2017; 104:1124-1132. [DOI: 10.1016/j.ijbiomac.2017.06.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 11/22/2022]
|
33
|
Ishisono K, Yabe T, Kitaguchi K. Citrus pectin attenuates endotoxin shock via suppression of Toll-like receptor signaling in Peyer's patch myeloid cells. J Nutr Biochem 2017; 50:38-45. [PMID: 29031241 DOI: 10.1016/j.jnutbio.2017.07.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/06/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022]
Abstract
Pectin, a water-soluble dietary fiber, has been found to improve survival in endotoxin shock. However, the underlying mechanism by which pectin exerts its protective effect against endotoxin shock remains unknown. Apart from its prebiotic effects, it has been suggested that pectin directly affects immune cells to regulate inflammatory responses. In this study, we investigated the direct effect of pectin in murine model of endotoxin shock. Citrus pectin solution was administered to male C57BL/6 mice for 10 days. Thereafter, hypothermia was induced in the mice with intraperitoneal injection of lipopolysaccharide (LPS). The pectin-treated mice showed attenuation of both the decrease in rectal temperature and increase in serum IL-6 level as compared to vehicle control mice. Simultaneously, the pectin-treated mice showed reduced levels of inflammatory cytokine mRNA in Peyer's patches and mesenteric lymph nodes, but not in the spleen. Peyer's patch cells from the pectin-treated mice were sorted and their levels of IL-6 production on LPS stimulation were measured. The results of ex vivo analysis indicated that IL-6 secretion from CD11c+ cells was suppressed by oral administration of pectin. Furthermore, IL-6 secretion from Toll-like receptor (TLR)-activated RAW264.7 cells was suppressed by pretreatment with pectin in vitro. This suppression was observed even with degraded pectin pretreatment but not with polygalacturonic acid, as the principal constituent of the pectin backbone. Taken together, these results suggest that pectin intake suppresses TLR-induced inflammatory cytokine expression in Peyer's patch myeloid cells, presumably through inhibition of TLR signaling by the pectin side chains.
Collapse
Affiliation(s)
- Keita Ishisono
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Tomio Yabe
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan; Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu, Japan
| | - Kohji Kitaguchi
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan; Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
34
|
Silva-Leite KED, Assreuy AM, Mendonça LF, Damasceno LE, Queiroz MGD, Mourão PA, Pires AF, Pereira MG. Polysaccharide rich fractions from barks of Ximenia americana inhibit peripheral inflammatory nociception in mice. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Sun Y, He Y, Wang F, Zhang H, de Vos P, Sun J. Low-methoxyl lemon pectin attenuates inflammatory responses and improves intestinal barrier integrity in caerulein-induced experimental acute pancreatitis. Mol Nutr Food Res 2017; 61. [PMID: 27921358 DOI: 10.1002/mnfr.201600885] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/10/2016] [Accepted: 11/17/2016] [Indexed: 01/14/2023]
Abstract
SCOPE Acute pancreatitis (AP) is a common clinical acute abdominal disease. The intestinal injury associated with AP will aggravate the condition retroactively. This study investigates whether the low-methoxyl pectin (LMP) isolated from lemon could attenuate AP and associated intestinal injury. METHODS AND RESULTS Experimental AP was induced in BALB/c mice by caerulien (CAE) hyperstimulation. Nutritional prophylactic group was pre-fed with 5% LMP supplemented forage 3 days before AP induction. We found that LMP supplementation attenuated the severity of AP as evidenced by reduced serum amylase and lipase levels, pancreatic edema and myeloperoxidase activity. The protective effect was also confirmed by histological examination of pancreatic damage. LMP suppressed the production of pancreatic proinflammatory cytokines including TNF-α, IL-1β, and IL-6. Moreover, LMP supplementation restored AP-associated disruption of intestinal barrier integrity as evidenced by upregulation of tight junction modulatory proteins occludin, zonula occludens (ZO)-1, antimicrobial peptides β-defensin-1 (DEFB1) and CRAMP as well as increase in SCFAs production. LMP supplemented mice with AP exhibited suppressed intestinal inflammation as shown by decreased ileal and colon cytokine production compared with CAE group. CONCLUSION Our results support dietary LMP supplementation as an effective nutritional intervention for AP and associated intestinal injury.
Collapse
Affiliation(s)
- Yajun Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yue He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Paul de Vos
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,Jiangnan University School of Medicine, Wuxi, P. R. China
| |
Collapse
|
36
|
Briard B, Muszkieta L, Latgé JP, Fontaine T. Galactosaminogalactan ofAspergillus fumigatus, a bioactive fungal polymer. Mycologia 2017; 108:572-80. [DOI: 10.3852/15-312] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/31/2016] [Indexed: 12/15/2022]
|
37
|
Rangel-Huerta OD, Aguilera CM, Perez-de-la-Cruz A, Vallejo F, Tomas-Barberan F, Gil A, Mesa MD. A serum metabolomics-driven approach predicts orange juice consumption and its impact on oxidative stress and inflammation in subjects from the BIONAOS study. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600120] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Oscar D. Rangel-Huerta
- Department of Biochemistry and Molecular Biology II; Institute of Nutrition and Food Technology “José Mataix”; Centre for Biomedical Research; University of Granada; Granada Spain
| | - Concepcion M. Aguilera
- Department of Biochemistry and Molecular Biology II; Institute of Nutrition and Food Technology “José Mataix”; Centre for Biomedical Research; University of Granada; Granada Spain
| | - Antonio Perez-de-la-Cruz
- University Hospital Virgen de las Nieves, Granada; Centre for Biomedical Research; University of Granada; Granada Spain
| | - Fernando Vallejo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods; Department of Food Science and Technology; Center for Soil Science and Applied Biology Segura-Superior Council for Scientific Research (CEBAS-CSIC); Campus de Espinardo; Murcia Spain
| | - Francisco Tomas-Barberan
- Research Group on Quality, Safety, and Bioactivity of Plant Foods; Department of Food Science and Technology; Center for Soil Science and Applied Biology Segura-Superior Council for Scientific Research (CEBAS-CSIC); Campus de Espinardo; Murcia Spain
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II; Institute of Nutrition and Food Technology “José Mataix”; Centre for Biomedical Research; University of Granada; Granada Spain
| | - Maria D. Mesa
- Department of Biochemistry and Molecular Biology II; Institute of Nutrition and Food Technology “José Mataix”; Centre for Biomedical Research; University of Granada; Granada Spain
| |
Collapse
|
38
|
Modified pectin from Theobroma cacao induces potent pro-inflammatory activity in murine peritoneal macrophage. Int J Biol Macromol 2016; 92:1040-1048. [DOI: 10.1016/j.ijbiomac.2016.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/05/2016] [Accepted: 08/07/2016] [Indexed: 01/11/2023]
|
39
|
Iviglia G, Cassinelli C, Torre E, Baino F, Morra M, Vitale-Brovarone C. Novel bioceramic-reinforced hydrogel for alveolar bone regeneration. Acta Biomater 2016; 44:97-109. [PMID: 27521494 DOI: 10.1016/j.actbio.2016.08.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/25/2016] [Accepted: 08/10/2016] [Indexed: 01/22/2023]
Abstract
UNLABELLED The osseointegration of dental implants and their consequent long-term success is guaranteed by the presence, in the extraction site, of healthy and sufficient alveolar bone. Bone deficiencies may be the result of extraction traumas, periodontal disease and infection. In these cases, placement of titanium implants is contraindicated until a vertical bone augmentation is obtained. This goal is achieved using bone graft materials, which should simulate extracellular matrix (ECM), in order to promote osteoblast proliferation and fill the void, maintaining the space without collapsing until the new bone is formed. In this work, we design, develop and characterize a novel, moldable chitosan-pectin hydrogel reinforced by biphasic calcium phosphate particles with size in the range of 100-300μm. The polysaccharide nature of the hydrogel mimics the ECM of natural bone, and the ceramic particles promote high osteoblast proliferation, assessed by Scanning Electron Microscopy analysis. Swelling properties allow significant adsorption of water solution (up to 200% of solution content) so that the bone defect space can be filled by the material in an in vivo scenario. The incorporation of ceramic particles makes the material stable at different pH and increases the compressive elastic modulus, toughness and ultimate tensile strength. Furthermore, cell studies with SAOS-2 human osteoblastic cell line show high cell proliferation and adhesion already after 72h, and the presence of ceramic particles increases the expression of alkaline phosphatase activity after 1week. These results suggest a great potential of the developed moldable biomaterials for the regeneration of the alveolar bone. STATEMENT OF SIGNIFICANCE The positive fate of a surgical procedure involving the insertion of a titanium screw still depends on the quality and quantity of alveolar bone which is present in the extraction site. Available materials are basically hard scaffold materials with un-predictable behavior in different condition and difficult shaping properties. In this work we developed a novel pectin-chitosan hydrogel reinforced with ceramic particles. Polysaccharides simulate the extracellular matrix of natural bone and the extensive in vitro cells culture study allows to assess that the incorporation of the ceramic particles promote a pro-osteogenic response. Shape control, easy adaption of the extraction site, predictable behavior in different environment condition, swelling properties and an anti-inflammatory response are the significant characteristics of the developed biomaterial.
Collapse
|
40
|
Popov SV, Popova GY, Nikitina IR, Markov PA, Latkin DS, Golovchenko VV, Patova OA, Krachkovsky N, Smirnov VV, Istomina EA, Shumikhin KV, Burkov AA, Martinson EA, Litvinets SG. Injectable hydrogel from plum pectin as a barrier for prevention of postoperative adhesion. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516637374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An injectable hydrogel was obtained from the high methyl-esterified plum Prunus domestica L. (PD) pectin and calcium ions (Ca2+). PD hydrogel showed a weak gel-like behavior and could be squeezed out of the syringe with an injection force of ca. 9 N. PD hydrogel was not suitable for the NIH/3T3 fibroblast cell adhesion in vitro. The live/dead fluorescence and MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide) assays indicated that the PD hydrogel had a low cytotoxicity in relation to both the adhered and gel surrounding fibroblasts. PD hydrogel was found to inhibit adhesion formation in the sidewall defect-cecum abrasion rat model. In the control group, the occurrence of adhesion of the cecum to the peritoneal wall was found in seven of the total seven rats operated. Only four of the seven animals that were treated with the PD hydrogel were noted to have any adhesions. These adhesions were of a minimum grade of 1, 2, and 3 and were represented by a thin film that could be easily broken. The protective effect of PD hydrogel was found to be comparable with that of hyaluronic acid hydrogel used as a positive control. PD hydrogel appeared to possess enhanced in vivo residence stability on the injury sites compared to hyaluronic acid hydrogel as measured by staining of healing tissue with periodic acid-Schiff reagent. The data obtained offered the prospect for the development of the pectin-based gels as new barrier materials for surgery.
Collapse
Affiliation(s)
- Sergey V Popov
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Galina Yu Popova
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Ida R Nikitina
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Pavel A Markov
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Dmitry S Latkin
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Victoria V Golovchenko
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Ol’ga A Patova
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Nikita Krachkovsky
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Vasily V Smirnov
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Elena A Istomina
- Institute of Chemistry, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | | | - Andrey A Burkov
- Department of Biotechnology, Vyatka State University, Kirov, Russia
| | | | | |
Collapse
|
41
|
Lottenberg AMP, Fan PLT, Buonacorso V. Effects of dietary fiber intake on inflammation in chronic diseases. EINSTEIN-SAO PAULO 2016; 8:254-8. [PMID: 26760015 DOI: 10.1590/s1679-45082010md1310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 04/12/2010] [Indexed: 12/31/2022] Open
Abstract
Chronic diseases such as obesity, type-2 diabetes, metabolic syndrome and cardiovascular diseases are associated with inflammation due the increase of TNF-α, IL-6 and C-reactive protein concentrations. Occidental life style, specially related to the changes in food habits as observed in the past years, have an important role in the development of these diseases. Among the life style changes identified as having an impact in the development of diseases, is the decrease in dietary fiber consumption. Some studies have shown the negative relationship between fiber ingestion and inflammatory markers in chronic diseases. Dietary fibers have an important and a well-known role in different physiologic functions such as intestinal peristalsis, weight reduction by acting on satiety mechanisms, preventing colon cancer, reducing cholesterol and post-prandial glycaemia.
Collapse
Affiliation(s)
- Ana Maria Pita Lottenberg
- Department of Endocrinology, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo - USP, BR
| | | | - Vivian Buonacorso
- Instituto Israelita de Ensino e Pesquisa Albert Einstein - IIEPAE, São Paulo, SP, BR
| |
Collapse
|
42
|
Adorian TJ, Mombach PI, Goulart FR, Loureiro BB, Pianesso D, da Silva LP. Dietary fiber in the nutrition of silver catfish: Prebiotic or antinutrient? Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2015.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Yadav P, Yadav H, Shah VG, Shah G, Dhaka G. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review. J Clin Diagn Res 2015; 9:ZE21-5. [PMID: 26501034 DOI: 10.7860/jcdr/2015/13907.6565] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/05/2015] [Indexed: 01/07/2023]
Abstract
Biopolymers provide a plethora of applications in the pharmaceutical and medical applications. A material that can be used for biomedical applications like wound healing, drug delivery and tissue engineering should possess certain properties like biocompatibility, biodegradation to non-toxic products, low antigenicity, high bio-activity, processability to complicated shapes with appropriate porosity, ability to support cell growth and proliferation and appropriate mechanical properties, as well as maintaining mechanical strength. This paper reviews biodegradable biopolymers focusing on their potential in biomedical applications. Biopolymers most commonly used and most abundantly available have been described with focus on the properties relevant to biomedical importance.
Collapse
Affiliation(s)
- Preeti Yadav
- Senior Lecturer, Department of Prosthodontics, Crown and Bridge and Implantology, NIMS Dental College , Jaipur, Rajasthan, India
| | - Harsh Yadav
- Private Practioner, Oral & Maxillofacial Surgery, Gurgaon, Haryana, India
| | - Veena Gowri Shah
- Reader, Department of Prosthodontics, Crown and Bridge and Implantology, NIMS Dental College , Jaipur, Rajasthan, India
| | - Gaurav Shah
- Reader, Department of Oral & Maxillofacial Surgery, NIMS Dental College , Jaipur, Rajasthan, India
| | - Gaurav Dhaka
- Private Practitioner, Meerut, Uttar Pradesh, India
| |
Collapse
|
44
|
|
45
|
Banerjee S, Parasramka M, Paruthy SB. Polysaccharides in Cancer Prevention: From Bench to Bedside. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
46
|
Banerjee S, Parasramka M, Paruthy SB. Polysaccharides in Cancer Prevention: From Bench to Bedside. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-03751-6_26-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
47
|
Min B, Kyung Koo O, Park SH, Jarvis N, Ricke SC, Crandall PG, Lee SO. Fermentation Patterns of Various Pectin Sources by Human Fecal Microbiota. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/fns.2015.612115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Popov SV, Ovodova RG, Golovchenko VV, Khramova DS, Markov PA, Smirnov VV, Shashkov AS, Ovodov YS. Pectic polysaccharides of the fresh plum Prunus domestica L. isolated with a simulated gastric fluid and their anti-inflammatory and antioxidant activities. Food Chem 2013; 143:106-13. [PMID: 24054219 DOI: 10.1016/j.foodchem.2013.07.049] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/23/2013] [Accepted: 07/10/2013] [Indexed: 11/26/2022]
Abstract
A pectic polysaccharide, designated as PD, was extracted from fresh plums (Prunus domestica L.) with a simulated gastric fluid. Galacturonan, which was partially substituted with methyl and O-acetyl ester groups, and rhamnogalacturonan were the main constituents of the linear regions of the sugar chains of PD. The ramified region contained mainly 1,4-linked β-d-galactopyranose residues and, to a lesser extent, 1,5-linked α-l-arabinofuranose residues. The separation of PD, by DEAE-cellulose column chromatography, yielded two pectic fractions: PD-1 and PD-2, eluted with 0.1 and 0.2 M NaCl, respectively. Enzymatic digestion of PD with 1,4-α-d-polygalacturonase yielded the fraction PD-E. The parent pectin PD and the PD-1 fraction were found to diminish the adhesion of peritoneal leukocytes at the concentrations of 0.05-1.0mg/ml. However, the PD-E fraction failed to have an effect on cell adhesion at the concentrations of 0.05-0.1mg/ml. PD, PD-1 and PD-E were found to inhibit the production of superoxide anion radicals by reducing xanthine oxidase activity by 38%, 97% and 47%, respectively. Therefore, the PD-1 fraction appeared to be an active fragment of pectic macromolecule isolated from fresh plum with a simulated gastric fluid.
Collapse
Affiliation(s)
- Sergey V Popov
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, 50, Pervomaiskaya Str., Syktyvkar 167982, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kouakou K, Schepetkin IA, Jun S, Kirpotina LN, Yapi A, Khramova DS, Pascual DW, Ovodov YS, Jutila MA, Quinn MT. Immunomodulatory activity of polysaccharides isolated from Clerodendrum splendens: beneficial effects in experimental autoimmune encephalomyelitis. Altern Ther Health Med 2013; 13:149. [PMID: 23806004 PMCID: PMC3717075 DOI: 10.1186/1472-6882-13-149] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/20/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Extracts of leaves from Clerodendrum have been used for centuries to treat a variety of medicinal problems in tropical Africa. However, little is known about the high-molecular weight active components conferring therapeutic properties to these extracts. METHODS Polysaccharides from the leaves of Clerodendrum splendens were extracted and fractionated by ion exchange and size-exclusion chromatography. Molecular weight determination, sugar analysis, degree of methyl esterification, and other chemical characterization of the fractions were performed. Immunomodulatory activity of the fractions was evaluated by determining their ability to induce monocyte/macrophage nitric oxide (NO), cytokine production, and mitogen-activated protein kinase (MAPK) phosphorylation. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice, and severity of EAE was monitored in mice treated with intraperitoneal (i.p.) injections of the most active polysaccharide fraction. Lymph nodes (LN) and spleen were harvested, and levels of cytokines in supernatants from LN cells and splenocytes challenged with myelin oligodendrocyte glycoprotein peptide were determined. RESULTS Fractions containing type II arabinogalactan had potent immunomodulatory activity. Specifically, the high-molecular weight sub-fraction CSP-AU1 (average of 38.5 kDa) induced NO and cytokine [interleukin (IL)-1α, -1β, -6, -10, tumor necrosis factor (TNF; designated previously as TNF-α), and granulocyte macrophage-colony stimulating factor (GM-CSF)] production by human peripheral blood mononuclear cells (PBMCs) and monocyte/macrophages. CSP-AU1-induced secretion of TNF was prevented by Toll-like receptor 4 (TLR4) antagonist LPS-RS, indicating a role for TLR4 signaling. Treatment with CSP-AU1 also induced phosphorylation of a number of MAPKs in human PBMC and activated AP-1/NF-κB. In vivo treatment of mice with CSP-AU1 and CSP-NU1 resulted in increased serum IL-6, IL-10, TNF, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein (MIP)-1α/CCL3, and MIP-1β/CCL4. CSP-AU1 treatment of mice with EAE (50 mg/kg, i.p., daily, 13 days) resulted in significantly reduced disease severity in this experimental model of multiple sclerosis. Levels of IL-13, TNF, interferon (IFN)-γ, IL-17, and GM-CSF were also significantly decreased, whereas transforming growth factor (TGF)-β was increased in LN cells from CSP-AU1-treated EAE mice. CONCLUSIONS Polysaccharide CSP-AU1 is a potent natural innate immunomodulator with a broad spectrum of agonist activity in vitro and immunosupressive properties after chronic administration in vivo.
Collapse
|
50
|
Gupta P, Bansal MP, Koul A. Evaluating the effect of lycopene from Lycopersicum esculentum on apoptosis during NDEA induced hepatocarcinogenesis. Biochem Biophys Res Commun 2013; 434:479-85. [PMID: 23583393 DOI: 10.1016/j.bbrc.2013.03.099] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 03/24/2013] [Indexed: 01/09/2023]
Abstract
The present study was aimed to examine the influence of lycopene from tomatoes (LycT) on apoptosis in N-nitrosodiethylamine (NDEA) induced hepatocarcinogenesis. Female Balb/c mice were randomly divided into four groups i.e. Control, NDEA, LycT and LycT+NDEA. Hepatic tissue from NDEA treated mice exhibited enhanced expression of anti-apoptotic gene bcl-2 and decreased expression of pro-apoptotic genes caspase 3, 9 and p53 when compared to control group. LycT intervention to NDEA challenged mice exhibited enhanced expression of caspase 3, 9 and p53 and decreased expression of bcl-2 when compared with NDEA treated animals. Enhanced DNA damage was revealed in NDEA and LycT+NDEA groups as revealed by comet assay. However, TUNEL assay indicated enhanced apoptosis in LycT+NDEA group when compared to NDEA group. Hepatic tissue of NDEA treated mice showed persistently high lipid peroxidation levels and glutathione redox ratio during the process of hepatocarcinogenesis. The observed enhanced apoptosis in LycT+NDEA group may be attributed to its differential effects on apoptosis associated genes and its ability to act as a pro-oxidant. These findings provide a rational mechanistic insight into the growth-inhibitory effects of lycopene against hepatic cancer.
Collapse
Affiliation(s)
- Prachi Gupta
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh 160014, India
| | | | | |
Collapse
|