1
|
Lee E, Chang Y. Modulating Neuroinflammation as a Prospective Therapeutic Target in Alzheimer's Disease. Cells 2025; 14:168. [PMID: 39936960 DOI: 10.3390/cells14030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
The recent approval of lecanemab highlights that the amyloid beta (Aβ) protein is an important pathological target in Alzheimer's disease (AD) and further emphasizes the significance of neuroinflammatory pathways in regulating Aβ accumulation. Indeed, Aβ accumulation triggers microglia activation, which are key mediators in neuroinflammation. The inflammatory responses in this process can lead to neuronal damage and functional decline. Microglia secrete proinflammatory cytokines that accelerate neuronal death and release anti-inflammatory cytokines and growth factors contributing to neuronal recovery and protection. Thus, microglia play a dual role in neurodegeneration and neuroprotection, complicating their function in AD. Therefore, elucidating the complex interactions between Aβ protein, microglia, and neuroinflammation is essential for developing new strategies for treating AD. This review investigates the receptors and pathways involved in activating microglia and aims to enhance understanding of how these processes impact neuroinflammation in AD, as well as how they can be regulated. This review also analyzed studies reported in the existing literature and ongoing clinical trials. Overall, these studies will contribute to understanding the regulatory mechanisms of neuroinflammation and developing new therapies that can slow the pathological progression of AD.
Collapse
Affiliation(s)
- Eunshil Lee
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yongmin Chang
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
2
|
Chen J, Zhu Z, Xu F, Dou B, Sheng Z, Xu Y. Phosphodiesterase 4 Inhibition in Neuropsychiatric Disorders Associated with Alzheimer's Disease. Cells 2025; 14:164. [PMID: 39936956 DOI: 10.3390/cells14030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Cognitive disorders and psychiatric pathologies, particularly Alzheimer's disease (AD) and Major depressive disorder (MDD), represent a considerable health burden, impacting millions of people in the United States and worldwide. Notably, comorbidities of MDD and anxiety are prevalent in the early stages of mild cognitive impairment (MCI), which is the preceding phase of Alzheimer's disease and related dementia (ADRD). The symptoms of MDD and anxiety affect up to 80% of individuals in the advanced stages of the neurodegenerative conditions. Despite overlapping clinical manifestations, the pathogenesis of AD/ADRD and MDD remains inadequately elucidated. Until now, dozens of drugs for treating AD/ADRD have failed in clinical trials because they have not proven beneficial in reversing or preventing the progression of these neuropsychiatric indications. This underscores the need to identify new drug targets that could reverse neuropsychiatric symptoms and delay the progress of AD/ADRD. In this context, phosphodiesterase 4 (PDE4) arises as a primary enzyme in the modulation of cognition and mood disorders, particularly through its enzymatic action on cyclic adenosine monophosphate (cAMP) and its downstream anti-inflammatory pathways. Despite the considerable cognitive and antidepressant potential of PDE4 inhibitors, their translation into clinical practice is hampered by profound side effects. Recent studies have focused on the effects of PDE4 and its subtype-selective isoform inhibitors, aiming to delineate their precise mechanistic contributions to neuropsychiatric symptoms with greater specificity. This review aims to analyze the current advances regarding PDE4 inhibition-specifically the selective targeting of its isoforms and elucidate the therapeutic implications of enhanced cAMP signaling and the consequent anti-inflammatory responses in ameliorating the symptomatology associated with AD and ADRD.
Collapse
Affiliation(s)
- Jiming Chen
- Department of Anesthesiology, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Zhengyao Zhu
- School of Nursing and Rehabilitation, Nantong University, Nantong 226007, China
| | - Fu Xu
- Department of Anesthesiology, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Baomin Dou
- Department of Anesthesiology, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Zhutao Sheng
- Department of Anesthesiology, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Ying Xu
- Department of Anesthesiology, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
3
|
Kaur D, Grewal AK, Fouad D, Kumar A, Singh V, Alexiou A, Papadakis M, Batiha GES, Welson NN, Singh TG. Exploring the Neuroprotective Effects of Rufinamide in a Streptozotocin-Induced Dementia Model. Cell Mol Neurobiol 2024; 45:4. [PMID: 39661258 PMCID: PMC11634951 DOI: 10.1007/s10571-024-01521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Due to the complex pathophysiology of AD (Alzheimer's Disease), there are currently no effective clinical treatments available, except for acetylcholinesterase inhibitors. However, CREB (cyclic AMP-responsive element binding protein) has been identified as the critical factor for the transcription in memory formation. Understanding the effect of potential drugs on the CREB pathway could lead to the development of new therapeutic molecules. Rufinamide has shown promise in improving memory in animal models, and these effects may be associated with modulation of the CREB pathway, however, this has not been previously reported. Thus, the present study aimed to determine the involvement of the CREB pathway in the cognitive improvement effects of rufinamide in STZ (streptozotocin) induced mouse model of dementia. Administration of STZ [3 mg/kg, i.c.v. (intracerebroventricular) bilaterally] significantly impaired cognitive performance in step-down passive avoidance and Morris water maze tests in animals, reduced brain endogenous antioxidant levels (GSH, superoxide dismutase, and catalase), and increased marker of brain oxidative stress [TBARS (thiobarbituric acid reactive substances)] and inflammation [IL-1β (Interleukin-1 beta), IL-6 (Interleukin-6), TNF-α (Tumor necrosis factor alpha) and NF-κB (Nuclear factor kappa B)], along with neurodegeneration. These effects were markedly reversed by rufinamide (50 and 100 mg/kg) when administered to STZ animals. However, the pre-treatment with the CREB inhibitor (666-15) in STZ and rufinamide-administered animals neutralized the beneficial influence of rufinamide. Our data suggest that rufinamide, acting via CREB signaling, reduced oxidative stress and inflammatory markers while elevating anti-oxidant levels. Our study has established that rufinamide may act through CREB signaling in an investigational AD model, which could be crucial for developing new treatments beneficial in progressive neurological disorders.
Collapse
Affiliation(s)
- Darshpreet Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, 11495, Riyadh, Saudi Arabia
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, Punjab, India
- Department of Research & Development, Funogen, 11741, Athens, Greece
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| | | |
Collapse
|
4
|
Wang Y, Chen J, Wang C, Chen T, He L. GW9508 ameliorates cognitive dysfunction via autophagy pathway in streptozotocin-induced mouse model of Alzheimer's disease. Fundam Clin Pharmacol 2024; 38:906-923. [PMID: 38486405 DOI: 10.1111/fcp.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND G protein-coupled receptor 40 (GPR40) is a potential drug target for Alzheimer's disease (AD), and its agonist GW9508 ameliorates cognitive impairment by intravenous administration. OBJECTIVES The present study was conducted to investigate the efficacy of GW9508 administered peripherally on cognitive dysfunction in streptozotocin (STZ)-induced AD mice. METHODS Seventy male ICR mice were randomly divided into seven groups: vehicle sham group, model, Donepezil, GW9508-L, GW9508-M, GW9508-H, and GW1100 + GW9508-H groups, and administered either vehicle (artificial cerebrospinal fluid [aCSF]) or STZ (3 mg/kg in the vehicle) once a day (9:00 a.m.) by intracerebroventricular injection bilaterally on day 1 and day 3, respectively. After 2 weeks of recovery, all mice were given drug treatment. Behavioral experiments were applied to test the recognition and spatial memory of mice, while molecular biology experiments such as Western blot, ELISA, and Nissl staining were used to detect the corresponding changes of signaling pathways. RESULTS Intraperitoneal administration of GW9508 prevented STZ-induced cognitive impairment as well as decreased the level of p-tau and Aβ1-42 in plasma and brain. GW9508 upregulated the expression of gut-brain peptides like PYY, CCK, IGF-1, and GLP-1 both in blood circulation and brain and downregulated the expression level of autophagy-related proteins through activating Akt/mTOR signaling pathway. Meanwhile, the treatment effect of GW9508 was reversed by GPR40 antagonist GW1100 significantly. CONCLUSION Peripheral administration of GW9508 exhibits neuroprotective effects, and it could be a promising therapy for AD. The neuroprotective mechanism of GW9508 was based on promoting gut-brain peptide secretion, activating Akt/mTOR signal pathway, and regulating neuronal autophagy.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Jingjing Chen
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Tong Chen
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Ikram H, Zakir R, Haleem DJ. Memory enhancing and neuroprotective effects of apomorphine in a rat model of dementia. Metab Brain Dis 2024; 39:1051-1063. [PMID: 38896206 DOI: 10.1007/s11011-024-01372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Oxidative stress from generation of increased reactive oxygen species or has been reported to play an important role in dementia. Oxidative stress due to free radicals of oxygen or reactive oxygen species could be precipitating factors in the etiology of dementia. Apomorphine has been reported to have neuroprotective effects. To monitor memory enhancing and neuroprotective effects of apomorphine, we determined the antioxidant enzymes activities, lipid peroxidation, acetylcholine esterase (AChE) activity in brain and plasma, following repetitive administration of apomorphine in rat model of dementia. Biogenic amine levels were also monitored in hippocampus. Repeated administration of scopolamine was taken as an animal model of dementia. Decreased glutathione peroxidase, superoxide dismutase and catalase activities were observed in these animal models of dementia. While increased lipid peroxidation was also observed in the brain and plasma samples. The results showed significant effects of apomorphine. The activities of antioxidant enzymes displayed increased activities in both brain and plasma. Glutathione peroxidase and catalase activities were found to be significantly higher in brain and plasma of apomorphine treated rats. Superoxide dismutase (SOD) was significantly decreased in plasma of scopolamine injected rats; and a decreased tendency (non-significant) of SOD in brain was also observed. AChE activity in brain and plasma was significantly decreased in scopolamine treated rats. Learning and memory of rats in the present study was assessed by Morris Water Maze (MWM). Short-term memory and long-term memory was impaired significantly in scopolamine treated rats, which was prevented by apomorphine. Moreover, a marked decrease in biogenic amines was also found in the brain of scopolamine treated rats and was reverted in apomorphine treated rats. Results showed that scopolamine-treatment induced memory impairment and induced oxidative stress in rats as compared to saline-treated controls. These impairments were significantly restored by apomorphine administration. In conclusion, our data suggests that apomorphine at the dose of 1 mg/kg could be a potential therapeutic agent to treat dementia and related disorders.
Collapse
Affiliation(s)
- Huma Ikram
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan.
| | - Rumaisa Zakir
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Darakhshan Jabeen Haleem
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
- Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine and Drug Research-ICCBS, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
6
|
Xiang Y, Naik S, Zhao L, Shi J, Ke H. Emerging phosphodiesterase inhibitors for treatment of neurodegenerative diseases. Med Res Rev 2024; 44:1404-1445. [PMID: 38279990 DOI: 10.1002/med.22017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Swapna Naik
- Department of Pharmacology, Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Ram K, Kumar K, Singh D, Chopra D, Mani V, Jaggi AS, Singh N. Beneficial effect of lupeol and metformin in mouse model of intracerebroventricular streptozotocin induced dementia. Metab Brain Dis 2024; 39:661-678. [PMID: 38842663 DOI: 10.1007/s11011-024-01364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
This study examines the effectiveness of lupeol and metformin in a mouse model of dementia generated by intracerebroventricular streptozotocin (i.c.v., STZ). Dementia was induced in Swiss mice with the i.c.v. administration of STZ at a dosage of 3 mg/kg on the first and third day. The assessment of dementia involved an examination of the Morris Water Maze (MWM) performance, as well as a number of biochemical and histological studies. STZ treatment resulted in significant decrease in MWM performance; various biochemical alterations (increase in brain acetyl cholinesterase (AChE) activity, thiobarbituric acid reactive species (TBARS), nitrite/nitrate, and reduction in nuclear factor erythroid 2 related factor-2 (Nrf-2), reduced glutathione (GSH) levels) and neuroinflammation [increased myeloperoxidase (MPO) activity & neutrophil infiltration]. The administration of Lupeol (50 mg/kg & 100 mg/kg; p.o.) and Metformin (150 mg/kg & 300 mg/kg; p.o.) demonstrated a considerable reduction in the behavioral, biochemical, and histological alterations produced by STZ. Low dose combination of lupeol (50 mg/kg; p.o.) and Metformin (150 mg/kg; p.o.) produced more pronounced effect than that of high doses of either agent alone. It is concluded that Lupeol and Metformin has shown efficacy in dementia with possible synergism between the two and can be explored as potential therapeutic agents for managing dementia of Alzheimer's disease (AD) type.
Collapse
Affiliation(s)
- Khagesh Ram
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, 135001, Yamunanagar, HRY, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dimple Chopra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassin University, 51452, Buraydah, Saudi Arabia
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
8
|
Huo D, Liang W, Wang D, Liu Q, Wang H, Wang Y, Zhang C, Cong C, Su X, Tan X, Zhang W, Han L, Zhang D, Wang M, Feng H. Roflupram alleviates autophagy defects and reduces mutant hSOD1-induced motor neuron damage in cell and mouse models of amyotrophic lateral sclerosis. Neuropharmacology 2024; 247:109812. [PMID: 38218579 DOI: 10.1016/j.neuropharm.2023.109812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/15/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable disease involving motor neuron (MN) degeneration and is characterized by ongoing myasthenia and amyotrophia in adults. Most ALS patients die of respiratory muscle paralysis after an average of 3-5 years. Defective autophagy in MNs is considered an important trigger of ALS pathogenesis. Roflupram (ROF) was demonstrated to activate autophagy in microglial cells and exert protective effects against Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, our research aimed to investigate the efficacy and mechanism of ROF in treating ALS both in vivo and in vitro. We found that ROF could delay disease onset and prolong the survival of hSOD1-G93A transgenic mice. Moreover, ROF protected MNs in the anterior horn of the spinal cord, activated the AMPK/ULK1 signaling pathway, increased autophagic flow, and reduced SOD1 aggregation. In an NSC34 cell line stably transfected with hSOD1-G93A, ROF protected against cellular damage caused by hSOD1-G93A. Moreover, we have demonstrated that ROF inhibited gliosis in ALS model mice. Collectively, our study suggested that ROF is neuroprotective in ALS models and the AMPK/ULK1 signaling pathway is a potential therapeutic target in ALS, which increases autophagic flow and reduces SOD1 aggregation.
Collapse
Affiliation(s)
- Di Huo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Weiwei Liang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Di Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Qiaochu Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Hongyong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Chunting Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei City, Anhui Province, PR China
| | - Chaohua Cong
- Department of Neurology, Shanghai JiaoTong University School of Medicine, Shanghai No. 9 People's Hospital, Shanghai, PR China
| | - Xiaoli Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Xingli Tan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Wenmo Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ling Han
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Dongmei Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ming Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China.
| |
Collapse
|
9
|
Gupta T, Singh V, Hefnawy M, Alanazi MM, Alsuwayt B, Kabra A, Kumar A, Pasricha C, Singh R. Ameliorating the Role of Aripiprazole in Memory Deficits Induced by Intracerebroventricular Streptozotocin-Induced Dementia of Alzheimer's Type. ACS OMEGA 2023; 8:25295-25302. [PMID: 37483219 PMCID: PMC10357558 DOI: 10.1021/acsomega.3c02550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder causing immense suffering for the patients. Dopamine D2 and 5-hydroxytryptamine receptor 1A (5-HT1A) receptors' activation has been reported to play a crucial role in managing neurological outcomes in the brain and other health disorders. This study aimed to investigate the role of aripiprazole, a dopamine D2 and 5-HT1A selective receptors' activator, in the restoration of memory deficit induced by streptozotocin in mice. The cognitive functions of animals were determined using the Morris water maze. Brain sections were stained with hematoxylin and eosin and Congo red to examine the structural deviations. Brain oxidative stress (thiobarbituric acid reactive substance and glutathione), acetylcholinesterase activity, IL-6, and IL-10 were measured to assess biochemical alterations. Activation of D2 and 5-HT1A with aripiprazole attenuated STZ-induced cognitive deficit, increased brain GSH levels, reduced TBARS levels, AChE activity, IL-6 levels, and IL-10 levels and prevented STZ-induced brain anomalies in mice. Hence, the present study concluded that aripiprazole mitigated STZ-induced memory impairment and can be used as an efficacious therapeutic target for the management of AD.
Collapse
Affiliation(s)
- Tarun Gupta
- Chitkara
College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Varinder Singh
- Department
of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India
| | - Mohamed Hefnawy
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alanazi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bader Alsuwayt
- Department
of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Atul Kabra
- University
Institute of Pharma Sciences, Chandigarh
University, Mohali 140301, Punjab, India
| | - Amit Kumar
- Chitkara
College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Chirag Pasricha
- Chitkara
College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Ravinder Singh
- Chitkara
College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| |
Collapse
|
10
|
Roy D, Balasubramanian S, Krishnamurthy PT, Sola P, Rymbai E. Phosphodiesterase-4 Inhibition in Parkinson's Disease: Molecular Insights and Therapeutic Potential. Cell Mol Neurobiol 2023:10.1007/s10571-023-01349-1. [PMID: 37074485 DOI: 10.1007/s10571-023-01349-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/09/2023] [Indexed: 04/20/2023]
Abstract
Clinicians and researchers are exploring safer and novel treatment strategies for treating the ever-prevalent Parkinson's disease (PD) across the globe. Several therapeutic strategies are used clinically for PD, including dopamine replacement therapy, DA agonists, MAO-B blockers, COMT blockers, and anticholinergics. Surgical interventions such as pallidotomy, particularly deep brain stimulation (DBS), are also employed. However, they only provide temporal and symptomatic relief. Cyclic adenosine monophosphate (cAMP) is one of the secondary messengers involved in dopaminergic neurotransmission. Phosphodiesterase (PDE) regulates cAMP and cGMP intracellular levels. PDE enzymes are subdivided into families and subtypes which are expressed throughout the human body. PDE4 isoenzyme- PDE4B subtype is overexpressed in the substantia nigra of the brain. Various studies have implicated multiple cAMP-mediated signaling cascades in PD, and PDE4 is a common link that can emerge as a neuroprotective and/or disease-modifying target. Furthermore, a mechanistic understanding of the PDE4 subtypes has provided perceptivity into the molecular mechanisms underlying the adverse effects of phosphodiesterase-4 inhibitors (PDE4Is). The repositioning and development of efficacious PDE4Is for PD have gained much attention. This review critically assesses the existing literature on PDE4 and its expression. Specifically, this review provides insights into the interrelated neurological cAMP-mediated signaling cascades involving PDE4s and the potential role of PDE4Is in PD. In addition, we discuss existing challenges and possible strategies for overcoming them.
Collapse
Affiliation(s)
- Dhritiman Roy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Shivaramakrishnan Balasubramanian
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India.
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| |
Collapse
|
11
|
Akefe IO, Nyan ES, Adegoke VA, Lamidi IY, Ameh MP, Chidiebere U, Ubah SA, Ajayi IE. Myrtenal improves memory deficits in mice exposed to radiofrequency-electromagnetic radiation during gestational and neonatal development via enhancing oxido-inflammatory, and neurotransmitter functions. Heliyon 2023; 9:e15321. [PMID: 37123912 PMCID: PMC10133755 DOI: 10.1016/j.heliyon.2023.e15321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Objective Radiofrequency-electromagnetic radiation (RF-EMR) exposure during gestational and neonatal development may interact with the foetus and neonate considered hypersensitive to RF-EMR, consequently resulting in developmental defects associated with neuropsychological and neurobehavioral disorders, including learning and memory impairment. This study assessed the potential of Myrtenal (Myrt) to improve memory deficits in C57BL/6 mice exposed to RF-EMR during gestational and neonatal development. Method Thirty-five male mice were randomly allocated into 5 cohorts, each comprising of 7 mice. Group I was administered vehicle, Group II: RF-EMR (900 MHz); Group III: RF-EMR (900 MHz) + 100 mg/kg Myrt; Group IV: RF-EMR (900 MHz) + 200 mg/kg Myrt; and Group V: RF-EMR (900 MHz) + donepezil 0.5 mg/kg. Results Myrt treatment improved short-term memory performance in RF-EMR (900 MHz)-exposed mice by augmenting activities of endogenous antioxidant enzymes and proinflammatory cytokines, thereby protecting the brain from oxido-inflammatory stress. Additionally, Myrt restored the homeostasis of neurotransmitters in RF-EMR-exposed animals. Conclusion Results from the present study shows that exposure to RF-EMR impaired short-term memory in animals and altered the response of markers of oxido-inflammatory stress, and neurotransmitters. It is therefore conceivable that the recommendation of Myrt-enriched fruits may offer protective benefits for foeti and neonates prone to RF-EMR exposure.
Collapse
Affiliation(s)
- Isaac Oluwatobi Akefe
- Department of Physiology, Biochemistry, and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | - Ezekiel Stephen Nyan
- Department of Science and Laboratory Technology, Ekiti State University, Ado Ekiti, Nigeria
| | | | - Ibrahim Yusuf Lamidi
- Department of Veterinary Pharmacology and Toxicology, University of Maiduguri, Maiduguri, Nigeria
| | - Matthew Phillip Ameh
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Uchendu Chidiebere
- Department of Physiology, Biochemistry, and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | | | - Itopa Etudaye Ajayi
- Faculty of Health Sciences, National Open University of Nigeria, Abuja, Nigeria
- Corresponding author.
| |
Collapse
|
12
|
Sood P, Singh V, Shri R. Morus alba fruit diet ameliorates cognitive deficit in mouse model of streptozotocin-induced memory impairment. Metab Brain Dis 2023; 38:1657-1669. [PMID: 36947332 DOI: 10.1007/s11011-023-01199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Mounting evidence shows that dietary intake of fruits with polyphenols is beneficial to improve impaired memory functions. This study explored the preventive as well as therapeutic effects of diet enriched with Morus alba fruits extract (DEMA) in streptozotocin (STZ) induced mouse model of memory impairment. The study consisted of two facets: one aspect consisted of pretreatment of animals with DEMA for two weeks followed by STZ (i.c.v) intervention and the second phase involved induction of dementia with STZ (i.c.v) followed by treatment with DEMA for 14 days. Cognitive functions of animals were measured by Morris Water Maze test and to delineate the associated mechanism of action, brain biochemical estimations (acetyl-cholinesterase activity, myeloperoxidase activity, thiobarbituric acid reactive species, superoxide dismutase activity, reduced glutathione and nitrite/nitrate) and histopathological studies (haematoxylin and eosin staining) were performed. Pre- and post- treatment with DEMA significantly prevented and attenuated, respectively, the detrimental effects of STZ on mice brain. The results demonstrated that dietary modification, by incorporation of M. alba fruits, reduces the incidence and aids in treatment of memory disorder in mice by reducing central cholinergic activity, decreasing oxidative stress and preventing neurodegeneration.
Collapse
Affiliation(s)
- Parul Sood
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India.
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
13
|
Gomaa AA, Farghaly HSM, Ahmed AM, Hemida FK. Intermittent treatment with Apremilast, a phosphodiesterase-4 inhibitor, ameliorates Alzheimer's-like pathology and symptoms through multiple targeting actions in aged T2D rats. Int Immunopharmacol 2023; 117:109927. [PMID: 36848793 DOI: 10.1016/j.intimp.2023.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/26/2023] [Accepted: 02/18/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Apremilast (Apre), a novel phosphodiesterase-4 (PDE4) inhibitor, has been shown to have anti-inflammatory, immunomodulator, neuroprotective and senolytic properties, therefore, Apre like other PDE4 inhibitors may be a promising candidate for treatment of Alzheimer's disease (AD). OBJECTIVE To evaluate the effectiveness of Apre on Alzheimer's like pathology and symptoms in an animal model. METHODS The effects of Apre and cilostazol, a reference drug, on the behavioral, biochemical, and pathological features of Alzheimer's disease induced by a high-fat/high-fructose diet combined with low-dose streptozotocin (HF/HFr/l-STZ) were investigated. RESULT Apre 5 mg/kg IP/day for 3 consecutive days per week for 8 weeks attenuated memory and learning deficits tested by novel object recognition, Morris water maze and passive avoidance tests. Apre treatment significantly decreased the number of degenerating cells, and abnormal suppression of gene expression of AMPA and NMDA receptor subunits in the cortex and hippocampus of the AD rat model compared to rats that received vehicle. A significant decrease in elevated levels of hippocampal amyloid beta, tau-positive cell count, cholinesterase activity, and hippocampal caspase-3, a biomarker of neurodegeneration, was also observed after treatment with Apre in AD rats compared to rats that received placebo. Furthermore, a significant decrease in pro-inflammatory cytokines, oxidative stress, insulin resistance and GSK-3 was demonstrated in AD aged rats treated by Apre. CONCLUSION Our findings demonstrate that intermittent treatment with Apre can enhance cognitive function in HF/HFr/l-STZ rats which may be related to decreased pro-inflammatory cytokines, oxidative stress, insulin resistance and GSK-3β.
Collapse
Affiliation(s)
- Adel A Gomaa
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Hanan S M Farghaly
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M Ahmed
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fahmy K Hemida
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
14
|
Wan Chik M, Ramli NA, Mohamad Nor Hazalin NA, Surindar Singh GK. Streptozotocin mechanisms and its role in rodent models for Alzheimer’s disease. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2150646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mazzura Wan Chik
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
| | - Nur Adiilah Ramli
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
| | - Nurul Aqmar Mohamad Nor Hazalin
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
- Integrative Pharmacogenomics Institute (iPROMiSE), Level 7, FF3, Universiti Teknologi MARA, Selangor, Malaysia
| | - Gurmeet Kaur Surindar Singh
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
- Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| |
Collapse
|
15
|
Swain SK, Chandra Dash U, Sahoo AK. Hydrolea zeylanica improves cognitive impairment in high-fat diet fed-streptozotocin-induced diabetic encephalopathy in rats via regulating oxidative stress, neuroinflammation, and neurotransmission in brain. Heliyon 2022; 8:e11301. [DOI: 10.1016/j.heliyon.2022.e11301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/06/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
|
16
|
Sheng J, Zhang S, Wu L, Kumar G, Liao Y, GK P, Fan H. Inhibition of phosphodiesterase: A novel therapeutic target for the treatment of mild cognitive impairment and Alzheimer's disease. Front Aging Neurosci 2022; 14:1019187. [PMID: 36268188 PMCID: PMC9577554 DOI: 10.3389/fnagi.2022.1019187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is ranked as the 6th leading cause of death in the US. The prevalence of AD and dementia is steadily increasing and expected cases in USA is 14.8 million by 2050. Neuroinflammation and gradual neurodegeneration occurs in Alzheimer's disease. However, existing medications has limitation to completely abolish, delay, or prevent disease progression. Phosphodiesterases (PDEs) are large family of enzymes to hydrolyze the 3'-phosphodiester links in cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in signal-transduction pathways for generation of 5'-cyclic nucleotides. It plays vital role to orchestrate several pharmacological activities for proper cell functioning and regulating the levels of cAMP and cGMP. Several evidence has suggested that abnormal cAMP signaling is linked to cognitive problems in neurodegenerative disorders like AD. Therefore, the PDE family has become a widely accepted and multipotential therapeutic target for neurodegenerative diseases. Notably, modulation of cAMP/cGMP by phytonutrients has a huge potential for the management of AD. Natural compounds have been known to inhibit phosphodiesterase by targeting key enzymes of cGMP synthesis pathway, however, the mechanism of action and their therapeutic efficacy has not been explored extensively. Currently, few PDE inhibitors such as Vinpocetine and Nicergoline have been used for treatment of central nervous system (CNS) disorders. Considering the role of flavonoids to inhibit PDE, this review discussed the therapeutic potential of natural compounds with PDE inhibitory activity for the treatment of AD and related dementia.
Collapse
Affiliation(s)
- Jianwen Sheng
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Shanjin Zhang
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Lule Wu
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yuanhang Liao
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Pratap GK
- Department of Biochemistry, Davangere University, Davangere, India
| | - Huizhen Fan
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| |
Collapse
|
17
|
Jyoti Dutta B, Singh S, Seksaria S, Das Gupta G, Bodakhe SH, Singh A. Potential role of IP3/Ca 2+ signaling and phosphodiesterases: Relevance to neurodegeneration in Alzheimer's disease and possible therapeutic strategies. Biochem Pharmacol 2022; 201:115071. [PMID: 35525328 DOI: 10.1016/j.bcp.2022.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
Despite large investments by industry and governments, no disease-modifying medications for the treatment of patients with Alzheimer's disease (AD) have been found. The failures of various clinical trials indicate the need for a more in-depth understanding of the pathophysiology of AD and for innovative therapeutic strategies for its treatment. Here, we review the rational for targeting IP3 signaling, cytosolic calcium dysregulation, phosphodiesterases (PDEs), and secondary messengers like cGMP and cAMP, as well as their correlations with the pathophysiology of AD. Various drugs targeting these signaling cascades are still in pre-clinical and clinical trials which support the ideas presented in this article. Further, we describe different molecular mechanisms and medications currently being used in various pre-clinical and clinical trials involving IP3/Ca+2 signaling. We also highlight various isoforms, as well as the functions and pharmacology of the PDEs broadly expressed in different parts of the brain and attempt to unravel the potential benefits of PDE inhibitors for use as novel medications to alleviate the pathogenesis of AD.
Collapse
Affiliation(s)
- Bhaskar Jyoti Dutta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur - 495009, Chhattisgarh, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India.
| |
Collapse
|
18
|
Hasan N, Zameer S, Najmi AK, Parvez S, Akhtar M. Roflumilast Reduces Pathological Symptoms of Sporadic Alzheimer's Disease in Rats Produced by Intracerebroventricular Streptozotocin by Inhibiting NF-κB/BACE-1 Mediated Aβ Production in the Hippocampus and Activating the cAMP/BDNF Signalling Pathway. Neurotox Res 2022; 40:432-448. [PMID: 35192144 DOI: 10.1007/s12640-022-00482-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/20/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is a neurological disease that gradually causes memory loss and cognitive impairment. The intracellular secondary messenger cyclic nucleotide cAMP helps in memory acquisition and consolidation. In several models of AD, increasing their levels using phosphodiesterase (PDE) inhibitors improved cognitive performance and prevent memory loss. Thus, the current investigation was undertaken to investigate the therapeutic potential of the PDE-4 inhibitor roflumilast (RFM) against intracerebroventricular (ICV) streptozotocin (STZ)-induced sporadic AD in rats. STZ (3 mg/kg) was given to rats via the ICV route on the stereotaxic apparatus, followed by RFM (0.51 mg/kg/oral) treatment for 15 days, and donepezil (5 mg/kg/oral) was employed as a reference standard drug. Subsequently, we observed that RFM dramatically increased rats learning and memory capacities as measured by the Morris water maze and a novel object recognition task. RFM enhanced the levels of cAMP and brain-derived neurotrophic factors (BDNFs) while decreasing the expression of nuclear factor kappa B (NF-κB) and glial fibrillary acidic protein (GFAP) in the hippocampus of ICV-STZ-infused rats. RFM was found to significantly reduce ICV-STZ-induced neuroinflammation, amyloidogenesis, oxidative stress cholinergic impairments, GSK-3β, and phosphorylated tau levels in the rat hippocampus. Supporting these, histopathological study using Cresyl violet and Congo red demonstrated that RFM reduced neuronal alterations and Aβ deposition in the hippocampus of AD rats. These findings suggest that RFM could be a promising candidate for the management of AD by inhibiting NF-κB/BACE-1 mediated Aβ production in the hippocampus and activating the cAMP/BDNF signalling pathway.
Collapse
Affiliation(s)
- Noorul Hasan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Zameer
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New DelhI, 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
19
|
Laugero KD, Tryon M, Mack C, Caldarone BJ, Hanania T, McGonigle P, Roland BL, Parkes DG. Peripherally administered amylin inhibits stress-like behaviors and enhances cognitive performance. Physiol Behav 2022; 244:113668. [PMID: 34863999 DOI: 10.1016/j.physbeh.2021.113668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Abstract
Amylin, a 37 amino acid peptide pancreatic hormone co-secreted with insulin, normalizes the altered eating patterns induced by chronic stress in the rat. Because these stress-induced changes are driven, in part, by brain corticotropin-releasing factor and corticosterone, and because alterations in the activity of these molecules and the stress system are commonly associated with neuropsychiatric diseases like anxiety, depression, and schizophrenia, we hypothesized that amylin might mitigate behavioral states associated with stress. Therefore, we tested the effects of rat amylin in rodent-based behavioral assays sensitive to neuropsychiatric drugs, including anxiolytic, antidepressant, antipsychotic, and cognitive enhancing drugs: stress-induced hyperthermia (SIH); marble burying; elevated plus maze (EPM)), forced swim test (FST), pre-pulse inhibition, and phencyclidine-induced locomotion. To assess the neural underpinnings of amylin's anxiolytic-like effects, we examined the effect of amylin on SIH after lesioning the area postrema (AP), which mediates amylin's metabolic effects. Amylin injection (IP, 0.1, 1.0, & 10 mg/kg) significantly (P < 0.05) decreased SIH (97% below vehicle) and AP lesions inhibited this effect. Amylin also reduced marble burying (72% below vehicle), but had no effect in the EPM. Together, these effects suggest anxiolytic-like activity or potential. Amylin injection also enhanced cognitive performance in the novel object recognition test. When administered continuously by implanted osmotic pumps, amylin (300 mg/kg/d) blocked SIH when tested at 1 and 4 weeks. Compared to vehicle, amylin infusion (1 and 3 mg/kg/d) reduced the time immobile in the FST (P < 0.05; 30% below vehicle), suggesting antidepressant-like potential. Although further testing is needed, our findings support a potential for peripherally administered amylin to access and benefit pathways that regulate memory, emotion, and mood.
Collapse
Affiliation(s)
- K D Laugero
- USDA Western Human Nutrition Research Center, Davis CA 95616 United States; Department of Nutrition, University of California Davis, Davis CA 95616 United States.
| | - M Tryon
- MindCraft, Davis CA 95618 United States
| | - C Mack
- Establishment Labs (Motiva USA), New York, NY 10019 United States
| | - B J Caldarone
- Harvard Medical School, Boston, MA, 02115 United States
| | - T Hanania
- PsychoGenics, Inc., Paramus, NJ 07652 United States
| | - P McGonigle
- Drexel University, College of Medicine, Philadelphia, PA 19129 United States
| | - B L Roland
- DGP Scientific Inc., Del Mar, CA 92014 United States
| | - D G Parkes
- DGP Scientific Inc., Del Mar, CA 92014 United States
| |
Collapse
|
20
|
Xi M, Sun T, Chai S, Xie M, Chen S, Deng L, Du K, Shen R, Sun H. Therapeutic potential of phosphodiesterase inhibitors for cognitive amelioration in Alzheimer's disease. Eur J Med Chem 2022; 232:114170. [DOI: 10.1016/j.ejmech.2022.114170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
|
21
|
Fan T, Hou Y, Ge W, Fan T, Feng X, Guo W, Song X, Gao R, Wang J. Phosphodiesterase 4D promotes angiotensin II-induced hypertension in mice via smooth muscle cell contraction. Commun Biol 2022; 5:81. [PMID: 35058564 PMCID: PMC8776755 DOI: 10.1038/s42003-022-03029-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022] Open
Abstract
AbstractHypertension is a common chronic disease, which leads to cardio-cerebrovascular diseases, and its prevalence is increasing. The cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway participates in multiple cardiovascular diseases. Phosphodiesterase (PDE) 4 has been shown to regulate PKA activity via cAMP specific hydrolysis. However, whether PDE4-cAMP-PKA pathway influences hypertension remains unknown. Herein, we reveal that PDE4D (one of PDE4 isoforms) expression is upregulated in the aortas of experimental hypertension induced by angiotensin II (Ang II). Furthermore, knockout of Pde4d in mouse smooth muscle cells (SMCs) attenuates Ang II-induced hypertension, arterial wall media thickening, vascular fibrosis and vasocontraction. Additionally, we find that PDE4D deficiency activates PKA-AMP-activated protein kinase (AMPK) signaling pathway to inhibit myosin phosphatase targeting subunit 1 (MYPT1)-myosin light chain (MLC) phosphorylation, relieving Ang II-induced SMC contraction in vitro and in vivo. Our results also indicate that rolipram, a PDE4 inhibitor, may be a potential drug for hypertension therapy.
Collapse
|
22
|
Akefe IO, Adegoke VA, Lamidi IY, Ameh MP, Idoga ES, Ubah SA, Ajayi IE. Myrtenal mitigates streptozotocin-induced spatial memory deficit via improving oxido inflammatory, cholinergic and neurotransmitter functions in mice. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100106. [PMID: 35570857 PMCID: PMC9095925 DOI: 10.1016/j.crphar.2022.100106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of chronic neurodegenerative disorders is on the rise, but with no effective treatment due to the paucity of information on the pathological mechanism underlying these disorders. Thus, this study investigated the role of oral administration of myrtenal in mitigating memory deficits and neuro-biochemical alterations in streptozotocin-demented mice model. Mice (n = 35) were randomly allocated into five cohorts consisting of 7 mice each; Group I: Control mice received vehicle alone; Group II: streptozotocin; Group III: streptozotocin + 100 mg/kg myrtenal; Group IV: streptozotocin +200 mg/kg myrtenal; and Group V: streptozotocin + donepezil 0.5 mg/kg. Data from this study demonstrated that the administration of streptozotocin (STZ) impaired spatial memory and induced alterations in markers of oxido-inflammatory response, cholinergic function, cytoarchitecture, and neurotransmitter levels in mice hippocampus. Notably, administration of myrtenal enhanced spatial memory performance in STZ-demented mice by improving the activities of endogenous antioxidant enzymes to protect the brain from oxido-inflammatory stress. Treatment with myrtenal also restored cholinergic function and stabilized the homeostasis of neurotransmitters in STZ-demented mice. The authors infer that fruits rich in myrtenal may be beneficial for treating patients living with dementia associated with Alzheimer's disease. Data from the present study demonstrates that the administration of streptozotocin impairs spatial memory in mice and induces alterations in markers of oxido-inflammatory response, cholinergic function, histoarchitecture, and neurotransmitter levels in the hippocampus. The administration of myrtenal enhances spatial memory performance in streptozotocin-demented mice by improving the activities of endogenous antioxidant enzymes to protect the brain from oxido-inflammatory stress. Treatment with myrtenal restores cholinergic function and stabilizes the homeostasis of neurotransmitters in streptozotocin-demented mice.
Collapse
|
23
|
Landry T, Huang H. Mini review: The relationship between energy status and adult hippocampal neurogenesis. Neurosci Lett 2021; 765:136261. [PMID: 34562518 DOI: 10.1016/j.neulet.2021.136261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/09/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
The ability to generate new hippocampal neurons throughout adulthood and successfully integrate them into existing neural networks is critical to cognitive function, while disordered regulation of this process results in neurodegenerative or psychiatric disease. Consequently, identifying the molecular mechanisms promoting homeostatic hippocampal neurogenesis in adults is essential to understanding the etiologies of these disorders and developing therapeutic interventions. For example, recent evidence identifies a strong association between metabolic function and adult hippocampal neurogenesis. Hippocampal neural stem cell (NSC) fate dynamically fluctuates with changes in substrate availability and energy status (AMP/ATP and NAD+/NADH ratios). Furthermore, many metabolic hormones, such as insulin, insulin-like growth factors, and leptin exhibit dual functions also modulating hippocampal neurogenesis and neuron survivability. These diverse metabolic inputs to NSC's from various tissues seemingly suggest the existence of a system in which energy status can finely modulate hippocampal neurogenesis. Supporting this hypothesis, interventions promoting energy balance, such as caloric restriction, intermittent fasting, and exercise, have shown encouraging potential enhancing hippocampal neurogenesis and cognitive function. Overall, there is a clear relationship between whole body energy status, adult hippocampal neurogenesis, and neuron survival; however, the molecular mechanisms underlying this phenomenon are multifaceted. Thus, the aim of this review is to analyze the literature investigating energy status-mediated regulation of adult neurogenesis in the hippocampus, highlight the neurocircuitry and intracellular signaling involved, and propose impactful future directions in the field.
Collapse
Affiliation(s)
- Taylor Landry
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA.
| | - Hu Huang
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
24
|
Virk D, Kumar A, Jaggi AS, Singh N. Ameliorative role of rolipram, PDE-4 inhibitor, against sodium arsenite-induced vascular dementia in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63250-63262. [PMID: 34226994 DOI: 10.1007/s11356-021-15189-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Arsenic exposure to the population leads to serious health problems like neurotoxicity, nephrotoxicity, and cardiovascular abnormality. In the present study, the work has been commenced to discover the prospect of rolipram a phosphodiestrase-4 (PDE-4) inhibitor against sodium arsenite (SA)-induced vascular endothelial dysfunction (EnDF) leading to dementia in rats. Wistar rats were treated with SA (5 mg/kg body weight/day orally) for 44 days for induction of vascular EnDF and dementia. Learning and memory were evaluated using Morris water maze (MWM) test. Vascular EnDF was evaluated using aortic ring preparation. Various biochemical parameters were also evaluated like brain oxidative stress (viz. reduced glutathione and thiobarbituric acid reactive substances level), serum nitrite/nitrate activity, acetylcholinesterase activity, and inflammatory markers (viz. neutrophil infiltration in brain and myeloperoxidase). SA-treated rats showed poor performance in water maze trials indicating attenuated memory and ability to learn with significant rise (p < 0.05) in brain acetylcholinesterase activity, brain oxidative stress, neutrophil count, and significant decrease (p < 0.05) in serum nitrite/nitrate levels and vascular endothelial functions. Rolipram (PDE-4 inhibitor) treatment (0.03 mg/kg and 0.06 mg/kg body weight, intraperitoneally daily for 14 days) significantly improved memory and learning abilities, and restored various biochemical parameters and EnDF. It is concluded that PDE-4 modulator may be considered the prospective target for the treatment of SA-induced vascular EnDF and related dementia.
Collapse
Affiliation(s)
- Divjot Virk
- Department of Pharmaceutical Sciences and Drug Research, CNS Research Lab., Pharmacology Division, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, CNS Research Lab., Pharmacology Division, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, CNS Research Lab., Pharmacology Division, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
25
|
Dong XL, Wang YH, Xu J, Zhang N. The protective effect of the PDE-4 inhibitor rolipram on intracerebral haemorrhage is associated with the cAMP/AMPK/SIRT1 pathway. Sci Rep 2021; 11:19737. [PMID: 34611179 PMCID: PMC8492710 DOI: 10.1038/s41598-021-98743-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Rolipram specifically inhibits phosphodiesterase (PDE) 4, thereby preventing inactivation of the intracellular second messenger cyclic adenosine monophosphate (cAMP). Rolipram has been shown to play a neuroprotective role in some central nervous system (CNS) diseases. However, the role of PDE4 and the potential protective effect of rolipram on the pathophysiological process of intracerebral haemorrhage (ICH) are still not entirely clear. In this study, a mouse model of ICH was established by the collagenase method. Rolipram reduced brain oedema, blood–brain barrier (BBB) leakage, neuronal apoptosis and inflammatory cytokine release and improved neurological function in our mouse model of ICH. Moreover, rolipram increased the levels of cAMP and silent information regulator 1 (SIRT1) and upregulated the phosphorylation of AMP-activated protein kinase (AMPK). Furthermore, these effects of rolipram could be reversed by the SIRT1 inhibitor sirtinol. In conclusion, rolipram can play a neuroprotective role in the pathological process of ICH by activating the cAMP/AMPK/SIRT1 pathway.
Collapse
Affiliation(s)
- Xiao-Liu Dong
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurorehabilitation, Tangshan People's Hospital, Tangshan, 063000, China
| | - Yan-Hui Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jing Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
26
|
Maher A, El Sayed N, Nafea H, Gad M. Rolipram rescues memory consolidation deficits caused by sleep deprivation: Implication of the cAMP/PKA and cAMP/Epac pathways. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:631-639. [PMID: 34397335 DOI: 10.2174/1871527320666210816105144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Over the last few years, the number of people suffering from sleeping disorders has increased significantly despite negative effects on cognition and an association with brain inflammation. OBJECTIVES We assessed memory deficits caused by sleep deprivation (SD) to determine the therapeutic effect of phosphodiesterase 4 (PDE4) inhibitors on SD-induced memory deficits and to investigate whether the modulation of memory deficits by PDE4 inhibitors is mediated by a protein kinase A (PKA)-independent pathway in conjunction with a PKA-dependent pathway. METHODS Adult male mice were divided into four groups. Three SD groups were deprived of Rapid eye movement (REM) sleep for 12 h a day for six consecutive days. They were tested daily in the Morris water maze to evaluate learning and memory. One of the SD groups was injected with a PDE4 inhibitor, rolipram (1 mg/kg ip), whereas another had rolipram co-administered with chlorogenic acid (CHA, 20 mg/kg ip), an inhibitor of PKA. After 6 days, the mice were sacrificed, and the hippocampi were evaluated for cyclic AMP (cAMP) and nuclear factor Nrf-2 levels. The hippocampal expression of PKA, phosphorylated cAMP response element-binding protein (CREB), and phosphorylated glycogen synthase 3β (Ser389) were also evaluated. RESULTS SD caused a significant decrease in cAMP levels in the brain and had a detrimental effect on learning and memory. The administration of rolipram or rolipram+CHA resulted in an improvement in cognitive function. CONCLUSION The present study provides evidence that restoration of memory with PDE4 inhibitors occurs through a dual mechanism involving the PKA and Epac pathways.
Collapse
Affiliation(s)
- Ahmed Maher
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo. Egypt
| | - Nesrine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University. Egypt
| | - Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo. Egypt
| | - Mohamed Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo. Egypt
| |
Collapse
|
27
|
Nazir S, Anwar F, Saleem U, Ahmad B, Raza Z, Sanawar M, Rehman AU, Ismail T. Drotaverine Inhibitor of PDE4: Reverses the Streptozotocin Induced Alzheimer's Disease in Mice. Neurochem Res 2021; 46:1814-1829. [PMID: 33877499 DOI: 10.1007/s11064-021-03327-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with decline in memory and cognitive impairments. Phosphodiesterase IV (PDE4) protein, an intracellular cAMP levels regulator, when inhibited act as potent neuroprotective agents by virtue of ceasing the activity of Pro-inflammatory mediators. The complexity of AD etiology has ever since compelled the researchers to discover multifunctional compounds to combat the AD and neurodegeneration. The aim of this study was to probe into role of drotaverine a PDE4 inhibitor in the management of AD. Albino mice were divided into seven groups (n = 10). Group 1 control group received carboxy methyl cellulose (CMC 1 mL/kg), group II diseased group treated with streptozotocin (STZ 3 mg/kg) by intracerebroventricular (ICV) route, group III administered standard drug Piracetam 200 mg/kg and groups IV-VII were given drotaverine (10, 20, 40, and 80 mg/kg i/p respectively). Groups II-VII were given STZ (3 mg/kg, ICV) on 1st and 3rd day of treatment to induce AD. All the groups were given their respective treatments for 23 days. Improvement in learning and memory was evaluated by using behavioral tests like open field test, elevated plus maze test, Morris water maze test and passive avoidance test. Furthermore, brain levels of biochemical markers of oxidative stress, neurotransmitters, β-amyloid and tau protein were also measured. Drotaverine showed statistically significant dose dependent improvement in behavioral and biochemical markers of AD: the maximum response was achieved at a dose level of 80 mg/kg. The Study concluded that drotaverine ameliorates cognitive impairment and as well as exhibited modulated the brain levels of neurotransmitters.
Collapse
Affiliation(s)
- Samra Nazir
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan.
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
| | - Zohaib Raza
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
| | - Maham Sanawar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
| | - Artta Ur Rehman
- Department of Pharmacy, Faculty of Natural Sciences, Forman Christian College, Lahore, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, COMSAT University, Abottabad, Pakistan
| |
Collapse
|
28
|
Gorny N, Kelly MP. Alterations in cyclic nucleotide signaling are implicated in healthy aging and age-related pathologies of the brain. VITAMINS AND HORMONES 2021; 115:265-316. [PMID: 33706951 DOI: 10.1016/bs.vh.2020.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is not only important to consider how hormones may change with age, but also how downstream signaling pathways that couple to hormone receptors may change. Among these hormone-coupled signaling pathways are the 3',5'-cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) intracellular second messenger cascades. Here, we test the hypothesis that dysfunction of cAMP and/or cGMP synthesis, execution, and/or degradation occurs in the brain during healthy and pathological diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Although most studies report lower cyclic nucleotide signaling in the aged brain, with further reductions noted in the context of age-related diseases, there are select examples where cAMP signaling may be elevated in select tissues. Thus, therapeutics would need to target cAMP/cGMP in a tissue-specific manner if efficacy for select symptoms is to be achieved without worsening others.
Collapse
Affiliation(s)
- Nicole Gorny
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Michy P Kelly
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
29
|
Paes D, Xie K, Wheeler DG, Zook D, Prickaerts J, Peters M. Inhibition of PDE2 and PDE4 synergistically improves memory consolidation processes. Neuropharmacology 2021; 184:108414. [PMID: 33249120 DOI: 10.1016/j.neuropharm.2020.108414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023]
Abstract
Phosphodiesterases (PDE) are the only enzymes that degrade cAMP and cGMP which are second messengers crucial to memory consolidation. Different PDE inhibitors have been developed and tested for their memory-enhancing potential, but the occurrence of side effects has hampered clinical progression. As separate inhibition of the PDE2 and PDE4 enzyme family has been shown to enhance memory, we investigated whether concurrent treatment with a PDE2 and PDE4 inhibitor can have synergistic effects on memory consolidation processes. We found that combined administration of PF-999 (PDE2 inhibitor) and roflumilast (PDE4 inhibitor) increases the phosphorylation of the AMPA receptor subunit GluR1 and induces CRE-mediated gene expression. Moreover, when combined sub-effective and effective doses of PF-999 and roflumilast were administered after learning, time-dependent forgetting was abolished in an object location memory task. Pharmacokinetic assessment indicated that combined treatment does not alter exposure of the individual compounds. Taken together, these findings suggest that combined PDE2 and PDE4 inhibition has synergistic effects on memory consolidation processes at sub-effective doses, which could therefore provide a therapeutic strategy with an improved safety profile.
Collapse
Affiliation(s)
- Dean Paes
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6229, ER Maastricht, the Netherlands
| | - Keqiang Xie
- In Vitro Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Damian G Wheeler
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Douglas Zook
- DMPK, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Jos Prickaerts
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6229, ER Maastricht, the Netherlands
| | - Marco Peters
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA; Neurobiology and Behavior & Center for the Neurobiology of Learning and Memory, University of California Irvine, 213 Qureshey Research Lab, Irvine, CA, 92697, USA.
| |
Collapse
|
30
|
Rani R, Kumar A, Jaggi AS, Singh N. Pharmacological investigations on efficacy of Phlorizin a sodium-glucose co-transporter (SGLT) inhibitor in mouse model of intracerebroventricular streptozotocin induced dementia of AD type. J Basic Clin Physiol Pharmacol 2021; 32:1057-1064. [PMID: 33548170 DOI: 10.1515/jbcpp-2020-0330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/09/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The study has been commenced to discover the potential of Phlorizin (dual SGLT inhibitor) in streptozotocin induced dementia of Alzheimer's disease (AD) type. MATERIAL AND METHODS Injection of Streptozotocin (STZ) was given via i.c.v. route (3 mg/kg) to induce dementia of Alzheimer's type. In these animals learning and memory was evaluated using Morris water maze (MWM) test. Glutathione (GSH) and thiobarbituric acid reactive species (TBARS) level was quantified to evaluate the oxidative stress; cholinergic activity of brain was estimated in term of acetylcholinesterase (AChE) activity; and the levels of myeloperoxidase (MPO) were measured as inflammation marker. RESULTS The mice model had decreased performance in MWM, representing impairment of cognitive functions. Biochemical evaluation showed rise in TBARS level, MPO and AChE activity, and fall in GSH level. The histopathological study revealed severe infiltration of neutrophils. In the study, Phlorizin/Donepezil (serving as positive control) treatment mitigate streptozotocin induced cognitive decline, histopathological changes and biochemical alterations. CONCLUSIONS The results suggest that Phlorizin decreased cognitive function via its anticholinesterase, antioxidative, antiinflammatory effects and probably through SGLT inhibitory action. It can be conferred that SGLTs can be an encouraging target for the treatment of dementia of AD.
Collapse
Affiliation(s)
- Reena Rani
- CNS Research Lab., Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, Punjab, India
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Amteshwar Singh Jaggi
- CNS Research Lab., Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, Punjab, India
| | - Nirmal Singh
- CNS Research Lab., Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
31
|
Constitutive Activity of Serotonin Receptor 6 Regulates Human Cerebral Organoids Formation and Depression-like Behaviors. Stem Cell Reports 2020; 16:75-88. [PMID: 33357407 PMCID: PMC7815944 DOI: 10.1016/j.stemcr.2020.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 01/13/2023] Open
Abstract
Serotonin receptor 6 (5-HT6R), a typical G protein-coupled receptor (GPCR) mainly expressed in the neurogenic area with constitutive activity, is of particular interest as a promising target for emotional impairment. Here, we found that 5-HT6R was highly expressed in human NSCs and activation of the receptor promoted self-renewal of human NSCs, and thus induced the expansion and folding of human cerebral organoids; dysfunction of receptor or inhibition of its constitutive activity resulted in the premature differentiation of NSCs, which ultimately depleted the NSC pool. The following mechanistic study revealed that EPAC-CREB signaling was involved in 5-HT6R regulation. Furthermore, we showed that mice with genetic deletion of 5-HT6R or knockin A268R mutant presented depression-like behaviors and impaired hippocampal neurogenesis for progressive decrease of the NSC pool. Thus, this study indicates that the modulation of 5-HT6R and its constitutive activity may provide a therapeutic alternative to alleviate depression. 5-HT6R regulates human neural stem cell proliferation The constitutive activity of 5-HT6R is essential for human neural stem cell's multipotency 5-HT6R modulates neurogenesis of human cerebral organoids Mice with reduced constitutive activity of 5-HT6R show depression-like behaviors
Collapse
|
32
|
Huang Y, Wu XN, Zhou Q, Wu Y, Zheng D, Li Z, Guo L, Luo HB. Rational Design of 2-Chloroadenine Derivatives as Highly Selective Phosphodiesterase 8A Inhibitors. J Med Chem 2020; 63:15852-15863. [PMID: 33291877 DOI: 10.1021/acs.jmedchem.0c01573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To validate the hypothesis that Tyr748 is a crucial residue to aid the discovery of highly selective phosphodiesterase 8A (PDE8A) inhibitors, we identified a series of 2-chloroadenine derivatives based on the hit clofarabine. Structure-based design targeting Tyr748 in PDE8 resulted in the lead compound 3a (IC50 = 0.010 μM) with high selectivity with a reasonable druglike profile. In the X-ray crystal structure, 3a bound to PDE8A with a different mode from 3-isobutyl-1-methylxanthine (a pan-PDE inhibitor) and gave a H-bond of 2.7 Å with Tyr748, which possibly interprets the 220-fold selectivity of 3a against PDE2A. Additionally, oral administration of compound 3a achieved remarkable therapeutic effects against vascular dementia (VaD), indicating that PDE8 inhibitors could serve as potential anti-VaD agents.
Collapse
Affiliation(s)
- Yadan Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xu-Nian Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Qian Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Dongxiao Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Lei Guo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China
| |
Collapse
|
33
|
Bhat A, Ray B, Mahalakshmi AM, Tuladhar S, Nandakumar DN, Srinivasan M, Essa MM, Chidambaram SB, Guillemin GJ, Sakharkar MK. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol Res 2020; 160:105078. [PMID: 32673703 DOI: 10.1016/j.phrs.2020.105078] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Phosphodiesterases (PDE) are a diverse family of enzymes (11 isoforms so far identified) responsible for the degradation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which are involved in several cellular and biochemical functions. Phosphodiesterase 4 (PDE4) is the major isoform within this group and is highly expressed in the mammalian brain. An inverse association between PDE4 and cAMP levels is the key mechanism in various pathophysiological conditions like airway inflammatory diseases-chronic obstruction pulmonary disease (COPD), asthma, psoriasis, rheumatoid arthritis, and neurological disorders etc. In 2011, roflumilast, a PDE4 inhibitor (PDE4I) was approved for the treatment of COPD. Subsequently, other PDE4 inhibitors (PDE4Is) like apremilast and crisaborole were approved by the Food and Drug Administration (FDA) for psoriasis, atopic dermatitis etc. Due to the adverse effects like unbearable nausea and vomiting, dose intolerance and diarrhoea, PDE4 inhibitors have very less clinical compliance. Efforts are being made to develop allosteric modulation with high specificity to PDE4 isoforms having better efficacy and lesser adverse effects. Interestingly, repositioning PDE4Is towards neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and sleep disorders, is gaining attention. This review is an attempt to summarize the data on the effects of PDE4 overexpression in neurological disorders and the use of PDE4Is and newer allosteric modulators as therapeutic options. We have also compiled a list of on-going clinical trials on PDE4 inhibitors in neurological disorders.
Collapse
Affiliation(s)
- Abid Bhat
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - D N Nandakumar
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Malathi Srinivasan
- Department of Lipid Science, CSIR - Central Food Technological Research Institute (CFTRI), CFTRI Campus, Mysuru, 570020, India
| | - Musthafa Mohamed Essa
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman; Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.
| | - Saravana Babu Chidambaram
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
34
|
Liang J, Huang YY, Zhou Q, Gao Y, Li Z, Wu D, Yu S, Guo L, Chen Z, Huang L, Liang SH, He X, Wu R, Luo HB. Discovery and Optimization of α-Mangostin Derivatives as Novel PDE4 Inhibitors for the Treatment of Vascular Dementia. J Med Chem 2020; 63:3370-3380. [DOI: 10.1021/acs.jmedchem.0c00060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jinhao Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Yi-You Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Qian Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yuqi Gao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Deyan Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Si Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Lei Guo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ling Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
35
|
Lee JH, Wolfe DM, Darji S, McBrayer MK, Colacurcio DJ, Kumar A, Stavrides P, Mohan PS, Nixon RA. β2-adrenergic Agonists Rescue Lysosome Acidification and Function in PSEN1 Deficiency by Reversing Defective ER-to-lysosome Delivery of ClC-7. J Mol Biol 2020; 432:2633-2650. [PMID: 32105735 DOI: 10.1016/j.jmb.2020.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Lysosomal dysfunction is considered pathogenic in Alzheimer disease (AD). Loss of presenilin-1 (PSEN1) function causing AD impedes acidification via defective vacuolar ATPase (vATPase) V0a1 subunit delivery to lysosomes. We report that isoproterenol (ISO) and related β2-adrenergic agonists reacidify lysosomes in PSEN1 Knock out (KO) cells and fibroblasts from PSEN1 familial AD patients, which restores lysosomal proteolysis, calcium homeostasis, and normal autophagy flux. We identify a novel rescue mechanism involving Portein Kinase A (PKA)-mediated facilitation of chloride channel-7 (ClC-7) delivery to lysosomes which reverses markedly lowered chloride (Cl-) content in PSEN1 KO lysosomes. Notably, PSEN1 loss of function impedes Endoplasmic Reticulum (ER)-to-lysosome delivery of ClC-7. Transcriptomics of PSEN1-deficient cells reveals strongly downregulated ER-to-lysosome transport pathways and reversibility by ISO, thus accounting for lysosomal Cl- deficits that compound pH elevation due to deficient vATPase and its rescue by β2-adrenergic agonists. Our findings uncover a broadened PSEN1 role in lysosomal ion homeostasis and novel pH modulation of lysosomes through β2-adrenergic regulation of ClC-7, which can potentially be modulated therapeutically.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA; Department of Psychiatry, Langone Medical Center, New York, NY, 10016, USA.
| | - Devin M Wolfe
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
| | - Sandipkumar Darji
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
| | - Mary Kate McBrayer
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
| | - Daniel J Colacurcio
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
| | - Asok Kumar
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
| | - Philip Stavrides
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
| | - Panaiyur S Mohan
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA; Department of Psychiatry, Langone Medical Center, New York, NY, 10016, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA; Department of Psychiatry, Langone Medical Center, New York, NY, 10016, USA; Department of Cell Biology, Langone Medical Center, New York, NY, 10016, USA; Neuroscience Institute, New York University, New York, NY 10016, USA.
| |
Collapse
|
36
|
Barilar JO, Knezovic A, Perhoc AB, Homolak J, Riederer P, Salkovic-Petrisic M. Shared cerebral metabolic pathology in non-transgenic animal models of Alzheimer's and Parkinson's disease. J Neural Transm (Vienna) 2020; 127:231-250. [PMID: 32030485 PMCID: PMC7035309 DOI: 10.1007/s00702-020-02152-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are the most common chronic neurodegenerative disorders, characterized by motoric dysfunction or cognitive decline in the early stage, respectively, but often by both symptoms in the advanced stage. Among underlying molecular pathologies that PD and AD patients have in common, more attention is recently paid to the central metabolic dysfunction presented as insulin resistant brain state (IRBS) and altered cerebral glucose metabolism, both also explored in animal models of these diseases. This review aims to compare IRBS and alterations in cerebral glucose metabolism in representative non-transgenic animal PD and AD models. The comparison is based on the selectivity of the neurotoxins which cause experimental PD and AD, towards the cellular membrane and intracellular molecular targets as well as towards the selective neurons/non-neuronal cells, and the particular brain regions. Mitochondrial damage and co-expression of insulin receptors, glucose transporter-2 and dopamine transporter on the membrane of particular neurons as well as astrocytes seem to be the key points which are further discussed in a context of alterations in insulin signalling in the brain and its interaction with dopaminergic transmission, particularly regarding the time frame of the experimental AD/PD pathology appearance and the correlation with cognitive and motor symptoms. Such a perspective provides evidence on IRBS being a common underlying metabolic pathology and a contributor to neurodegenerative processes in representative non-transgenic animal PD and AD models, instead of being a direct cause of a particular neurodegenerative disorder.
Collapse
Affiliation(s)
- Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Peter Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Füchsleinstrasse 15, 97080, Würzburg, Germany
- Department and Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
- Institute of Fundamental Clinical and Translational Neuroscience, Research Centre of Excellence, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, 10 000, Zagreb, Croatia.
| |
Collapse
|
37
|
Abstract
Neuroinflammation confers changes in brain function (i.e., behavior) that are hypothesized to be adaptive in the short-term, but detrimental (e.g., depression, anxiety) if they persist. Both peripheral tumor growth (outside of the brain) and natural aging independently cause neuroinflammation in rodents, which is corroborated by clinical studies. Mammary tumor effects on neuroinflammation and behavior, however, are typically studied in young rodents, whereas most breast cancer patients are middle-aged. Therefore, the existing literature likely underestimates the resulting neuroinflammation that may occur in clinical cancer populations. The present study tested the hypothesis that aging exacerbates mammary tumor-induced neuroinflammation in female mice. Aging (16 months and ovariectomized) increased body and spleen masses, whereas tumors grew faster and increased spleen mass in young mice (12 weeks) only. Tumors (IL-6, IL-10, TNFα, MCP-1, CXCL1, IP-10) and aging (IL-10, IFNγ) independently increased circulating inflammatory markers, although these variables were only significantly additive in one case (TNFα). In contrast to our prediction, the interaction between tumors and aging resulted in reduced mRNA and protein expression of select inflammatory markers in the hippocampus of tumor-bearing aged mice relative to aged controls. These results indicate that tumors reduce inflammatory activation in the brains of aged mice, a deficit that is likely disadvantageous. Further understanding of how aging and cancer interact to affect brain function is necessary to provide clinically-relevant results and identify mechanisms underlying persistent behavioral issues hampering adult cancer patients. Tumors grew more slowly in aged mice. Tumors and aging independently increased circulating inflammatory markers. Tumors reduced mRNA and protein expression of inflammatory markers in the hippocampus in aged mice. Reduced inflammatory activation in the brains of aged mice is likely not adaptive.
Collapse
|
38
|
Wimmer ME, Blackwell JM, Abel T. Rolipram treatment during consolidation ameliorates long-term object location memory in aged male mice. Neurobiol Learn Mem 2020; 169:107168. [PMID: 31962134 DOI: 10.1016/j.nlm.2020.107168] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Normal aging is accompanied by cognitive and memory impairments that negatively impact quality of life for the growing elderly population. Hippocampal function is most vulnerable to the deleterious effects of aging, and deficits in hippocampus-dependent memories are common amongst aged individuals. Moreover, signaling networks such as the cAMP/PKA/CREB pathway, which are critical for memory consolidation, are dampened in healthy aged subjects. Phosphodiesterase (PDE) enzymes that break down cAMP are also affected by aging, and increased break down of cAMP by PDEs may contribute to reduced activity of the cAMP/PKA/CREB signaling network in the brain of aged individuals. Here, we report that the PDE4 inhibitor rolipram administered during consolidation of hippocampus-dependent object location memory improves aged-related spatial memory deficits in aged mice.
Collapse
Affiliation(s)
- Mathieu E Wimmer
- Department of Psychology and Program in Neuroscience, Temple University, Philadelphia, PA 19122, USA
| | - Jennifer M Blackwell
- Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ted Abel
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
39
|
Liu CY, Wang X, Liu C, Zhang HL. Pharmacological Targeting of Microglial Activation: New Therapeutic Approach. Front Cell Neurosci 2019; 13:514. [PMID: 31803024 PMCID: PMC6877505 DOI: 10.3389/fncel.2019.00514] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence suggests that neuroinflammation is not just a consequence but a vital contributor to the development and progression of Parkinson’s disease (PD). Microglia in particular, may contribute to the induction and modulation of inflammation in PD. Upon stimulation, microglia convert into activated phenotypes, which exist along a dynamic continuum and bear different immune properties depending on the disease stage and severity. Activated microglia release various factors involved in neuroinflammation, such as cytokines, chemokines, growth factors, reactive oxygen species (ROS), reactive nitrogen species (RNS), and prostaglandins (PGs). Further, activated microglia interact with other cell types (e.g., neurons, astrocytes and mast cells) and are closely associated with α-synuclein (α-syn) pathophysiology and iron homeostasis disturbance. Taken together, microglial activation and microglia-mediated inflammatory responses play essential roles in the pathogenesis of PD and elucidation of the complexity and imbalance of microglial activation may shed light on novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Cai-Yun Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Liang Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
40
|
Mayburd AL, Koivogui M, Baranova A. Pharmacological signatures of the reduced incidence and the progression of cognitive decline in ageing populations suggest the protective role of beneficial polypharmacy. PLoS One 2019; 14:e0224315. [PMID: 31693707 PMCID: PMC6834256 DOI: 10.1371/journal.pone.0224315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Preventive treatments for dementia are warranted. Here we show that utilization of certain combinations of prescription medications and supplements correlates with reduced rates of cognitive decline. More than 1,900 FDA-approved agents and supplements were collapsed into 53 mechanism-based groups and traced in electronic medical records (EMRs) for >50,000 patients. These mechanistic groups were aligned with the data presented in more than 300 clinical trials, then regression model was built to fit the signals from EMRs to clinical trial performance. While EMR signals of each single agents correlated with clinical performance relatively weakly, the signals produced by combinations of active compounds were highly correlated with the clinical trial performance (R = 0.93, p = 3.8 x10^-8). Higher ranking pharmacological modalities were traced in patient profiles as their combinations, producing protective complexity estimates reflecting degrees of exposure to beneficial polypharmacy. For each age strata, the higher was the protective complexity score, the lower was the prevalence of dementia, with maximized life-long effects for the highest regression score /diversity compositions. The connection was less strong in individuals already diagnosed with cognitive impairment. Confounder analysis confirmed an independent effect of protective complexity in multivariate context. A sub-cohort with lifelong odds of dementia decreased > 5-folds was identified; this sub-cohort should be studied in further details, including controlled clinical trials. In short, our study systematically explored combinatorial preventive treatment regimens for age-associated multi-morbidity, with an emphasis on neurodegeneration, and provided extensive evidence for their feasibility.
Collapse
Affiliation(s)
- Anatoly L. Mayburd
- Neurocombinatorix, Alexandria, Virginia, United States of America
- George Mason University, School of Systems Biology, Colgan Hall, MSN 3E1 George Mason University, Manassas, Virginia, United States of America
| | | | - Ancha Baranova
- George Mason University, School of Systems Biology, Colgan Hall, MSN 3E1 George Mason University, Manassas, Virginia, United States of America
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
41
|
Nabavi SM, Talarek S, Listos J, Nabavi SF, Devi KP, Roberto de Oliveira M, Tewari D, Argüelles S, Mehrzadi S, Hosseinzadeh A, D'onofrio G, Orhan IE, Sureda A, Xu S, Momtaz S, Farzaei MH. Phosphodiesterase inhibitors say NO to Alzheimer's disease. Food Chem Toxicol 2019; 134:110822. [PMID: 31536753 DOI: 10.1016/j.fct.2019.110822] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/18/2022]
Abstract
Phosphodiesterases (PDEs) consisted of 11 subtypes (PDE1 to PDE11) and over 40 isoforms that regulate levels of cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP), the second messengers in cell functions. PDE inhibitors (PDEIs) have been attractive therapeutic targets due to their involvement in diverse medical conditions, e.g. cardiovascular diseases, autoimmune diseases, Alzheimer's disease (AD), etc. Among them; AD with a complex pathology is a progressive neurodegenerative disorder which affect mostly senile people in the world and only symptomatic treatment particularly using cholinesterase inhibitors in clinic is available at the moment for AD. Consequently, novel treatment strategies towards AD are still searched extensively. Since PDEs are broadly expressed in the brain, PDEIs are considered to modulate neurodegenerative conditions through regulating cAMP and cGMP in the brain. In this sense, several synthetic or natural molecules inhibiting various PDE subtypes such as rolipram and roflumilast (PDE4 inhibitors), vinpocetine (PDE1 inhibitor), cilostazol and milrinone (PDE3 inhibitors), sildenafil and tadalafil (PDE5 inhibitors), etc have been reported showing encouraging results for the treatment of AD. In this review, PDE superfamily will be scrutinized from the view point of structural features, isoforms, functions and pharmacology particularly attributed to PDEs as target for AD therapy.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| | - Marcos Roberto de Oliveira
- Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Grazia D'onofrio
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", Viale Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, 14623, USA.
| | - Saeedeh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
42
|
Schepers M, Tiane A, Paes D, Sanchez S, Rombaut B, Piccart E, Rutten BPF, Brône B, Hellings N, Prickaerts J, Vanmierlo T. Targeting Phosphodiesterases-Towards a Tailor-Made Approach in Multiple Sclerosis Treatment. Front Immunol 2019; 10:1727. [PMID: 31396231 PMCID: PMC6667646 DOI: 10.3389/fimmu.2019.01727] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) characterized by heterogeneous clinical symptoms including gradual muscle weakness, fatigue, and cognitive impairment. The disease course of MS can be classified into a relapsing-remitting (RR) phase defined by periods of neurological disabilities, and a progressive phase where neurological decline is persistent. Pathologically, MS is defined by a destructive immunological and neuro-degenerative interplay. Current treatments largely target the inflammatory processes and slow disease progression at best. Therefore, there is an urgent need to develop next-generation therapeutic strategies that target both neuroinflammatory and degenerative processes. It has been shown that elevating second messengers (cAMP and cGMP) is important for controlling inflammatory damage and inducing CNS repair. Phosphodiesterases (PDEs) have been studied extensively in a wide range of disorders as they breakdown these second messengers, rendering them crucial regulators. In this review, we provide an overview of the role of PDE inhibition in limiting pathological inflammation and stimulating regenerative processes in MS.
Collapse
Affiliation(s)
- Melissa Schepers
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Assia Tiane
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dean Paes
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Selien Sanchez
- Department of Morphology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Ben Rombaut
- Department of Physiology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Elisabeth Piccart
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Bart P F Rutten
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Bert Brône
- Department of Physiology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Tim Vanmierlo
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
43
|
Barai P, Raval N, Acharya S, Acharya N. Neuroprotective effects of Bergenia ciliata on NMDA induced injury in SH-SY5Y cells and attenuation of cognitive deficits in scopolamine induced amnesia in rats. Biomed Pharmacother 2018; 108:374-390. [PMID: 30227331 DOI: 10.1016/j.biopha.2018.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
Bergenia ciliata (Haw) Sternb. possess immunomodulatory, anti-inflammatory, antioxidant, anti-urolithiatic, wound healing, anti-malarial, anti-diabetic and anti-cancer properties. Moreover, the methanolic extracts of the rhizomes of the plant were found to demonstrate beneficial neuroprotective effects in the intracerebroventricular streptozotocin-induced model in rats. Thus, the present study was undertaken to further explore the neuroprotective potential of the aqueous (BA) and methanolic extracts (BM) of B. ciliata through various in-vitro and in-vivo studies. Both the extracts at all tested concentrations i.e. 50-50,000 ng/mL did not cause any significant reduction of cell viability of SH-SY5Y cells when tested for 48 h when assessed through MTT and resazurin metabolism- based cell viability assays. The pre-treatment with the extracts could confer significant (p < 0.001) and dose-dependent protective effects against NMDA induced injury in SH-SY5Y cells. BM [IC50: 5.7 and 5.19 μg/mL for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) respectively] led to more potent inhibition of both the enzymes as compared to BA (IC50: 227.12 and 23.25 μg/mL for AChE and BuChE respectively). BM also proved to be a 1.85-fold better scavenger of the DPPH free radicals as compared to BA. Thus, BM was taken further for the evaluation of the beneficial effects of 14-day pre-treatment in rats in the scopolamine (2 mg/kg, i.p.) induced amnesia model at 125, 250 and 500 mg/kg, p.o. BM pre-treatment at 250 and 500 mg/kg could significantly ameliorate the cognitive impairment (p < 0.001), inhibit AChE (p < 0.001) and BuChE (p < 0.05) activity, restore GSH levels (p < 0.05) in serum and brain homogenates and recover the morphology of hippocampal neurons back to normal. Moreover, the BM administration at 500 mg/kg also showed beneficial effects through the significant (p < 0.05) reduction of Aβ1-42, phosphorylated tau (p-tau) and GSK-3β immunoreactivity in the brain homogenates of the intracerebroventricularly streptozotocin (ICV STZ) injected rats as observed from the results of the ELISA assays. The outcomes of the study unveiled that BM exerts its beneficial effects through prevention of NMDA induced excitotoxic cell death, dual cholinesterase inhibition, antioxidant activity coupled with the reduction of the immunoreactivity for the Aβ1-42, p-tau and GSK-3β indicating its potential to be screened further for various other models to determine the exact mechanism of action.
Collapse
Affiliation(s)
- Priyal Barai
- Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| | - Nisith Raval
- Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| | - Sanjeev Acharya
- SSR College of Pharmacy, Sayli, Silvassa, 306230, U. T. of D&NH, India
| | - Niyati Acharya
- Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
44
|
Barai P, Raval N, Acharya S, Borisa A, Bhatt H, Acharya N. Neuroprotective effects of bergenin in Alzheimer's disease: Investigation through molecular docking, in vitro and in vivo studies. Behav Brain Res 2018; 356:18-40. [PMID: 30118774 DOI: 10.1016/j.bbr.2018.08.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/20/2018] [Accepted: 08/11/2018] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is an enervating and chronic progressive neurodegenerative disorder, occurring frequently in the elderly and adversely affecting intellectual capabilities and the cognitive processes. Bergenin possesses efficacious antioxidant, antiulcerogenic, anti-HIV, hepatoprotective, neuroprotective, anti-inflammatory and immunomodulatory activity along with antinociceptive effect and wound healing properties. Previous studies have shown that bergenin has in vitro bovine adrenal tyrosine hydroxylase inhibitory activity, mushroom tyrosinase inhibitory activities, β-secretase (BACE-1) enzyme inhibitory activity and prevented neuronal death in the primary culture of rat cortical neurons. Protein tyrosine phosphatase-1B (PTP1B) is an intriguing target for anticancer and antidiabetic drugs and has recently been implicated to act as a positive regulator of neuroinflammation. Bergenin is also found to inhibit human protein tyrosine phosphatase-1B (hPTP1B) in vitro. Thus, bergenin was screened by molecular docking study using GOLD suite (version 5.2), CCDC for predicting its activity against targets of AD management like acetylcholinesterase (AChE) (1B41), butyrylcholinesterase (BuChE) (1P0I), Tau protein kinase 1 (GSK-3β) (1J1B), BACE-1 (1FKN) wherein the GOLD score and fitness of bergenin were comparable to those of standard drugs like donepezil, galanthamine, physostigmine, etc. Bergenin demonstrated dose-dependent inhibition of both AChE and BuChE in vitro and found to be safe up to 50 μM when screened in vitro on SH-SY5Y cell lines by cytotoxicity studies using MTT and Alamar blue assays. It also led to dose-dependent prevention of NMDA induced toxicity in these cells. Pretreatment with bergenin (14 days) in rats at three dose levels (20, 40 and 80 mg/kg; p.o.) significantly (p < 0.01) and dose-dependently alleviated amnesia induced by scopolamine (2 mg/kg, i.p.). The therapeutic effect of bergenin supplementation for 28 days, at three dose levels, was also evaluated in streptozotocin (3 mg/kg, ICV, unilateral) induced AD model in Wistar rats using Morris water maze and Y maze on 7th, 14th, 21st and 28th days. STZ caused significant (p < 0.001) cognitive impairment and cholinergic deficit and increased oxidative stress in rats. Bergenin could significantly ameliorate STZ induced behavioral deficits, inhibit the AChE and BuChE activity in parallel with an increase in the diminished GSH levels in a dose-dependent fashion. The histopathological investigations were also supportive of this datum. The bergenin treatment at 80 mg/kg led to significant (p < 0.05) abatement of the raised Aβ-1-42 levels and alleviated the perturbed p- tau levels leading to significantly low (p < 0.01) levels of p-tau in brain homogenates of rats as compared to ICV STZ injected rats. In conclusion, the observed effects might be attributed to the cholinesterase inhibitory activity of bergenin coupled with its antioxidant effect, anti-inflammatory activity and reduction of Aβ-1-42 and p-tau levels which could have collectively helped in the attenuation of cognitive deficits. The current findings of the study are indicative of the promising preventive and ameliorative potential of bergenin in the management of AD through multiple targets.
Collapse
Affiliation(s)
- Priyal Barai
- Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382481, India
| | - Nisith Raval
- Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382481, India
| | - Sanjeev Acharya
- SSR College of Pharmacy, Sayli, Silvassa - 306230, U. T. of D&NH, India
| | - Ankit Borisa
- Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382481, India
| | - Hardik Bhatt
- Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382481, India
| | - Niyati Acharya
- Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382481, India.
| |
Collapse
|
45
|
Barai P, Raval N, Acharya S, Acharya N. Bergenia ciliata ameliorates streptozotocin-induced spatial memory deficits through dual cholinesterase inhibition and attenuation of oxidative stress in rats. Biomed Pharmacother 2018; 102:966-980. [DOI: 10.1016/j.biopha.2018.03.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/29/2022] Open
|
46
|
Schaler AW, Myeku N. Cilostazol, a phosphodiesterase 3 inhibitor, activates proteasome-mediated proteolysis and attenuates tauopathy and cognitive decline. Transl Res 2018; 193:31-41. [PMID: 29232559 PMCID: PMC10075247 DOI: 10.1016/j.trsl.2017.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/25/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease and several variants of frontotemporal degeneration including progressive supranuclear palsy and corticobasal degeneration are characterized by the accumulation of abnormal tau protein into aggregates. Most proteins, including tau, are degraded via the ubiquitin proteasome system, but when abnormal tau accumulates, the function of 26S proteasomes is downregulated. The negative effect of tau aggregates on the function of the proteasome can have deleterious consequences on protein homeostasis and disease progression. Developing therapies aimed at clearing abnormal tau are thus of considerable interest. In the present study, we investigated the effect of cilostazol, an FDA-approved selective phosphodiesterase 3 inhibitor, on a mouse model of tauopathy (line rTg4510). Administration of cilostazol for 30 days enhanced proteasome function via the cyclic adenosine 3',5'-monophosphate/protein kinase A pathway and attenuated tauopathy and cognitive decline in rTg4510 mice. These results suggest that cilostazol, or other FDA-approved drugs acting via the same pathway, has the potential to be repurposed for the treatment of patients with early-stage tauopathy.
Collapse
Affiliation(s)
- Ari W Schaler
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY
| | - Natura Myeku
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY.
| |
Collapse
|
47
|
Zuccarini M, Giuliani P, Frinchi M, Mudò G, Serio RM, Belluardo N, Buccella S, Carluccio M, Condorelli DF, Caciagli F, Ciccarelli R, Di Iorio P. Uncovering the Signaling Pathway behind Extracellular Guanine-Induced Activation of NO System: New Perspectives in Memory-Related Disorders. Front Pharmacol 2018; 9:110. [PMID: 29515443 PMCID: PMC5826394 DOI: 10.3389/fphar.2018.00110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/31/2022] Open
Abstract
Mounting evidence suggests that the guanine-based purines stand out as key player in cell metabolism and in several models of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. Guanosine (GUO) and guanine (GUA) are extracellular signaling molecules derived from the breakdown of the correspondent nucleotide, GTP, and their intracellular and extracellular levels are regulated by the fine-tuned activity of two major enzymes, purine nucleoside phosphorylase (PNP) and guanine deaminase (GDA). Noteworthy, GUO and GUA, seem to play opposite roles in the modulation of cognitive functions, such as learning and memory. Indeed GUO, despite exerting neuroprotective, anti-apoptotic and neurotrophic effects, causes a decay of cognitive activities, whereas GUA administration in rats results in working memory improvement (prevented by L-NAME pre-treatment). This study was designed to investigate, in a model of SH-SY5Y neuroblastoma cell line, the signal transduction pathway activated by extracellular GUA. Altogether, our results showed that: (i) in addition to an enhanced phosphorylation of ASK1, p38 and JNK, likely linked to a non-massive and transient ROS production, the PKB/NO/sGC/cGMP/PKG/ERK cascade seems to be the main signaling pathway elicited by extracellular GUA; (ii) the activation of this pathway occurs in a pertussis-toxin sensitive manner, thus suggesting the involvement of a putative G protein coupled receptor; (iii) the GUA-induced NO production, strongly reduced by cell pre-treatment with L-NAME, is negatively modulated by the EPAC-cAMP-CaMKII pathway, which causes the over-expression of GDA that, in turn, reduces the levels of GUA. These molecular mechanisms activated by GUA may be useful to support our previous observation showing that GUA improves learning and memory functions through the stimulation of NO signaling pathway, and underscore the therapeutic potential of oral administration of guanine for treating memory-related disorders.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “G. d’Annunzio” University Foundation, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “G. d’Annunzio” University Foundation, Chieti, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Rosa Maria Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Silvana Buccella
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “G. d’Annunzio” University Foundation, Chieti, Italy
| | - Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “G. d’Annunzio” University Foundation, Chieti, Italy
| | | | - Francesco Caciagli
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “G. d’Annunzio” University Foundation, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “G. d’Annunzio” University Foundation, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “G. d’Annunzio” University Foundation, Chieti, Italy
| |
Collapse
|
48
|
Wu Y, Li Z, Huang YY, Wu D, Luo HB. Novel Phosphodiesterase Inhibitors for Cognitive Improvement in Alzheimer's Disease. J Med Chem 2018; 61:5467-5483. [PMID: 29363967 DOI: 10.1021/acs.jmedchem.7b01370] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is one of the greatest public health challenges. Phosphodiesterases (PDEs) are a superenzyme family responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Since several PDE subfamilies are highly expressed in the human brain, the inhibition of PDEs is involved in neurodegenerative processes by regulating the concentration of cAMP and/or cGMP. Currently, PDEs are considered as promising targets for the treatment of AD since many PDE inhibitors have exhibited remarkable cognitive improvement effects in preclinical studies and over 15 of them have been subjected to clinical trials. The aim of this review is to summarize the outstanding progress that has been made by PDE inhibitors as anti-AD agents with encouraging results in preclinical studies and clinical trials. The binding affinity, pharmacokinetics, underlying mechanisms, and limitations of these PDE inhibitors in the treatment of AD are also reviewed and discussed.
Collapse
Affiliation(s)
- Yinuo Wu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Zhe Li
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Yi-You Huang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Deyan Wu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| |
Collapse
|
49
|
Kelly MP. Cyclic nucleotide signaling changes associated with normal aging and age-related diseases of the brain. Cell Signal 2018; 42:281-291. [PMID: 29175000 PMCID: PMC5732030 DOI: 10.1016/j.cellsig.2017.11.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/21/2017] [Indexed: 01/23/2023]
Abstract
Deficits in brain function that are associated with aging and age-related diseases benefit very little from currently available therapies, suggesting a better understanding of the underlying molecular mechanisms is needed to develop improved drugs. Here, we review the literature to test the hypothesis that a break down in cyclic nucleotide signaling at the level of synthesis, execution, and/or degradation may contribute to these deficits. A number of findings have been reported in both the human and animal model literature that point to brain region-specific changes in Galphas (a.k.a. Gαs or Gsα), adenylyl cyclase, 3',5'-adenosine monophosphate (cAMP) levels, protein kinase A (PKA), cAMP response element binding protein (CREB), exchange protein activated by cAMP (Epac), hyperpolarization-activated cyclic nucleotide-gated ion channels (HCNs), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), soluble and particulate guanylyl cyclase, 3',5'-guanosine monophosphate (cGMP), protein kinase G (PKG) and phosphodiesterases (PDEs). Among the most reproducible findings are 1) elevated circulating ANP and BNP levels being associated with cognitive dysfunction or dementia independent of cardiovascular effects, 2) reduced basal and/or NMDA-stimulated cGMP levels in brain with aging or Alzheimer's disease (AD), 3) reduced adenylyl cyclase activity in hippocampus and specific cortical regions with aging or AD, 4) reduced expression/activity of PKA in temporal cortex and hippocampus with AD, 5) reduced phosphorylation of CREB in hippocampus with aging or AD, 6) reduced expression/activity of the PDE4 family in brain with aging, 7) reduced expression of PDE10A in the striatum with Huntington's disease (HD) or Parkinson's disease, and 8) beneficial effects of select PDE inhibitors, particularly PDE10 inhibitors in HD models and PDE4 and PDE5 inhibitors in aging and AD models. Although these findings generally point to a reduction in cyclic nucleotide signaling being associated with aging and age-related diseases, there are exceptions. In particular, there is evidence for increased cAMP signaling specifically in aged prefrontal cortex, AD cerebral vessels, and PD hippocampus. Thus, if cyclic nucleotide signaling is going to be targeted effectively for therapeutic gain, it will have to be manipulated in a brain region-specific manner.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, VA Bldg 1, 3rd Floor, D-12, Columbia, SC 29209, United States.
| |
Collapse
|
50
|
Shafiee-Nick R, Afshari AR, Mousavi SH, Rafighdoust A, Askari VR, Mollazadeh H, Fanoudi S, Mohtashami E, Rahimi VB, Mohebbi M, Vahedi MM. A comprehensive review on the potential therapeutic benefits of phosphodiesterase inhibitors on cardiovascular diseases. Biomed Pharmacother 2017; 94:541-556. [PMID: 28779712 DOI: 10.1016/j.biopha.2017.07.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/02/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022] Open
Abstract
Phosphodiesterases are a group of enzymes that hydrolyze cyclic nucleotides, which assume a key role in directing intracellular levels of the second messengers' cAMP and cGMP, and consequently cell function. The disclosure of 11 isoenzyme families and our expanded knowledge of their functions at the cell and molecular level stimulate the improvement of isoenzyme selective inhibitors for the treatment of various diseases, particularly cardiovascular diseases. Hence, future and new mechanistic investigations and carefully designed clinical trials could help reap additional benefits of natural/synthetic PDE inhibitors for cardiovascular disease in patients. This review has concentrated on the potential therapeutic benefits of phosphodiesterase inhibitors on cardiovascular diseases.
Collapse
Affiliation(s)
- Reza Shafiee-Nick
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbasali Rafighdoust
- Department of Cardiology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Fanoudi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Mohtashami
- Department of Pharmacodynamic and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Mohebbi
- Department of Internal Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|