1
|
Zhu S, Wang Y, Li Y, Li N, Zheng Y, Li Q, Guo H, Sun J, Zhai Q, Zhu Y. TMAO is involved in sleep deprivation-induced cognitive dysfunction through regulating astrocytic cholesterol metabolism via SREBP2. Front Mol Neurosci 2024; 17:1499591. [PMID: 39669439 PMCID: PMC11634841 DOI: 10.3389/fnmol.2024.1499591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Sleep deprivation (SD) contributes to cognitive impairment. Astrocytic cholesterol biosynthesis is crucial for brain cholesterol homeostasis and cognitive function. However, the underlying mechanism of astrocytic cholesterol metabolism in SD-induced cognitive impairment has not been fully explored. Trimethylamine N-oxide (TMAO), a product of liver flavin-containing monooxygenase-3 (FMO3), has been shown to be increased in the urine of sleep-deprived humans and implicated with peripheral cholesterol metabolism. Nevertheless, how TMAO affects brain cholesterol metabolism remains unclear. In our study, increased FMO3 and brain TMAO levels were observed in the SD mice, and elevated levels of TMAO were confirmed to lead to SD-induced cognitive dysfunction. In addition, we found that the expression of sterol regulatory element-binding protein 2 (SREBP2) is decreased in the brain of SD mice, resulting in the reduction in brain cholesterol content, which in turn causes synaptic damage. Moreover, we demonstrated that TMAO inhibits the expression of SREBP2. In contrast, FMO3 inhibitor 3,3'-diindolylmethane (DIM) alleviates SD-induced cognitive impairment by targeting the liver-brain axis. In conclusion, our study revealed that the TMAO pathway is involved in memory impairment in SD mice through deregulating astrocytic cholesterol metabolism.
Collapse
Affiliation(s)
- Shan Zhu
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yue Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yansong Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Na Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yige Zheng
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Qiao Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongyan Guo
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianyu Sun
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qian Zhai
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yaomin Zhu
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Li Z, He X, Fang Q, Yin X. Gut Microbe-Generated Metabolite Trimethylamine-N-Oxide and Ischemic Stroke. Biomolecules 2024; 14:1463. [PMID: 39595639 PMCID: PMC11591650 DOI: 10.3390/biom14111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite, the production of which in vivo is mainly regulated by dietary choices, gut microbiota, and the hepatic enzyme flavin monooxygenase (FMO), while its elimination occurs via the kidneys. The TMAO level is positively correlated with the risk of developing cardiovascular diseases. Recent studies have found that TMAO plays an important role in the development of ischemic stroke. In this review, we describe the relationship between TMAO and ischemic stroke risk factors (hypertension, diabetes, atrial fibrillation, atherosclerosis, thrombosis, etc.), disease risk, severity, prognostic outcomes, and recurrence and discuss the possible mechanisms by which they interact. Importantly, TMAO induces atherosclerosis and thrombosis through lipid metabolism, foam cell formation, endothelial dysfunction (via inflammation, oxidative stress, and pyroptosis), enhanced platelet hyper-reactivity, and the upregulation and activation of vascular endothelial tissue factors. Although the pathogenic mechanisms underlying TMAO's aggravation of disease severity and its effects on post-stroke neurological recovery and recurrence risk remain unclear, they may involve inflammation, astrocyte function, and pro-inflammatory monocytes. In addition, this paper provides a summary and evaluation of relevant preclinical and clinical studies on interventions regarding the gut-microbiota-dependent TMAO level to provide evidence for the prevention and treatment of ischemic stroke through the gut microbe-TMAO pathway.
Collapse
Affiliation(s)
| | | | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| | - Xulong Yin
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China; (Z.L.); (X.H.)
| |
Collapse
|
3
|
Xue Y, Lin S, Chen M, Ke J, Zhang J, Fan Q, Chen Y, Chen F. Altered colonic microflora and its metabolic profile in mice with acute viral myocarditis induced by coxsackievirus B3. Virol J 2024; 21:295. [PMID: 39550578 PMCID: PMC11568606 DOI: 10.1186/s12985-024-02571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Mounting evidence suggests that the gut-heart axis is critical in the pathogenesis of cardiovascular diseases. The gut serves as the primary pathway through which Coxsackievirus B3 (CVB3) infects its host, leading to acute viral myocarditis (AVMC). However, little is known about the role of gut microflora and its metabolites in the development of AVMC. The AVMC model was established by intraperitoneal injection of CVB3 in mice. Then, 16S ribosomal RNA (16S rRNA) gene sequencing and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) untargeted metabolomics profiling were performed to analyze the microflora composition and metabolic profile of colonic contents. Compared to the Control mice, the AVMC mice displayed a significant reduction in gut microflora richness and diversity, as revealed by an increased abundance of Proteobacteria and a decreased abundance of Cyanobacteria and Desulfobacterota. LEfSe analysis indicated that the main genera differing between the two groups were Escherichia-Shigella, Lactobacillus, Clostridium_sensu_stricto_1, Prevotellaceae_UCG-001, and Odoribacter. Based on the criterion of OPLS-DA VIP ≥ 1.0 and p-value < 0.05, a total of 198 differential metabolites (DMs) were identified in the gut, including 79 upregulated and 119 downregulated metabolites, of which lipids and lipid-like molecules accounted for the largest proportion. Notably, both altered gut bacterial taxa and metabolites were significantly enriched in the Lipid metabolism pathway, with Traumatic acid (TA), Alpha-Linolenic acid (ALA), Eicosapentaenoic acid (EPA), and Docosahexaenoic acid (DHA) being the key DMs in the pathway. Additionally, significant positive correlations (|r| > 0.80 and p < 0.05) were found between TA levels and Anaerotruncus and Bilophila abundance, between EPA levels and Clostridium_sensu_stricto_1 abundance, and between DHA levels and Escherichia-Shigella abundance, respectively. CVB3 infection leads to notable alterations in gut microflora composition and its metabolic profile, which may participate in AVMC development. Our findings provide important clues for future in-depth studies on AVMC etiology.
Collapse
Affiliation(s)
- Yimin Xue
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Shirong Lin
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Mingguang Chen
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Jun Ke
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Jiuyun Zhang
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Qiaolian Fan
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Yimei Chen
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Feng Chen
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
4
|
Spasova N, Somleva D, Krastev B, Tropcheva R, Svinarov D, Kundurzhiev T, Kinova E, Goudev A. Effect of Lactobacillus plantarum supplementation on trimethylamine-N-oxide levels in 30 patients with atherosclerotic cardiovascular disease: A double-blind randomized controlled trial. Folia Med (Plovdiv) 2024; 66:682-691. [PMID: 39512044 DOI: 10.3897/folmed.66.e132325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Trimethylamine-N-oxide (TMAO) is a metabolite produced by intestinal microbiota. It is well recognized as an independent risk marker for cardiovascular and renal diseases and mortality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elena Kinova
- Tsaritsa Yoanna University Hospital, Sofia, Bulgaria
| | - Assen Goudev
- Tsaritsa Yoanna University Hospital, Sofia, Bulgaria
| |
Collapse
|
5
|
Kang JW, Vemuganti V, Kuehn JF, Ulland TK, Rey FE, Bendlin BB. Gut microbial metabolism in Alzheimer's disease and related dementias. Neurotherapeutics 2024; 21:e00470. [PMID: 39462700 PMCID: PMC11585892 DOI: 10.1016/j.neurot.2024.e00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
Multiple studies over the last decade have established that Alzheimer's disease and related dementias (ADRD) are associated with changes in the gut microbiome. These alterations in organismal composition result in changes in the abundances of functions encoded by the microbial community, including metabolic capabilities, which likely impact host disease mechanisms. Gut microbes access dietary components and other molecules made by the host and produce metabolites that can enter circulation and cross the blood-brain barrier (BBB). In recent years, several microbial metabolites have been associated with or have been shown to influence host pathways relevant to ADRD pathology. These include short chain fatty acids, secondary bile acids, tryptophan derivatives (such as kynurenine, serotonin, tryptamine, and indoles), and trimethylamine/trimethylamine N-oxide. Notably, some of these metabolites cross the BBB and can have various effects on the brain, including modulating the release of neurotransmitters and neuronal function, inducing oxidative stress and inflammation, and impacting synaptic function. Microbial metabolites can also impact the central nervous system through immune, enteroendocrine, and enteric nervous system pathways, these perturbations in turn impact the gut barrier function and peripheral immune responses, as well as the BBB integrity, neuronal homeostasis and neurogenesis, and glial cell maturation and activation. This review examines the evidence supporting the notion that ADRD is influenced by gut microbiota and its metabolites. The potential therapeutic advantages of microbial metabolites for preventing and treating ADRD are also discussed, highlighting their potential role in developing new treatments.
Collapse
Affiliation(s)
- Jea Woo Kang
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Vaibhav Vemuganti
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessamine F Kuehn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler K Ulland
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Sun Y, Dong H, Sun C, Du D, Gao R, Voevoda M, Knyazev R, Wu N. Investigating the association between gut microbiome and aortic aneurysm diseases: a bidirectional two-sample Mendelian randomization analysis. Front Cell Infect Microbiol 2024; 14:1406845. [PMID: 39139765 PMCID: PMC11319299 DOI: 10.3389/fcimb.2024.1406845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Objective This study aims to investigate the associations between specific bacterial taxa of the gut microbiome and the development of aortic aneurysm diseases, utilizing Mendelian Randomization (MR) to explore these associations and overcome the confounding factors commonly present in observational studies. Methods Employing the largest available gut microbiome and aortic aneurysm Genome-Wide Association Study databases, including MiBioGen, Dutch Microbiome Project, FinnGen, UK Biobank, and Michigan Genomics Initiative, this study performs two-sample bidirectional MR analyses. Instrumental variables, linked to microbiome taxa at significant levels, were selected for identifying relationships with abdominal aortic aneurysms (AAA), thoracic aortic aneurysms (TAA), and aortic dissection (AD). Methods like inverse variance weighted, MR-PRESSO, MR-Egger, weighted median, simple mode, and mode-based estimate were used for MR analysis. Heterogeneity was assessed with the Cochran Q test. MR-Egger regression and MR-PRESSO addressed potential unbalanced horizontal pleiotropy. Results The analysis did not find any evidence of statistically significant associations between the gut microbiome and aortic aneurysm diseases after adjusting for the false discovery rate (FDR). Specifically, while initial results suggested correlations between 19 taxa and AAA, 25 taxa and TAA, and 13 taxa with AD, these suggested associations did not hold statistical significance post-FDR correction. Therefore, the role of individual gut microbial taxa as independent factors in the development and progression of aortic aneurysm diseases remains inconclusive. This finding underscores the necessity for larger sample sizes and more comprehensive studies to further investigate these potential links. Conclusion The study emphasizes the complex relationship between the gut microbiome and aortic aneurysm diseases. Although no statistically significant associations were found after FDR correction, the findings provide valuable insights and highlight the importance of considering gut microbiota in aortic aneurysm diseases research. Understanding these interactions may eventually contribute to identifying new therapeutic and preventive strategies for aortic aneurysm diseases.
Collapse
Affiliation(s)
- Yaodong Sun
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haoju Dong
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Pediatric Cardiac Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
- Department of Cardiovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Chao Sun
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Dongdong Du
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ruirong Gao
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Mikhail Voevoda
- Federal Research Center of Fundamental and Translational Medicine (FRC FTM), Novosibirsk, Russia
| | - Roman Knyazev
- Federal Research Center of Fundamental and Translational Medicine (FRC FTM), Novosibirsk, Russia
| | - Naishi Wu
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Li X, Wang C, Yanagita T, Xue C, Zhang T, Wang Y. Trimethylamine N-Oxide in Aquatic Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14498-14520. [PMID: 38885200 DOI: 10.1021/acs.jafc.4c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Trimethylamine N-oxide (TMAO), a characteristic nonprotein nitrogen compound, is widely present in seafood, which exhibits osmoregulatory effects for marine organisms in vivo and plays an important role in aquaculture and aquatic product preservation. However, much attention has been focused on the negative effect of TMAO since it has recently emerged as a putative promoter of chronic diseases. To get full knowledge and maximize our ability to balance the positive and negative aspects of TMAO, in this review, we comprehensively discuss the TMAO in aquatic products from the aspects of physiological functions for marine organisms, flavor, quality, the conversion of precursors, the influences on human health, and the seafood ingredients interaction consideration. Though the circulating TMAO level is inevitably enhanced after seafood consumption, dietary seafood still exhibits beneficial health effects and may provide nutraceuticals to balance the possible adverse effects of TMAO.
Collapse
Affiliation(s)
- Xiaoyue Li
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chengcheng Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Changhu Xue
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Tiantian Zhang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yuming Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Sanya Institute of Oceanography, Ocean University of China, Sanya 572024, China
| |
Collapse
|
8
|
Ge Y, Wang J, Wu L, Wu J. Gut microbiota: a potential new regulator of hypertension. Front Cardiovasc Med 2024; 11:1333005. [PMID: 38993521 PMCID: PMC11236727 DOI: 10.3389/fcvm.2024.1333005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/16/2024] [Indexed: 07/13/2024] Open
Abstract
Hypertension is a significant risk factor for cardiovascular and cerebrovascular diseases and has become a global public health concern. Although hypertension results from a combination of factors, the specific mechanism is still unclear. However, increasing evidence suggests that gut microbiota is closely associated with the development of hypertension. We provide a summary of the composition and physiological role of gut microbiota. We then delve into the mechanism of gut microbiota and its metabolites involved in the occurrence and development of hypertension. Finally, we review various regimens for better-controlling hypertension from the diet, exercise, drugs, antibiotics, probiotics, and fecal transplantation perspectives.
Collapse
Affiliation(s)
- Yanmin Ge
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaxin Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lincong Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Li J, Wang M, Ma S, Jin Z, Yin H, Yang S. Association of gastrointestinal microbiome and obesity with gestational diabetes mellitus-an updated globally based review of the high-quality literatures. Nutr Diabetes 2024; 14:31. [PMID: 38773069 PMCID: PMC11109140 DOI: 10.1038/s41387-024-00291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
OBJECTIVES The purpose of this review is to investigate the relationship between gastrointestinal microbiome, obesity, and gestational diabetes mellitus (GDM) in an objective manner. METHODS We conducted a thorough and comprehensive search of the English language literatures published in PubMed, Web of Science, and the Cochrane Library from the establishment of the library until 12 December 2023. Our search strategy included both keywords and free words searches, and we strictly applied inclusion and exclusion criteria. Meta-analyses and systematic reviews were prepared. RESULTS Six high-quality literature sources were identified for meta-analysis. However, after detailed study and analysis, a certain degree of heterogeneity was found, and the credibility of the combined analysis results was limited. Therefore, descriptive analyses were conducted. The dysbiosis of intestinal microbiome, specifically the ratio of Firmicutes/Bacteroides, is a significant factor in the development of metabolic diseases such as obesity and gestational diabetes. Patients with intestinal dysbiosis and obesity are at a higher risk of developing GDM. CONCLUSIONS During pregnancy, gastrointestinal microbiome disorders and obesity may contribute to the development of GDM, with all three factors influencing each other. This finding could aid in the diagnosis and management of patients with GDM through further research on their gastrointestinal microbiome.
Collapse
Affiliation(s)
- Jiahui Li
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Min Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Shuai Ma
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Zhong Jin
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Haonan Yin
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Shuli Yang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China.
| |
Collapse
|
10
|
Cicchinelli S, Gemma S, Pignataro G, Piccioni A, Ojetti V, Gasbarrini A, Franceschi F, Candelli M. Intestinal Fibrogenesis in Inflammatory Bowel Diseases: Exploring the Potential Role of Gut Microbiota Metabolites as Modulators. Pharmaceuticals (Basel) 2024; 17:490. [PMID: 38675450 PMCID: PMC11053610 DOI: 10.3390/ph17040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Fibrosis, sustained by the transformation of intestinal epithelial cells into fibroblasts (epithelial-to-mesenchymal transition, EMT), has been extensively studied in recent decades, with the molecular basis well-documented in various diseases, including inflammatory bowel diseases (IBDs). However, the factors influencing these pathways remain unclear. In recent years, the role of the gut microbiota in health and disease has garnered significant attention. Evidence suggests that an imbalanced or dysregulated microbiota, along with environmental and genetic factors, may contribute to the development of IBDs. Notably, microbes produce various metabolites that interact with host receptors and associated signaling pathways, influencing physiological and pathological changes. This review aims to present recent evidence highlighting the emerging role of the most studied metabolites as potential modulators of molecular pathways implicated in intestinal fibrosis and EMT in IBDs. These studies provide a deeper understanding of intestinal inflammation and fibrosis, elucidating the molecular basis of the microbiota role in IBDs, paving the way for future treatments.
Collapse
Affiliation(s)
- Sara Cicchinelli
- Department of Emergency, S.S. Filippo e Nicola Hospital, 67051 Avezzano, Italy;
| | - Stefania Gemma
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Andrea Piccioni
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
11
|
Zhang X, Zhang H, Li S, Fang F, Yin Y, Wang Q. Recent progresses in gut microbiome mediates obstructive sleep apnea-induced cardiovascular diseases. FASEB Bioadv 2024; 6:118-130. [PMID: 38585431 PMCID: PMC10995711 DOI: 10.1096/fba.2023-00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/09/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a multifactorial sleep disorder with a high prevalence in the general population. OSA is associated with an increased risk of developing cardiovascular diseases (CVDs), particularly hypertension, and is linked to worse outcomes. Although the correlation between OSA and CVDs is firmly established, the mechanisms are poorly understood. Continuous positive airway pressure is primary treatment for OSA reducing cardiovascular risk effectively, while is limited by inadequate compliance. Moreover, alternative treatments for cardiovascular complications in OSA are currently not available. Recently, there has been considerable attention on the significant correlation between gut microbiome and pathophysiological changes in OSA. Furthermore, gut microbiome has a significant impact on the cardiovascular complications that arise from OSA. Nevertheless, a detailed understanding of this association is lacking. This review examines recent advancements to clarify the link between the gut microbiome, OSA, and OSA-related CVDs, with a specific focus on hypertension, and also explores potential health advantages of adjuvant therapy that targets the gut microbiome in OSA.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Haifen Zhang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Shuai Li
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Fan Fang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Yanran Yin
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Qiang Wang
- Department of Infectious Disease, Shanxi Provincial People's HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
12
|
Fu Y, Chen YS, Xia DY, Luo XD, Luo HT, Pan J, Ma WQ, Li JZ, Mo QY, Tu Q, Li MM, Zhao Y, Li Y, Huang YT, Chen ZX, Li ZJ, Bernard L, Dione M, Zhang YM, Miao K, Chen JY, Zhu SS, Ren J, Zhou LJ, Jiang XZ, Chen J, Lin ZP, Chen JP, Ye H, Cao QY, Zhu YW, Yang L, Wang X, Wang WC. Lactobacillus rhamnosus GG ameliorates hyperuricemia in a novel model. NPJ Biofilms Microbiomes 2024; 10:25. [PMID: 38509085 PMCID: PMC10954633 DOI: 10.1038/s41522-024-00486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Hyperuricemia (HUA) is a metabolic syndrome caused by abnormal purine metabolism. Although recent studies have noted a relationship between the gut microbiota and gout, whether the microbiota could ameliorate HUA-associated systemic purine metabolism remains unclear. In this study, we constructed a novel model of HUA in geese and investigated the mechanism by which Lactobacillus rhamnosus GG (LGG) could have beneficial effects on HUA. The administration of antibiotics and fecal microbiota transplantation (FMT) experiments were used in this HUA goose model. The effects of LGG and its metabolites on HUA were evaluated in vivo and in vitro. Heterogeneous expression and gene knockout of LGG revealed the mechanism of LGG. Multi-omics analysis revealed that the Lactobacillus genus is associated with changes in purine metabolism in HUA. This study showed that LGG and its metabolites could alleviate HUA through the gut-liver-kidney axis. Whole-genome analysis, heterogeneous expression, and gene knockout of LGG enzymes ABC-type multidrug transport system (ABCT), inosine-uridine nucleoside N-ribohydrolase (iunH), and xanthine permease (pbuX) demonstrated the function of nucleoside degradation in LGG. Multi-omics and a correlation analysis in HUA patients and this goose model revealed that a serum proline deficiency, as well as changes in Collinsella and Lactobacillus, may be associated with the occurrence of HUA. Our findings demonstrated the potential of a goose model of diet-induced HUA, and LGG and proline could be promising therapies for HUA.
Collapse
Affiliation(s)
- Yang Fu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yong-Song Chen
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Dai-Yang Xia
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Xiao-Dan Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hao-Tong Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Pan
- Hunan Shihua Biotech Co. Ltd., Changsha, 410000, China
| | - Wei-Qing Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jin-Ze Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qian-Yuan Mo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Meng-Meng Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Yue Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yi-Teng Huang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zhi-Xian Chen
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zhen-Jun Li
- Key Laboratory of Carcinogenesis and Translational Research, Departments of Lymphoma, Radiology and Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, 100080, China
| | - Lukuyu Bernard
- International Livestock Research Institute, Nairobi, 00100, Kenya
| | - Michel Dione
- International Livestock Research Institute, Nairobi, 00100, Kenya
| | - You-Ming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Jian-Ying Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shan-Shan Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Ren
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ling-Juan Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xian-Zhi Jiang
- Microbiome Research Center, Moon (Guangzhou) Biotech Co. Ltd., Guangzhou, 510535, China
| | - Juan Chen
- Microbiome Research Center, Moon (Guangzhou) Biotech Co. Ltd., Guangzhou, 510535, China
| | - Zhen-Ping Lin
- Shantou Baisha Research Institute of Origin Species of Poultry and Stock, Shantou, 515041, China
| | - Jun-Peng Chen
- Shantou Baisha Research Institute of Origin Species of Poultry and Stock, Shantou, 515041, China
| | - Hui Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qing-Yun Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yong-Wen Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China.
| | - Wen-Ce Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Wang X, Wang C, Liu K, Wan Q, Wu W, Liu C. Association between sleep-related phenotypes and gut microbiota: a two-sample bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1341643. [PMID: 38371937 PMCID: PMC10869596 DOI: 10.3389/fmicb.2024.1341643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Background An increasing body of evidence suggests a profound interrelation between the microbiome and sleep-related concerns. Nevertheless, current observational studies can merely establish their correlation, leaving causality unexplored. Study objectives To ascertain whether specific gut microbiota are causally linked to seven sleep-related characteristics and propose potential strategies for insomnia prevention. Methods The study employed an extensive dataset of gut microbiota genetic variations from the MiBioGen alliance, encompassing 18,340 individuals. Taxonomic classification was conducted, identifying 131 genera and 196 bacterial taxa for analysis. Sleep-related phenotype (SRP) data were sourced from the IEU OpenGWAS project, covering traits such as insomnia, chronotype, and snoring. Instrumental variables (IVs) were selected based on specific criteria, including locus-wide significance, linkage disequilibrium calculations, and allele frequency thresholds. Statistical methods were employed to explore causal relationships, including inverse variance weighted (IVW), MR-Egger, weighted median, and weighted Mode. Sensitivity analyses, pleiotropy assessments, and Bonferroni corrections ensured result validity. Reverse causality analysis and adherence to STROBE-MR guidelines were conducted to bolster the study's rigor. Results Bidirectional Mendelian randomization (MR) analysis reveals a causative interplay between selected gut microbiota and sleep-related phenotypes. Notably, outcomes from the rigorously Bonferroni-corrected examination illuminate profound correlations amid precise compositions of the intestinal microbiome and slumber-associated parameters. Elevated abundance within the taxonomic ranks of class Negativicutes and order Selenomonadales was markedly associated with heightened susceptibility to severe insomnia (OR = 1.03, 95% CI: 1.02-1.05, p = 0.0001). Conversely, the augmented representation of the phylum Lentisphaerae stands in concord with protracted sleep duration (OR = 1.02, 95% CI: 1.01-1.04, p = 0.0005). Furthermore, heightened exposure to the genus Senegalimassilia exhibits the potential to ameliorate the manifestation of snoring symptoms (OR = 0.98, 95% CI: 0.96-0.99, p = 0.0001). Conclusion This study has unveiled the causal relationship between gut microbiota and SRPs, bestowing significant latent value upon future endeavors in both foundational research and clinical therapy.
Collapse
Affiliation(s)
| | | | | | | | - Wenzhong Wu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chengyong Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Andersen ML, Gozal D, Pires GN, Tufik S. Exploring the potential relationships among obstructive sleep apnea, erectile dysfunction, and gut microbiota: a narrative review. Sex Med Rev 2023; 12:76-86. [PMID: 37385976 DOI: 10.1093/sxmrev/qead026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Poor sleep quality is closely associated with comorbidities affecting a multitude of organ systems. Among the sleep disorders in the population, there has recently been an increase in the prevalence of obstructive sleep apnea (OSA), which has particularly affected men. The intermittent hypoxia and sleep fragmentation associated with OSA can result in the manifestation or aggravation of a number of pathophysiologic conditions, including the impairment of reproductive function in men and women. In this context, erectile dysfunction (ED) is of particular concern. Other consequences of OSA are changes in the gastrointestinal microbiota, with the resultant dysbiosis having potentially harmful consequences that promote downstream exacerbation of various comorbidities. OBJECTIVES This narrative review aims to explore the potential relationships among ED, gut microbiota, and OSA. METHODS A search of the relevant literature was performed in the PubMed, Embase, Medline, and Web of Science databases. RESULTS Sleep is important for regulating the body's functions, and sleep deprivation can negatively affect health. OSA can damage organic functions, including reproductive function, and can lead to ED. Restoring the microbiota and improving sleep can help to improve sexual function or reverse ED and enhance other associated conditions mediated through the gut-brain axis relationship. Probiotics and prebiotics can be used as supportive strategies in the prevention and treatment of OSA, as they help to reduce systemic inflammation and improve intestinal barrier function. CONCLUSION A good diet, a healthy lifestyle, and proper bowel function are essential in controlling depression and several other pathologies. Modulating the gut microbiota through probiotics and prebiotics can provide a viable strategy for developing new therapeutic options in treating many conditions. A better understanding of these a priori unrelated phenomena would foster our understanding of the effects of OSA on human fertility and how changes in gut microbiota may play a role.
Collapse
Affiliation(s)
- Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Gabriel Natan Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| |
Collapse
|
15
|
Wei J, Li Z, Fan Y, Feng L, Zhong X, Li W, Guo T, Ning X, Li Z, Ou C. Lactobacillus rhamnosus GG aggravates vascular calcification in chronic kidney disease: A potential role for extracellular vesicles. Life Sci 2023; 331:122001. [PMID: 37625519 DOI: 10.1016/j.lfs.2023.122001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
AIMS Lactobacillus rhamnosus GG (LGG) is a probiotic with great promise in future clinical application, which can significantly promote bone formation. However, the effect of LGG on CKD-related vascular calcification is unclear. In this study, we aimed to investigate the effect of LGG on CKD-related vascular calcification. MATERIALS AND METHODS After 2 weeks of 5/6 nephrectomy, CKD rats received a special diet (4 % calcium and 1.8 % phosphate) combined with 1,25-dihydroxyvitamin D3 to induce vascular calcification. Meanwhile, CKD rats in the LGG group were gavaged orally with LGG (1 × 109 CFU bacteria/day). 16S RNA amplicon sequencing was performed to analyze the effect of LGG treatment on gut microbiota composition. Furthermore, differential ultracentrifugation was utilized to extract EVs. The effects of EVs on vascular calcification were evaluated in rat VSMCs, rat aortic rings, and CKD rat calcification models. In this study, vascular calcification was assessed by microcomputed tomography analysis, alizarin red staining, calcium content determination, and the expression of osteogenic transcription factors RUNX2 and BMP2. KEY FINDINGS LGG remarkably aggravated vascular calcification. LGG supplementation significantly altered gut microbiota composition in CKD rats, particularly increasing Lactobacillus. Interestingly, EVs presented a significant promoting effect on the development of calcification. Finally, mechanistic analysis proved that EVs aggravated vascular calcification through PI3K/AKT signaling. SIGNIFICANCE These results do not support the supplementation of LGG in CKD-associated vascular calcification patients. Our study presented a fresh perspective on LGG with potential risks and adverse effects. CKD patients should use specific probiotic strains cautiously.
Collapse
Affiliation(s)
- Jintao Wei
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China
| | - Zehua Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Ying Fan
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China
| | - Liyun Feng
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xinglong Zhong
- Department of Cardiology, The Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Workers' Hospital, Liuzhou, PR China
| | - Weirun Li
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China
| | - Tingting Guo
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xiaodong Ning
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China
| | - Zhenhua Li
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China.
| | - Caiwen Ou
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China.
| |
Collapse
|
16
|
Dai Y, Shen Z, Khachatryan LG, Vadiyan DE, Karampoor S, Mirzaei R. Unraveling mechanistic insights into the role of microbiome in neurogenic hypertension: A comprehensive review. Pathol Res Pract 2023; 249:154740. [PMID: 37567034 DOI: 10.1016/j.prp.2023.154740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Neurogenic hypertension, a complex and multifactorial cardiovascular disorder, is known to be influenced by various genetic, environmental, and lifestyle factors. In recent years, there has been growing interest in the role of the gut microbiome in hypertension pathogenesis. The bidirectional communication between the gut microbiota and the central nervous system, known as the microbiota-gut-brain axis, has emerged as a crucial mechanism through which the gut microbiota exerts its influence on neuroinflammation, immune responses, and blood pressure regulation. Recent studies have shown how the microbiome has a substantial impact on a variety of physiological functions, such as cardiovascular health. The increased sympathetic activity to the gut may cause microbial dysbiosis, increased permeability of the gut, and increased inflammatory reactions by altering a number of intestinal bacteria producing short-chain fatty acids (SCFAs) and the concentrations of lipopolysaccharide (LPS) in the plasma. Collectively, these microbial metabolic and structural compounds stimulate sympathetic stimulation, which may be an important stage in the onset of hypertension. The result is an upsurge in peripheral and central inflammatory response. In addition, it has recently been shown that a link between the immune system and the gut microbiota might play a significant role in hypertension. The therapeutic implications of the gut microbiome including probiotic usage, prebiotics, dietary modifications, and fecal microbiota transplantation in neurogenic hypertension have also been found. A large body of research suggests that probiotic supplementation might help reduce chronic inflammation and hypertension that have an association with dysbiosis in the gut microbiota. Overall, this review sheds light on the intricate interplay between the gut microbiome and neurogenic hypertension, providing valuable insights for both researchers and clinicians. As our knowledge of the microbiome's role in hypertension expands, novel therapeutic strategies and diagnostic biomarkers may pave the way for more effective management and prevention of this prevalent cardiovascular disorder. Exploring the potential of the microbiome in hypertension offers an exciting avenue for future research and offers opportunities for precision medicine and improved patient care.
Collapse
Affiliation(s)
- Yusang Dai
- Physical Examination Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Zheng Shen
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lusine G Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Diana E Vadiyan
- Institute of Dentistry, Department of Pediatric, Preventive Dentistry and Orthodontics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
17
|
Liu P, Zhou P, Zhang X, Zhao D, Chen H, Hu K. Pterostilbene mediates glial and immune responses to alleviate chronic intermittent hypoxia-induced oxidative stress in nerve cells. PLoS One 2023; 18:e0286686. [PMID: 37267263 DOI: 10.1371/journal.pone.0286686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) induces oxidative stress in the brain, causing sleep disorders. Herein, we investigated the role of pterostilbene (Pte) in CIH-mediated oxidative stress in the brain tissue. A CIH mouse model was constructed by alternately reducing and increasing oxygen concentration in a sealed box containing the mouse; brain tissue and serum were then collected after intragastric administration of Pte. Neurological function was evaluated through field experiments. The trajectory of the CIH mice to the central region initially decreased and then increased after Pte intervention. Pte increased the number of neuronal Nissl bodies in the hippocampus of CIH mice, upregulated the protein levels of Bcl-2, occludin, and ZO-1 as well as the mRNA and protein levels of cAMP-response element binding protein (CREB) and p-BDNF, and reduced the number of neuronal apoptotic cells, Bax protein levels, IBA-1, and GFAP levels. Simultaneously, Pte reversed the decreased levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and BDNF and increased levels of malondialdehyde (MDA) in the serum of CIH mice. Pte increased Th2 cells, Treg cells, IL-4, IL-10, and TGF-β1 levels and decreased Th1 cells, Th17 cells, IFN-γ, IL-6, and IL- 17A levels in activated BV2 cells and hippocampus in CIH mice. The protein levels of p-ERK1/2, TLR4, p-p38, p-p65, and Bax, apoptosis rate, MDA concentration, Bcl-2 protein level, cell viability, and SOD and GSH-PX concentrations decreased after the activation of BV2 cells. Pte inhibited gliocytes from activating T-cell immune imbalance through p-ERK signaling to alleviate oxidative stress injury in nerve cells.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pan Zhou
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyue Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Chen
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Munir SS, Sert Kuniyoshi FH, Singh P, Covassin N. Is the Gut Microbiome Implicated in the Excess Risk of Hypertension Associated with Obstructive Sleep Apnea? A Contemporary Review. Antioxidants (Basel) 2023; 12:antiox12040866. [PMID: 37107242 PMCID: PMC10135363 DOI: 10.3390/antiox12040866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent sleep disorder and an established risk factor for cardiovascular diseases, including hypertension. The pathogenesis of elevated blood pressure (BP) in OSA is multifactorial, including sympathetic overdrive, vascular aberrations, oxidative stress, inflammation, and metabolic dysregulation. Among the mechanisms potentially involved in OSA-induced hypertension, the role of the gut microbiome is gaining increasing attention. Perturbations in the diversity, composition, and function of the gut microbiota have been causally linked to numerous disorders, and robust evidence has identified gut dysbiosis as a determinant of BP elevation in various populations. In this brief review, we summarize the current body of literature on the implications of altered gut microbiota for hypertension risk in OSA. Data from both preclinical models of OSA and patient populations are presented, and potential mechanistic pathways are highlighted, along with therapeutic considerations. Available evidence suggests that gut dysbiosis may promote the development of hypertension in OSA and may thus be a target for interventions aimed at attenuating the adverse consequences of OSA in relation to cardiovascular risk.
Collapse
Affiliation(s)
- Sanah S. Munir
- Department of Cardiovascular Medicine, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Fatima H. Sert Kuniyoshi
- Department of Cardiovascular Medicine, Mayo Clinic Rochester, Rochester, MN 55905, USA
- ResMed Science Center, San Diego, CA 92123, USA
| | - Prachi Singh
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Naima Covassin
- Department of Cardiovascular Medicine, Mayo Clinic Rochester, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Zong S, Du P, Li H, Wang M, Xiao H. Advances in animal models of obstructive sleep apnea. Front Med (Lausanne) 2023; 10:988752. [PMID: 36824607 PMCID: PMC9941153 DOI: 10.3389/fmed.2023.988752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Animal experiments play an important role in the study of the pathogenesis of human diseases and new methods of diagnosis and treatment. Due to the great differences in the anatomical structure and physiology of the upper airway between animals and humans, there is currently no animal model that can fully simulate the pathological anatomy and pathophysiological characteristics of human obstructive sleep apnea (OSA) patients. Herein, we summarizes the construction methods of several OSA animal models that have been widely used in the studies published in the last 5 years, the advantages and limitations of each model as well as related evaluation techniques are described. This information has potential to provide further guide for the development of OSA related animal experiments.
Collapse
Affiliation(s)
| | | | - Hejie Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
20
|
Constantino-Jonapa LA, Espinoza-Palacios Y, Escalona-Montaño AR, Hernández-Ruiz P, Amezcua-Guerra LM, Amedei A, Aguirre-García MM. Contribution of Trimethylamine N-Oxide (TMAO) to Chronic Inflammatory and Degenerative Diseases. Biomedicines 2023; 11:biomedicines11020431. [PMID: 36830968 PMCID: PMC9952918 DOI: 10.3390/biomedicines11020431] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a metabolite produced by the gut microbiota and has been mainly associated with an increased incidence of cardiovascular diseases (CVDs) in humans. There are factors that affect one's TMAO level, such as diet, drugs, age, and hormones, among others. Gut dysbiosis in the host has been studied recently as a new approach to understanding chronic inflammatory and degenerative diseases, including cardiovascular diseases, metabolic diseases, and Alzheimer's disease. These disease types as well as COVID-19 are known to modulate host immunity. Diabetic and obese patients have been observed to have an increase in their level of TMAO, which has a direct correlation with CVDs. This metabolite is attributed to enhancing the inflammatory pathways through cholesterol and bile acid dysregulation, promoting foam cell formation. Additionally, TMAO activates the transcription factor NF-κB, which, in turn, triggers cytokine production. The result can be an exaggerated inflammatory response capable of inducing endoplasmic reticulum stress, which is responsible for various diseases. Due to the deleterious effects that this metabolite causes in its host, it is important to search for new therapeutic agents that allow a reduction in the TMAO levels of patients and that, thus, allow patients to be able to avoid a severe cardiovascular event. The present review discussed the synthesis of TMAO and its contribution to the pathogenesis of various inflammatory diseases.
Collapse
Affiliation(s)
- Luis A. Constantino-Jonapa
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Yoshua Espinoza-Palacios
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Alma R. Escalona-Montaño
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Paulina Hernández-Ruiz
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Luis M. Amezcua-Guerra
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| | - María M. Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
- Correspondence: ; Tel.: +52-55-5573-2911 (ext. 27316)
| |
Collapse
|
21
|
Badran M, Khalyfa A, Ericsson AC, Puech C, McAdams Z, Bender SB, Gozal D. Gut microbiota mediate vascular dysfunction in a murine model of sleep apnoea: effect of probiotics. Eur Respir J 2023; 61:2200002. [PMID: 36028255 PMCID: PMC11556237 DOI: 10.1183/13993003.00002-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 08/10/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) is a chronic prevalent condition characterised by intermittent hypoxia (IH), and is associated with endothelial dysfunction and coronary artery disease (CAD). OSA can induce major changes in gut microbiome diversity and composition, which in turn may induce the emergence of OSA-associated morbidities. However, the causal effects of IH-induced gut microbiome changes on the vasculature remain unexplored. Our objective was to assess if vascular dysfunction induced by IH is mediated through gut microbiome changes. METHODS Faecal microbiota transplantation (FMT) was conducted on C57BL/6J naïve mice for 6 weeks to receive either IH or room air (RA) faecal slurry with or without probiotics (VSL#3). In addition to 16S rRNA amplicon sequencing of their gut microbiome, FMT recipients underwent arterial blood pressure and coronary artery and aorta function testing, and their trimethylamine N-oxide (TMAO) and plasma acetate levels were determined. Finally, C57BL/6J mice were exposed to IH, IH treated with VSL#3 or RA for 6 weeks, and arterial blood pressure and coronary artery function assessed. RESULTS Gut microbiome taxonomic profiles correctly segregated IH from RA in FMT mice and the normalising effect of probiotics emerged. Furthermore, IH-FMT mice exhibited increased arterial blood pressure and TMAO levels, and impairments in aortic and coronary artery function (p<0.05) that were abrogated by probiotic administration. Lastly, treatment with VSL#3 under IH conditions did not attenuate elevations in arterial blood pressure or CAD. CONCLUSIONS Gut microbiome alterations induced by chronic IH underlie, at least partially, the typical cardiovascular disturbances of sleep apnoea and can be mitigated by concurrent administration of probiotics.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Abdelnaby Khalyfa
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
- University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, USA
| | - Clementine Puech
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Zachary McAdams
- Department of Molecular Microbiology and Immunology, Molecular Pathogenesis and Therapeutics Program, University of Missouri, Columbia, MO, USA
| | - Shawn B Bender
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
22
|
Huang L, Sililas P, Thonusin C, Tongsong T, Luewan S, Chattipakorn N, Chattipakorn SC. Association Between Gut Microbiota and Insulin Therapy in Women With Gestational Diabetes Mellitus. Can J Diabetes 2022; 46:804-812.e2. [PMID: 35840501 DOI: 10.1016/j.jcjd.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVES At the time of diagnosis, the blood glucose of women with gestational diabetes mellitus (GDM) who require subsequent insulin treatment does not differ from that of women with adequate diet control. Hence, in this study, we aimed to determine the role of maternal gut microbiota as a marker of insulin necessity in GDM and to identify the effect of insulin therapy on gut microbiota composition in mothers with GDM and their newborns. METHODS Seventy-one pregnant women were enrolled into the study, including 38 GDM and 33 non-GDM participants. During the follow-up period, 8 of the 38 GDM subjects required insulin therapy (GDM-I group), whereas 30 of the 38 GDM cases with sufficient glycemic control by diet alone (GDM-D group). Maternal blood and feces were obtained at the time of GDM diagnosis (pretreatment; 24 to 28 weeks of gestation) and before delivery (posttreatment; ≥37 weeks of gestation). Meconium and first feces of the newborns were also collected. RESULTS Pretreatment, the glycemic profile did not differ between the GDM-D and GDM-I groups. However, the proportions of Clostridiales, Lactobacillus and Bacteroidetes were higher in the GDM-I group than in the non-GDM and GDM-D groups. After treatment, gut microbiota composition showed no difference between non-GDM and GDM-I groups. Interestingly, a higher Firmicutes/Bacteroidetes (F/B) ratio was displayed in GDM-D mothers at posttreatment, and this was also observed in both meconium and first feces of GDM-D newborns. CONCLUSION Insulin therapy changed maternal gut microbiota composition, which could be transferable to the mothers' newborns.
Collapse
Affiliation(s)
- Lingling Huang
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Palin Sililas
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Theera Tongsong
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Suchaya Luewan
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
23
|
Berberine ameliorates chronic kidney disease through inhibiting the production of gut-derived uremic toxins in the gut microbiota. Acta Pharm Sin B 2022; 13:1537-1553. [PMID: 37139409 PMCID: PMC10149897 DOI: 10.1016/j.apsb.2022.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
At present, clinical interventions for chronic kidney disease are very limited, and most patients rely on dialysis to sustain their lives for a long time. However, studies on the gut-kidney axis have shown that the gut microbiota is a potentially effective target for correcting or controlling chronic kidney disease. This study showed that berberine, a natural drug with low oral availability, significantly ameliorated chronic kidney disease by altering the composition of the gut microbiota and inhibiting the production of gut-derived uremic toxins, including p-cresol. Furthermore, berberine reduced the content of p-cresol sulfate in plasma mainly by lowering the abundance of g_Clostridium_sensu_stricto_1 and inhibiting the tyrosine-p-cresol pathway of the intestinal flora. Meanwhile, berberine increased the butyric acid producing bacteria and the butyric acid content in feces, while decreased the renal toxic trimethylamine N-oxide. These findings suggest that berberine may be a therapeutic drug with significant potential to ameliorate chronic kidney disease through the gut-kidney axis.
Collapse
|
24
|
Lu D, Xu S, Dai P, Wu L, Zhang H, Zhou B. Gut microbiota in hypertensive patients with versus without obstructive sleep apnea. J Clin Hypertens (Greenwich) 2022; 24:1598-1605. [PMID: 36411588 PMCID: PMC9731600 DOI: 10.1111/jch.14598] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
Abstract
We investigated the alteration of gut microbiota and the associated metabolic risks in hypertensive patients with obstructive sleep apnea (OSA) comorbidity. Fecal and blood samples were collected from 52 hypertensive patients, who were divided into three groups: A (controls, apnea-hypopnea index[AHI] < 5, n = 15), B (mild OSA, 5 < AHI < 20, n = 17), and C (moderate-to-severe OSA, AHI > 20, n = 20). The composition of the gut microbiota was studied through 16s RNA sequencing of variable regions 3-4. Analysis of the results revealed that group C had a significant higher concentration of total cholesterol, low-density lipoprotein, and IL-1β compared with group A. The Shannon index showed that bacterial biodiversity was lower in OSA patients. At the phylum level, the ratio of Firmicutes to Bacteroidetes (F/B) was significantly higher in group C than in groups A and B. At the genus level, the relative abundance of short-chain fatty acids (SCFA)-producing bacteria (e.g., Bacteroides and Prevotella) was lower while the number of inflammation-related bacteria (e.g., Lactobacillus) was increased in patients with OSA. We found that the IL-1β level was negatively correlated with Bacteroidetes. The area under the receiver operating characteristic curve was .672 for F/B ratio in determining hypertensive patients with OSA. In patients with hypertension, OSA was associated with worse gut dysbiosis, as evidenced by decreased levels of short-chain fatty acids-producing bacteria and increased number of inflammation-related bacteria. The differences in gut microbiota discriminate hypertensive patients with OSA from those without and may result in an enhanced inflammatory response and increase the risk of metabolic diseases.
Collapse
Affiliation(s)
- Dasheng Lu
- Department of CardiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina,Department of CardiologyThe Second Affiliated Hospital of Wannan Medical CollegeWuhuAnhui ProvinceChina,Vascular Diseases Research Center of Wannan Medical CollegeWuhuChina
| | - Shaodong Xu
- Department of CardiologyThe Third Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
| | - Ping Dai
- Department of Sleep medicineThe Second Affiliated Hospital of Wannan Medical CollegeWuhuAnhui ProvinceChina
| | - Lijuan Wu
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Wannan Medical CollegeWuhuAnhui ProvinceChina
| | - Hongxiang Zhang
- Department of CardiologyThe Second Affiliated Hospital of Wannan Medical CollegeWuhuAnhui ProvinceChina,Vascular Diseases Research Center of Wannan Medical CollegeWuhuChina
| | - Birong Zhou
- Department of CardiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
| |
Collapse
|
25
|
Qian B, Zhang K, Li Y, Sun K. Update on gut microbiota in cardiovascular diseases. Front Cell Infect Microbiol 2022; 12:1059349. [PMID: 36439214 PMCID: PMC9684171 DOI: 10.3389/fcimb.2022.1059349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
In recent years, due to the development and widespread utilization of metagenomic sequencing and metabolomics, the relationship between gut microbiota and human cardiovascular diseases (CVDs) has received extensive attention. A growing number of studies have shown a strong relationship between gut microbiota and CVDs, such as coronary atherosclerosis, hypertension (HTN) and heart failure (HF). It has also been revealed that intestinal flora-related metabolites, such as trimethylamine-N-oxide (TMAO), short-chain fatty acids (SCFA) and bile acids (BAs), are also related to the development, prevention, treatment and prognosis of CVDs. In this review, we presented and summarized the recent findings on the relationship between gut microbiota and CVDs, and concluded several currently known gut microbiota-related metabolites and the occurrence and development of CVDs.
Collapse
Affiliation(s)
| | | | - Yuan Li
- *Correspondence: Kangyun Sun, ; Yuan Li,
| | | |
Collapse
|
26
|
de Assis Gadelha DD, de Brito Alves JL, da Costa PCT, da Luz MS, de Oliveira Cavalcanti C, Bezerril FF, Almeida JF, de Campos Cruz J, Magnani M, Balarini CM, Rodrigues Mascarenhas S, de Andrade Braga V, de França-Falcão MDS. Lactobacillus group and arterial hypertension: A broad review on effects and proposed mechanisms. Crit Rev Food Sci Nutr 2022; 64:3839-3860. [PMID: 36269014 DOI: 10.1080/10408398.2022.2136618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hypertension is the leading risk factor for cardiovascular diseases and is associated with intestinal dysbiosis with a decrease in beneficial microbiota. Probiotics can positively modulate the impaired microbiota and impart benefits to the cardiovascular system. Among them, the emended Lactobacillus has stood out as a microorganism capable of reducing blood pressure, being the target of several studies focused on managing hypertension. This review aimed to present the potential of Lactobacillus as an antihypertensive non-pharmacological strategy. We will address preclinical and clinical studies that support this proposal and the mechanisms of action by which these microorganisms reduce blood pressure or prevent its elevation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marciane Magnani
- Technology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | | | | | | |
Collapse
|
27
|
Mashaqi S, Laubitz D, Morales EJD, De Armond R, Alameddin H, Ghishan FK, Kiela PR, Parthasarathy S. Interactive Effect of Combined Intermittent and Sustained Hypoxia and High-Fat Diet on the Colonic Mucosal Microbiome and Host Gene Expression in Mice. Nat Sci Sleep 2022; 14:1623-1639. [PMID: 36111259 PMCID: PMC9470383 DOI: 10.2147/nss.s370957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Gut dysbiosis can cause cardiometabolic disease. Gut dysbiosis can be independently caused by high-fat diet (HFD) and intermittent hypoxia (IH; characterizing obstructive sleep apnea), but the interactive effect of combined intermittent and sustained hypoxia (IH+SH) (characterizing obesity hypoventilation syndrome) and HFD on gut dysbiosis is unclear. We aimed to investigate the interactive effect of a combination of IH and SH and HFD on proximal colonic microbiota and colonic gene expression pattern. Methods Male mice (n=16) were randomly received four different combinations of diet (normal versus HFD) and oxygen conditions (normoxia versus IH+SH) for 4 weeks. Bacterial DNA and mucosal epithelial cell RNA from proximal colon were collected for analysis of adherent microbiome and host's gene expression analysis. Results HFD during IH+SH (22.6 ± 5.73; SD) led to greater Firmicutes: Bacteroidetes ratio than HFD during normoxia (5.89 ± 1.19; p=0.029). HFD significantly decreased microbial diversity as compared to normal diet, but the addition of IH+SH to HFD mildly reversed such effects. When compared to HFD during normoxia, HFD with combination of IH+SH resulted in changes to host mucosal gene expression for apical junctional complexes and adhesion molecules. Specifically, when compared to HFD during normoxia, HFD during IH+SH led to upregulation of Claudin 2 and Syk (tight junction dysfunction and increased mucosal permeability), while the barrier promoting claudin 4 was downregulated. Conclusion HFD during combined IH and SH causes greater gut dysbiosis and potentially adverse changes in colonic epithelial transcriptome than HFD during normoxia. The latter changes are suggestive of impaired gut barrier function.
Collapse
Affiliation(s)
- Saif Mashaqi
- Department of Pulmonary, Allergy, Critical Care, and Sleep, University of Arizona College of Medicine, Tucson, AZ, USA
- University of Arizona Health Sciences Center for Sleep & Circadian Sciences, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Daniel Laubitz
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Efreim Joseph D Morales
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Richard De Armond
- Department of Pulmonary, Allergy, Critical Care, and Sleep, University of Arizona College of Medicine, Tucson, AZ, USA
- University of Arizona Health Sciences Center for Sleep & Circadian Sciences, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Hanan Alameddin
- The University of Arizona College of Pharmacy, Tucson, AZ, USA
| | - Fayez K Ghishan
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Pawel R Kiela
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona College of Medicine, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Sairam Parthasarathy
- Department of Pulmonary, Allergy, Critical Care, and Sleep, University of Arizona College of Medicine, Tucson, AZ, USA
- University of Arizona Health Sciences Center for Sleep & Circadian Sciences, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
28
|
Ji X, Tian L, Niu S, Yao S, Qu C. Trimethylamine N-oxide promotes demyelination in spontaneous hypertension rats through enhancing pyroptosis of oligodendrocytes. Front Aging Neurosci 2022; 14:963876. [PMID: 36072486 PMCID: PMC9441869 DOI: 10.3389/fnagi.2022.963876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background Hypertension is a leading risk factor for cerebral small vessel disease (CSVD), a brain microvessels dysfunction accompanied by white matter lesions (WML). Trimethylamine N-oxide (TMAO), a metabolite of intestinal flora, is correlated with cardiovascular and aging diseases. Here, we explored the effect of TMAO on the demyelination of WML. Methods Spontaneous hypertension rats (SHRs) and primary oligodendrocytes were used to explore the effect of TMAO on demyelination in vivo and in vitro. T2-weighted magnetic resonance imaging (MRI) was applied to characterize the white matter hyperintensities (WMH) in rats. TMAO level was evaluated using LC-MS/MS assay. The histopathological changes of corpus callosum were measured by hematoxylin-eosin and luxol fast blue staining. And the related markers were detected by IHC, IF and western blot assay. Mito Tracker Red probe, DCFH-DA assay, flow cytometry based on JC-1 staining and Annexin V-FITC/PI double staining were conducted to evaluate the mitochondrial function, intracellular ROS levels and cell apoptosis. Results SHRs exhibited stronger WMH signals and a higher TMAO level than age-matched normotensive Wistar-kyoto rats (WKY). The corpus callosum region of SHR showed decreased volumes and enhanced demyelination when treated with TMAO. Furthermore, TMAO significantly elevated ROS production and induced NLRP3 inflammasome and impairment of mitochondrial function of oligodendrocytes. More importantly, TMAO enhanced the pyroptosis-related inflammatory death of oligodendrocytes. Conclusion TMAO could cross the blood-brain barrier (BBB) and promote oligodendrocytes pyroptosis via ROS/NLRP3 inflammasome signaling and mitochondrial dysfunction to promote demyelination, revealing a new diagnostic marker for WML under hypertension.
Collapse
Affiliation(s)
- Xiaotan Ji
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Neurology, Jining No. 1 People’s Hospital, Jining, China
| | - Long Tian
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shenna Niu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shumei Yao
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Chuanqiang Qu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Chuanqiang Qu,
| |
Collapse
|
29
|
The Role of a Gut Microbial-Derived Metabolite, Trimethylamine N-Oxide (TMAO), in Neurological Disorders. Mol Neurobiol 2022; 59:6684-6700. [DOI: 10.1007/s12035-022-02990-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
30
|
Mashaqi S, Kallamadi R, Matta A, Quan SF, Patel SI, Combs D, Estep L, Lee-Iannotti J, Smith C, Parthasarathy S, Gozal D. Obstructive Sleep Apnea as a Risk Factor for COVID-19 Severity-The Gut Microbiome as a Common Player Mediating Systemic Inflammation via Gut Barrier Dysfunction. Cells 2022; 11:1569. [PMID: 35563874 PMCID: PMC9101605 DOI: 10.3390/cells11091569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
The novel corona virus that is now known as (SARS-CoV-2) has killed more than six million people worldwide. The disease presentation varies from mild respiratory symptoms to acute respiratory distress syndrome and ultimately death. Several risk factors have been shown to worsen the severity of COVID-19 outcomes (such as age, hypertension, diabetes mellitus, and obesity). Since many of these risk factors are known to be influenced by obstructive sleep apnea, this raises the possibility that OSA might be an independent risk factor for COVID-19 severity. A shift in the gut microbiota has been proposed to contribute to outcomes in both COVID-19 and OSA. To further evaluate the potential triangular interrelationships between these three elements, we conducted a thorough literature review attempting to elucidate these interactions. From this review, it is concluded that OSA may be a risk factor for worse COVID-19 clinical outcomes, and the shifts in gut microbiota associated with both COVID-19 and OSA may mediate processes leading to bacterial translocation via a defective gut barrier which can then foster systemic inflammation. Thus, targeting biomarkers of intestinal tight junction dysfunction in conjunction with restoring gut dysbiosis may provide novel avenues for both risk detection and adjuvant therapy.
Collapse
Affiliation(s)
- Saif Mashaqi
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.F.Q.); (S.I.P.); (D.C.); (L.E.); (S.P.)
| | - Rekha Kallamadi
- Department of Internal Medicine, The University of North Dakota School of Medicine, Grand Forks, ND 58203, USA; (R.K.); (A.M.)
| | - Abhishek Matta
- Department of Internal Medicine, The University of North Dakota School of Medicine, Grand Forks, ND 58203, USA; (R.K.); (A.M.)
| | - Stuart F. Quan
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.F.Q.); (S.I.P.); (D.C.); (L.E.); (S.P.)
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Salma I. Patel
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.F.Q.); (S.I.P.); (D.C.); (L.E.); (S.P.)
| | - Daniel Combs
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.F.Q.); (S.I.P.); (D.C.); (L.E.); (S.P.)
| | - Lauren Estep
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.F.Q.); (S.I.P.); (D.C.); (L.E.); (S.P.)
| | - Joyce Lee-Iannotti
- Department of Sleep Medicine, The University of Arizona College of Medicine, Phoenix, AZ 85006, USA;
| | - Charles Smith
- The Intermountain Healthcare, Merrill Gappmayer Family Medicine Center, Provo, UT 84604, USA;
| | - Sairam Parthasarathy
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.F.Q.); (S.I.P.); (D.C.); (L.E.); (S.P.)
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO 65201, USA;
| |
Collapse
|
31
|
Cantero M, Guedes M, Fernandes R, Lollo PCB. Trimethylamine N-oxide reduction is related to probiotic strain specificity: a systematic review. Nutr Res 2022; 104:29-35. [DOI: 10.1016/j.nutres.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
|
32
|
Brown J, Yazdi F, Jodari-Karimi M, Owen JG, Reisin E. Obstructive Sleep Apnea and Hypertension: Updates to a Critical Relationship. Curr Hypertens Rep 2022; 24:173-184. [PMID: 35246797 PMCID: PMC8897114 DOI: 10.1007/s11906-022-01181-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 01/04/2023]
Abstract
Purpose of Review Obstructive sleep apnea (OSA) is an underdiagnosed illness linked to essential hypertension (HTN), resistant hypertension (r-HTN), and cardiovascular disease (CVD). This review provides updates on the epidemiology, pathophysiology, and treatments of OSA-associated HTN. Recent Findings Mild sleep apnea increases the risk for HTN. Eighty-nine percent of young patients aged 18–35 with HTN not attributed to secondary causes have underlying OSA. Home sleep studies are noninferior to formal polysomnography for OSA diagnosis. Nocturnal oxygen desaturation rate is positively correlated with HTN severity. Gut microbiome neo-colonization in response to high-fat diet cravings in patients with OSA alters immune function and worsens HTN. Carbonic anhydrase inhibitors and probiotics show newfound potential for OSA-associated HTN treatment. OSA recognition improves hospital outcomes after a STEMI. Hypoxia-inducible factor (HIF) transcription increases in a dose-dependent manner to hypoxia, and HIFs are strongly linked to cancer growth. Summary OSA and HTN are comorbid conditions with adversely connected pathophysiology including sympathetic hyperactivity, gut dysbiosis, proinflammation, endothelial damage, rostral fluid shifts, pharyngeal collapse, intravascular fluid retention, nocturnal energy expenditure, and metabolic derangements. The dose–response effect of OSA on HTN severity challenges blood pressure (BP) control, so those with refractory HTN should be screened for OSA.
Collapse
Affiliation(s)
- John Brown
- School of Medicine, Louisiana State University Health Sciences Center, Gravier Street, New Orleans, LA, 70112, USA
| | - Farshid Yazdi
- Section of Nephrology, Department of Medicine, Louisiana State University Health Sciences Center, 1542 Tulane Avenue, New Orleans, LA, 70112, USA.
| | - Mona Jodari-Karimi
- School of Medicine, Louisiana State University Health Sciences Center, Gravier Street, New Orleans, LA, 70112, USA
| | - Jonathan G Owen
- Section of Nephrology, Department of Medicine, University of New Mexico School of Medicine, 2211 Lomas Blvd NE, Albuquerque, NM, 87131, USA
| | - Efrain Reisin
- Section of Nephrology, Department of Medicine, Louisiana State University Health Sciences Center, 1542 Tulane Avenue, New Orleans, LA, 70112, USA
| |
Collapse
|
33
|
Abstract
OBJECTIVE To explore the relationship between Lactobacillus and prognosis of acute myocardial infarction (AMI) patients treated by percutaneous coronary intervention (PCI) and its correlation with clinical parameters. METHODS Consecutive patients with AMI in the coronary care unit of Tianjin Chest Hospital in China who received emergency PCI between July 2017 and December 2018 were enrolled. Subjects' fecal 16S rDNA gene sequencing data were analyzed and subjects were categorized into low, medium and high level groups according to stool Lactobacillus measurements. The primary endpoints were major adverse cardiac events. Cox regression analysis was used to analyze the relationship between Lactobacillus and prognosis. Spearman correlation analysis and trend tests were used to assess the relationship between Lactobacillus and the clinical indicators. RESULTS The data of 254 patients were included in the analysis. Mean age was 65.90 ± 11.56 years, and 152 patients (59.84%) were male. Follow-up time was 652 (548.25-753.00) days. Multivariate Cox regression analysis showed a significantly lower risk of major adverse cardiac events in patients with Lactobacillus > 7.1 copies/g [adjusted hazard ratio (HR) = 0.216, 95% CI: 0.094-0.493,P < 0.001] compared to patients with Lactobacillus ≤ 3.6 copies/g. Statistically significant differences were shown in ST-segment elevation myocardial infarction (STEMI) (HR = 0.217, 95% CI: 0.085-0.551, P = 0.001). Lactobacillus was a protective factor for male smokers aged over 60 years whose brain natriuretic peptide was over 1,000 pg/mL. Spearman correlation analysis showed that Lactobacillus correlated negatively with white blood cells, neutrophils, high-sensitivity C-reactive protein, TroponinT, creatine kinase, creatine kinase-MB and brain natriuretic peptide (downward trend), and correlated positively with left ventricular ejection fraction (upward trend). CONCLUSIONS This study is the first to reveal the correlation between Lactobacillus and inflammation and myocardial damage after STEMI. STEMI patients, especially male smokers aged over 60 years with severe impairment of cardiac function, have better outcomes with high levels of Lactobacillus, suggesting new therapeutic strategies for improving the prognosis and quality of life of AMI patients.
Collapse
|
34
|
Liu W, Zhao D, Wu X, Yue F, Yang H, Hu K. Rapamycin ameliorates chronic intermittent hypoxia and sleep deprivation-induced renal damage via the mammalian target of rapamycin (mTOR)/NOD-like receptor protein 3 (NLRP3) signaling pathway. Bioengineered 2022; 13:5537-5550. [PMID: 35184679 PMCID: PMC8973698 DOI: 10.1080/21655979.2022.2037872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rapamycin inhibits the activation of NOD-like receptor protein 3 (NLRP3) by regulating the mammalian target of rapamycin (mTOR) to treat obstructive sleep apnea-related renal injury. Sleep deprivation (SD) and chronic intermittent hypoxia (CIH) mouse models were used to assess the effects of autophagy in vivo. Compared with the control, SD, and CIH groups, the SD+CIH group had lower body weight and higher levels of blood urea nitrogen (BUN), creatinine, and urinary albumin (U-Alb) (P < 0.05); renal injury and oxidative damage occurred in the SD+CIH group, the kidney cell nucleus ruptured, and morphological structure of the cells was unclear in the SD+CIH group. The SD+CIH group demonstrated increased apoptosis compared with the control, SD, and CIH groups using Western blot analysis. Compared to the control, SD, and CIH groups, the SD+CIH group showed a higher degree of microtubule-associated protein light chain 3\ staining. Compared to the SD+CIH group, BUN, creatinine, and U-Alb levels decreased, and apoptosis increased in the SD+CIH+rapamycin group, and the structure of the kidney after rapamycin treatment was well preserved. The mTOR expression was increased in the kidneys of the SD+CIH group. The NLRP3, Gasdermin D (GMDSD), interleukin (IL)-18, IL-1β, and cleaved-caspase-1 protein levels were higher in the SD+CIH group than the SD+CIH+rapamycin group, and the NLRP3, GMDSD, IL-18, IL-1β, and cleaved-caspase-1 mRNA levels were higher in the SD+CIH group than the SD+CIH+rapamycin group. Following rapamycin treatment, pyroptosis was suppressed. Rapamycin ameliorates renal damage by inhibiting the mTOR/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Wei Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaofeng Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fang Yue
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haizhen Yang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
35
|
Chronic intermittent hypoxia induces gut microbial dysbiosis and infers metabolic dysfunction in mice. Sleep Med 2022; 91:84-92. [DOI: 10.1016/j.sleep.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022]
|
36
|
Kim M, Huda MN, Bennett BJ. Sequence meets function-microbiota and cardiovascular disease. Cardiovasc Res 2022; 118:399-412. [PMID: 33537709 PMCID: PMC8803075 DOI: 10.1093/cvr/cvab030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/20/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The discovery that gut-microbiota plays a profound role in human health has opened a new avenue of basic and clinical research. Application of ecological approaches where the bacterial 16S rRNA gene is queried has provided a number of candidate bacteria associated with coronary artery disease and hypertension. We examine the associations between gut microbiota and a variety of cardiovascular disease (CVD) including atherosclerosis, coronary artery disease, and blood pressure. These approaches are associative in nature and there is now increasing interest in identifying the mechanisms underlying these associations. We discuss three potential mechanisms including: gut permeability and endotoxemia, increased immune system activation, and microbial derived metabolites. In addition to discussing these potential mechanisms we highlight current studies manipulating the gut microbiota or microbial metabolites to move beyond sequence-based association studies. The goal of these mechanistic studies is to determine the mode of action by which the gut microbiota may affect disease susceptibility and severity. Importantly, the gut microbiota appears to have a significant effect on host metabolism and CVD by producing metabolites entering the host circulatory system such as short-chain fatty acids and trimethylamine N-Oxide. Therefore, the intersection of metabolomics and microbiota research may yield novel targets to reduce disease susceptibility. Finally, we discuss approaches to demonstrate causality such as specific diet changes, inhibition of microbial pathways, and fecal microbiota transplant.
Collapse
Affiliation(s)
- Myungsuk Kim
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, CA, USA
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Md Nazmul Huda
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, CA, USA
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Brian J Bennett
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, CA, USA
- Department of Nutrition, University of California Davis, Davis, CA, USA
| |
Collapse
|
37
|
Mohseni AH, Casolaro V, Bermúdez-Humarán LG, Keyvani H, Taghinezhad-S S. Modulation of the PI3K/Akt/mTOR signaling pathway by probiotics as a fruitful target for orchestrating the immune response. Gut Microbes 2022; 13:1-17. [PMID: 33615993 PMCID: PMC7899637 DOI: 10.1080/19490976.2021.1886844] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) and the phosphatidylinositol-3-kinase (PI3K)/protein kinase B or Akt (PKB/Akt) signaling pathways are considered as two but somewhat interconnected significant immune pathways which play complex roles in a variety of physiological processes as well as pathological conditions. Aberrant activation of PI3K/Akt/mTOR signaling pathways has been reported to be associated in a wide variety of human diseases. Over the past few years, growing evidence in in vitro and in vivo models suggest that this sophisticated and subtle cascade mediates the orchestration of the immune response in health and disease through exposure to probiotics. An expanding body of literature has highlighted the contribution of probiotics and PI3K/Akt/mTOR signaling pathways in gastrointestinal disorders, metabolic syndrome, skin diseases, allergy, salmonella infection, and aging. However, longitudinal human studies are possibly required to verify more conclusively whether the investigational tools used to understand the regulation of these pathways might provide effective approaches in the prevention and treatment of various disorders. In this Review, we summarize the experimental evidence from recent peer-reviewed studies and provide a brief overview of the causal relationship between the effects of probiotics and their metabolites on the components of PI3K/Akt/mTOR signaling pathways and human disease.
Collapse
Affiliation(s)
- Amir Hossein Mohseni
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salerno, Italy
| | | | - Hossein Keyvani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran,Hossein Keyvani Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran, Tel +98 21 88715350
| | - Sedigheh Taghinezhad-S
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran,CONTACT Sedigheh Taghinezhad-S Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| |
Collapse
|
38
|
Chen X, Chen Y, Feng M, Huang X, Li C, Han F, Zhang Q, Gao X. Altered Salivary Microbiota in Patients with Obstructive Sleep Apnea Comorbid Hypertension. Nat Sci Sleep 2022; 14:593-607. [PMID: 35422668 PMCID: PMC9005082 DOI: 10.2147/nss.s347630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Microorganisms contribute to the pathogenesis of obstructive sleep apnea (OSA)-associated hypertension (HTN), while more studies focus on intestinal microbiome. However, the relationship between oral microbiota and OSA-associated HTN has yet to be elucidated. This study aimed to identify differences in salivary microbiota between patients with OSA comorbid HTN compared with OSA patients, and furthermore evaluate the relationship between oral microbiome changes and increased blood pressure in patients with OSA. PATIENTS AND METHODS This study collected salivary samples from 103 participants, including 27 healthy controls, 27 patients with OSA, 23 patients with HTN, and 26 patients with OSA comorbid HTN, to explore alterations of the oral microbiome using 16S rRNA gene V3-V4 high-throughput sequencing. And ultra-high-performance liquid chromatography was used for metabolomic analysis. RESULTS Alpha- and beta-diversity analyses revealed a substantial difference in community structure and diversity in patients with OSA comorbid HTN compared with patients with OSA or HTN. The relative abundance of the genus Actinomyces was significantly decreased in patients with HTN compared with healthy controls, and those with OSA concomitant HTN compared with the patients in OSA, but was not significantly different between patients with OSA and healthy controls. Linear discriminant analysis effect size and variance analysis also indicated that the genera Haemophilus, Neisseria, and Lautropia were enriched in HTN. In addition, Oribacterium was an unique taxa in the OSA comorbid HTN group compared with the control group. Metabolomic analysis of saliva identified compounds associated with cardiovascular disease in patients with OSA comorbid HTN.2-hydroxyadenine, was significantly increased in the group of patients with OSA compared with controls, and L-carnitine was significantly decreased in patients with OSA comorbid HTN compared with OSA patients. CONCLUSION This study highlighted noninvasive biomarkers for patients with OSA comorbid HTN. As the first study to find alterations of the salivary microbiome in patients with OSA comorbid HTN, it may provide a theoretical foundation for clinical diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Xuehui Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Yanlong Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Mengqi Feng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Xin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Changtao Li
- Department of Orthodontics, Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing, 100080, People's Republic of China
| | - Fang Han
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| |
Collapse
|
39
|
Wang Z, Wu F, Zhou Q, Qiu Y, Zhang J, Tu Q, Zhou Z, Shao Y, Xu S, Wang Y, Tao J. Berberine Improves Vascular Dysfunction by Inhibiting Trimethylamine-N-oxide via Regulating the Gut Microbiota in Angiotensin II-Induced Hypertensive Mice. Front Microbiol 2022; 13:814855. [PMID: 35350612 PMCID: PMC8957906 DOI: 10.3389/fmicb.2022.814855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/15/2022] [Indexed: 01/14/2023] Open
Abstract
Berberine (BBR) has been demonstrated to exert cardiovascular protective effects by regulating gut microbiota. However, few studies examine the effect of BBR on the gut microbiota in hypertension. This study aims to investigate the role of BBR in regulating microbial alterations and vascular function in hypertension. C57BL/6 J mice were infused with Ang II (0.8 mg/kg/day) via osmotic minipumps and treated with BBR (150 mg/kg/day) or choline (1%) for 4 weeks. Blood pressure was detected by tail-cuff measurement once a week. Abdominal aorta pulse wave velocity (PWV) and endothelium dependent vasodilatation were measured to evaluate vascular function. Vascular remodeling was assessed by histological staining of aortic tissue. The fecal microbiota was profiled using 16S ribosomal DNA (rDNA) sequencing. Plasma trimethylamine (TMA)/trimethylamine-N-oxide (TMAO) and hepatic FMO3 expression were measured. We found that BBR treatment significantly alleviated the elevated blood pressure, vascular dysfunction, and pathological remodeling in Ang II-induced hypertensive mice, while choline treatment aggravated hypertension-related vascular dysfunction. 16S rDNA gene sequencing results showed that BBR treatment altered gut microbiota composition (reduced the Firmicutes/Bacteroidetes (F/B) ratio and increased the abundances of Lactobacillus). Moreover, BBR inhibited FMO3 expression and plasma TMA/TMAO production in hypertensive mice. TMAO treatment increased the apoptosis and oxidative stress of human aortic endothelial cells (HAECs) and aggravated Ang II-induced HAECs dysfunction in vitro. These results indicate that the protective effect of BBR in hypertension might be attributed (at least partially) to the inhibition of TMAO production via regulating the gut microbiota.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fang Wu
- Institute of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianbing Zhou
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yumin Qiu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianning Zhang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiang Tu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhe Zhou
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yijia Shao
- Institute of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shiyue Xu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Shiyue Xu,
| | - Yan Wang
- Institute of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Yan Wang,
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Jun Tao,
| |
Collapse
|
40
|
Zhang L, Ko CY, Zeng YM. Immunoregulatory Effect of Short-Chain Fatty Acids from Gut Microbiota on Obstructive Sleep Apnea-Associated Hypertension. Nat Sci Sleep 2022; 14:393-405. [PMID: 35299627 PMCID: PMC8922759 DOI: 10.2147/nss.s354742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/27/2022] [Indexed: 12/12/2022] Open
Abstract
The intestine is the largest bacterial ecosystem and immune response organ of the human body. The microbiota regulates the metabolic and immune functions of the host through their metabolites. Short-chain fatty acids (SCFAs) are part of the metabolites of the gut microbiota (GM), providing energy to intestinal epithelial cells and regulating the immune system. A decrease in SCFA-producing bacteria, imbalanced effector T-helper cells (Th cells), and increasing corresponding inflammatory cytokine were found in both animal models and clinical patients with obstructive sleep apnea (OSA) and hypertension (HTN). Intervention with probiotics, prebiotics, or postbiotics in animal models simulating OSA-associated HTN restored blood pressure to normal, which allows the hypothesis that GM are involved in the pathophysiology of OSA-induced HTN patients through their metabolites' SCFAs; however, the exact regulatory mechanism is not completely clear. This review describes the potential mechanisms of SCFAs, a major metabolite of the GM, in the pathology of OSA-induced HTN, from the perspective of immune system regulation in the available studies.
Collapse
Affiliation(s)
- Li Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, People's Republic of China
| | - Chih-Yuan Ko
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, People's Republic of China.,Department of Clinical Nutrition, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China.,School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Yi-Ming Zeng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, People's Republic of China
| |
Collapse
|
41
|
Disturbances of the Gut Microbiota, Sleep Architecture, and mTOR Signaling Pathway in Patients with Severe Obstructive Sleep Apnea-Associated Hypertension. Int J Hypertens 2021; 2021:9877053. [PMID: 34888100 PMCID: PMC8651365 DOI: 10.1155/2021/9877053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Intermittent hypoxia and sleep fragmentation are pathophysiological processes involved in obstructive sleep apnea (OSA) which affect gut microbiota, sleep architecture, and mTOR signaling pathway. However, the involvement of these elements in the pathogenesis mechanism of OSA-associated hypertension remains unclear. Therefore, this study investigated whether the OSA-associated hypertension mechanism is regulated by the gut microbiota and mTOR signaling pathway. Patients were diagnosed by polysomnography; their fecal samples were obtained and analyzed for their microbiome composition by 16S ribosomal RNA pyrosequencing and bioinformatics analysis. Transcript genes on fasting peripheral blood mononuclear cells (PBMCs) were examined using Illumina RNA-sequencing analysis. Totally, we enrolled 60 patients with severe OSA [without hypertension (n = 27) and with hypertension (n = 33)] and 12 controls (neither OSA nor hypertension). Results revealed that severe-OSA patients with hypertension had an altered gut microbiome, decreased short-chain fatty acid-producing bacteria (P < 0.05), and reduced arginine and proline metabolism pathways (P=0.001), compared with controls; also, they had increased stage N1 sleep and reduced stages N2 and N3 sleep accompanied by repeated arousals (P < 0.05). Analysis of PBMCs using the Kyoto Encyclopedia of Genes and Genomes database showed that the mTOR signaling pathway (P=0.006) was the most important differential gene-enriched pathway in severe-OSA patients with hypertension. Our findings extend prior work and suggest a possibility that the regulation of the mTOR signaling pathway is involved in developing OSA-associated hypertension through its interaction with the disturbance of the gut microbiome and sleep architecture.
Collapse
|
42
|
Li Y, Zhao D, Qian M, Liu J, Pan C, Zhang X, Duan X, Zhang Y, Jia W, Wang L. Amlodipine, an anti-hypertensive drug, alleviates non-alcoholic fatty liver disease by modulating gut microbiota. Br J Pharmacol 2021; 179:2054-2077. [PMID: 34862599 DOI: 10.1111/bph.15768] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/08/2021] [Accepted: 11/21/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-alcoholic fatty liver disease (NAFLD) represents a severe public health problem. It often coexists with hypertension in the context of metabolic syndrome. Here, we investigated the effects of amlodipine on non-alcoholic fatty liver disease combined with hypertension and the underlying mechanism. EXPERIMENTAL APPROACH mice were fed with high-fat diet and 0.05% N-Nitro-L-arginine methylester sterile water to induce NAFLD with hypertension. Gut microbiota composition and function were assessed by 16S ribosomal DNA and metagenomic sequencing. Untargeted metabolome profiles were applied to identify differential metabolites in mice cecum. KEY RESULTS Amlodipine besylate (AB) and amlodipine aspartate (AA) significantly decreased liver injury, hepatic steatosis and improved lipid metabolism with a concomitant reduction in the expression of lipogenic genes in mice with NAFLD and hypertension. Mechanistically, AA and AB have potential in restoring intestinal barrier integrity and improving antimicrobial defense along with the elevated abundances of Akkermansia, Bacteroides and Lactobacillus. Noteworthily, the gut microbiota in AB and AA-treated mice had higher abundance of functional genes involved in taurine and hypotaurine metabolism. Consistently, the strengthened taurine and hypotaurine metabolism was confirmed by the untargeted metabolome analysis. Based on the correlation and causal analysis, the altered gut microbiota composition and the enhancement of taurine and hypotaurine metabolism may synergistically decreased ALT, liver triglycerides, lipogenic genes and plasma cholesterol in HFD-fed hypertensive mice. CONCLUSION AND IMPLICATIONS Collectively, AA and AB exert multi-factorial improvements in NAFLD and hypertension by modulating gut microbiota, and may serve as a promising therapeutic agent for treating these diseases.
Collapse
Affiliation(s)
- Yang Li
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Danyang Zhao
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Minyi Qian
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jun Liu
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chuyue Pan
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xinxin Zhang
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xubin Duan
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yufei Zhang
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wenxin Jia
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lirui Wang
- Institute of Modern Biology, Nanjing University, Nanjing, China
| |
Collapse
|
43
|
Li Y, Li J, Xu F, Liu G, Pang B, Liao N, Li H, Shi J. Gut microbiota as a potential target for developing anti-fatigue foods. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34592876 DOI: 10.1080/10408398.2021.1983768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fatigue has many negative effects on human health. As such, it is desirable to develop anti-fatigue foods and understand the mechanisms of their action. Based on a comprehensive review of the literature, this article discusses the important roles of gut microbiota in fatigue and anti-fatigue. Studies have shown that an increase in pathogenic bacteria and a decrease in beneficial bacteria co-exist when fatigue is present in both rodents and humans, whereas changes in gut microbiota were reported after intervention with anti-fatigue foods. The roles of gut microbiota in the activities of anti-fatigue foods can also be explained in the causes and the effects of fatigue. Among the causes of fatigue, the accumulation of lactic acid, decrease of energy, and reduction of central nervous system function were related to gut microbiota metabolism. Among the harmful effects of fatigue, oxidative stress, inflammation, and intestinal barrier dysfunction were related to gut microbiota dysbiosis. Furthermore, gut microbiota, together with anti-fatigue foods, can inhibit pathogen growth, convert foods into highly anti-oxidative or anti-inflammatory products, produce short-chain fatty acids, maintain intestinal barrier integrity, inhibit intestinal inflammation, and stimulate the production of neurotransmitters that regulate the central nervous system. Therefore, it is believed that gut microbiota play important roles in the activities of anti-fatigue foods and may provide new insights on the development of anti-fatigue foods.
Collapse
Affiliation(s)
- Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Huixin Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
44
|
The role of sleep disorders in cardiovascular diseases: Culprit or accomplice? Life Sci 2021; 283:119851. [PMID: 34324916 DOI: 10.1016/j.lfs.2021.119851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/02/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022]
Abstract
Sleep disorders frequently comorbid with several cardiovascular diseases (CVDs), attracting increasing scientific attention and interest. Sleep disorders include insomnia, sleep-disordered breathing, restless legs syndrome, etc. It is well known that inflammation, sympathetic activation, and endothelial dysfunction play critical roles in sleep disorders, all of which are predisposing factors for CVDs. The comorbidity of sleep disorders and CVDs may have a bidirectional relationship. Patients with CVDs may have a high incidence of sleep disorders and vice versa. This review focused on the comorbidity of sleep disorders and CVDs and discussed the potential pathophysiological mechanisms and therapeutic strategies. In addition to the existing mechanisms, this review summarized novel potential mechanisms underlying comorbidities, such as gut microbiota, orexin, and extracellular vesicles, which may provide a theoretical basis for further basic research and clinical investigations on improving therapeutic outcomes.
Collapse
|
45
|
Zhao X, Zhong X, Liu X, Wang X, Gao X. Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective From Gut Microbiota. Front Nutr 2021; 8:693412. [PMID: 34164427 PMCID: PMC8215129 DOI: 10.3389/fnut.2021.693412] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of cardiovascular-related diseases are associated with structural and functional changes in gut microbiota (GM). The accumulation of beneficial gut commensals contributes to the improvement of cardiovascular-related diseases. The cardiovascular-related diseases that can be relieved by Lactobacillus supplementation, including hypercholesterolemia, atherosclerosis, myocardial infarction, heart failure, type 2 diabetes mellitus, and obesity, have expanded. As probiotics, lactobacilli occupy a substantial part of the GM and play important functional roles through various GM-derived metabolites. Lactobacilli ultimately have a beneficial impact on lipid metabolism, inflammatory factors, and oxidative stress to relieve the symptoms of cardiovascular-related diseases. However, the axis and cellular process of gut commensal Lactobacillus in improving cardiovascular-related diseases have not been fully elucidated. Additionally, Lactobacillus strains produce diverse antimicrobial peptides, which help maintain intestinal homeostasis and ameliorate cardiovascular-related diseases. These strains are a field that needs to be further investigated immediately. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus strain supplementation from animal studies and human clinical trials. We also highlighted a broad range of lactobacilli candidates with therapeutic capability by mining their metabolites. Our study provides instruction in the development of lactobacilli as a functional food to improve cardiovascular-related diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
46
|
Zhu Y, Liu Y, Wu C, Li H, Du H, Yu H, Huang C, Chen Y, Wang W, Zhu Q, Wang L. Enterococcus faecalis contributes to hypertension and renal injury in Sprague-Dawley rats by disturbing lipid metabolism. J Hypertens 2021; 39:1112-1124. [PMID: 33967216 DOI: 10.1097/hjh.0000000000002767] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Increasing studies have demonstrated that gut microbiota play vital roles in the development of hypertension. However, the underlying mechanism is not fully understood. METHODS The relative abundance of Enterococcus faecalis was determined in the faecal samples of angiotensin II or deoxycorticosterone acetate/salt-induced hypertensive rats. Then, E. faecalis culture was administered orally to rats for 6 weeks. Blood pressure (BP) was measured, renal injury was estimated and a serum metabolomic analysis was performed. RESULTS Compared with control, E. faecalis was markedly enriched in the faecal samples of hypertensive rats. The rats receiving live E. faecalis but not dead bacteria exhibited higher BP and enhanced renal injury. The serum metabolomic data showed that the E. faecalis treatment resulted in 35 variable metabolites including 16 (46%) lipid/lipid-like molecules, suggesting significant disturbance of lipid metabolism. Furthermore, the mRNA levels of 18 lipid metabolic enzymes in the renal medulla and cortex presented distinct and dynamic changes in response to 3 or 6-week E. faecalis treatment. Consistently, the protein levels of lysophospholipases A1 (LYPLA1) and phospholipase A2 group 4 A (PLA2G4) were enhanced only by live E. faecalis, which thus may have decreased the nitric oxide production in the renal medulla and elevated BP. CONCLUSION Our results suggest that E. faecalis in the gut contributes to hypertension and renal injury in rats by disturbing the lipid metabolism. The information provided here could shed new light on the pathologic mechanisms and potential intervention targets for the treatment of gut dysbiosis-induced hypertension.
Collapse
Affiliation(s)
- Yeyan Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Yuting Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Chunying Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Haonan Li
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University
| | - Huiting Du
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Huijing Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Cailin Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Yating Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Weidong Wang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Qing Zhu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University
| | - Lei Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| |
Collapse
|
47
|
Zhang X, Wang S, Xu H, Yi H, Guan J, Yin S. Metabolomics and microbiome profiling as biomarkers in obstructive sleep apnoea: a comprehensive review. Eur Respir Rev 2021; 30:30/160/200220. [PMID: 33980666 PMCID: PMC9489097 DOI: 10.1183/16000617.0220-2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022] Open
Abstract
Introduction Obstructive sleep apnoea (OSA) is a common sleep disorder with a high social and economic burden. Thus, early prediction and diagnosis of OSA are important. Changes in metabolism and the microbiome may serve as biomarkers for OSA. Herein, we review the literature on the metabolomic and microbiome changes associated with OSA, and identify the metabolites and microorganisms involved. Methods We searched the PUBMED and EMBASE electronic databases using the following terms: “obstructive sleep apnea”, “OSA”, “sleep disordered breathing”, “SDB”, “intermittent hypoxia”, “sleep fragmentation”, and either “metabolomics” or “microbiome”. In total, 273 papers were identified, of which 28 were included in our study. Results Changes in the levels of certain metabolites related to fatty acid, carbohydrate and amino acid metabolism were associated with the incidence of OSA. The diversity and abundance of microflora, particularly Firmicutes and Bacteroidetes, were altered in humans and rodents with OSA. Conclusions Certain changes in metabolism and the microbiota play an integral role in the pathophysiology of OSA and OSA-induced cardiovascular complications. Metabolomic and microbiome biomarkers shed light on the pathogenesis of OSA, and facilitate early diagnosis and treatment. Unique alterations in metabolism and the microbiome play an integral role in the pathophysiology of OSA and OSA-induced cardiovascular complicationshttps://bit.ly/3mW2rD5
Collapse
Affiliation(s)
- Xiaoman Zhang
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Both authors contributed equally
| | - Shengming Wang
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Both authors contributed equally
| | - Huajun Xu
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China .,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Yi
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jian Guan
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Shankai Yin
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
48
|
Influence of Dietary Components and Traditional Chinese Medicine on Hypertension: A Potential Role for Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5563073. [PMID: 33986817 PMCID: PMC8079198 DOI: 10.1155/2021/5563073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
Hypertension (HTN) is an important worldwide public health issue affecting human health. The pathogenesis of HTN involves complex factors such as genetics, external environment, diet, and the gut microbial dysbiosis. The gut microbiota, as a medium of diet and drug metabolism, is closely correlated to host's health and disease (including HTN). Literatures were randomly collected from various databases including PubMed, ScienceDirect, Google Scholar, and China National Knowledge Infrastructure (CNKI). In this review, we elucidate the relationship between HTN and gut microbiota, as well as concerning the effects of different dietary components, diet-derived microbial metabolites, and traditional Chinese medicine (TCM) on intestinal flora. These studies have shown that diet and TCM can regulate and balance the intestinal flora, which are inclined to increasing the abundance of Akkermansia, Bifidobacterium, and Bacteroides and reducing the ratio of Firmicutes and Bacteroidetes. Moreover, monitoring the dynamic change of gut microflora may indicate patient prognosis and personalized response to treatment. This review aims to provide novel perspectives and potential personalized interventions for future HTN management from the perspective of gut microbiota.
Collapse
|
49
|
Li J, Yang X, Zhou X, Cai J. The Role and Mechanism of Intestinal Flora in Blood Pressure Regulation and Hypertension Development. Antioxid Redox Signal 2021; 34:811-830. [PMID: 32316741 DOI: 10.1089/ars.2020.8104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Hypertension (HTN) has a complex etiology that is characterized by genetic and environmental factors. It has become a global health burden leading to cardiovascular diseases and kidney diseases, ultimately progressing to premature death. Accumulating evidence indicated that gut microbiome was associated with metabolic disorders and inflammation, which were closely linked to HTN. Recent Advances: Recent studies using bacterial genomic analysis and fecal microbiota transplantation as well as many lines of seminal evidence demonstrated that aberrant gut microbiome was significantly associated with HTN. The intestinal microbiome of both patients and animals with HTN had decreased bacterial diversity, disordered microbial structure and functions, and altered end products of fermentation. Gut dysbiosis and metabolites of the gut microbiota play an important role in blood pressure (BP) control, and they are therefore responsible for developing HTN. Critical Issues: This study aimed at focusing on the recent advances in understanding the role played by gut bacteria and the mechanisms underlying the pathological milieu that induced elevated BP and led to HTN pathogenesis. Potential intervention strategies targeting the correction of gut dysbiosis to improve HTN development were summarized. Future Directions: Larger numbers of fecal transplants from participants with HTN should be carried out to examine the magnitude of BP changes with the replacement of the gut microbiome. The proposed mechanisms for the gut in regulating BP remain to be verified. Whether intervention strategies using probiotics, dietary interventions, bacteriophages, and fecal transplants are feasible for individuals with HTN remains to be explored. Antioxid. Redox Signal. 34, 811-830.
Collapse
Affiliation(s)
- Jing Li
- Heart Center, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypertension, Beijing, China
| | - Xinchun Yang
- Heart Center, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypertension, Beijing, China
| | - Xin Zhou
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease of China, Hypertension Center, National Center for Cardiovascular Diseases of China, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Cai Y, Juszczak HM, Cope EK, Goldberg AN. The Microbiome in Obstructive Sleep Apnea. Sleep 2021; 44:6168416. [PMID: 33705556 DOI: 10.1093/sleep/zsab061] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/06/2021] [Indexed: 12/25/2022] Open
Abstract
Recent evidence has highlighted important associations between obstructive sleep apnea and the microbiome. Although the intricacies of the pathophysiologic mechanisms are not well understood, available evidence suggests a bidirectional relationship between OSA and microbiota composition. Sleep fragmentation, intermittent hypoxia, and intermittent hypercapnia all play significant roles in altering the microbiome, and initial evidence has shown that alterations of the microbiota affect sleep patterns. Animal model evidence strongly supports the idea that the microbiome mediates disease states associated with OSA including hypertension, atherosclerosis, and obesity. The majority of evidence focuses on changes in the gut microbiome, which may result from OSA as well as contribute to sleep pattern changes, OSA-related CVD, and obesity. Meanwhile, a developing body of work suggests changes in the upper airway microbiome may be associated with OSA and periodontitis-related oral cavity microbiome changes may have significance in OSA-related CVD. Lastly, while evidence is limited, several studies suggest there may be a role for treatment of OSA and OSA-related comorbidities through alteration of the microbiome with probiotics, prebiotics, and microbiota transplantation. These early animal and human studies begin to characterize the interrelationships of the microbiome and OSA and may lead to new avenues for treatment.
Collapse
Affiliation(s)
- Yi Cai
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Hailey M Juszczak
- School of Medicine, University of California, San Francisco, CA, USA
| | - Emily K Cope
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Andrew N Goldberg
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|