1
|
Gu H, Zhang Y, Sun J, Liu L, Liu Z. Exploring the effect and mechanism of action of Jinlida granules (JLD) in the treatment of diabetes-associated cognitive impairment based on network pharmacology with experimental validation. Ann Med 2025; 57:2445181. [PMID: 39723533 DOI: 10.1080/07853890.2024.2445181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/19/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVES To explore the effect and the probable mechanisms of JLD in the treatment of type 2 diabetes mellitus (T2DM) - associated cognitive impairment (TDACI). METHODS The effect of JLD in combating TDACI was assessed in T2DM model mice by conducting Morris water maze (MWM) behaviour testing. Active components and their putative targets, as well as TDACI-related targets, were collected from public databases. Protein-protein interactions (PPIs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and molecular docking were then utilized to explore potential molecular network mechanisms. Finally, the main targets were verified in animal model experiments. RESULTS MWM test showed that JLD improved aspects of behaviour in T2DM model mice. JLD improved glucose intolerance, tissue insulin sensitivity, lipid metabolism and enhanced synapse-associated protein expression in hippocampus tissue. Network pharmacology revealed 185 active components, 337 targets of JLD, and 7998 TDACI related targets were obtained . PPI network analyses revealed 39 core targets. GO and KEGG analyses suggested that JLD might improve TDACI by regulating gene expression, apoptotic processes and inflammatory responses mainly via PI3K-AKT and AGE-RAGE signaling pathways. Molecular docking revealed strong binding of the main components to core targets. JLD reduced hippocampus tissue expression of the inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL6), core targets of treatment of TDACI. CONCLUSIONS The findings suggested that JLD has the potential to improve TDACI through multiple components, multiple targets and multiple pathways. JLD may be a promising treatment for diabetic cognitive impairment.
Collapse
Affiliation(s)
- Haiyan Gu
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Yuxin Zhang
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Jinghua Sun
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Lipeng Liu
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Zanchao Liu
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| |
Collapse
|
2
|
Fang T, Wang J, Sun S, Deng X, Xue M, Han F, Sun B, Chen L. JinLiDa granules alleviates cardiac hypertrophy and inflammation in diabetic cardiomyopathy by regulating TP53. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155659. [PMID: 38759318 DOI: 10.1016/j.phymed.2024.155659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/14/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND JinLiDa granules (JLD) is a traditional Chinese medicine (TCM) used to treat type 2 diabetes mellitus with Qi and Yin deficiency. Clinical evidence has shown that JLD can alleviate diabetic cardiomyopathy, but the exact mechanism is not yet clear. PURPOSE The purpose of this study was to examine the potential role and mechanism of JLD in the treatment of diabetic cardiomyopathy through network pharmacological analysis and basic experiments. METHODS The targets of JLD associated with diabetic cardiomyopathy were examined by network pharmacology. Protein interaction analysis was performed on the targets, and the associated pathways were searched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Diabetic mice were treated with low or high doses of JLD by gavage, and AC16 and H9C2 cardiomyocytes exposed to high-glucose conditions were treated with JLD. The analysis results were verified by various experimental techniques to examine molecular mechanisms. RESULTS Network pharmacological analysis revealed that JLD acted on the tumor suppressor p53 (TP53) during inflammation and fibrosis associated with diabetic cardiomyopathy. The results of basic experiments showed that after JLD treatment, ventricular wall thickening in diabetic mouse hearts was attenuated, cardiac hypertrophy and myocardial inflammation were alleviated, and the expression of cardiac hypertrophy- and inflammation-related factors in cardiomyocytes exposed to a high-glucose environment was decreased. Cardiomyocyte morphology also improved after JLD treatment. TP53 expression and the tumor necrosis factor (TNF) and transforming growth factor beta-1 (TGFβ1) signaling pathways were significantly altered, and inhibiting TP53 expression effectively alleviated the activation of the TNF and TGFβ1 signaling pathways under high glucose conditions. Overexpression of TP53 activated these signaling pathways. CONCLUSIONS JLD acted on TP53 to regulate the TNF and TGFβ1 signaling pathways, effectively alleviating cardiomyocyte hypertrophy and inflammation in high glucose and diabetic conditions. Our study provides a solid foundation for the future treatment of diabetic cardiomyopathy with JLD.
Collapse
Affiliation(s)
- Ting Fang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Jingyi Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Shengnan Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xiaoqing Deng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Mei Xue
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Fei Han
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
3
|
Ji H, Zhao X, Chen X, Fang H, Gao H, Wei G, Zhang M, Kuang H, Yang B, Cai X, Su Y, Piao C, Zhao S, Li L, Sun W, Xu T, Xu Q, Fan Y, Ye J, Yao C, Shang M, Song G, Chen L, Zheng Q, Xiao X, Yan L, Lian F, Tong X, Jia Z. Jinlida for Diabetes Prevention in Impaired Glucose Tolerance and Multiple Metabolic Abnormalities: The FOCUS Randomized Clinical Trial. JAMA Intern Med 2024; 184:727-735. [PMID: 38829648 PMCID: PMC11148787 DOI: 10.1001/jamainternmed.2024.1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/07/2024] [Indexed: 06/05/2024]
Abstract
Importance Previous studies have shown that Jinlida (JLD) granules, an approved treatment for type 2 diabetes in China, can reduce blood glucose level, reduce glycated hemoglobin (HbA1c), and improve insulin resistance in people with type 2 diabetes. Objective To evaluate the effect of long-term administration of JLD vs placebo on the incidence of diabetes in participants with impaired glucose tolerance (IGT) and multiple metabolic abnormalities. Design, Setting, and Participants This multicenter, double-blind, placebo-controlled randomized clinical trial (FOCUS) was conducted across 35 centers in 21 cities in China from June 2019 to February 2023. Individuals aged 18 to 70 years with IGT and multiple metabolic abnormalities were enrolled. Intervention Participants were randomly allocated 1:1 to receive JLD or placebo (9 g, 3 times per day, orally). They continued this regimen until they developed diabetes, withdrew from the study, were lost to follow-up, or died. Main Outcomes and Measures The primary outcome was the occurrence of diabetes, which was determined by 2 consecutive oral glucose tolerance tests. Secondary outcomes included waist circumference; fasting and 2-hour postprandial plasma glucose levels; HbA1c; fasting insulin level; homeostatic model assessment for insulin resistance (HOMA-IR); total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels; ankle-brachial index; and carotid intima-media thickness. Results A total of 889 participants were randomized, of whom 885 were in the full analysis set (442 in the JLD group; 443 in the placebo group; mean [SD] age, 52.57 [10.33] years; 463 [52.32%] female). Following a median observation period of 2.20 years (IQR, 1.27-2.64 years), participants in the JLD group had a lower risk of developing diabetes compared with those in the placebo group (hazard ratio, 0.59; 95% CI, 0.46-0.74; P < .001). During the follow-up period, the JLD group had a between-group difference of 0.95 cm (95% CI, 0.36-1.55 cm) in waist circumference, 9.2 mg/dL (95% CI, 5.4-13.0 mg/dL) in 2-hour postprandial blood glucose level, 3.8 mg/dL (95% CI, 2.2-5.6 mg/dL) in fasting blood glucose level, 0.20% (95% CI, 0.13%-0.27%) in HbA1c, 6.6 mg/dL (95% CI, 1.9-11.2) in total cholesterol level, 4.3 mg/dL (95% CI, 0.8-7.7 mg/dL) in low-density lipoprotein cholesterol level, 25.7 mg/dL (95% CI, 15.9-35.4 mg/dL) in triglyceride levels, and 0.47 (95% CI, 0.12-0.83) in HOMA-IR compared with the placebo group. After 24 months of follow-up, the JLD group had a significant improvement in ankle-brachial index and waist circumference compared with the placebo group. Conclusions and Relevance The findings suggest that JLD can reduce the risk of diabetes in participants with IGT and multiple metabolic abnormalities. Trial Registration Chinese Clinical Trial Register: ChiCTR1900023241.
Collapse
Affiliation(s)
- Hangyu Ji
- Good Clinical Practice Office, Guang’anmen
Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Department of Endocrinology, Guang’anmen
Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyan Chen
- Department of Prevention and Treatment of
Disease, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou,
China
| | - Hui Fang
- Department of Endocrinology, Tangshan Gongren
Hospital, Tangshan, China
| | - Huailin Gao
- Department of Endocrinology, Hebei Yiling
Hospital, Shijiazhuang, China
| | - Geng Wei
- Department of Traditional Chinese Medicine,
Shijiazhuang 2nd Hospital, Shijiazhuang, China
| | - Min Zhang
- Department of General Practice, Baotou Central
Hospital, Baotou, China
| | - Hongyu Kuang
- Department of Endocrinology, The First
Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baijing Yang
- Department of Traditional Chinese Medicine, The
First Affiliated Hospital of Medical College of Shihezi University, Shihezi,
China
| | - Xiaojun Cai
- Department of Endocrinology, Heilongjiang
Academy of Traditional Chinese Medicine, Harbin, China
| | - Yanjin Su
- Department of Endocrinology, Affiliated
Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang,
China
| | - Chunli Piao
- Department of Endocrinology, Shenzhen Hospital
(Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shuyu Zhao
- Department of Endocrinology, Tongliao City
Horqin District First People’s Hospital, Tongliao, China
| | - Liyang Li
- Department of Endocrinology, Baoji Second
People’s Hospital, Baoji, China
| | - Wenliang Sun
- Department of Endocrinology, Hebei Cangzhou
Hospital of Integrated Chinese and Western Medicine, Cangzhou, China
| | - Tianshu Xu
- Department of Traditional Chinese Medicine,
Nanjing Drum Tower Hospital, Nanjing, China
| | - Qinghua Xu
- Geriatrics Department, Liaocheng
People’s Hospital, Liaocheng, China
| | - Yuan Fan
- Department of Endocrinology, Second Affiliated
Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Jianhua Ye
- Department of Endocrinology, The First
Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Chen Yao
- Department of Biostatistics, Peking University
First Hospital, Beijing, China
| | - Meixia Shang
- Department of Biostatistics, Peking University
First Hospital, Beijing, China
| | - Guangyao Song
- Department of Endocrinology, Hebei General
Hospital, Shijiazhuang, China
| | - Liming Chen
- NHC Key Laboratory of Hormones and
Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology,
Tianjin Medical University, Tianjin, China
| | - Qingshan Zheng
- Center for Drug Clinical Research, Shanghai
University of Traditional Chinese Medicine, Shanghai, China
| | - Xinhua Xiao
- Department of Endocrinology, Peking Union
Medical College Hospital, Beijing, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-Sen
Memorial Hospital, Sun Yai-Sen University, Guangzhou, China
| | - Fengmei Lian
- Good Clinical Practice Office, Guang’anmen
Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Metabolic Disease Institute, Guang’anmen
Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenhua Jia
- Department of Endocrinology, Hebei Yiling
Hospital, Shijiazhuang, China
- State Key Laboratory for Innovation and
Transformation of Luobing Theory of Hebei Yiling Hospital,
Shijiazhuang, Hebei Province, China
| |
Collapse
|
4
|
Zhang Q, Hu S, Jin Z, Wang S, Zhang B, Zhao L. Mechanism of traditional Chinese medicine in elderly diabetes mellitus and a systematic review of its clinical application. Front Pharmacol 2024; 15:1339148. [PMID: 38510656 PMCID: PMC10953506 DOI: 10.3389/fphar.2024.1339148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 03/22/2024] Open
Abstract
Objective: Affected by aging, the elderly diabetes patients have many pathological characteristics different from the young people, including more complications, vascular aging, cognitive impairment, osteoporosis, and sarcopenia. This article will explore their pathogenesis and the mechanism of Traditional Chinese medicine (TCM) intervention, and use the method of systematic review to evaluate the clinical application of TCM in elderly diabetes. Method: Searching for randomized controlled trials (RCTs) published from January 2000 to November 2023 in the following databases: Web of Science, Pubmed, Embase, Cochrane Library, Sinomed, China National Knowledge Internet, Wanfang and VIP. They were evaluated by three subgroups of Traditional Chinese Prescription, Traditional Chinese patent medicines and Traditional Chinese medicine extracts for their common prescriptions, drugs, adverse reactions and the quality of them. Results and Conclusion: TCM has the advantages of multi-target and synergistic treatment in the treatment of elderly diabetes. However, current clinical researches have shortcomings including the inclusion of age criteria and diagnosis of subjects are unclear, imprecise research design, non-standard intervention measures, and its safety needs further exploration. In the future, the diagnosis of elderly people with diabetes needs to be further clarified. Traditional Chinese patent medicines included in the pharmacopoeia can be used to conduct more rigorous RCTs, and then gradually standardize the traditional Chinese medicine prescriptions and traditional Chinese medicine extracts, providing higher level evidence for the treatment of elderly diabetes with traditional Chinese medicine.
Collapse
Affiliation(s)
- Qiqi Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Shiwan Hu
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Sicheng Wang
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Boxun Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Zhang Y, Jiao X, Liu J, Feng G, Luo X, Zhang M, Zhang B, Huang L, Long Q. A new direction in Chinese herbal medicine ameliorates for type 2 diabetes mellitus: Focus on the potential of mitochondrial respiratory chain complexes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117484. [PMID: 38012971 DOI: 10.1016/j.jep.2023.117484] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes is a common chronic disease. Chinese herbal medicine (CHM) has a history of several thousand years in the treatment of diabetes, and active components with hypoglycemic effects extracted from various CHM, such as polysaccharides, flavonoids, terpenes, and steroidal saponins, have been widely used in the treatment of diabetes. AIM OF THE STUDY Research exploring the potential of various CHM compounds to regulate the mitochondrial respiratory chain complex to improve type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS The literature data were primarily obtained from authoritative databases such as PubMed, CNKI, Wanfang, and others within the last decade. The main keywords used include "type 2 diabetes mellitus", "Chinese medicine", "Chinese herbal medicine", "mitochondrial respiratory chain complex", and "mitochondrial dysfunction". RESULTS Chinese herbal medicine primarily regulates the activity of mitochondrial respiratory chain complexes in various tissues such as liver, adipose tissue, skeletal muscle, pancreatic islets, and small intestine. It improves cellular energy metabolism through hypoglycemic, antioxidant, anti-inflammatory and lipid-modulating effects. Different components of CHM can regulate the same mitochondrial respiratory chain complexes, while the same components of a particular CHM can regulate different complex activities. The active components of CHM target different mitochondrial respiratory chain complexes, regulate their aberrant changes and effectively improve T2DM and its complications. CONCLUSION Chinese herbal medicine can modulate the function of mitochondrial respiratory chain complexes in various cell types and exert their hypoglycemic effects through various mechanisms. CHM has significant therapeutic potential in regulating mitochondrial respiratory chain complexes to improve T2DM, but further research is needed to explore the underlying mechanisms and conduct clinical trials to assess the safety and efficacy of these medications. This provides new perspectives and opportunities for personalized improvement and innovative developments in diabetes management.
Collapse
Affiliation(s)
- Yinghui Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xinyue Jiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianying Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gang Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mingyue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Binzhi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Kang X, Sun Y, Duan Y, Zhang Y, An X, Jin D, Lian F, Tong X. Jinlida granules combined with metformin improved the standard-reaching rate of blood glucose and clinical symptoms of patients with type 2 diabetes: secondary analysis of a randomized controlled trial. Front Endocrinol (Lausanne) 2023; 14:1142327. [PMID: 37305056 PMCID: PMC10248397 DOI: 10.3389/fendo.2023.1142327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Background Previous studies found that Jinlida granules could significantly reduce blood glucose levels and enhance the low-glucose action of metformin. However, the role of Jinlida in the standard-reaching rate of blood glucose and improving clinical symptoms has yet to be studied. We aimed to elaborate on the efficacy of Jinlida in type 2 diabetes (T2D) patients who experience clinical symptoms based on secondary analysis of a randomized controlled trial. Methods Data were analyzed from a 12-week, randomized, placebo-controlled study of Jinlida. The standard-reaching rate of blood glucose, the symptom disappearance rate, the symptom improvement rate, the efficacy of single symptoms, and the total symptom score were evaluated. The correlation between HbA1c and the improvement of clinical symptoms was analyzed. Results For 12 weeks straight, 192 T2D patients were randomly assigned to receive either Jinlida or a placebo. The treatment group showed statistically significant differences in the standard-reaching rate of HbA1c < 6.5% (p = 0.046) and 2hPG (< 10 mmol/L, 11.1 mmol/L) (p < 0.001), compared with the control group. The standard-reaching rate of HbA1c < 7% (p = 0.06) and FBG < 7.0 mmol/L (p = 0.079) were not significantly different between the treatment and control groups. Five symptoms exhibited a statistical difference in symptom disappearance rate (p < 0.05). All the symptoms exhibited a significant difference in symptom improvement rate (p < 0.05). The mean change in total symptom score from baseline to week 12 was -5.45 ± 3.98 in the treatment group and -2.38 ± 3.11 in the control group, with statistically significant differences (p < 0.001). No significant correlations were noted between symptom improvement and HbA1c after 12 weeks of continuous intervention with Jinlida granules or placebo. Conclusion Jinlida granules can effectively improve the standard-reaching rate of blood glucose and clinical symptoms of T2D patients, including thirst, fatigue, increased eating with rapid hungering, polyuria, dry mouth, spontaneous sweating, night sweat, vexing heat in the chest, palms, and soles, and constipation. Jinlida granules can be used as an effective adjuvant treatment for T2D patients who experience those symptoms.
Collapse
Affiliation(s)
- Xiaomin Kang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqing Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong An
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Fengmei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Hao YY, Cui WW, Gao HL, Wang MY, Liu Y, Li CR, Hou YL, Jia ZH. Jinlida granules ameliorate the high-fat-diet induced liver injury in mice by antagonising hepatocytes pyroptosis. PHARMACEUTICAL BIOLOGY 2022; 60:274-281. [PMID: 35138995 PMCID: PMC8843117 DOI: 10.1080/13880209.2022.2029501] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Jinlida (JLD) as a traditional Chinese medicine formula has been used to treat type 2 diabetes mellitus (T2DM) and studies have shown its anti-obesity effect. OBJECTIVE To investigate the therapeutic effects of JLD in a mouse model of non-alcoholic fatty liver (NAFL). MATERIALS AND METHODS C57BL/6J mice were divided into three groups and fed a low-diet diet (LFD), high-fat diet (HFD), or HFD + JLD (3.8 g/kg) for 16 weeks, respectively. The free fatty acids-induced lipotoxicity in HepG2 cells were used to evaluate the anti-pyroptotic effects of JLD. The pharmacological effects of JLD on NAFL were investigated by pathological examination, intraperitoneal glucose and insulin tolerance tests, western blotting, and quantitative real-time PCR. RESULTS In vivo studies showed that JLD ameliorated HFD-induced liver injury, significantly decreased body weight and enhanced insulin sensitivity and improved glucose tolerance. Furthermore, JLD suppressed both the mRNA expression of caspase-1 (1.58 vs. 2.90), IL-1β (0.93 vs. 3.44) and IL-18 (1.34 vs. 1.60) and protein expression of NLRP3 (2.04 vs. 5.71), pro-caspase-1 (2.68 vs. 4.92) and IL-1β (1.61 vs. 2.60). In vitro, JLD inhibited the formation of lipid droplets induced by 2 mM FFA (IC50 = 2.727 mM), reduced the protein expression of NLRP3 (0.74 vs. 2.27), caspase-1 (0.57 vs. 2.68), p20 (1.67 vs. 3.33), and IL-1β (1.44 vs. 2.41), and lowered the ratio of p-IKB-α/IKB-α (0.47 vs. 2.19). CONCLUSION JLD has a protective effect against NAFLD, which may be related to its anti-pyroptosis, suggesting that JLD has the potential as a novel agent in the treatment of NAFLD.
Collapse
Affiliation(s)
- Yuan-yuan Hao
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
| | - Wen-wen Cui
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
- Hebei Yiling Pharmaceutical Research Institute, Hebei, China
| | - Huai-lin Gao
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
- Hebei Yiling Hospital, Hebei, China
| | - Ming-ye Wang
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
| | - Yan Liu
- Xianghe Hospital of Traditional Chinese Medicine, Hebei, China
| | - Cui-ru Li
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Hebei, China
| | - Yun-long Hou
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
- Hebei Yiling Pharmaceutical Research Institute, Hebei, China
| | - Zhen-hua Jia
- Hebei Yiling Hospital, Hebei, China
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Hebei, China
| |
Collapse
|
8
|
Jiang L, Wang S, Zhao J, Chien C, Zhang Y, Su G, Chen X, Song D, Chen Y, Huang W, Xiao Y, Cao Y, Hu Z. Treatment options of traditional Chinese patent medicines for dyslipidemia in patients with prediabetes: A systematic review and network meta-analysis. Front Pharmacol 2022; 13:942563. [PMID: 36105194 PMCID: PMC9465834 DOI: 10.3389/fphar.2022.942563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To compare the clinical efficacy and safety of SIX Traditional Chinese Patent Medicines (TCPM) recommended by guidelines in improving lipids for patients with prediabetes by network meta-analysis. Methods: Randomized controlled trials of 6 TCPM in the treatment of prediabetes were searched systematically in various databases. After extracting effective data, the risk of bias was assessed using Review Manager 5.3 and Cochrane Collaboration Systems Evaluator's Manual. Network meta-analysis was performed using STATA 15.0 based on the frequency statistical model. The effect size and credibility of the evidence for the intervention were summarized based on a minimal contextualized framework. Results: A total of 27 studies involving 2,227 patients were included. Compared with lifestyle modification (LM), Shenqi + LM [SMD -0.49 (95% CI: -0.85, -0.12)] and Jinqi + LM [SMD -0.44 (95% CI: -0.81, -0.06)] showed statistically significant effect in lowering TG, Shenqi + LM [SMD -0.51 (95%CI: -0.86, -0.17)] and Jinqi + LM [SMD -0.44 (95%CI: -0.80, -0.08)] in lowering TC, Jinlida + LM [SMD -0.31 (95%CI: -0.59, -0.04)] in lowering LDL-C, Shenqi + LM [SMD 0.29 (95%CI: 0.06, 0.51)] and Jinqi + LM [SMD 0.16 (95%CI: 0.01, 0.31)] in increasing HDL-C. Conclusion: For patients with prediabetes, Traditional Chinese patent medicine Jinqi and Shenqi combined with lifestyle modification were associated with a significant reduction in TG and TC, while Shenqi + LM was among the most effective. Jinlida + LM was among the least effective. Systematic Review Registration: https://clinicaltrials.gov/, identifier PROSPERO(CRD42021279332).
Collapse
Affiliation(s)
- Li Jiang
- Section II of Endocrinology and Nephropathy Department of Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Shidong Wang
- Section II of Endocrinology and Nephropathy Department of Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jinxi Zhao
- Section II of Endocrinology and Nephropathy Department of Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Chieh Chien
- Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
| | - Yaofu Zhang
- Section II of Endocrinology and Nephropathy Department of Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Guanxun Su
- Section II of Endocrinology and Nephropathy Department of Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Chen
- Section II of Endocrinology and Nephropathy Department of Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dechao Song
- Section II of Endocrinology and Nephropathy Department of Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yu Chen
- Section II of Endocrinology and Nephropathy Department of Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Weijun Huang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yonghua Xiao
- Section II of Endocrinology and Nephropathy Department of Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yandong Cao
- Section II of Endocrinology and Nephropathy Department of Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Zixian Hu
- Section II of Endocrinology and Nephropathy Department of Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Cheng Y, Xu LY, Zhang N, Yang JH, Guan L, Liu HM, Zhang YX, Li RM, Xu JW. Erchen Decoction Ameliorates the Metabolic Abnormalities of High-Fat Diet-Fed Rats. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2183542. [PMID: 35844447 PMCID: PMC9279095 DOI: 10.1155/2022/2183542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Objective Brown adipose tissue (BAT) dissipates chemical energy to protect against obesity. In the present study, we aimed to determine the effects of Erchen decoction on the lipolysis and thermogenesis function of BAT in high-fat diet-fed rats. Methods Sprague-Dawley rats were randomly divided into four groups, which were fed a control diet (C) or a high-fat diet (HF), and the latter was administered with high and low doses of Erchen decoction by gavage once a day, for 12 weeks. Body weight, the serum lipid profile, serum glucose, and insulin levels of the rats were evaluated. In addition, the phosphorylation and protein and mRNA expression of AMP-activated protein kinase (AMPK), adipose triglyceride lipase (ATGL), peroxisome proliferator-activated receptor γ coactivator- (PGC-) 1α, and uncoupling protein 1 (UCP-1) in BAT were measured by immunoblotting and RT-PCR. Results Erchen decoction administration decreased body weight gain and ameliorated the abnormal lipid profile and insulin resistance index of the high-fat diet-fed rats. In addition, the expression of p-AMPK and ATGL in the BAT was significantly increased by Erchen decoction. Erchen decoction also increased the protein and mRNA expression of PGC-1α and UCP-1 in BAT. Conclusion Erchen decoction ameliorates the metabolic abnormalities of high-fat diet-fed rats, at least in part via activation of lipolysis and thermogenesis in BAT.
Collapse
Affiliation(s)
- Ya Cheng
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Lu-Yao Xu
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Ning Zhang
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Jun-Hua Yang
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Li Guan
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Hai-Mei Liu
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Ya-Xing Zhang
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Run-Mei Li
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Jin-Wen Xu
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| |
Collapse
|
10
|
Zhou HR, Wang TX, Hao YY, Hou YL, Wei C, Yao B, Wu X, Huang D, Zhang H, Wu YL. Jinlida Granules Reduce Obesity in db/db Mice by Activating Beige Adipocytes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4483009. [PMID: 35647185 PMCID: PMC9135524 DOI: 10.1155/2022/4483009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022]
Abstract
Recent studies indicate existence of beige adipocytes in adults. Upon activation, beige adipocytes burn energy for thermogenesis and contribute to regulation of energy balance. In this study, we have analyzed whether Jinlida granules (JLD) could activate beige adipocytes. JLD suspended in 0.5% carboxymethyl cellulose (CMC) was gavage fed to db/db mice at a daily dose of 3.8 g/kg. After 10 weeks, body weight, biochemical, and histological analyses were performed. In situ hybridization, immunofluorescence, and western blotting were conducted to test beige adipocyte activation in mice. X9 cells were induced with induction medium and maintenance medium containing 400 μg/mL of JLD. After completion of induction, cells were analyzed by Nile red staining, time polymerase chain reaction (PCR), western blotting, and immunofluorescence to understand the effect of JLD on the activation of beige adipocytes. A molecular docking method was used to preliminarily identify compounds in JLD, which hold the potential activation effect on uncoupling protein 1 (UCP1). JLD treatment significantly improved obesity in db/db mice. Biochemical results showed that JLD reduced blood glucose (GLU), triglyceride (TG), and low-density lipoprotein cholesterol (LDL) levels as well as liver aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in mice. Hematoxylin and eosin staining (H&E) showed that JLD reduced hepatocyte ballooning changes in the liver. Immunofluorescence showed that JLD increased the expression of the thermogenic protein, UCP1, in the beige adipose tissue of mice. JLD also increased the expression of UCP1 and inhibited the expression of miR-27a in X9 cells. Molecular docking results showed that epmedin B, epmedin C, icariin, puerarin, and salvianolic acid B had potential activation effects on UCP1. The results suggest that JLD may activate beige adipocytes by inhibiting miR-27a expression, thereby promoting thermogenesis in beige adipocytes. This study provides a new pharmacological basis for the clinical use of JLD.
Collapse
Affiliation(s)
- Hong-ru Zhou
- Hebei Medical University, No. 361 Zhongshan Road, Chang'an District, Shijiazhuang, Hebei Province, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Tong-xing Wang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Yuan-yuan Hao
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yun-long Hou
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Cong Wei
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Bing Yao
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Xuan Wu
- Hebei Medical University, No. 361 Zhongshan Road, Chang'an District, Shijiazhuang, Hebei Province, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| | - Dan Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Hui Zhang
- The First Affiliated Hospital of Henan University of CM, Zhengzhou, China
| | - Yi-ling Wu
- Hebei Medical University, No. 361 Zhongshan Road, Chang'an District, Shijiazhuang, Hebei Province, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Diseases), Shijiazhuang, China
| |
Collapse
|
11
|
Cheang I, Liao S, Zhu Q, Ni G, Wei C, Jia Z, Wu Y, Li X. Integrating Evidence of the Traditional Chinese Medicine Collateral Disease Theory in Prevention and Treatment of Cardiovascular Continuum. Front Pharmacol 2022; 13:867521. [PMID: 35370696 PMCID: PMC8964948 DOI: 10.3389/fphar.2022.867521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease has become a major public health problem. The concept of “cardiovascular continuum” refers to the continuous process from the risk factors that lead to arteriosclerosis, vulnerable plaque rupture, myocardial infarction, arrhythmia, heart failure, and death. These characteristics of etiology and progressive development coincide with the idea of “preventing disease” in traditional Chinese medicine (TCM), which corresponds to the process of systemic intervention. With the update of the understanding via translational medicine, this article reviews the current evidence of the TCM collateral disease theory set prescriptions in both mechanical and clinical aspects, which could lead to the development of new therapeutic strategies for prevention and treatment.
Collapse
Affiliation(s)
- Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Gehui Ni
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Cong Wei
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China.,Hebei Yiling Hospital, Key Disciplines of State Administration of TCM for Collateral Disease, Shijiazhuang, China
| | - Zhenhua Jia
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China.,Hebei Yiling Hospital, Key Disciplines of State Administration of TCM for Collateral Disease, Shijiazhuang, China
| | - Yiling Wu
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China.,Hebei Yiling Hospital, Key Disciplines of State Administration of TCM for Collateral Disease, Shijiazhuang, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Shan LP, Zhang X, Hu Y, Liu L, Chen J. Antiviral activity of esculin against white spot syndrome virus: A new starting point for prevention and control of white spot disease outbreaks in shrimp seedling culture. JOURNAL OF FISH DISEASES 2022; 45:59-68. [PMID: 34536027 DOI: 10.1111/jfd.13533] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
White spot syndrome virus (WSSV) is a pathogenic and threatening virus in shrimp culture for which there is no effective control strategy. Finding antiviral lead compounds for the development of anti-WSSV drugs is urgent and necessary; in this study, esculin from 12 monomeric compounds exhibited an excellent anti-WSSV activity. The results showed that esculin increased the survival rate of WSSV-infected shrimps by 59% and reduced the virus copy number in vivo over 90% at 100 μM. In the pre-treatment and post-treatment experiments, esculin could prevent and treat WSSV infection. Compared with the control group, the virus copy number decreased by 30% after 6 h of esculin pre-incubation with WSSV particles and inhibited horizontal transmission of WSSV to a certain extent. Considering that the antiviral activity of esculin was stable in the aquacultural water for 2 days, we evaluated the dosing pattern of continuous medication changes. Obviously, the survival rate of WSSV-infected shrimps was 0% at 108 h when no esculin exchange was made, while at 120 h the survival rate was over 40% at continuous medicine changes. In addition, esculin significantly increased the expression of antimicrobial peptides and thus improved the ability of shrimp to resist WSSV. Overall, our findings suggest that esculin has the potential to be developed into an anti-WSSV medicine.
Collapse
Affiliation(s)
- Li-Peng Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| | - Xu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Zhao X, Liu L, Liu J. Treatment of type 2 diabetes mellitus using the traditional Chinese medicine Jinlida as an add-on medication: A systematic review and meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2022; 13:1018450. [PMID: 36325446 PMCID: PMC9618612 DOI: 10.3389/fendo.2022.1018450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Numerous randomized controlled trials (RCTs) conducted in China have shown that jinlida granules are a promising traditional Chinese medicine (TCM) for the treatment of persons with type 2 diabetes mellitus (T2DM). Controversial results have been reported in different RCTs. The aim of our study was to evaluate the adjuvant hypoglycemic effect of jinlida granules on persons with T2DM and to explore the source of heterogeneity between these RCTs. MATERIALS AND METHODS Medical article databases were individually searched by two authors for RCTs that provided data regarding the effect of jinlida granules in the treatment of T2DM before 1 June 2022. The methodological quality of the included RCTs was comprehensively assessed by two authors. Data from RCTs with low risk of bias were pooled using Stata SE 12.0 (random-effects model). Evidence derived from the meta-analysis will be assessed according to the GRADE system. RESULTS Twenty-two RCTs were eventually included in the systematic review and three RCTs with low risk of bias were analyzed in the meta-analysis. Compared with the control groups, significant changes were found in lowering glycosylated hemoglobin a1c (mean difference -0.283 with 95% CI -0.561, -0.004; P=0.046), and were not found in lowering 2-hour postprandial glucose (mean difference -0.314 with 95% CI -1.599, 0.972; P=0.632) and fasting blood glucose (mean difference -0.152 with 95% CI -0.778, -0.474; P=0.634) in the jinlida groups. The GRADE-assessed evidence quality for the outcomes was moderate. CONCLUSION The adjuvant hypoglycemic effect of jinlida granules on adult Chinese persons with T2DM was statistically found in lowering HbA1c and was not statistically found in lowering FPG and 2h-PG. Evidence grading should be considered moderate, and the results should be interpreted cautiously. Whether the efficacy of HbA1c-lowering related to clinical significance remains to be investigated in future RCTs. Differences in HbA1c, FPG and 2h-PG at baseline and high risk of bias were important source of heterogeneity between these RCTs. In order to objectively evaluate the efficacy of jinlida granules on T2DM, it is urgently needed that high-quality RCTs evaluating the hypoglycemic effect of jinlida granules in the treatment of qi-yin deficiency pattern T2DM. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier CRD42018085135.
Collapse
Affiliation(s)
- Xuemin Zhao
- Department of Internal Medicine, Chengde Medical University, Chengde, China
- *Correspondence: Xuemin Zhao,
| | - Linfei Liu
- Sericultural Research Institute, Chengde Medical University, Chengde, China
| | - Jing Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
14
|
Wang Z, Zeng M, Wang Z, Qin F, Wang Y, Chen J, Christian M, He Z. Food phenolics stimulate adipocyte browning via regulating gut microecology. Crit Rev Food Sci Nutr 2021:1-27. [PMID: 34738509 DOI: 10.1080/10408398.2021.1997905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fat browning has piqued the interest of researchers as a potential target for treating obesity and related metabolic disorders. Recruitment of brown adipocytes leads to enhanced energy dissipation and reduced adiposity, thus facilitating the maintenance of metabolic homeostasis. Evidence is increasing to support the crucial roles of polyphenols and gut microecology in turning fat "brown". However, it is not clear whether the intestinal microecology is involved in polyphenol-mediated regulation of adipose browning, so this concept is worthy of exploration. In this review, we summarize the current knowledge, mostly from studies with murine models, supporting the concept that the effects of food phenolics on brown fat activation and white fat browning can be attributed to their regulatory actions on gut microecology, including microbial community profile, gut metabolites, and gut-derived hormones. Furthermore, the potential underlying pathways involved are also discussed. Basically, understanding gut microecology paves the way to determine the underlying roles and mechanisms of food phenolics in adipose browning.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yongzhi Wang
- Food and Beverage Department of Damin Food (Zhangzhou) Co., Ltd, Zhangzhou, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Xie ZJ, Novograd J, Itzkowitz Y, Sher A, Buchen YD, Sodhi K, Abraham NG, Shapiro JI. The Pivotal Role of Adipocyte-Na K peptide in Reversing Systemic Inflammation in Obesity and COVID-19 in the Development of Heart Failure. Antioxidants (Basel) 2020; 9:E1129. [PMID: 33202598 PMCID: PMC7697697 DOI: 10.3390/antiox9111129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023] Open
Abstract
This review summarizes data from several laboratories that have demonstrated a role of the Na/K-ATPase, specifically its α1 subunit, in the generation of reactive oxygen species (ROS) via the negative regulator of Src. Together with Src and other signaling proteins, the Na/K-ATPase forms an oxidant amplification loop (NKAL), amplifies ROS, and participates in cytokines storm in obesity. The development of a peptide fragment of the α1 subunit, NaKtide, has been shown to negatively regulate Src. Several groups showed that the systemic administration of the cell permeable modification of NaKtide (pNaKtide) or its selective delivery to fat tissue-adipocyte specific expression of NaKtide-ameliorate the systemic elevation of inflammatory cytokines seen in chronic obesity. Severe acute respiratory syndrome - coronavirus 2 (SARS-CoV-2), the RNA Coronavirus responsible for the COVID-19 global pandemic, invades cells via the angiotensin converting enzyme 2 (ACE-2) receptor (ACE2R) that is appended in inflamed fat tissue and exacerbates the formation of the cytokines storm. Both obesity and heart and renal failure are well known risks for adverse outcomes in patients infected with COVID-19. White adipocytes express ACE-2 receptors in high concentration, especially in obese patients. Once the virus invades the white adipocyte cell, it creates a COVID19-porphyrin complex which degrades and produces free porphyrin and iron and increases ROS. The increased formation of ROS and activation of the NKAL results in a further potentiated formation of ROS production, and ultimately, adipocyte generation of more inflammatory mediators, leading to systemic cytokines storm and heart failure. Moreover, chronic obesity also results in the reduction of antioxidant genes such as heme oxygenase-1 (HO-1), increasing adipocyte susceptibility to ROS and cytokines. It is the systemic inflammation and cytokine storm which is responsible for many of the adverse outcomes seen with COVID-19 infections in obese subjects, leading to heart failure and death. This review will also describe the potential antioxidant drugs and role of NaKtide and their demonstrated antioxidant effect used as a major strategy for improving obesity and epicardial fat mediated heart failure in the context of the COVID pandemic.
Collapse
Affiliation(s)
- Zi-jian Xie
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| | - Joel Novograd
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Yaakov Itzkowitz
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Ariel Sher
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Yosef D. Buchen
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Komal Sodhi
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| | - Nader G. Abraham
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| |
Collapse
|
16
|
High-fat diet-induced adipose tissue expansion occurs prior to insulin resistance in C57BL/6J mice. Chronic Dis Transl Med 2020; 6:198-207. [PMID: 32885155 PMCID: PMC7451745 DOI: 10.1016/j.cdtm.2020.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Indexed: 01/04/2023] Open
Abstract
Background To date, there is only scare evidence characterizing the temporal features and progression of metabolic dysfunction in high-fat diet (HFD)-fed obese mice. Hence, its specific pathogenesis remains unclear. Methods Sixty 6-week-old male C57BL/6J mice were randomly divided into HFD and control diet (CD) groups and sacrificed at 1, 5, 9, 13, 17, and 21 weeks, respectively. At weekly intervals, intraperitoneal glucose tolerance testing (IPGTT) and intraperitoneal insulin tolerance testing (IPITT) were performed in both groups. A detailed time course in HFD-fed mice was investigated by evaluating the initiation of glucose homeostasis impairment, dyslipidemia, systemic insulin sensitivity, monocyte chemoattractant protein-1 (MCP-1) levels, epididymal white adipose tissue (eWAT) expansion, macrophage content changes, pro-inflammatory (M1)/anti-inflammatory (M2) macrophage imbalance, lipid accumulation in the liver, and β-cell morphometry in the pancreas. Results In the HFD group, progressive weight gain and impairments in glucose metabolism (elevated fasting blood glucose and area under the curve (AUC) of IPGTT) were observed from the 3rd week, and a significantly elevated AUC of IPITT was first detected after week 7 of HFD feeding. As for dyslipidemia, after 9 weeks of feeding, the low-density lipoprotein cholesterol level and total cholesterol level in HFD group were significantly higher than those in the CD group (all P < 0.05), whereas no significant differences were shown in triglyceride level. Adipocyte size increased significantly in the HFD group in the 1st week, a phenotypic switch in eWAT from anti-inflammatory (M2) to pro-inflammatory (M1) macrophages was observed in the 5th week, and the metabolic inflammation was distinct in eWAT in the 9th week. Additionally, liver steatosis was considerably obvious at the 17th week and pancreatic β-cell morphometry did not change during 21 weeks of HFD feeding. Conclusion The eWAT expansion was detected early in HFD-induced obese mice, which occurred prior to obvious insulin resistance.
Collapse
|
17
|
Zhang C, He X, Sheng Y, Yang C, Xu J, Zheng S, Liu J, Xu W, Luo Y, Huang K. Allicin-induced host-gut microbe interactions improves energy homeostasis. FASEB J 2020; 34:10682-10698. [PMID: 32619085 DOI: 10.1096/fj.202001007r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Allicin (diallylthiosulfinate) is a natural food compound with multiple biological and pharmacological functions. However, the mechanism of beneficial role of Allicin on energy homeostasis is not well studied. Gut microbiota (GM) profoundly affects host metabolism via microbiota-host interactions and coevolution. Here, we investigated the interventions of beneficial microbiome induced by Allicin on energy homeostasis, particularly obesity, and related complications. Interestingly, Allicin treatment significantly improved GM composition and induced the most significant alteration enrichment of Bifidobacterium and Lactobacillus. Importantly, transplantation of the Allicin-induced GM to HFD mice (AGMT) played a remarkable role in decreasing adiposity, maintaining glucose homeostasis, and ameliorating hepatic steatosis. Furthermore, AGMT was effective in modulating lipid metabolism, activated brown adipose tissues (BATs), induced browning in sWAT, reduced inflammation, and inhibited the degradation of intestinal villi. Mechanically, AGMT significantly increased Blautia [short-chain fatty acids (SCFAs)-producing microbiota] and Bifidobacterium in HFD mice, also increased the SCFAs in the cecum, which has been proved many beneficial effects on energy homeostasis. Our study highlights that Allicin-induced host-gut microbe interactions plays an important role in regulating energy homeostasis, which provides a promising potential therapy for obesity and metabolic disorders based on host-microbe interactions.
Collapse
Affiliation(s)
- Chuanhai Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Yao Sheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Cui Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Jia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Shujuan Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Junyu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| |
Collapse
|