1
|
Ng YH, Koay YC, Marques FZ, Kaye DM, O’Sullivan JF. Leveraging metabolism for better outcomes in heart failure. Cardiovasc Res 2024; 120:1835-1850. [PMID: 39351766 PMCID: PMC11630082 DOI: 10.1093/cvr/cvae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 12/11/2024] Open
Abstract
Whilst metabolic inflexibility and substrate constraint have been observed in heart failure for many years, their exact causal role remains controversial. In parallel, many of our fundamental assumptions about cardiac fuel use are now being challenged like never before. For example, the emergence of sodium-glucose cotransporter 2 inhibitor therapy as one of the four 'pillars' of heart failure therapy is causing a revisit of metabolism as a key mechanism and therapeutic target in heart failure. Improvements in the field of cardiac metabolomics will lead to a far more granular understanding of the mechanisms underpinning normal and abnormal human cardiac fuel use, an appreciation of drug action, and novel therapeutic strategies. Technological advances and expanding biorepositories offer exciting opportunities to elucidate the novel aspects of these metabolic mechanisms. Methodologic advances include comprehensive and accurate substrate quantitation such as metabolomics and stable-isotope fluxomics, improved access to arterio-venous blood samples across the heart to determine fuel consumption and energy conversion, high quality cardiac tissue biopsies, biochemical analytics, and informatics. Pairing these technologies with recent discoveries in epigenetic regulation, mitochondrial dynamics, and organ-microbiome metabolic crosstalk will garner critical mechanistic insights in heart failure. In this state-of-the-art review, we focus on new metabolic insights, with an eye on emerging metabolic strategies for heart failure. Our synthesis of the field will be valuable for a diverse audience with an interest in cardiac metabolism.
Collapse
Affiliation(s)
- Yann Huey Ng
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
| | - Yen Chin Koay
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC 3800, Australia
- Victorian Heart Institute, Monash University, Melbourne, VIC 3800, Australia
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC 3800, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Monash-Alfred-Baker Centre for Cardiovascular Research, Monash University, Melbourne, VIC 3800, Australia
| | - John F O’Sullivan
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Department of Medicine, Technische Univeristat Dresden, 01062 Dresden, Germany
| |
Collapse
|
2
|
Chen Z, Zhang M, Xu Q, Lu P, Liu M, Yin R, Liu X, Dai Y, Gao X, Gong J, Zhang S, Wang X. Huangqi-Danshen decoction improves heart failure by regulating pericardial adipose tissue derived extracellular vesicular miR-27a-3p to activate AMPKα2 mediated mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156187. [PMID: 39488874 DOI: 10.1016/j.phymed.2024.156187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Huangqi-Danshen decoction (HDD) is a classic traditional Chinese medicine for treating heart failure. Pericardial adipose tissue (PAT) has recently gained increasing attention in cardiovascular diseases. PURPOSE This study aimed to investigate the effect of pericardial adipose tissue-derived extracellular vesicles on heart failure, the protective effect of HDD on myocardial remodel in heart failure rats, and identify the potential molecular mechanisms involved. METHODS UPLC-MS/MS identified active components of HDD. Extracellular vesicles (EVs) from pericardial adipose tissue of sham-operated and HF rats were identified through transmission electron microscopy, nanoparticle tracking analysis and western blot. EVs were co-cultured with H9c2 cardiomyocytes in order to examine their uptake and effects. MicroRNA sequencing, dual-luciferase reporter assay and PCR were conducted for exploring specific mechanisms of EVs on hypertrophic cardiomyocytes. In vivo, heart failure was modeled in rats via transverse aortic constriction (TAC). In vitro, the hypertrophic cardiomyocyte model were established using Ang II-induced H9c2 cardiomyocytes. RESULTS UPLC-MS/MS identified 11 active components in serum of HDD administrated rats. Echocardiography showed HDD improved cardiac function in TAC model rats. HE and Masson staining indicated HDD ameliorated myocardial hypertrophy and fibrosis. MicroRNA sequencing found that HDD treatment resulted in 37 differentially expressed miRNAs (DMEs) (p < 0.05 and |log2FC| ≥ 1). KEGG analysis revealed that DEMs were enriched in the AMPK signaling pathway. PCR identified miR-27a-3p with the greatest difference in AMPK-related DMEs. Dual-luciferase reporter assay and Targetscan website were utilized to identify the target relationship between miR-27a-3p and PRKAA2 (AMPKα2). The miR-27a-3p negatively regulated AMPKα2 to inhibit mitophagy mediated by PINK1/Parkin pathway. HDD inhibited miR-27a-3p secretion from failing heart pericardial adipose tissue-derived extracellular vesicles, thereby improving inflammation, cardiac function, and myocardial remodeling through above pathways. CONCLUSION HDD inhibited the PAT-derived extracellular vesicular miR-27a-3p in failing hearts to activate AMPK/PINK1/Parkin signaling-mediated mitophagy, which improved cardiomyocyte energy metabolism, myocardial remodeling and heart failure.
Collapse
Affiliation(s)
- Zhaoyang Chen
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Meng Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiyao Xu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Pengyu Lu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Min Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Rui Yin
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Xuan Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Yang Dai
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Xin Gao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Juexiao Gong
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Sujie Zhang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Xindong Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
3
|
Kong Y, Wang N, Tong Z, Wang D, Wang P, Yang Q, Yan X, Song W, Jin Z, Zhang M. Role of complement factor D in cardiovascular and metabolic diseases. Front Immunol 2024; 15:1453030. [PMID: 39416783 PMCID: PMC11479899 DOI: 10.3389/fimmu.2024.1453030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
In the genesis and progression of cardiovascular and metabolic diseases (CVMDs), adipose tissue plays a pivotal and dual role. Complement factor D (CFD, also known as adipsin), which is mainly produced by adipocytes, is the rate-limiting enzyme of the alternative pathway. Abnormalities in CFD generation or function lead to aberrant immune responses and energy metabolism. A large number of studies have revealed that CFD is associated with CVMDs. Herein, we will review the current studies on the function and mechanism of CFD in CVMDs such as hypertension, coronary heart disease, ischemia/reperfusion injury, heart failure, arrhythmia, aortic aneurysm, obesity, insulin resistance, and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yingjin Kong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Naixin Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Zhonghua Tong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Dongni Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Penghe Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Qiannan Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Xiangyu Yan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Weijun Song
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Zexi Jin
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Maomao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
4
|
Li TL, Zhu NN, Yin Z, Sun J, Guo JP, Yuan HT, Shi XM, Guo HY, Li SX, Shan ZL. Transcriptomic analysis of epicardial adipose tissue reveals the potential crosstalk genes and immune relationship between type 2 diabetes mellitus and atrial fibrillation. Gene 2024; 920:148528. [PMID: 38703871 DOI: 10.1016/j.gene.2024.148528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/27/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The complex relationship between atrial fibrillation (AF) and type 2 diabetes mellitus (T2DM) suggests a potential role for epicardial adipose tissue (EAT) that requires further investigation. This study employs bioinformatics and experimental approaches to clarify EAT's role in linking T2DM and AF, aiming to unravel the biological mechanisms involved. METHOD Bioinformatics analysis initially identified common differentially expressed genes (DEGs) in EAT from T2DM and AF datasets. Pathway enrichment and network analyses were then performed to determine the biological significance and network connections of these DEGs. Hub genes were identified through six CytoHubba algorithms and subsequently validated biologically, with further in-depth analyses confirming their roles and interactions. Experimentally, db/db mice were utilized to establish a T2DM model. AF induction was executed via programmed transesophageal electrical stimulation and burst pacing, focusing on comparing the incidence and duration of AF. Frozen sections and Hematoxylin and Eosin (H&E) staining illuminated the structures of the heart and EAT. Moreover, quantitative PCR (qPCR) measured the expression of hub genes. RESULTS The study identified 106 DEGs in EAT from T2DM and AF datasets, underscoring significant pathways in energy metabolism and immune regulation. Three hub genes, CEBPZ, PAK1IP1, and BCCIP, emerged as pivotal in this context. In db/db mice, a marked predisposition towards AF induction and extended duration was observed, with HE staining verifying the presence of EAT. Additionally, qPCR validated significant changes in hub genes expression in db/db mice EAT. In-depth analysis identified 299 miRNAs and 33 TFs as potential regulators, notably GRHL1 and MYC. GeneMANIA analysis highlighted the hub genes' critical roles in stress responses and leukocyte differentiation, while immune profile correlations highlighted their impact on mast cells and neutrophils, emphasizing the genes' significant influence on immune regulation within the context of T2DM and AF. CONCLUSION This investigation reveals the molecular links between T2DM and AF with a focus on EAT. Targeting these pathways, especially EAT-related ones, may enable personalized treatments and improved outcomes.
Collapse
Affiliation(s)
- Tian-Lun Li
- Postgraduate School, Medical School of Chinese PLA, Beijing, China; Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Na-Na Zhu
- Postgraduate School, Medical School of Chinese PLA, Beijing, China; Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhao Yin
- Postgraduate School, Medical School of Chinese PLA, Beijing, China; Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiao Sun
- Postgraduate School, Medical School of Chinese PLA, Beijing, China; Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jian-Pin Guo
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hong-Tao Yuan
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiang-Min Shi
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hong-Yang Guo
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shi-Xing Li
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhao-Liang Shan
- Postgraduate School, Medical School of Chinese PLA, Beijing, China; Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Jiang F, Qin L, Wang Y, Peng Y, Yu L, Su P, Zhao L. Differential expression profiles and bioinformatics analysis of tRNA-derived small RNAs in epicardial fat of patients with atrial fibrillation. Heliyon 2024; 10:e30295. [PMID: 38707381 PMCID: PMC11066680 DOI: 10.1016/j.heliyon.2024.e30295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
The exact processes underlying atrial fibrillation (AF) are still unclear. It has been suggested that epicardial adipose tissue (EAT) may contribute to arrhythmias and can release various bioactive molecules, including exosomes containing tRNA-derived small RNAs (tsRNAs). Numerous studies have indicated that these tsRNAs can significantly affect key cellular functions. However, there is currently no research investigating the relationship between tsRNAs from EAT and AF. In order to explore the regulatory mechanisms of tsRNAs from EAT associated with AF, we conducted RNA-sequencing analysis on EAT samples collected from 6 AF patients and 6 control subjects with sinus rhythm. Our analysis revealed an upregulation of 146 tsRNAs and a downregulation of 126 tsRNAs in AF. Furthermore, we randomly selected four tsRNAs (tRF-SeC-TCA-001, tiRNA-Gly-CCC-003, tRF-Gly-GCC-002, and tRF-Tyr-GTA-007) for validation using quantitative reverse transcription-polymerase chain reaction. Following this, bioinformatic analyses revealed that the target genes of these tsRNAs were prominently involved in the regulation of cell adhesion and various cellular processes mediated by plasma membrane adhesion molecules. Additionally, based on KEGG analysis, it was suggested that the majority of these target genes might contribute to the pathogenesis of AF through processes such as glycosaminoglycan biosynthesis, AMP-activated protein kinase activity, and the insulin signaling pathway. Our results elucidate changes in the expression profiles of tsRNAs within EAT samples obtained from AF patients, and they forecast potential target genes and interactions between tsRNAs and mRNA within EAT that could contribute to the pathogenesis of AF.
Collapse
Affiliation(s)
| | - Lingling Qin
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yidan Wang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuanshu Peng
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Liping Yu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Pixiong Su
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lei Zhao
- Corresponding author. Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
6
|
Fei A, Li L, Li Y, Zhou T, Liu Y. Diagnostic and prognostic value of plasma miR-106a-5p levels in patients with acute heart failure. J Cardiothorac Surg 2024; 19:261. [PMID: 38654254 PMCID: PMC11036594 DOI: 10.1186/s13019-024-02750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND It is essential to find reliable biomarkers for early diagnosis and prognosis of acute heart failure (AHF) for its mitigation. Currently, increasing attention is paid to the role of microRNAs (miRNAs/miRs) as diagnostic or prognostic markers for cardiovascular diseases. Since plasma miR-106a-5p has been observed to be downregulated in AHF, its value in the diagnosis and prognostic assessment of AHF deserves further exploration. Accordingly, this study analyzed the diagnostic and prognostic value of plasma miR-106a-5p in AHF patients. METHODS Prospectively, this study included 127 AHF patients who met the 2021 European Society of Cardiology Guidelines and 127 control individuals. Plasma miR-106a-5p levels were determined with RT-qPCR. Spearman correlation analysis was performed to evaluate the correlation of plasma miR-106a-5p levels with NT-proBNP and hs-CRP levels in AHF patients. All AHF patients were followed up for 1 year and allocated into poor and good prognosis groups, and plasma miR-106a-5p levels were compared. The diagnostic and prognostic value of plasma miR-106a-5p for AHF was assessed with a receiver-operating characteristic curve. RESULTS Plasma miR-106a-5p was lowly expressed in AHF patients versus controls (0.53 ± 0.26 vs. 1.09 ± 0.46) and showed significant negative correlations with NT-proBNP and hs-CRP levels. Plasma miR-106a-5p level < 0.655 could assist in AHF diagnosis. Plasma miR-106a-5p levels were markedly lower in poor-prognosis AHF patients than in good-prognosis patients. Plasma miR-106a-5p level < 0.544 could assist in predicting poor prognosis in AHF patients. CONCLUSION Plasma miR-106a-5p is downregulated in AHF patients and could assist in diagnosis and poor prognosis prediction of AHF.
Collapse
Affiliation(s)
- Aike Fei
- Department of Cardiovascular Medicine, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Yuelu District, Changsha, Hunan Province, 410006, China
| | - Li Li
- Department of Cardiovascular Medicine, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Yuelu District, Changsha, Hunan Province, 410006, China
| | - Yunfang Li
- Cardiovascular Specialist, Community Health Service Center, No. 668, Minghutang Group, Hanpu Street, Yuelu District, Changsha City, Hunan Province, 410006, China
| | - Tie Zhou
- Cardiovascular Specialist, Community Health Service Center, No. 668, Minghutang Group, Hanpu Street, Yuelu District, Changsha City, Hunan Province, 410006, China
| | - Yanfei Liu
- Department of Cardiovascular Medicine, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Yuelu District, Changsha, Hunan Province, 410006, China.
| |
Collapse
|
7
|
Krauz K, Kempiński M, Jańczak P, Momot K, Zarębiński M, Poprawa I, Wojciechowska M. The Role of Epicardial Adipose Tissue in Acute Coronary Syndromes, Post-Infarct Remodeling and Cardiac Regeneration. Int J Mol Sci 2024; 25:3583. [PMID: 38612394 PMCID: PMC11011833 DOI: 10.3390/ijms25073583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Epicardial adipose tissue (EAT) is a fat deposit surrounding the heart and located under the visceral layer of the pericardium. Due to its unique features, the contribution of EAT to the pathogenesis of cardiovascular and metabolic disorders is extensively studied. Especially, EAT can be associated with the onset and development of coronary artery disease, myocardial infarction and post-infarct heart failure which all are significant problems for public health. In this article, we focus on the mechanisms of how EAT impacts acute coronary syndromes. Particular emphasis was placed on the role of inflammation and adipokines secreted by EAT. Moreover, we present how EAT affects the remodeling of the heart following myocardial infarction. We further review the role of EAT as a source of stem cells for cardiac regeneration. In addition, we describe the imaging assessment of EAT, its prognostic value, and its correlation with the clinical characteristics of patients.
Collapse
Affiliation(s)
- Kamil Krauz
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| | - Marcel Kempiński
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| | - Paweł Jańczak
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| | - Karol Momot
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| | - Maciej Zarębiński
- Department of Invasive Cardiology, Independent Public Specialist Western Hospital John Paul II, Lazarski University, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland; (M.Z.); (I.P.)
| | - Izabela Poprawa
- Department of Invasive Cardiology, Independent Public Specialist Western Hospital John Paul II, Lazarski University, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland; (M.Z.); (I.P.)
| | - Małgorzata Wojciechowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| |
Collapse
|
8
|
Dare A, Chen SY. Adipsin in the pathogenesis of cardiovascular diseases. Vascul Pharmacol 2024; 154:107270. [PMID: 38114042 PMCID: PMC10939892 DOI: 10.1016/j.vph.2023.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Adipsin is an adipokine predominantly synthesized in adipose tissues and released into circulation. It is also known as complement factor-D (CFD), acting as the rate-limiting factor in the alternative complement pathway and exerting essential functions on the activation of complement system. The deficiency of CFD in humans is a very rare condition. However, complement overactivation has been implicated in the etiology of numerous disorders, including cardiovascular disease (CVD). Increased circulating level of adipsin has been reported to promote vascular derangements, systemic inflammation, and endothelial dysfunction. Prospective and case-control studies showed that this adipokine is directly associated with all-cause death and rehospitalization in patients with coronary artery disease. Adipsin has also been implicated in pulmonary arterial hypertension, abdominal aortic aneurysm, pre-eclampsia, and type-2 diabetes which is a major risk factor for CVD. Importantly, serum adipsin has been recognized as a unique prognostic marker for assessing cardiovascular diseases. At present, there is paucity of experimental evidence about the precise role of adipsin in the etiology of CVD. However, this mini review provides some insight on the contribution of adipsin in the pathogenesis of CVD and highlights its role on endothelial, smooth muscle and immune cells that mediate cardiovascular functions.
Collapse
Affiliation(s)
- Ayobami Dare
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Shi-You Chen
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA; The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.
| |
Collapse
|
9
|
Peng Y, Su P, Zhao L. Long noncoding RNA and messenger RNA profiling in epicardial adipose tissue of patients with new-onset postoperative atrial fibrillation after coronary artery bypass grafting. Eur J Med Res 2024; 29:134. [PMID: 38368363 PMCID: PMC10874008 DOI: 10.1186/s40001-024-01721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Postoperative atrial fibrillation (POAF) constitutes a significant complication following coronary artery bypass graft surgery (CABG), potentially linked to epicardial adipose tissue (EAT). This investigation seeks to elucidate the association between POAF and EAT at the genetic level. METHODS EAT and clinical data from patients undergoing CABG were systematically acquired, adhering to established inclusion and exclusion criteria. Patients were categorized into POAF and Non-POAF groups based on the presence or absence of POAF. High-throughput sequencing data of EAT were subjected to differential expression analysis and gene function assessment. A random selection of long noncoding RNAs (lncRNAs) underwent quantitative real-time polymerase chain reaction (qRT-PCR) for validation of the high-throughput sequencing findings. Coexpression analysis was employed to elucidate the interactions between lncRNAs and messenger RNAs (mRNAs). RESULTS RNA sequencing yielded a total of 69,685 transcripts (37,740 coding and 31,945 noncoding sequences), representing 16,920 genes. Within this dataset, 38 mRNAs and 12 lncRNAs exhibited differential expression between the POAF and Non-POAF groups (P < 0.05, fold change > 1.5). The qRT-PCR results for lncRNAs corroborated the sequencing findings (P < 0.01). Functional enrichment analysis of genes and the coexpression network indicated that these differentially expressed RNAs were primarily implicated in processes such as cell growth, differentiation, signal transduction, as well as influencing tissue fibrosis and ion transmembrane transport. CONCLUSIONS This study unveils a potential association between myocardial fibrosis and ion channels co-regulated by mRNAs and lncRNAs, closely linked to the emergence of new-onset POAF, after accounting for clinical risk factors. This discovery holds promise for further advances in clinical and fundamental research.
Collapse
Affiliation(s)
- Yuanshu Peng
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Pixiong Su
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Lei Zhao
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
10
|
Caño-Carrillo S, Castillo-Casas JM, Franco D, Lozano-Velasco E. Unraveling the Signaling Dynamics of Small Extracellular Vesicles in Cardiac Diseases. Cells 2024; 13:265. [PMID: 38334657 PMCID: PMC10854837 DOI: 10.3390/cells13030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Effective intercellular communication is essential for cellular and tissue balance maintenance and response to challenges. Cellular communication methods involve direct cell contact or the release of biological molecules to cover short and long distances. However, a recent discovery in this communication network is the involvement of extracellular vesicles that host biological contents such as proteins, nucleic acids, and lipids, influencing neighboring cells. These extracellular vesicles are found in body fluids; thus, they are considered as potential disease biomarkers. Cardiovascular diseases are significant contributors to global morbidity and mortality, encompassing conditions such as ischemic heart disease, cardiomyopathies, electrical heart diseases, and heart failure. Recent studies reveal the release of extracellular vesicles by cardiovascular cells, influencing normal cardiac function and structure. However, under pathological conditions, extracellular vesicles composition changes, contributing to the development of cardiovascular diseases. Investigating the loading of molecular cargo in these extracellular vesicles is essential for understanding their role in disease development. This review consolidates the latest insights into the role of extracellular vesicles in diagnosis and prognosis of cardiovascular diseases, exploring the potential applications of extracellular vesicles in personalized therapies, shedding light on the evolving landscape of cardiovascular medicine.
Collapse
Affiliation(s)
| | | | | | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (S.C.-C.); (J.M.C.-C.); (D.F.)
| |
Collapse
|
11
|
Beylerli O, Ju J, Beilerli A, Gareev I, Shumadalova A, Ilyasova T, Bai Y, Yang B. The roles of long noncoding RNAs in atrial fibrillation. Noncoding RNA Res 2023; 8:542-549. [PMID: 37602317 PMCID: PMC10432912 DOI: 10.1016/j.ncrna.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia that often occurs in patients with structural heart disease and is a significant cause of morbidity and mortality in clinical settings. AF is typically associated with significant changes of both the structure of the atria and the cardiac conduction system. AF can result in reduced heart function, heart failure, and various other complications. Current drug therapy for AF patients is often ineffective and may have adverse effects. Radiofrequency ablation is more effective than traditional drug therapy, but this invasive procedure carries potential risks and may lead to postoperative recurrence, limiting the clinical benefits to some extent. Therefore, in-depth research into the molecular mechanisms of AF and exploration of new treatment strategies based on research findings are prerequisites for improving the treatment of AF and the associated cardiac conditions. Long noncoding RNAs (lncRNAs) are a new class of noncoding RNA (ncRNAs) with a length exceeding 200 nt, which regulate gene expression at multiple levels. Increasing evidence suggests that lncRNAs participate in many pathological processes of AF initiation, development, and maintenance, such as structural remodeling, electrical remodeling, renin-angiotensin system anomalies, and intracellular calcium deregulation s. LncRNAs that play key roles in structural and electrical remodeling may become molecular markers and targets for AF diagnosis and treatment, respectively, while lncRNAs critical to autonomic nervous system remodeling may bring new insights into the prognosis and recurrence of AF. This review article provides a synopsis on the up-to-date research findings relevant to the roles of lncRNAs in AF.
Collapse
Affiliation(s)
- Ozal Beylerli
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jiaming Ju
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
12
|
Zhao L, Peng Y, Su P. Expression profiles and functional analysis of tRNA-derived small RNAs in epicardial adipose tissue of patients with heart failure. Ann Med 2023; 55:2267981. [PMID: 37839439 PMCID: PMC10578101 DOI: 10.1080/07853890.2023.2267981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Heart failure is considered an epidemic disease in the modern world. Since it presents as a multifactorial, systemic disease, a comprehensive understanding of the underlying mechanism is essential. Epicardial adipose tissue (EAT) is increasingly recognized to be metabolically active and is able to secrete myriad bioactive molecules, including exosomes carrying tRNA-derived small RNAs (tsRNAs). Mounting evidence has suggested that these specific tsRNAs dynamically impact fundamental cellular processes, but no studies have focused on the influence of tsRNA in EAT on cardiac dysfunction. METHODS To investigate the regulatory mechanism of tsRNAs of EAT associated with HF, we collected EAT from HF (n = 5) patients and controls (n = 5) and used a combination of RNA sequencing, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and bioinformatics to screen the expression profiles of tsRNAs in HF. RESULTS We ultimately identified an expression profile of 343 tsRNAs in EAT. Of those, a total of 24 tsRNAs were significantly differentially expressed between HF and controls: 17 were upregulated and 7 were downregulated (fold change >1.5, p < 0.05). Four tsRNAs (tiRNA-Pro-TGG-001, tRF-Met-CAT-002, tRF-Tyr-GTA-010 and tRF-Tyr-GTA-011) were randomly selected and validated by qRT-PCR. Bioinformatics analyses revealed a dense interaction of target genes between tRF-Tyr-GTA-010 and tRF-Tyr-GTA-011. Based on functional analysis, these two tRFs might play a protective role by regulating sphingolipid and adrenergic signaling pathways by targeting genes mainly contributing to calcium ion transport. CONCLUSIONS Our study profiled tsRNA expression in EAT with HF and identified a comprehensive dimension of potential target genes and tsRNA-mRNA interactions.
Collapse
Affiliation(s)
- Lei Zhao
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yuanshu Peng
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Pixiong Su
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Long non-coding RNA and circular RNA: new perspectives for molecular pathophysiology of atrial fibrillation. Mol Biol Rep 2023; 50:2835-2845. [PMID: 36596997 DOI: 10.1007/s11033-022-08216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
Many studies have demonstrated the association of atrial fibrillation (AF) with endogenous genetic regulatory mechanisms. These interactions could advance the understanding of the AF pathophysiological process, supporting the search for early biomarkers to improve diagnosis and disease monitoring. Among the endogenous genetic regulatory mechanisms, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained special attention, and studies have demonstrated their involvement in AF development and other AF-related diseases such as coronary artery disease and cardiomyopathy. This review describes the main experimental results reported by studies that analyzed the expression of lncRNAs and circRNAs in AF associated with miRNA or mRNA. The search was conducted in PubMed public database using the terms "lncRNA and atrial fibrillation" or "long ncRNA and atrial fibrillation" or "long non-coding RNA and atrial fibrillation" or "circular RNA and atrial fibrillation" or "circRNA and atrial fibrillation". There was no overlapping of lncRNA or circRNA among the studies, attributed to the different sample types, methods, species, and patient classification evaluated in these studies. Although the regulatory mechanisms in which these molecules are involved are not yet well understood, the studies analyzed show their importance in the pathophysiological process of AF, supporting the idea that lncRNAs and circRNAs are involved in miRNA or mRNA regulation in the molecular mechanism of this disease.
Collapse
|
14
|
Emami Meybodi SM, Soleimani N, Yari A, Javadifar A, Tollabi M, Karimi B, Emami Meybodi M, Seyedhossaini S, Brouki Milan P, Dehghani Firoozabadi A. Circulatory long noncoding RNAs (circulatory-LNC-RNAs) as novel biomarkers and therapeutic targets in cardiovascular diseases: Implications for cardiovascular diseases complications. Int J Biol Macromol 2023; 225:1049-1071. [PMID: 36414082 DOI: 10.1016/j.ijbiomac.2022.11.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Cardiovascular diseases (CVDs) are a group of disorders with major global health consequences. The prevalence of CVDs continues to grow due to population-aging and lifestyle modifications. Non-coding RNAs (ncRNAs) as key regulators of cell signaling pathways have gained attention in the occurrence and development of CVDs. Exosomal-lncRNAs (exos-lncRNAs) are emerging biomarkers due to their high sensitivity and specificity, stability, accuracy and accessibility in the biological fluids. Recently, circulatory and exos-based-lncRNAs are emerging and novel bio-tools in various pathogenic conditions. It is worth mentioning that dysregulation of these molecules has been found in different types of CVDs. In this regard, we aimed to discuss the knowledge gaps and suggest research priorities regarding circulatory and exos-lncRNAs as novel bio-tools and therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Seyed Mahdi Emami Meybodi
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Nafiseh Soleimani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Abolfazl Yari
- Cellular and Molecular Research Center, Birjand University of Medical Mciences, Birjand, Iran.
| | - Amin Javadifar
- Immunology Research Center, Inflammation and Inflammatory Disease Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Tollabi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Bahareh Karimi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mahmoud Emami Meybodi
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Seyedmostafa Seyedhossaini
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Peiman Brouki Milan
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Dehghani Firoozabadi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Loganathan T, Doss C GP. Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct Integr Genomics 2023; 23:33. [PMID: 36625940 PMCID: PMC9838419 DOI: 10.1007/s10142-022-00947-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Human diseases have been a critical threat from the beginning of human history. Knowing the origin, course of action and treatment of any disease state is essential. A microscopic approach to the molecular field is a more coherent and accurate way to explore the mechanism, progression, and therapy with the introduction and evolution of technology than a macroscopic approach. Non-coding RNAs (ncRNAs) play increasingly important roles in detecting, developing, and treating all abnormalities related to physiology, pathology, genetics, epigenetics, cancer, and developmental diseases. Noncoding RNAs are becoming increasingly crucial as powerful, multipurpose regulators of all biological processes. Parallel to this, a rising amount of scientific information has revealed links between abnormal noncoding RNA expression and human disorders. Numerous non-coding transcripts with unknown functions have been found in addition to advancements in RNA-sequencing methods. Non-coding linear RNAs come in a variety of forms, including circular RNAs with a continuous closed loop (circRNA), long non-coding RNAs (lncRNA), and microRNAs (miRNA). This comprises specific information on their biogenesis, mode of action, physiological function, and significance concerning disease (such as cancer or cardiovascular diseases and others). This study review focuses on non-coding RNA as specific biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
16
|
Complement factor D derived from epicardial adipose tissue participates in cardiomyocyte apoptosis after myocardial infarction by mediating PARP-1 activity. Cell Signal 2023; 101:110518. [PMID: 36351508 DOI: 10.1016/j.cellsig.2022.110518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Acute myocardial infarction (MI) is considered to be the main cause of congestive heart failure. The aim of this study was to provide an in-depth analysis of athophysiological processes and provide key targets for intervention in the occurrence of acute MI. METHODS A rat model of MI was established by ligation of left anterior descending branch. Heart tissue, epicardial adipose tissue (EAT) and subcutaneous adipose tissue (SAT) were collected. H9c2 cells were used to explore the mechanism of complement factor D (CFD) regulating cardiomyocyte apoptosis. RESULTS Myocardial apoptosis were observed in MI rat, and more EAT was found in the MI group in vivo. The conditioned medium prepared by EAT (EAT-CM) significantly reduced the activity of H9c2 cells. The content of CFD in EAT was significantly increased, and CFD promoted cardiomyocyte apoptosis in vitro and CFD-IN1 (a selective inhibitor of CFD) could revised this effect. CFD induced poly ADP-ribosepolymerase-1 (PARP-1) overactivation. Furthermore, the addition of pan-caspase inhibitor Z-VAD in the SAT-CM + CFD group couldn't affect H9c2 cell apoptosis. CFD induced cell apoptosis via PARP-1 activation and PARP-1 inhibitor 3-Aminobenzamide could revise this effect. The injection of CFD-IN1 in MI rat model confirmed that inhibition of CFD activity alleviated cardiomyocytes apoptosis. CONCLUSION Our findings indicate that EAT mediating cardiomyocyte apoptosis after MI through secretion of CFD and activation of PARP-1 activity.
Collapse
|
17
|
Integrated Analysis of the microRNA–mRNA Network Predicts Potential Regulators of Atrial Fibrillation in Humans. Cells 2022; 11:cells11172629. [PMID: 36078037 PMCID: PMC9454849 DOI: 10.3390/cells11172629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Atrial fibrillation (AF) is a form of sustained cardiac arrhythmia and microRNAs (miRs) play crucial roles in the pathophysiology of AF. To identify novel miR–mRNA pairs, we performed RNA-seq from atrial biopsies of persistent AF patients and non-AF patients with normal sinus rhythm (SR). Differentially expressed miRs (11 down and 9 up) and mRNAs (95 up and 82 down) were identified and hierarchically clustered in a heat map. Subsequently, GO, KEGG, and GSEA analyses were run to identify deregulated pathways. Then, miR targets were predicted in the miRDB database, and a regulatory network of negatively correlated miR–mRNA pairs was constructed using Cytoscape. To select potential candidate genes from GSEA analysis, the top-50 enriched genes in GSEA were overlaid with predicted targets of differentially deregulated miRs. Further, the protein–protein interaction (PPI) network of enriched genes in GSEA was constructed, and subsequently, GO and canonical pathway analyses were run for genes in the PPI network. Our analyses showed that TNF-α, p53, EMT, and SYDECAN1 signaling were among the highly affected pathways in AF samples. SDC-1 (SYNDECAN-1) was the top-enriched gene in p53, EMT, and SYDECAN1 signaling. Consistently, SDC-1 mRNA and protein levels were significantly higher in atrial samples of AF patients. Among negatively correlated miRs, miR-302b-3p was experimentally validated to suppress SDC-1 transcript levels. Overall, our results suggested that the miR-302b-3p/SDC-1 axis may be involved in the pathogenesis of AF.
Collapse
|
18
|
High expression of long noncoding RNA plasmacytoma variant translocation 1 is an independent risk factor for recurrence after radiofrequency ablation in atrial fibrillation patients. Kaohsiung J Med Sci 2022; 38:839-847. [DOI: 10.1002/kjm2.12581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/07/2022] Open
|
19
|
Kang JY, Mun D, Kim H, Yun N, Joung B. Serum exosomal long non-coding RNAs as a diagnostic biomarker for atrial fibrillation. Heart Rhythm 2022; 19:1450-1458. [PMID: 35660473 DOI: 10.1016/j.hrthm.2022.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/01/2022] [Accepted: 05/25/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND Exosomal long non-coding RNAs (lncRNAs) are known as ideal diagnostic biomarkers of various diseases. However, there are no reports on the use of serum exosomal lncRNAs as diagnostic biomarkers for atrial fibrillation (AF). OBJECTIVE The purpose of this study was to explore serum exosomal lncRNAs as a useful tool for diagnosing AF. METHODS First, serum exosomes from patients with persistent AF and controls were isolated using a polymer-based exosome precipitation kit. Next, we conducted a multi-phase process including screening and two independent validation phases. In the screening phase, serum exosomal lncRNA expression profiles were examined using RNA-sequencing analysis. In two validation phases, we evaluated the expression levels of candidate exosomal lncRNAs using qRT-PCR. Finally, we performed different statistical and functional analyses. RESULTS After the screening phase, we identified 26 differentially expressed lncRNAs (i.e., 15 up-regulated and 11 down-regulated lncRNAs with a |fold change| ≥ 2 and p < 0.05) in serum exosomes from patients with persistent AF compared with the controls. We then screened out six exosomal lncRNAs as biomarker candidates following parameters: read length ≥ 200 nucleotides; exon number ≥ 2; and coding potential score < 0.1. In two validation phases, exosomal lncRNAs LOC105377989 and LOC107986997 were consistently up-regulated in serum of patients with persistent AF, compared with the controls (p < 0.0001). Moreover, both exosomal lncRNAs exhibited significant diagnostic validity for AF. Notably, exosomal lncRNA LOC107986997 was involved in AF-related pathophysiological mechanisms. CONCLUSION Serum-derived exosomal lncRNA LOC107986997 could serve as a potential biomarker for AF diagnosis.
Collapse
Affiliation(s)
- Ji-Young Kang
- Division of Cardiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dasom Mun
- Division of Cardiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyoeun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nuri Yun
- Institute of Life Science & Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Boyoung Joung
- Division of Cardiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
20
|
Functional Analysis of Serum Long Noncoding RNAs in Patients with Atrial Fibrillation. DISEASE MARKERS 2022; 2022:2799123. [PMID: 35615400 PMCID: PMC9126683 DOI: 10.1155/2022/2799123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/21/2022]
Abstract
Objectives Long noncoding RNAs (lncRNAs) are closely related to diverse diseases. However, its role in atrial fibrillation (AF) pathogenesis needs further exploration. Design We performed microarray analysis on the serum samples from 70 healthy volunteers and 70 AF patients. This study was aimed at detecting the levels of serum lncRNAs and mRNAs and bioinformatically analyze them to establish potential marker(s) for AF diagnosis. Receiver operating curve (ROC) and area under the curve (AUC) were employed to address the AF diagnostic power of lncRNAs. Results In the AF serum samples, 753 lncRNAs and 802 mRNAs (p ≤ 0.05; fold change ≥ 2) were upregulated, and 315 lncRNAs and 153 mRNAs were downregulated, as opposed to healthy serum samples. Using bioinformatic analysis, we analyzed the top 4 differentially expressed (DE) lncRNAs, namely, NR-001587, NR-015407, NR-038455, and NR-038894, and found that the PI3K-AKT cell proliferation signaling pathway was most affected. This was in accordance with our functional analysis of DE mRNAs and adjacent lncRNAs. Notably, the elevated serum NR-001587 levels were strongly associated with AF incidence. Conclusions Our work highlights the role of lncRNAs in AF pathogenesis and provides a novel serum biomarker for AF diagnosis.
Collapse
|
21
|
Wang W, Tian B, Ning Z, Li X. Research Progress of LncRNAs in Atrial Fibrillation. Mol Biotechnol 2022; 64:758-772. [PMID: 35107751 DOI: 10.1007/s12033-022-00449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/02/2022] [Indexed: 10/19/2022]
Abstract
Atrial fibrillation (AF) is one of the most common arrhythmias in adults, with high morbidity and increased mortality risk. In recent years, the clinical diagnosis, treatment, and mechanistic research of AF have increased exponentially, and regulation based on the potential molecular mechanism of AF is a research hotspot. Long noncoding RNAs (LncRNAs), usually refer to noncoding RNA transcripts greater than 200 nucleotides in length, have been shown to play a role in cardiovascular diseases such as coronary artery disease, heart failure, and myocardial fibrosis through various regulatory methods. An increasing number of researchers have begun to pay attention to the identification and function of LncRNAs in AF. This article reviews changes in the expression of related LncRNAs detected in AF and describes the LncRNAs that play a regulatory role in AF-related processes, to explore the potential of LncRNAs as new biomarkers and therapeutic targets in AF.
Collapse
Affiliation(s)
- Wenhui Wang
- Tongji University School of Medicine, Shanghai, 200082, China
| | - Bei Tian
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 of Zhouyuan Road, Pudong New District, Shanghai, 201318, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 of Zhouyuan Road, Pudong New District, Shanghai, 201318, China
| | - Xinming Li
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China.
| |
Collapse
|
22
|
Li D, Nie J, Han Y, Ni L. Epigenetic Mechanism and Therapeutic Implications of Atrial Fibrillation. Front Cardiovasc Med 2022; 8:763824. [PMID: 35127848 PMCID: PMC8815458 DOI: 10.3389/fcvm.2021.763824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia attacking 1. 5–2.0% of general population worldwide. It has a significant impact on morbidity and mortality globally and its prevalence increases exponentially with age. Therapies like catheter ablation or conventional antiarrhythmic drugs have not provided effective solution to the recurrence for AF over the past decades. Over 100 genetic loci have been discovered to be associated with AF by Genome-wide association studies (GWAS) but none has led to a therapy. Recently potential involvement of epigenetics (DNA methylation, histone modification, and non-coding RNAs) in the initiation and maintenance of AF has partly emerged as proof-of-concept in the mechanism and management of AF. Here we reviewed the epigenetic features involved in AF pathophysiology and provided an update of their implications in AF therapy.
Collapse
|
23
|
Chen C, Chen Q, Cheng K, Zou T, Pang Y, Ling Y, Xu Y, Zhu W. Exosomes and Exosomal Non-coding RNAs Are Novel Promises for the Mechanism-Based Diagnosis and Treatments of Atrial Fibrillation. Front Cardiovasc Med 2021; 8:782451. [PMID: 34926627 PMCID: PMC8671698 DOI: 10.3389/fcvm.2021.782451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide and has a significant impact on human health and substantial costs. Currently, there is a lack of accurate biomarkers for the diagnosis and prognosis of AF. Moreover, the long-term efficacy of the catheter ablation in the AF is unsatisfactory. Therefore, it is necessary to explore new biomarkers and treatment strategies for the mechanism-based AF. Exosomes are nano-sized biovesicles released by nearly all types of cells. Since the AF would be linked to the changes of the atrial cells and their microenvironment, and the AF would strictly influence the exosomal non-coding RNAs (exo-ncRNAs) expression, which makes them as attractive diagnostic and prognostic biomarkers for the AF. Simultaneously, the exo-ncRNAs have been found to play an important role in the mechanisms of the AF and have potential therapeutic prospects. Although the role of the exo-ncRNAs in the AF is being actively investigated, the evidence is still limited. Furthermore, there is a lack of consensus regarding the most appropriate approach for exosome isolation and characterization. In this article, we reviewed the new methodologies available for exosomes biogenesis, isolation, and characterization, and then discussed the mechanism of the AF and various levels and types of exosomes relevant to the AF, with the special emphasis on the exo-ncRNAs in the diagnosis, prognosis, and treatment of the mechanism-based AF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenqing Zhu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Zhang L, Wang X, Huang C. A narrative review of non-coding RNAs in atrial fibrillation: potential therapeutic targets and molecular mechanisms. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1486. [PMID: 34734038 PMCID: PMC8506732 DOI: 10.21037/atm-21-4483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 11/11/2022]
Abstract
Objective This review summarizes the advances in the study of ncRNAs and atrial remodeling mechanisms to explore potential therapeutic targets and strategies for AF. Background Atrial fibrillation (AF) is one of the most common arrhythmias, and its morbidity and mortality rates are gradually increasing. Non-coding ribonucleic acid RNAs (ncRNAs) are transcribed from the genome and do not have the ability to be translated into proteins. A growing body of evidence has shown ncRNAs are extensively involved in the pathophysiological processes underlying AF. However, the precise molecular mechanisms of these associations have not been fully elucidated. Atrial remodeling plays a key role in the occurrence and development of AF, and includes electrical remodeling, structural remodeling, and autonomic nerve remodeling. Research has shown that ncRNA expression is altered in the plasma and tissues of AF patients that mediate cardiac excitation and arrhythmia, and is closely related to atrial remodeling. Methods Literatures about ncRNAs and atrial fibrillation were extensively reviewed to discuss and analyze. Conclusions The biology of ncRNAs represents a relatively new field of research and is still in an emerging stage. Recent studies have laid a foundation for understanding the molecular mechanisms of AF, future studies aimed at identifying how ncRNAs act on atrial fibrillation to provide potentially promising therapeutic targets for the treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
25
|
Xiang K, Akram M, Elbossaty WF, Yang J, Fan C. Exosomes in atrial fibrillation: therapeutic potential and role as clinical biomarkers. Heart Fail Rev 2021; 27:1211-1221. [PMID: 34251579 DOI: 10.1007/s10741-021-10142-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia, is a global epidemic. AF can cause heart failure and myocardial infarction and increase the risk of stroke, disability, and thromboembolic events. AF is becoming increasingly ubiquitous and is associated with increased morbidity and mortality at higher ages, resulting in an increasing threat to human health as well as substantial medical and social costs. Currently, treatment strategies for AF focus on controlling heart rate and rhythm with medications to restore and maintain sinus rhythm, but this approach has limitations. Catheter ablation is not entirely satisfactory and does not address the issues underlying AF. Research exploring the mechanisms causing AF is urgently needed for improved prevention, diagnosis, and treatment of AF. Exosomes are small vesicles (30-150 nm) released by cells that transmit information between cells. MicroRNAs in exosomes play an important role in the pathogenesis of AF and are established as a biomarker for AF. In this review, a summary of the role of exosomes in AF is presented. The role of exosomes and microRNAs in AF occurrence, their therapeutic potential, and their potential role as clinical biomarkers is considered. A better understanding of exosomes has the potential to improve the prognosis of AF patients worldwide, reducing the global medical burden of this disease.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Jinfu Yang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China.
| |
Collapse
|
26
|
Rey F, Urrata V, Gilardini L, Bertoli S, Calcaterra V, Zuccotti GV, Cancello R, Carelli S. Role of long non-coding RNAs in adipogenesis: State of the art and implications in obesity and obesity-associated diseases. Obes Rev 2021; 22:e13203. [PMID: 33443301 PMCID: PMC8244036 DOI: 10.1111/obr.13203] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022]
Abstract
Obesity is an evolutionary, chronic, and relapsing disease that consists of a pathological accumulation of adipose tissue able to increase morbidity for high blood pressure, type 2 diabetes, metabolic syndrome, and obstructive sleep apnea in adults, children, and adolescents. Despite intense research over the last 20 years, obesity remains today a disease with a complex and multifactorial etiology. Recently, long non-coding RNAs (lncRNAs) are emerging as interesting new regulators as different lncRNAs have been found to play a role in early and late phases of adipogenesis and to be implicated in obesity-associated complications onset. In this review, we discuss the most recent advances on the role of lncRNAs in adipocyte biology and in obesity-associated complications. Indeed, more and more researchers are focusing on investigating the underlying roles that these molecular modulators could play. Even if a significant number of evidence is correlation-based, with lncRNAs being differentially expressed in a specific disease, recent works are now focused on deeply analyzing how lncRNAs can effectively modulate the disease pathogenesis onset and progression. LncRNAs possibly represent new molecular markers useful in the future for both the early diagnosis and a prompt clinical management of patients with obesity.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Valentina Urrata
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Luisa Gilardini
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Simona Bertoli
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Raffaella Cancello
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| |
Collapse
|
27
|
Daneshmoghadam J, Omidifar A, Akbari Dilmaghani N, Karimi Z, Emamgholipour S, shanaki M. The gene expression of long non-coding RNAs (lncRNAs): MEG3 and H19 in adipose tissues from obese women and its association with insulin resistance and obesity indices. J Clin Lab Anal 2021; 35:e23741. [PMID: 33616223 PMCID: PMC8128317 DOI: 10.1002/jcla.23741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is evidence regarding the role of two lncRNAs: MEG3 and H19 the pathomechanism of obesity and related disorders. Here, we aimed to evaluate the expression of MEG3 and H19 in visceral adipose tissues (VAT) and subcutaneous adipose tissues (SAT) of obese women (n = 18), as compared to normal-weight women (n = 17). Moreover, we sought to identify the association of expression of MEG3 and H19 in SAT and VAT with obesity parameters, insulin resistance, and the mRNA expression of possible target genes involved in adipogenesis and lipogenesis including peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). METHODS Real-time PCR was performed to investigate the mRNA expression of the above-mentioned genes in VAT and SAT from all participants. RESULTS The results showed lower mRNA levels of H19 in SAT of obese women, compared to normal-weight women, while MEG3 expression was significantly higher in the SAT of the obese group rather than controls. Correlation analysis indicated that the transcript level of H19 had an inverse correlation with obesity indices and HOMA-IR values. However, MEG3 expression displayed a positive correlation with all the indicated parameters in all participants. Interestingly, a positive correlation was found between transcript level of MEG3 in SAT with FAS and PPARγ. However, there was an inverse correlation between SAT expression of H19 and FAS. CONCLUSIONS It appears that lncRNAs, MEG3 and H19, are involved in obesity-related conditions. However, more clinical studies are still required to clarify the relationships between lncRNAs with obesity and related abnormalities.
Collapse
Affiliation(s)
- Javad Daneshmoghadam
- Department of Medical Laboratory SciencesSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Abolfazl Omidifar
- Department of Medical Laboratory SciencesSchool of Allied Medical SciencesStudent Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
| | - Nader Akbari Dilmaghani
- Department of Otolaryngology, Head and Neck SurgeryLoghman Hakim Educational HospitalSchool of medicineShahid Beheshti University of Medical SciencesTehranIran
- Skull Base Research CenterLoghman Hakim Educational HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Zahereh Karimi
- Department of Medical Laboratory SciencesSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Solaleh Emamgholipour
- Department of Clinical BiochemistrySchool of MedicineTehran University of Medical SciencesTehranIran
| | - Mehrnoosh shanaki
- Department of Medical Laboratory SciencesSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
28
|
Flinn B, Royce N, Gress T, Chowdhury N, Santanam N. Dual role for angiotensin-converting enzyme 2 in Severe Acute Respiratory Syndrome Coronavirus 2 infection and cardiac fat. Obes Rev 2021; 22:e13225. [PMID: 33660398 PMCID: PMC8013367 DOI: 10.1111/obr.13225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) has been an increasingly prevalent target for investigation since its discovery 20 years ago. The finding that it serves a counterregulatory function within the traditional renin-angiotensin system, implicating it in cardiometabolic health, has increased its clinical relevance. Focus on ACE2's role in cardiometabolic health has largely centered on its apparent functions in the context of obesity. Interest in ACE2 has become even greater with the discovery that it serves as the cell receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), opening up numerous mechanisms for deleterious effects of infection. The proliferation of ACE2 within the literature coupled with its dual role in SARS-CoV-2 infection and obesity necessitates review of the current understanding of ACE2's physiological, pathophysiological, and potential therapeutic functions. This review highlights the roles of ACE2 in cardiac dysfunction and obesity, with focus on epicardial adipose tissue, to reconcile the data in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Brendin Flinn
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Huntington, West Virginia, USA
| | - Nicholas Royce
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Huntington, West Virginia, USA
| | - Todd Gress
- Research Service, Hershel "Woody" Williams VA Medical Center, Huntington, West Virginia, USA
| | - Nepal Chowdhury
- Department of Cardiovascular and Thoracic Surgery, St. Mary's Heart Center, Huntington, WV, USA
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Huntington, West Virginia, USA
| |
Collapse
|
29
|
Wang W, Liu Q, Wang Y, Piao H, Zhu Z, Li D, Wang T, Liu K. LINC01278 Sponges miR-500b-5p to Regulate the Expression of ACTG2 to Control Phenotypic Switching in Human Vascular Smooth Muscle Cells During Aortic Dissection. J Am Heart Assoc 2021; 10:e018062. [PMID: 33910387 PMCID: PMC8200748 DOI: 10.1161/jaha.120.018062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Phenotypic switching in vascular smooth muscle cells (VSMCs) is involved in the pathogenesis of aortic dissection (AD). This study aims to explore the potential mechanisms of linc01278 during VSMC phenotypic switching. Methods and Results Twelve samples (6 AD and 6 control) were used for lncRNA, microRNA, and mRNA microarray analysis. We integrated the mRNA microarray data set with GSE52093 to determine the differentially expressed genes. Bioinformatic analysis, including Gene Expression Omnibus 2R, Venn diagram analysis, gene ontology, pathway enrichment, and protein-protein interaction networks were used to identify the target lncRNA, microRNA, and mRNA involved in AD. Subsequently, we validated the bioinformatics data using techniques in molecular biology in human tissues and VSMCs. Linc01278, microRNA-500b-5p, and ACTG2 played an important role in the vascular smooth muscle contraction pathway. Linc01278 and ACTG2 were downregulated and miR-500b-5p was upregulated in AD tissues. Molecular markers of VSMC phenotypic switching, including SM22α, SMA, calponin, and MYH11, were downregulated in AD tissues. Plasmid-based overexpression and RNA interference-mediated downregulation of linc01278 weakened and enhanced VSMC proliferation and phenotypic switching, respectively. Dual-luciferase reporter assays confirmed that linc01278 regulated miR-500b-5p that directly targeted ACTG2 in HEK293T cells. Conclusions These data demonstrate that linc01278 regulates ACTG2 to control the phenotypic switch in VSMCs by sponging miR-500b-5p. This linc01278-miR-500b-5p-ACTG2 axis has a potential role in developing diagnostic markers and therapeutic targets for AD.
Collapse
Affiliation(s)
- Weitie Wang
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University Changchun Jilin China
| | - Qing Liu
- Graduate School of Medicine and Faculty of Medicine of the University of Tokyo Tokyo Japan
| | - Yong Wang
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University Changchun Jilin China
| | - Hulin Piao
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University Changchun Jilin China
| | - Zhicheng Zhu
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University Changchun Jilin China
| | - Dan Li
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University Changchun Jilin China
| | - Tiance Wang
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University Changchun Jilin China
| | - Kexiang Liu
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University Changchun Jilin China
| |
Collapse
|
30
|
Gómez-Serrano M, Ponath V, Preußer C, Pogge von Strandmann E. Beyond the Extracellular Vesicles: Technical Hurdles, Achieved Goals and Current Challenges When Working on Adipose Cells. Int J Mol Sci 2021; 22:ijms22073362. [PMID: 33805982 PMCID: PMC8036456 DOI: 10.3390/ijms22073362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue and its crosstalk with other organs plays an essential role in the metabolic homeostasis of the entire body. Alteration of this communication (i.e., due to obesity) is related to the development of several comorbidities including type 2 diabetes, cardiovascular diseases, or cancer. Within the adipose depot, adipocytes are the main cell type and thus the main source of secreted molecules, which exert modulating effects not only at a local but also at a systemic level. Extracellular vesicles (EVs) have recently emerged as important mediators in cell–cell communication and account for part of the cellular secretome. In recent years, there has been a growing body of research on adipocyte-derived extracellular vesicles (Ad-EVs). However, there is still a lack of standardized methodological approaches, especially regarding primary adipocytes. In this review, we will provide an outline of crucial aspects when working on adipose-derived material, with a special focus on primary adipocytes. In parallel, we will point out current methodological challenges in the EV field and how they impact the transcriptomic, proteomic and functional evaluations of Ad-EVs.
Collapse
|
31
|
Hu C, Li J, Du Y, Li J, Yang Y, Jia Y, Peng L, Qin Y, Wei Y. Impact of chronic intermittent hypoxia on the long non-coding RNA and mRNA expression profiles in myocardial infarction. J Cell Mol Med 2021; 25:421-433. [PMID: 33215878 PMCID: PMC7810970 DOI: 10.1111/jcmm.16097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/28/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) is the primary feature of obstructive sleep apnoea (OSA), a crucial risk factor for cardiovascular diseases. Long non-coding RNAs (lncRNAs) in myocardial infarction (MI) pathogenesis have drawn considerable attention. However, whether CIH participates in the modulation of lncRNA profiles during MI is yet unclear. To investigate the influence of CIH on MI, cardiac damage was assessed by histology and echocardiography, and lncRNA and mRNA integrated microarrays were screened. MI mouse model showed myocardial hypertrophy, aggravated inflammation and fibrosis, and compromised left ventricle function under CIH. Compared with normoxia, 644 lncRNAs and 1084 differentially expressed mRNAs were identified following CIH for 4 weeks, whereas 1482 lncRNAs and 990 mRNAs were altered at 8 weeks. Strikingly, reoxygenation after CIH markedly affected 1759 lncRNAs and 778 mRNAs. Of these, 11 lncRNAs modulated by CIH were restored after reoxygenation and were validated by qPCR. The GO terms and KEGG pathways of genes varied significantly by CIH. lncRNA-mRNA correlation further showed that lncRNAs, NONMMUT032513 and NONMMUT074571 were positively correlated with ZEB1 and negatively correlated with Cmbl. The current results demonstrated a causal correlation between CIH and lncRNA alternations during MI, suggesting that lncRNAs might be responsible for MI aggravation under CIH.
Collapse
Affiliation(s)
- Chaowei Hu
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Jing Li
- Heart Center & Beijing Key Laboratory of HypertensionBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Yunhui Du
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Juan Li
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Remodeling‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yunyun Yang
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Remodeling‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yifan Jia
- Department of CardiologyBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Lu Peng
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yanwen Qin
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Remodeling‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yongxiang Wei
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Otolaryngological Department of Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
32
|
Zhao Z, Liu G, Zhang H, Ruan P, Ge J, Liu Q. BIRC5, GAJ5, and lncRNA NPHP3-AS1 Are Correlated with the Development of Atrial Fibrillation-Valvular Heart Disease. Int Heart J 2021; 62:153-161. [PMID: 33518654 DOI: 10.1536/ihj.20-238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to explore the pivotal genes or lncRNAs involved in the progression of atrial fibrillation (AF) -valvular heart disease (VHD). The mRNA profiling GSE113013 was obtained from the Gene Expression Omnibus database. The identification of differentially expressed genes (DEGs) and differentially expressed long non-coding RNAs (DElncRNAs) was performed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out for DEGs. Then, the construction of the protein-protein interaction (PPI) network was conducted. An lncRNA-miRNA-target ceRNA network was constructed after obtaining microRNAs (miRNA) related to DElncRNAs. Ultimately, key disease-related genes were screened. A total of 399 DEGs and 145 DElncRNAs were obtained. There were 283 nodes and 588 interaction pairs in the PPI network, and synaptosome-associated protein 25 (SNAP25) had higher degrees (degree = 22) in the PPI network. There were 65 interaction pairs in the ceRNA network. Here, Baculoviral IAP Repeat Containing 5 (BIRC5) was regulated by hsa-miR-1285-3p, which was regulated by lncRNA NPHP3-AS1. Gap Junction Protein Alpha 5 (GAJ5) was regulated by hsa-miR-4505, hsa-miR-1972, and hsa-miR-1199-5p. In particular, GAJ5 was enriched in the function of ion transmembrane transport regulation, whereas BIRC5 was enriched in the function of apoptosis-multiple species pathway. Similarly, Potassium Inwardly Rectifying Channel Subfamily J Member 6 (KCNJ6) was enriched in the function of an ion channel complex. VENN analysis identified BIRC5 and GJA5 as key AF-related genes. KCNJ6, SNAP25, GJA5, BIRC5, hsa-miR-1285-3p, and lncRNA NPHP3-AS1 were likely to be associated with AF-VHD development.
Collapse
Affiliation(s)
- Zhiwei Zhao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Guiqing Liu
- Department of Cardiovascular Surgery, Hammersmith Hospital, Imperial College Healthcare NHS Trust
| | - Haiyang Zhang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Peng Ruan
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Jianjun Ge
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Qiang Liu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China
| |
Collapse
|
33
|
Genetics and Epigenetics of Atrial Fibrillation. Int J Mol Sci 2020; 21:ijms21165717. [PMID: 32784971 PMCID: PMC7460853 DOI: 10.3390/ijms21165717] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is known to be the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence exponentially increases with age and could reach up to 8% in the elderly population. The management of AF is a complex issue that is addressed by extensive ongoing basic and clinical research. AF centers around different types of disturbances, including ion channel dysfunction, Ca2+-handling abnormalities, and structural remodeling. Genome-wide association studies (GWAS) have uncovered over 100 genetic loci associated with AF. Most of these loci point to ion channels, distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Recently, the discovery of post-transcriptional regulatory mechanisms, involving non-coding RNAs (especially microRNAs), DNA methylation, and histone modification, has allowed to decipher how a normal heart develops and which modifications are involved in reshaping the processes leading to arrhythmias. This review aims to provide a current state of the field regarding the identification and functional characterization of AF-related epigenetic regulatory networks
Collapse
|
34
|
Bektik E, Cowan DB, Wang DZ. Long Non-Coding RNAs in Atrial Fibrillation: Pluripotent Stem Cell-Derived Cardiomyocytes as a Model System. Int J Mol Sci 2020; 21:ijms21155424. [PMID: 32751460 PMCID: PMC7432754 DOI: 10.3390/ijms21155424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is a type of sustained arrhythmia in humans often characterized by devastating alterations to the cardiac conduction system as well as the structure of the atria. AF can lead to decreased cardiac function, heart failure, and other complications. Long non-coding RNAs (lncRNAs) have been shown to play important roles in the cardiovascular system, including AF; however, a large group of lncRNAs is not conserved between mouse and human. Furthermore, AF has complex networks showing variations in mechanisms in different species, making it challenging to utilize conventional animal models to investigate the functional roles and potential therapeutic benefits of lncRNAs for AF. Fortunately, pluripotent stem cell (PSC)-derived cardiomyocytes (CMs) offer a reliable platform to study lncRNA functions in AF because of certain electrophysiological and molecular similarities with native human CMs. In this review, we first summarize the broad aspects of lncRNAs in various heart disease settings, then focus on their potential roles in AF development and pathophysiology. We also discuss current uses of PSCs in AF research and describe how these studies could be developed into novel therapeutics for AF and other cardiovascular diseases.
Collapse
Affiliation(s)
- Emre Bektik
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
| | - Douglas B. Cowan
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Correspondence:
| |
Collapse
|
35
|
Babapoor-Farrokhran S, Gill D, Rasekhi RT. The role of long noncoding RNAs in atrial fibrillation. Heart Rhythm 2020; 17:1043-1049. [DOI: 10.1016/j.hrthm.2020.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022]
|
36
|
Shi X, Shao X, Liu B, Lv M, Pandey P, Guo C, Zhang R, Zhang Y. Genome-wide screening of functional long noncoding RNAs in the epicardial adipose tissues of atrial fibrillation. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165757. [PMID: 32147422 DOI: 10.1016/j.bbadis.2020.165757] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
Atrial fibrillation (AF) is the most common arrhythmias, and patients with AF are facing increased risk of heart failure and ischemic stroke. However, the AF pathogenesis, especially the long noncoding RNAs (lncRNA)-related mechanism, has not been fully understood. In this study, we collected RNA sequencing data of the epicardial adipose tissues (EAT) from 6 AF and 6 sinus rhythm (SR) to identify the differentially expressed protein-coding genes (PCGs) and lncRNAs. Functionally, the differentially expressed PCGs were significantly enriched in bone development disease, chronic kidney failure, and kidney disease. Particularly, we found that homeobox (HOX) genes, especially the antisense RNAs, HOTAIRM1, HOXA-AS2 and HOXB-AS2, were significantly downregulated in EAT of AF. The biological function predictions for the dysregulated lncRNAs revealed that TNF signaling pathway was the most frequent pathway that the lncRNAs might participate in. In addition, SNHG16 and RP11-471B22.2 might participate in TGF-beta signaling and ECM-receptor interaction by interacting with the proteins involved in the pathways, respectively. Collectively, we provided some potentially pathogenic lncRNAs in AF, which might be useful for the related researchers to study their functionality and develop new therapeutics.
Collapse
Affiliation(s)
- Xin Shi
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xuelian Shao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ban Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengwei Lv
- Shanghai East Hospital of Clinical Medical College, Nanjing Medical University, Shanghai, China; Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pratik Pandey
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Yangyang Zhang
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|