1
|
Shahbaz SK, Mokhlesi A, Sadegh RK, Rahimi K, Jamialahmadi T, Butler AE, Kesharwani P, Sahebkar A. TLR/NLRP3 inflammasome signaling pathways as a main target in frailty, cachexia and sarcopenia. Tissue Cell 2025; 93:102723. [PMID: 39823704 DOI: 10.1016/j.tice.2025.102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Mobility disability is a common condition affecting older adults, making walking and the performance of activities of daily living difficult. Frailty, cachexia and sarcopenia are related conditions that occur with advancing age and are characterized by a decline in muscle mass, strength, and functionality that negatively impacts health. Chronic low-grade inflammation is a significant factor in the onset and progression of these conditions. The toll-like receptors (TLRs) and the NLRP3 inflammasome are the pathways of signaling that regulate inflammation. These pathways can potentially be targeted therapeutically for frailty, cachexia and sarcopenia as research has shown that dysregulation of the TLR/NLRP3 inflammasome signaling pathways is linked to these conditions. Activation of TLRs with pathogen-associated molecular patterns (PAMPs or DAMPs) results in chronic inflammation and tissue damage by releasing pro-inflammatory cytokines. Additionally, NLRP3 inflammasome activation enhances the inflammatory response by promoting the production and release of interleukins (ILs), thus exacerbating the underlying inflammatory mechanisms. These pathways are activated in the advancement of disease in frail and sarcopenic individuals. Targeting these pathways may offer therapeutic options to reduce frailty, improve musculoskeletal resilience and prevent or reverse cachexia-associated muscle wasting. Modulating TLR/NLRP3 inflammasome pathways may also hold promise in slowing down the progression of sarcopenia, preserving muscle mass and enhancing overall functional ability in elderly people. The aim of this review is to investigate the signaling pathways of the TLR/NLRP3 inflammasome as a main target in frailty, cachexia and sarcopenia.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Aida Mokhlesi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; Social Determinants of Health Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran; Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roghaye Keshavarz Sadegh
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Kimia Rahimi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zhang J, Shen W, Liu F, He H, Han S, Luo L. Integrated approach with UHPLC-Q-Exactive-tandem mass spectrometry, network analysis, and molecular docking to determine potential active compounds and mechanisms of Rhizoma Musae decoction in osteoarthritis treatment. Front Pharmacol 2025; 15:1380335. [PMID: 39822742 PMCID: PMC11735259 DOI: 10.3389/fphar.2024.1380335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/03/2024] [Indexed: 01/19/2025] Open
Abstract
Objective This study aimed to identify the potential active compounds in Rhizoma Musae decoction and understand their mechanisms of action in osteoarthritis treatment. Methods UHPLC-Q-Exactive-MS/MS technology was used for an in-depth analysis of the chemical compounds present in Rhizoma Musae decoction. A network analysis approach was used to construct a comprehensive network of compounds, targets, and pathways, which provided insights into the molecular mechanisms of Rhizoma Musae decoction in osteoarthritis treatment. Results The integrated analysis revealed the presence of 534 chemical compounds in Rhizoma Musae decoction, with 7beta-hydroxyrutaecarpine, 7,8-dihydroxycoumarin, pinocembrin diacetate, and scopoletin being identified as potential active compounds. Potential targets such as GAPDH, AKT1, TNF, IL6, and SRC were implicated in key pathways including MAPK signaling pathway, lipid and atherosclerosis, PI3K-Akt signaling pathway, and IL-17 signaling pathway. Molecular docking studies showed significant binding affinity between the core targets and key components. In vitro cell experiments have demonstrated that RM decoction can enhance cell proliferation and upregulates the expression of TNFα, IL-6, and SRC, while down-regulating the expression of GAPDH and AKT1. Conclusion The potential active compounds present in Rhizoma Musae decoction influence specific targets and signaling pathways involved in osteoarthritis pathogenesis, providing new insights for the functional development and utilization of RM.
Collapse
Affiliation(s)
- Jian Zhang
- GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Wanyan Shen
- Research and Development Department, Guizhou Weikang Zifan Pharmaceutical Co., Ltd., Guiyang, China
| | - Fanzhi Liu
- GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Hehe He
- Research and Development Department, Guizhou Weikang Zifan Pharmaceutical Co., Ltd., Guiyang, China
| | - Shuquan Han
- GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Lina Luo
- GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| |
Collapse
|
3
|
Fu Y, Yang L, Liu L, Kong L, Sun H, Sun Y, Yin F, Yan G, Wang X. Rhein: An Updated Review Concerning Its Biological Activity, Pharmacokinetics, Structure Optimization, and Future Pharmaceutical Applications. Pharmaceuticals (Basel) 2024; 17:1665. [PMID: 39770507 PMCID: PMC11679290 DOI: 10.3390/ph17121665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Rhein is a natural active ingredient in traditional Chinese medicine that has attracted much attention due to its wide range of pharmacological activities. However, its clinical application is limited by low water solubility, poor oral absorption, and potential toxicity to the liver and kidneys. Recently, advanced extraction and synthesis techniques have made it possible to develop derivatives of rhein, which have better pharmacological properties and lower toxicity. This article comprehensively summarizes the biological activity and action mechanism of rhein. Notably, we found that TGF-β1 is the target of rhein improving tissue fibrosis, while NF-κB is the main target of its anti-inflammatory effect. Additionally, we reviewed the current research status of the pharmacokinetics, toxicology, structural optimization, and potential drug applications of rhein and found that the coupling and combination therapy of rhein and other active ingredients exhibit a synergistic effect, significantly enhancing therapeutic efficacy. Finally, we emphasize the necessity of further studying rhein's pharmacological mechanisms, toxicology, and development of analogs, aiming to lay the foundation for its widespread clinical application as a natural product and elucidate its prospects in modern medicine.
Collapse
Affiliation(s)
- Yuqi Fu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China; (L.Y.); (Y.S.)
| | - Lei Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China; (L.Y.); (Y.S.)
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China; (L.Y.); (Y.S.)
| |
Collapse
|
4
|
Abd Elrazik NA, Abd El Salam ASG. Diacerein ameliorates thioacetamide-induced hepatic encephalopathy in rats via modulation of TLR4/AQP4/MMP-9 axis. Metab Brain Dis 2024; 40:10. [PMID: 39556255 PMCID: PMC11573817 DOI: 10.1007/s11011-024-01457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/27/2024] [Indexed: 11/19/2024]
Abstract
Astrocyte swelling, blood brain barrier (BBB) dissipation and the subsequent brain edema are serious consequences of persistent hyperammonemia in hepatic encephalopathy (HE) in which if inadequately controlled it will lead to brain death. The current study highlights the potential neuroprotective effect of diacerein against thioacetamide (TAA)-induced HE in acute liver failure rat model. HE was induced in male Sprague-Dawley rats via I.P. injection of TAA (200 mg/kg) for three alternative times/week at 3rd week of the experiment. Diacerein (50 mg/kg) was gavaged for 14 days prior to induction of HE and for further 7 days together with TAA injection for an overall period of 21 days. Diacerein attenuated TAA-induced HE in acute liver failure rat model; as proofed by significant lowering of serum and brain ammonia concentrations, serum AST and ALT activities and significant attenuation of both brain and hepatic MDA contents and IL-1β with marked increases in GSH contents (P < 0.0001). The neuroprotective effect of diacerein was demonstrated by marked improvement of motor and cognitive deficits, brain histopathological changes; hallmarks of HE. As shown by immunohistochemical results, diacerein markedly downregulated brain TLR4 expression which in turn significantly increased the GFAP expression, and significantly decreased AQP4 expression; the astrocytes swelling biomarkers (P < 0.0001). Moreover, diacerein preserved BBB integrity via downregulation of MMP-9 mediated digestion of tight junction proteins such as occludin (P < 0.0001). Collectively, diacerein ameliorated cerebral edema and maintained BBB integrity via modulation of TLR4/AQP4/MMP-9 axis thus may decrease the progression of HE induced in acute liver failure.
Collapse
Affiliation(s)
- Nesma A Abd Elrazik
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | | |
Collapse
|
5
|
Arshad K, Salim J, Talat MA, Ashraf A, Kanwal N. Integrated virtual screening and MD simulation study to discover potential inhibitors of mycobacterial electron transfer flavoprotein oxidoreductase. PLoS One 2024; 19:e0312860. [PMID: 39546486 PMCID: PMC11567552 DOI: 10.1371/journal.pone.0312860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Tuberculosis (TB) continues to be a major global health burden, with high incidence and mortality rates, compounded by the emergence and spread of drug-resistant strains. The limitations of current TB medications and the urgent need for new drugs targeting drug-resistant strains, particularly multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB, underscore the pressing demand for innovative anti-TB drugs that can shorten treatment duration. This has led to a focus on targeting energy metabolism of Mycobacterium tuberculosis (Mtb) as a promising approach for drug discovery. This study focused on repurposing drugs against the crucial mycobacterial protein, electron transfer flavoprotein oxidoreductase (EtfD), integral to utilizing fatty acids and cholesterol as a carbon source during infection. The research adopted an integrative approach, starting with virtual screening of approved drugs from the ZINC20 database against EtfD, followed by molecular docking, and concluding with molecular dynamics (MD) simulations. Diacerein, levonadifloxacin, and gatifloxacin were identified as promising candidates for repurposing against TB based on their strong binding affinity, stability, and interactions with EtfD. ADMET analysis and anti-TB sensitivity predictions assessed their pharmacokinetic and therapeutic potential. Diacerein and levonadifloxacin, previously unexplored in anti-tuberculous therapy, along with gatifloxacin, known for its efficacy in drug-resistant TB, have broad-spectrum antimicrobial properties and favorable pharmacokinetic profiles, suggesting potential as alternatives to current TB treatments, especially against resistant strains. This study underscores the efficacy of computational drug repurposing, highlighting bacterial energy metabolism and lipid catabolism as fruitful targets. Further research is necessary to validate the clinical suitability and efficacy of diacerein, levonadifloxacin, and gatifloxacin, potentially enhancing the arsenal against global TB.
Collapse
Affiliation(s)
- Kaleem Arshad
- Biological Sciences, Superior University, Lahore, Pakistan
- Khawaja Muhammad Safdar Medical College, Sialkot, Pakistan
| | - Jahanzab Salim
- Khawaja Muhammad Safdar Medical College, Sialkot, Pakistan
| | | | - Asifa Ashraf
- Khawaja Muhammad Safdar Medical College, Sialkot, Pakistan
| | - Nazia Kanwal
- Biological Sciences, Superior University, Lahore, Pakistan
| |
Collapse
|
6
|
Qiao L, Li Z, Li B, Zhang F, Yao Z, Wu C, Tang H, Pan Q, Shi P, Ping Y. Combination of anti-inflammatory therapy and RNA interference by light-inducible hybrid nanomedicine for osteoarthritis treatment. Acta Pharm Sin B 2024; 14:5008-5025. [PMID: 39664429 PMCID: PMC11628851 DOI: 10.1016/j.apsb.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 12/13/2024] Open
Abstract
Osteoarthritis (OA) is a type of highly prevalent heterogeneous degenerative disease that leads to joint pain, deformity, the destruction of articular cartilage, and eventual disability. The current treatment strategies for OA often suffer from systemic side effects, poor anti-inflammatory efficacy, and persistent pain. To address these issues, we develop light-inducible nanomedicine that enables the co-delivery of anti-inflammatory drug (diacerein, DIA) and small interfering RNA (siRNA) targeting nerve growth factor (NGF) for pain relief to enhance the therapeutic efficacy of OA. The nanomedicine is based on poly(β-amino-ester)-coated gold nanocages (AuNCs), which is further incorporated with the phase-change material (lauric acid/stearic acid, LA/SA). Following intra-articular (IA) injection in vivo, the nanomedicine displays high degree of drug accumulation and retention in the joint lesion of OA mouse models. The photothermal effect, induced by AuNCs, not only promotes DIA and siRNA release, but also upregulates the expression of heat shock protein 70 (HSP-70) to resist the apoptosis of chondrocytes in the inflammatory condition. The internalization of both DIA and siRNA results in strong anti-inflammatory and pain-relieving effects, which greatly contribute to the joint repair of OA mice. This study offers a promising combination strategy for OA treatment.
Collapse
Affiliation(s)
- Li Qiao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Zhiyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhuo Yao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chongzhi Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honglin Tang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Qi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Yuan Ping
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| |
Collapse
|
7
|
Sun L, Huang X, Wang J, Yuan C, Zhao H, Li D, Xu R, Wang Y, Qin P, Shi Y, Peng J, Hou M, Hou Y. Eltrombopag plus diacerein vs eltrombopag in patients with ITP: a multicenter, randomized, open-label phase 2 trial. Blood 2024; 144:1791-1799. [PMID: 38958479 DOI: 10.1182/blood.2024025067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
ABSTRACT This study aimed to compare the efficacy and safety of eltrombopag plus diacerein vs eltrombopag alone in patients with primary immune thrombocytopenia (ITP) who were previously unresponsive to 14 days of eltrombopag treatment at the full dose. Recruited patients were randomly assigned 1:1 to receive either eltrombopag plus diacerein (n = 50) or eltrombopag monotherapy (n = 52). Overall response rate, defined as a platelet count of ≥30 × 109/L, at least doubling of the baseline platelet count, and no bleeding, was reached in 44% of patients in the eltrombopag plus diacerein group compared with 13% in the eltrombopag group at day 15 (P = .0009), and reached in 42% of patients in the combination group compared with 12% in the monotherapy group at day 28 (P = .0006). The addition of diacerein to eltrombopag also led to a longer duration of response (P = .0004). The 2 most common treatment-emergent adverse events were respiratory infection and gastrointestinal reactions in the combination group, and fatigue and respiratory infection in the eltrombopag group. In conclusion, eltrombopag plus diacerein was well tolerated, and induced higher overall response rates and longer duration of response than eltrombopag alone, offering a rejuvenating salvage therapy for patients with ITP unresponsive to 14 days of full dosage eltrombopag. Our work has the potential to enhance the care of patients treated with thrombopoietin receptor agonists, reducing the need for rapid transitions to less-preferable therapies. This study is registered at ClinicalTrials.gov as #NCT04917679.
Collapse
Affiliation(s)
- Lu Sun
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Xiaoyang Huang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Juan Wang
- Department of Haematology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Chenglu Yuan
- Department of Haematology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Hongyu Zhao
- Department of Haematology, Jinan Central Hospital affiliated to Shandong University, Jinan, China
| | - Daqi Li
- Department of Haematology, Jinan Central Hospital affiliated to Shandong University, Jinan, China
| | - Ruirong Xu
- Department of Hematology, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, China
| | - Yan Wang
- The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ping Qin
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Yan Shi
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
8
|
Wilson DB. A boost for eltrombopag. Blood 2024; 144:1756-1758. [PMID: 39446370 DOI: 10.1182/blood.2024025879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
|
9
|
Khodir SA, Sweed E, Motawea SM, Al-Gholam MA, Elnaidany SS, Dayer MZS, Ameen O. Diacerein and myo-inositol alleviate letrozole-induced PCOS via modulation of HMGB1, SIRT1, and NF-kB: A comparative study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03497-7. [PMID: 39432066 DOI: 10.1007/s00210-024-03497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent cause of anovulatory infertility in women. Myo-inositol supplementation has displayed effectiveness in curing PCOS patients. Diacerein, an anti-inflammatory medication, has not been extensively studied in the context of reproductive disorders. This study aimed to compare the role of myo-inositol and diacerein in PCOS and the probable mechanisms mediating their actions. Forty adult female rats were divided equally into the following: control, PCOS, PCOS+Myo-inositol, and PCOS+Diacerein groups. Rats were subjected to arterial blood pressure (ABP), electromyography (EMG), and uterine reactivity measurements. Blood samples were collected for measuring hormonal assays, glycemic state, lipid profile, oxidative stress, and inflammatory markers. Ovaries and uteri were extracted for histological examination, including hematoxylin and eosin staining, Masson's trichrome staining, immunohistochemistry, and rt-PCR analysis of ovarian tissues. PCOS was associated with significant increases in ABP, uterine frequency and amplitude of contraction, luteinizing hormone, testosterone, lipid, glycemic and inflammatory markers, malondialdehyde, high-mobility group box 1 (HMGB1), nuclear factor kappa (NF-kB), ovarian fibrosis, and endometrial thickening. In contrast, there was a significant reduction in follicular stimulating hormone, reduced glutathione, and Sirtuin 1 (SIRT1) when compared with control group. Both myo-inositol and diacerein counteract PCOS changes; but diacerein's effects were superior to myo-inositol's for all parameters, except for lipid and glycemic markers. Diacerein possessed anti-inflammatory properties and showed significant efficacy in mitigating the endocrinal, metabolic, and ovarian structural alterations linked to PCOS. Its beneficial actions likely stem from reducing oxidative stress, dyslipidemia, and hyperglycemia, potentially through the modulation of HMGB1, SIRT1, and NF-kB pathways.
Collapse
Affiliation(s)
- Suzan A Khodir
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
- Medical Physiology, Menoufia National University, Menoufia, Egypt
| | - Eman Sweed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt.
- Quality Assurance Unit, Menoufia National University, Menoufia, Egypt.
| | - Shaimaa Mohamed Motawea
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| | - Marwa A Al-Gholam
- Human Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| | - Sherin Sobhy Elnaidany
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| | | | - Omnia Ameen
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| |
Collapse
|
10
|
Farouk H, Moustafa PE, Khattab MS, El-Marasy SA. Diacerein ameliorates amiodarone-induced pulmonary fibrosis via targeting the TGFβ1/α-SMA/Smad3 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03450-8. [PMID: 39417843 DOI: 10.1007/s00210-024-03450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
This study is aimed at investigating the possible protective effect of diacerein (DIA) against AMD-induced pulmonary fibrosis in rats. Rats were classified into 4 groups: a normal group that received distilled water, control group that received AMD (100 mg/kg, p.o.) for 21 days to induce pulmonary fibrosis, and 2 treatment groups that received diacerein, in 2 dose levels (50 and 100 mg/kg, p.o., respectively) in addition to AMD (100 mg/kg, p.o.), for 21 days. Lung function test was assessed using a spirometer; serum and tissue were collected. Biochemical, real-time PCR, histopathological, and immunohistopathological analyses were carried out. AMD reduced tidal volume (TV), peripheral expiratory rate (PER), forced vital capacity (FVC), serum reduced glutathione (GSH) levels, Beclin, and LCII, while it elevated transform growth factor (TGF-β1) gene expression, serum malondialdehyde (MDA) level, alpha-smooth muscle actin (α-SMA), Smad3, phosphorylated signal transducer and activator of transcription (p-STAT3), and p62 lung content. Also, AMD elevated tumor necrosis factor-alpha (TNF-α) and caspase-3 protein expression. DIA elevated TV, PER, FVC, serum GSH level, Beclin, and LCII, while it reduced TGF-β1 gene expression, serum MDA level, α-SMA, Smad3, p-STAT-3, and p62 lung content. Moreover, DIA reduced TNF-α and caspase-3 protein expression. DIA attenuated AMD-induced pulmonary fibrosis via alleviating the TGF1/α-SMA/Smad3 pathway, reducing STAT-3 activation, and combating oxidative stress and inflammation in addition to promoting autophagy and abrogating apoptosis.
Collapse
Affiliation(s)
- Hadir Farouk
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Passant E Moustafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Salma A El-Marasy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| |
Collapse
|
11
|
Zhou RN, Zhu ZW, Xu PY, Shen LX, Wang Z, Xue YY, Xiang YY, Cao Y, Yu XZ, Zhao J, Jin Y, Yan J, Yang Q, Fang PH, Shang WB. Rhein targets macrophage SIRT2 to promote adipose tissue thermogenesis in obesity in mice. Commun Biol 2024; 7:1003. [PMID: 39152196 PMCID: PMC11329635 DOI: 10.1038/s42003-024-06693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Rhein, a component derived from rhubarb, has been proven to possess anti-inflammatory properties. Here, we show that rhein mitigates obesity by promoting adipose tissue thermogenesis in diet-induced obese mice. We construct a macrophage-adipocyte co-culture system and demonstrate that rhein promotes adipocyte thermogenesis through inhibiting NLRP3 inflammasome activation in macrophages. Moreover, clues from acetylome analysis identify SIRT2 as a potential drug target of rhein. We further verify that rhein directly interacts with SIRT2 and inhibits NLRP3 inflammasome activation in a SIRT2-dependent way. Myeloid knockdown of SIRT2 abrogates adipose tissue thermogenesis and metabolic benefits in obese mice induced by rhein. Together, our findings elucidate that rhein inhibits NLRP3 inflammasome activation in macrophages by regulating SIRT2, and thus promotes white adipose tissue thermogenesis during obesity. These findings uncover the molecular mechanism underlying the anti-inflammatory and anti-obesity effects of rhein, and suggest that rhein may become a potential drug for treating obesity.
Collapse
Affiliation(s)
- Ruo-Nan Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zi-Wei Zhu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ping-Yuan Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li-Xuan Shen
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziwei Wang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying-Ying Xue
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying-Ying Xiang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Cao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xi-Zhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Peng-Hua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wen-Bin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
12
|
de Oliveira G, de Andrade Rodrigues L, Souza da Silva AA, Gouvea LC, Silva RCL, Sasso-Cerri E, Cerri PS. Reduction of osteoclast formation and survival following suppression of cytokines by diacerein in periodontitis. Biomed Pharmacother 2024; 177:117086. [PMID: 39013222 DOI: 10.1016/j.biopha.2024.117086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024] Open
Abstract
Periodontitis causes an increase in several bioactive agents such as interleukins (IL), tumor necrosis factor (TNF)-α and receptor activator of NF-kB ligand (RANKL), which induce the osteoclast formation and activity. Since diacerein exerts anti-TNF-α and anti-IL-1 effects, alleviating bone destruction in osteoarthritis, we investigated whether this drug inhibits the formation and survival of osteoclast in the periodontitis. Rats were distributed into 3 groups: 1) group with periodontitis treated with 100 mg/kg diacerein (PDG), 2) group with periodontitis treated with saline (PSG) and group control (CG) without any treatment. After 7, 15 and 30 days, the maxillae were collected for light and transmission electron microscopy analyses. Gingiva samples were collected to evaluate the mRNA levels for Tnf, Il1b, Tnfsf11 and Tnfrsf11b by RT-qPCR. In PDG, the expression of Tnf and Il1b genes reduced significantly compared to PSG, except for Tnf expression at 7 days. The number of osteoclasts reduced significantly in the PDG in comparison with PSG at 7 and 15 days. In all periods, the IL-6 immunoexpression, RANKL/OPG immunoexpression and mRNA levels of Tnfsf11/Tnfrsf11b ratio were significantly lower in PDG than in PSG. PDG exhibited significantly higher frequency of TUNEL-positive osteoclasts than in PSG and CG at all time points. Osteoclasts with caspase-3-immunolabelled cytoplasm and nuclei with masses of condensed chromatin were observed in PDG, confirming osteoclast apoptosis. Diacerein inhibits osteoclastogenesis by decreasing Tnf and Il1b mRNA levels, resulting in decreased RANKL/OPG ratio, and induces apoptosis in osteoclasts of alveolar process of rat molars with periodontitis.
Collapse
Affiliation(s)
- Gabriella de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | - Lucas de Andrade Rodrigues
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | | | - Lays Cristina Gouvea
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | - Renata Cristina Lima Silva
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | - Paulo Sérgio Cerri
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil.
| |
Collapse
|
13
|
Refaie MMM, Mohammed HH, Abdel-Hakeem EA, Bayoumi AMA, Mohamed ZH, Shehata S. Cardioprotective role of diacerein in diabetic cardiomyopathy via modulation of inflammasome/caspase1/interleukin1β pathway in juvenile rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5079-5091. [PMID: 38224346 PMCID: PMC11166746 DOI: 10.1007/s00210-023-02921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Diabetes mellitus is a common metabolic disorder affecting different body organs; one of its serious complications is diabetic cardiomyopathy (DCM). Thus, finding more cardiopreserving agents to protect the heart against such illness is a critical task. For the first time, we planned to study the suspected role of diacerein (DIA) in ameliorating DCM in juvenile rats and explore different mechanisms mediating its effect including inflammasome/caspase1/interleukin1β pathway. Four-week-aged juvenile rats were randomly divided into groups; the control group, diacerein group, diabetic group, and diabetic-treated group. Streptozotocin (45 mg/kg) single intraperitoneal (i.p.) dose was administered for induction of type 1 diabetes on the 1st day which was confirmed by detecting blood glucose level. DIA was given in a dose of 50 mg/kg/day for 6 weeks to diabetic and non-diabetic rats, then we evaluated different inflammatory, apoptotic, and oxidative stress parameters. Induction of DCM succeeded as there were significant increases in cardiac enzymes, heart weights, fasting blood glucose level (FBG), and glycosylated hemoglobin (HbA1c) associated with elevated blood pressure (BP), histopathological changes, and increased caspase 3 immunoexpression. Furthermore, there was an increase of malondialdehyde (MDA), inflammasome, caspase1, angiotensin II, nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNFα), and interleukin 1β (IL1β). However, antioxidant parameters such as reduced glutathione (GSH) and total antioxidant capacity (TAC) significantly declined. Fortunately, DIA reversed the diabetic cardiomyopathy changes mostly due to the observed anti-inflammatory, antioxidant, and anti-apoptotic properties with regulation of blood glucose level.DIA has an ability to regulate DCM-associated biochemical and histopathological disturbances.
Collapse
Affiliation(s)
- Marwa M M Refaie
- Department of Medical Pharmacology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Hanaa Hassanein Mohammed
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Elshymaa A Abdel-Hakeem
- Department of Medical Physiology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt.
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511, Egypt
| | - Zamzam Hassan Mohamed
- Department of Pediatric, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| |
Collapse
|
14
|
Mansoure AN, Elshal M, Helal MG. Renoprotective effect of diacetylrhein on diclofenac-induced acute kidney injury in rats via modulating Nrf2/NF-κB/NLRP3/GSDMD signaling pathways. Food Chem Toxicol 2024; 187:114637. [PMID: 38582345 DOI: 10.1016/j.fct.2024.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Diclofenac (DF)-induced acute kidney injury (AKI) is characterized by glomerular dysfunction and acute tubular necrosis. Due to limited treatment approaches, effective and safe drug therapy to protect against such AKI is still needed. Diacetylrhein (DAR), an anthraquinone derivative, has different antioxidant and anti-inflammatory properties. Therefore, the aim of the current study was to investigate the renoprotective effect of DAR on DF-induced AKI while elucidating the potential underlying mechanism. Our results showed that DAR (50 and 100 mg/kg) markedly abrogated DF-induced kidney dysfunction decreasing SCr, BUN, serum NGAL, and serum KIM1 levels. Moreover, DAR treatment remarkably maintained renal redox balance and reduced the levels of pro-inflammatory biomarkers in the kidney. Mechanistically, DAR boosted Nrf2/HO-1 antioxidant and anti-inflammatory response in the kidney while suppressing renal TLR4/NF-κB and NLRP3/caspase-1 inflammatory signaling pathways. In addition, DAR markedly inhibited renal pyroptosis via targeting of GSDMD activation. Collectively, this study confirmed that the interplay between Nrf2/HO-1 and TLR4/NF-κB/NLRP3/Caspase-1 signaling pathways and pyroptotic cell death mediates DF-induced AKI and reported that DAR has a dose-dependent renoprotective effect on DF-induced AKI in rats. This effect is due to powerful antioxidant, anti-inflammatory, and anti-pyroptotic activities that could provide a promising treatment approach to protect against DF-induced AKI.
Collapse
Affiliation(s)
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
15
|
Mansoure AN, Elshal M, Helal MG. Inhibitory effect of diacerein on diclofenac-induced acute nephrotoxicity in rats via modulating SIRT1/HIF-1α/NF-κB and SIRT1/p53 regulatory axes. Int Immunopharmacol 2024; 131:111776. [PMID: 38471363 DOI: 10.1016/j.intimp.2024.111776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
The aim of this study is to explore the potential of repurposing the antiarthritic drug diacerein (DCN) against diclofenac (DCF)-induced acute nephrotoxicity in rats. Rats were divided into four groups: Group I (CTRL) served as the negative control; Group II (DCF) served as the positive control and was injected with DCF (50 mg/kg/day) for three consecutive days (fourth-sixth) while being deprived of water starting on day 5; Group III (DCF + DCN50) and Group IV (DCF + DCN100) were orally administered DCN (50 and 100 mg/kg/day, respectively) for six days and injected with DCF, while being deprived of water as described above. Changes in kidney function biomarkers were assessed. Levels of MDA and GSH along with NO content in kidney tissues were measured as indicators of oxidative stress status. Histopathological changes of the renal cortex and medulla were evaluated. Changes in renal NF-κB and SIRT-1 levels were immunohistochemically addressed. Western blotting was used to estimate the relative expressions of HIF-1α, p53, and active caspase-3. Our results showed that DCN inhibited kidney dysfunction and suppressed oxidative stress, which were reflected in improved kidney architecture, including less tubular degeneration and necrosis in the cortex and medulla. Interestingly, DCN reduced renal HIF-1α, p53, and active caspase-3 expression and NF-κB activation while increasing renal SIRT1 expression. In conclusion, for the first time, DCN counteracts acute kidney injury induced by DCF in rats by its anti-oxidative, anti-inflammatory, antinecrotic, and anti-apoptotic effects in a dose-dependent manner, which are mainly via targeting SIRT1/HIF-1α/NF-κB and SIRT1/p53 regulatory axes.
Collapse
Affiliation(s)
| | - Mahmoud Elshal
- Dept. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar G Helal
- Dept. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
16
|
Liang T, Yang SX, Qian C, Du LD, Qian ZM, Yung WH, Ke Y. HMGB1 Mediates Inflammation-Induced DMT1 Increase and Dopaminergic Neurodegeneration in the Early Stage of Parkinsonism. Mol Neurobiol 2024; 61:2006-2020. [PMID: 37833459 DOI: 10.1007/s12035-023-03668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Both neuroinflammation and iron accumulation play roles in the pathogenesis of Parkinson's disease (PD). However, whether inflammation induces iron dyshomeostasis in dopaminergic neurons at an early stage of PD, at which no quantifiable dopaminergic neuron loss can be observed, is still unknown. As for the inflammation mediators, although several cytokines have been reported to increase in PD, the functions of these cytokines in the SN are double-edged and controversial. In this study, whether inflammation could induce iron dyshomeostasis in dopaminergic neurons through high mobility group protein B1 (HMGB1) in the early stage of PD is explored. Lipopolysaccharide (LPS), a toxin that primarily activates glia cells, and 6-hydroxydopamine (6-OHDA), the neurotoxin that firstly impacts dopaminergic neurons, were utilized to mimic PD in rats. We found a common and exceedingly early over-production of HMGB1, followed by an increase of divalent metal transporter 1 with iron responsive element (DMT1+) in the dopaminergic neurons before quantifiable neuronal loss. HMGB1 neutralizing antibody suppressed inflammation in the SN, DMT1+ elevation in dopaminergic neurons, and dopaminergic neuronal loss in both LPS and 6-OHDA administration- induced PD models. On the contrary, interleukin-1β inhibitor diacerein failed to suppress these outcomes induced by 6-OHDA. Our findings not only demonstrate that inflammation could be one of the causes of DMT1+ increase in dopaminergic neurons, but also highlight HMGB1 as a pivotal early mediator of inflammation-induced iron increase and subsequent neurodegeneration, thereby HMGB1 could serve as a potential target for early-stage PD treatment.
Collapse
Affiliation(s)
- Tuo Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, China
| | - Sheng-Xi Yang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, China
| | - Christopher Qian
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, China
| | - Li-Da Du
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong, 226001, China
| | - Wing-Ho Yung
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, China.
| |
Collapse
|
17
|
El-Aziz Fathy EA, Abdel-Gaber SAW, Gaber Ibrahim MF, Thabet K, Waz S. Downregulation of IL-1β/p38 mitogen activated protein kinase pathway by diacerein protects against kidney ischemia/reperfusion injury in rats. Cytokine 2024; 176:156511. [PMID: 38290257 DOI: 10.1016/j.cyto.2024.156511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Renal ischemia-reperfusion (I/R) can be precipitated by multiple clinical situations that lead to impaired renal function and associated mortality. The resulting tubular cell damage is the outcome of complex disorders including, an inflammatory process with an overproduction of cytokines. Here, diacerein (DIA), an inhibitor of proinflammatory cytokine interleukin-1 beta (IL-1β), was investigated against renal I/R in rats. DIA was orally administrated (50 mg/kg/day) for ten days before bilateral ischemia for 45 min with subsequent 2 hr. reperfusion. Interestingly, DIA alleviated the renal dysfunction and histopathological damage in the renal tissues. Pretreatment with DIA corrected the oxidative imbalance by prevented reduction in antioxidant levels of GSH and SOD, while it decreased the elevation of the oxidative marker, MDA. In addition, DIA downregulated IL-1β and TNF-α expression in the renal tissues. Consequent to inhibition of the oxidative stress and inflammatory cascades, DIA inhibited the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Therefore, downstream targets for p38 MAPK were also inhibited via DIA which prevented further increases of inflammatory cytokines and the apoptotic marker, caspase-3. Collectively, this study revealed the renoprotective role of DIA for renal I/R and highlighted the role of p38 MAPK encountered in its therapeutic application in renal disease.
Collapse
Affiliation(s)
- Eman Abd El-Aziz Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt.
| | | | - Manar Fouli Gaber Ibrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt.
| | - Khaled Thabet
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt.
| | - Shaimaa Waz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt.
| |
Collapse
|
18
|
Luo W, Zeng Y, Song Q, Wang Y, Yuan F, Li Q, Liu Y, Li S, Jannatun N, Zhang G, Li Y. Strengthening the Combinational Immunotherapy from Modulating the Tumor Inflammatory Environment via Hypoxia-Responsive Nanogels. Adv Healthc Mater 2024; 13:e2302865. [PMID: 38062634 DOI: 10.1002/adhm.202302865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Despite the success of immuno-oncology in clinical settings, the therapeutic efficacy is lower than the expectation due to the immunosuppressive inflammatory tumor microenvironment (TME) and the lack of functional lymphocytes caused by exhaustion. To enhance the efficacy of immuno-oncotherapy, a synergistic strategy should be used that can effectively improve the inflammatory TME and increase the tumor infiltration of cytotoxic T lymphocytes (CTLs). Herein, a TME hypoxia-responsive nanogel (NG) is developed to enhance the delivery and penetration of diacerein and (-)-epigallocatechin gallate (EGCG) in tumors. After systemic administration, diacerein effectively improves the tumor immunosuppressive condition through a reduction of MDSCs and Tregs in TME, and induces tumor cell apoptosis via the inhibition of IL-6/STAT3 signal pathway, realizing a strong antitumor effect. Additionally, EGCG can effectively inhibit the expression of PD-L1, restoring the tumor-killing function of CTLs. The infiltration of CTLs increases at the tumor site with activation of systemic immunity after the combination of TIM3 blockade therapy, ultimately resulting in a strong antitumor immune response. This study provides valuable insights for future research on eliciting effective antitumor immunity by suppressing adverse tumor inflammation. The feasible strategy proposed in this work may solve the urgent clinical concerns of the dissatisfactory checkpoint-based immuno-oncotherapy.
Collapse
Affiliation(s)
- Wenhe Luo
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yanqiao Zeng
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Qingle Song
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yu Wang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Feng Yuan
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Qi Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yingnan Liu
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Su Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Nahar Jannatun
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Guofang Zhang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yang Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
19
|
Liu S, Cao C, Wang Y, Hu L, Liu Q. Novel Therapies for ANCA-associated Vasculitis: Apilimod Ameliorated Endothelial Cells Injury through TLR4/NF-κB Pathway and NLRP3 Inflammasome. Curr Pharm Des 2024; 30:2325-2344. [PMID: 38910483 DOI: 10.2174/0113816128312530240607051608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Antineutrophil cytoplasmic antibody-associated vasculitis (AAV) is a rapidly progressive form of glomerulonephritis for which effective therapeutic drugs are currently lacking, and its underlying mechanism remains unclear. AIMS This study aimed to investigate new treatment options for AAV through a combination of bioinformatics analysis and cell molecular experiments. METHODS The research utilized integrated bioinformatics analysis to identify genes with differential expression, conduct enrichment analysis, and pinpoint hub genes associated with AAV. Potential therapeutic compounds for AAV were identified using Connectivity Map and molecular docking techniques. In vitro experiments were then carried out to examine the impact and mechanism of apilimod on endothelial cell injury induced by MPO-ANCA-positive IgG. RESULTS The findings revealed a set of 374 common genes from differentially expressed genes and key modules of WGCNA, which were notably enriched in immune and inflammatory response processes. A proteinprotein interaction network was established, leading to the identification of 10 hub genes, including TYROBP, PTPRC, ITGAM, KIF20A, CD86, CCL20, GAD1, LILRB2, CD8A, and COL5A2. Analysis from Connectivity Map and molecular docking suggested that apilimod could serve as a potential therapeutic cytokine inhibitor for ANCA-GN based on the hub genes. In vitro experiments demonstrated that apilimod could mitigate tight junction disruption, endothelial cell permeability, LDH release, and endothelial activation induced by MPO-ANCA-positive IgG. Additionally, apilimod treatment led to a significant reduction in the expression of proteins involved in the TLR4/NF-κB and NLRP3 inflammasome-mediated pyroptosis pathways. CONCLUSION This study sheds light on the potential pathogenesis of AAV and highlights the protective role of apilimod in mitigating MPO-ANCA-IgG-induced vascular endothelial cell injury by modulating the TLR4/ NF-kB and NLRP3 inflammasome-mediated pyroptosis pathway. These findings suggest that apilimod may hold promise as a treatment for AAV and warrant further investigation.
Collapse
Affiliation(s)
- Siyang Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlin Cao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of the Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiru Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Hu
- Department of Health Management Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingquan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Bhat MA, Usman I, Dhaneshwar S. Application of Drug Repurposing Approach for Therapeutic Intervention of Inflammatory Bowel Disease. Curr Rev Clin Exp Pharmacol 2024; 19:234-249. [PMID: 37859409 DOI: 10.2174/0127724328245156231008154045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/07/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023]
Abstract
Inflammatory bowel disease (IBD), represented by Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disorder of the gastrointestinal tract (GIT) characterized by chronic relapsing intestinal inflammation, abdominal pain, cramping, loss of appetite, fatigue, diarrhoea, and weight loss. Although the etiology of IBD remains unclear, it is believed to be an interaction between genes, and environmental factors, such as an imbalance of the intestinal microbiota, changing food habits, an ultra-hygiene environment, and an inappropriate immune system. The development of novel effective therapies is stymied by a lack of understanding of the aetiology of IBD. The current therapy involves the use of aminosalicylates, immunosuppressants, and corticosteroids that can effectively manage symptoms, induce and sustain remission, prevent complications, modify the course of the disease, provide diverse treatment options, showcase advancements in biologic therapies, and enhance the overall quality of life. However, the efficacy of current therapy is overshadowed by a plethora of adverse effects, such as loss of weight, mood swings, skin issues, loss of bone density, higher vulnerability to infections, and elevated blood pressure. Biologicals, like anti-tumour necrosis factor agents, can stimulate an autoimmune response in certain individuals that may diminish the effectiveness of the medication over time, necessitating a switch to alternative treatments. The response of IBD patients to current drug therapy is quite varied, which can lead to disease flares that underlines the urgent need to explore alternative treatment option to address the unmet need of developing new treatment strategies for IBD with high efficacy and fewer adverse effects. Drug repurposing is a novel strategy where existing drugs that have already been validated safe in patients for the management of certain diseases are redeployed to treat other, unindicated diseases. The present narrative review focuses on potential drug candidates that could be repurposed for the management of IBD using on-target and off-target strategies. It covers their preclinical, clinical assessment, mechanism of action, and safety profiles, and forecasts their appropriateness in the management of IBD. The review presents useful insights into the most promising candidates for repurposing, like anti-inflammatory and anti-apoptotic troxerutin, which has been found to improve the DSS-induced colitis in rats, an antiosteoarthritic drug diacetylrhein that has been found to have remarkable ameliorating effects on DSS-induced colitis via anti-oxidant and anti- inflammatory properties and by influencing both apoptosis and pyroptosis. Topiramate, an antiepileptic and anticonvulsant drug, has remarkably decreased overall pathophysiological and histopathological events in the experimental model of IBD in rodents by its cytokine inhibitory action.
Collapse
Affiliation(s)
- Mohammad Aadil Bhat
- Department of Pharmacology, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, UP, Noida, India
| | - Iqra Usman
- Department of Pharmacology, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, UP, Noida, India
| | - Suneela Dhaneshwar
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University Maharashtra, Mumbai, Maharashtra, India
| |
Collapse
|
21
|
Rasheed RA, Sadek AS, Khattab RT, Elkhamisy FAA, Abdelfattah HA, Elshaer MMA, Almutairi SM, Hussein DS, Embaby AS, Almoatasem MAM. Diacerein provokes apoptosis, improves redox balance, and downregulates PCNA and TNF-α in a rat model of testosterone-induced benign prostatic hyperplasia: A new non-invasive approach. PLoS One 2023; 18:e0293682. [PMID: 37943844 PMCID: PMC10635502 DOI: 10.1371/journal.pone.0293682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/14/2023] [Indexed: 11/12/2023] Open
Abstract
One of the most prevalent chronic conditions affecting older men is benign prostatic hyperplasia (BPH), causing severe annoyance and embarrassment to patients. The pathogenesis of BPH has been connected to epithelial proliferation, inflammation, deranged redox balance, and apoptosis. Diacerein (DIA), the anthraquinone derivative, is a non-steroidal anti-inflammatory drug. This study intended to investigate the ameliorative effect of DIA on the prostatic histology in testosterone-induced BPH in rats. BPH was experimentally induced by daily subcutaneous injection of testosterone propionate for four weeks. The treated group received DIA daily for a further two weeks after induction of BPH. Rats' body and prostate weights, serum-free testosterone, dihydrotestosterone, and PSA were evaluated. Prostatic tissue was processed for measuring redox balance and histopathological examination. The BPH group had increased body and prostate weights, serum testosterone, dihydrotestosterone, PSA, and oxidative stress. Histologically, there were marked acinar epithelial and stromal hyperplasia, inflammatory infiltrates, and increased collagen deposition. An immunohistochemical study showed an increase in the inflammatory TNF-α and the proliferative PCNA markers. Treatment with DIA markedly decreased the prostate weight and plasma hormones, improved tissue redox balance, repaired the histological changes, and increased the proapoptotic caspase 3 expression besides the substantial reduction in TNF-α and PCNA expression. In conclusion, our study underscored DIA's potential to alleviate the prostatic hyperplastic and inflammatory changes in BPH through its antioxidant, anti-inflammatory, antiproliferative, and apoptosis-inducing effects, rendering it an effective, innovative treatment for BPH.
Collapse
Affiliation(s)
- Rabab Ahmed Rasheed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - A. S. Sadek
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Anatomy and Embryology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - R. T. Khattab
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Mohamed M. A. Elshaer
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Clinical Pharmacology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dina S. Hussein
- Department of Chemistry, College of Sciences and Health, Cleveland State University, Cleveland, United States of America
| | - Azza Saleh Embaby
- Department of Medical Histology & Cell Biology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mai A. M. Almoatasem
- Department of Medical Histology & Cell Biology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
22
|
Rajput A, Manna T, Husain SM. Anthrol reductases: discovery, role in biosynthesis and applications in natural product syntheses. Nat Prod Rep 2023; 40:1672-1686. [PMID: 37475701 DOI: 10.1039/d3np00027c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Covering: up to 2023Short-chain dehydrogenase/reductases (SDR) are known to catalyze the regio- and stereoselective reduction of a variety of substrate types. Investigations of the deoxygenation of emodin to chrysophanol has led to the discovery of the anthrol reductase activity of an SDR, MdpC involved in monodictyphenone biosynthesis of Aspergillus nidulans and provided access to (R)-dihydroanthracenone, a putative biosynthetic intermediate. This facilitated the identification of several MdpC-related enzymes involved in the biosynthesis of aflatoxins B1, cladofulvin, neosartorin, agnestins and bisanthraquinones. Because of their ability to catalyze the reduction of hydroanthraquinone (anthrols) using NADPH, they were named anthrol reductases. This review provides a comprehensive summary of all the anthrol reductases that have been identified and characterized in the last decade along with their role in the biosynthesis of natural products. In addition, the applications of these enzymes towards the chemoenzymatic synthesis of flavoskyrins, modified bisanthraquinones, 3-deoxy anthraquinones, chiral cycloketones and β-halohydrins have been discussed.
Collapse
Affiliation(s)
- Anshul Rajput
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| | - Tanaya Manna
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| | - Syed Masood Husain
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| |
Collapse
|
23
|
Youn S, Choi JH, Kim C, Kim SM, Choi WS. Efficacy and safety of diacerein and celecoxib combination therapy for knee osteoarthritis: A double-blind, randomized, placebo-controlled prospective study. Medicine (Baltimore) 2023; 102:e35317. [PMID: 37773836 PMCID: PMC10545013 DOI: 10.1097/md.0000000000035317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Osteoarthritis is a degenerative disease with a growing burden in South Korea. Corresponding drugs are commonly used for pain relief and joint function improvement. Specifically, symptomatic slow-acting drugs for osteoarthritis are frequently used, with diacerein being the most common symptomatic slow-acting drugs for osteoarthritis in South Korea. In this study, we evaluated the efficacy and safety of diacerein and celecoxib combination therapy in patients with osteoarthritis. METHODS A total of 71 subjects were randomly assigned to group 1 (diacerein and celecoxib), 2 (diacerein and placebo), or 3 (celecoxib and placebo). The primary outcome measure was the change in the visual analog scale (VAS) score 12 weeks after treatment. RESULTS The combination therapy group exhibited a significant decrease in the VAS score, alongside the other control monotherapy groups. Although there was no significant difference between the groups, the combination therapy group exhibited a greater decrease in the absolute value of the VAS score than the other groups. Four weeks after treatment, the combination therapy group showed significantly higher improvement in the stiffness and physical function categories of the Western Ontario and McMaster Universities Osteoarthritis Index than the other groups. Additionally, no serious adverse events occurred following combination therapy, with most adverse events being mild and resolving without specific treatment. CONCLUSIONS Diacerein and celecoxib combination therapy is as safe and effective as corresponding monotherapies. A relatively early improvement in stiffness and physical function following treatment with this combination therapy indicates that physicians should consider this for the early-stage treatment of patients with symptomatic osteoarthritis.
Collapse
Affiliation(s)
- Sangah Youn
- The Catholic University of Korea, Graduate School, College of Medicine, Seoul, Republic of Korea
| | - Ji Hye Choi
- Department of Orthopedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chulmin Kim
- Department of Family Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon-Mee Kim
- Department of Family Medicine, School of Medicine, Korea University Medical Center Guro Hospital, Seoul, Republic of Korea
| | - Whan Seok Choi
- Department of Family Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
24
|
Chen Y, Zhang M, Li W, Wang X, Chen X, Wu Y, Zhang H, Yang L, Han B, Tang J. Drug repurposing based on the similarity gene expression signatures to explore for potential indications of quercetin: a case study of multiple sclerosis. Front Chem 2023; 11:1250043. [PMID: 37744058 PMCID: PMC10514366 DOI: 10.3389/fchem.2023.1250043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Quercetin (QR) is a natural flavonol compound widely distributed in the plant kingdom with extensive pharmacological effects. To find the potential clinical indications of QR, 156 differentially expressed genes (DEGs) regulated by QR were obtained from the Gene Expression Omnibus database, and new potential pharmacological effects and clinical indications of QR were repurposed by integrating compounds with similar gene perturbation signatures and associated-disease signatures to QR based on the Connectivity Map and Coexpedia platforms. The results suggested QR has mainly potential therapeutic effects on multiple sclerosis (MS), osteoarthritis, type 2 diabetes mellitus, and acute leukemia. Then, MS was selected for subsequent animal experiments as a representative potential indication, and it found that QR significantly delays the onset time of classical MS model animal mice and ameliorates the inflammatory infiltration and demyelination in the central nervous system. Combined with network pharmacology technology, the therapeutic mechanism of QR on MS was further demonstrated to be related to the inhibition of the expression of inflammatory cytokines (TNF-α, IL-6, IL-1β, IFN-γ, IL-17A, and IL-2) related to TNF-α/TNFR1 signaling pathway. In conclusion, this study expanded the clinical indications of QR and preliminarily confirmed the therapeutic effect and potential mechanism of QR on MS.
Collapse
Affiliation(s)
- Yulong Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingliang Zhang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Weixia Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoyan Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaofei Chen
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yali Wu
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hui Zhang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Liuqing Yang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Bing Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinfa Tang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
25
|
Fu C, Xu Y, Zheng H, Ling X, Zheng C, Tian L, Gu X, Cai J, Yang J, Li Y, Wang P, Liu Y, Lou Y, Zheng M. In vitro antibiofilm and bacteriostatic activity of diacerein against Enterococcus faecalis. AMB Express 2023; 13:85. [PMID: 37573278 PMCID: PMC10423188 DOI: 10.1186/s13568-023-01594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Enterococcus faecalis is one of the main pathogens that causes hospital-acquired infections because it is intrinsically resistant to some antibiotics and often is capable of biofilm formation, which plays a critical role in resisting the external environment. Therefore, attacking biofilms is a potential therapeutic strategy for infections caused by E. faecalis. Current research indicates that diacerein used in the treatment of osteoarthritis showed antimicrobial activity on strains of gram-positive cocci in vitro. In this study, we tested the MICs of diacerein using the broth microdilution method, and successive susceptibility testing verified that E. faecalis is unlikely to develop resistance to diacerein. In addition, we obtained a strain of E. faecalis HE01 with strong biofilm-forming ability from an eye hospital environment and demonstrated that diacerein affected the biofilm development of HE01 in a dose-dependent manner. Then, we explored the mechanism by which diacerein inhibits biofilm formation through qRT-PCR, extracellular protein assays, hydrophobicity assays and transcriptomic analysis. The results showed that biofilm formation was inhibited at the initial adhesion stage by inhibition of the expression of the esp gene, synthesis of bacterial surface proteins and reduction in cell hydrophobicity. In addition, transcriptome analysis showed that diacerein not only inhibited bacterial growth by affecting the oxidative phosphorylation process and substance transport but also inhibited biofilm formation by affecting secondary metabolism, biosynthesis, the ribosome pathway and luxS expression. Thus, our findings provide compelling evidence for the substantial therapeutic potential of diacerein against E. faecalis biofilms.
Collapse
Affiliation(s)
- Chunyan Fu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuxi Xu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hao Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinyi Ling
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chengzhi Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Leihao Tian
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaobin Gu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiabei Cai
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jing Yang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Li
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peiyu Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuan Liu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meiqin Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
26
|
Abdelfattah AM, Mahmoud SS, El-Wafaey DI, Abdelgeleel HM, Abdelhamid AM. Diacerein ameliorates cholestasis-induced liver fibrosis in rat via modulating HMGB1/RAGE/NF-κB/JNK pathway and endoplasmic reticulum stress. Sci Rep 2023; 13:11455. [PMID: 37454204 PMCID: PMC10349817 DOI: 10.1038/s41598-023-38375-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Diacerein is an interleukin (IL)-1β inhibitor approved for osteoarthritis. This study aimed to investigate the potential anti-fibrotic effect of diacerein against bile duct ligation (BDL)-induced liver fibrosis. Forty male Wistar rats were divided into: sham-operated group, BDL group, and BDL groups treated with diacerein at 10, 30, and 50 mg/kg/day starting two days before surgery and continued for 4 weeks. Diacerein decreased the hepatic injury markers and alleviated oxidative stress triggered by BDL by reducing hepatic malondialdehyde (MDA) and increasing hepatic superoxide dismutase (SOD) levels. Diacerein mitigated BDL-induced inflammation via lowering hepatic levels and mRNA expression of high mobility group box 1 (HMGB1), nuclear factor-κB (NF-κB), and IL-1β. The hepatic gene expression of Advanced Glycation End products Receptor (RAGE) gene and immunohistochemical expression of some ER stress markers, e.g., glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1 (IRE1α), protein kinase RNA-like endoplasmic reticulum kinase (PERK), CCAAT/enhancer-binding protein homologous protein (CHOP), and phosphorylated c-Jun N-terminal kinase protein contents were lowered by diacerein. Furthermore, diacerein suppressed the hepatic levels of fibrogenic mediators, e.g., Transforming growth factor β1 (TGF-β1), α- smooth muscle actin (α-SMA), collagen 1, and hydroxyproline, as well as the apoptotic caspase 3 and BAX immunostaining in BDL rats. The histopathological abnormalities induced by BDL significantly improved. Our study demonstrated that diacerein exhibited an antifibrotic effect by inhibiting HMGB1/RAGE/NF-κB/JNK pathway, and ER stress. Better protection was observed with increasing the dose.
Collapse
Affiliation(s)
| | - Shireen Sami Mahmoud
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Dalia Ibrahim El-Wafaey
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Amira Mohamed Abdelhamid
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt.
| |
Collapse
|
27
|
Sharma NK, Mishra K. Exploration of diacerein as a neuroprotective adjuvant to Adenium obesum: An in-vivo study. J Ayurveda Integr Med 2023; 14:100761. [PMID: 37506605 PMCID: PMC10405303 DOI: 10.1016/j.jaim.2023.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/27/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Since the dawn of civilization, medicinal plants have been essential in the treatment of numerous human ailments. Medicinal plants have been the reliable sources to treat various diseases. Over 25% of prescription medications on the market today are made from natural resources. In the present study the selected medicinal plant, is Adenium obesum, of family Apocynaceae. The plant contains various chemical groups, including carbohydrate, cardiac glycoside, flavonoid, polyphenols, terpenoids, pregnanes, etc. OBJECTIVE: Millions of peoples worldwide are affected with neurodegenerative diseases. Parkinson's disease, Alzheimer's disease & Huntingtons disease are important among them. Since ancient times, medicinal herbs have been used to treat illnesses. The objective of present study is to prepare an effective & safe drug formulation to treat neurological diseases. MATERIAL & METHODS Methanolic extract of A. obesum (200 mg/kg, 400 mg/kg) alone as well as with diacerein (100 mg/kg) is used to treat the haloperidol (1 mg/kg) & iron (10 mg/kg) induced Parkinsonism & Isotretinoin induced depression in albino wistar rats. The efficacy of plant extract as well as diacerein were measured by various behavioral models, with the help of histopathological studies & antioxidant assay like GSH, SOD, CAT, and LPO. RESULTS A. obesum alone & with diacerein is effective to treat neurological complications like Parkinson's disease & depression which can be seen in various behavioral models like, staircase test, rotarod test, forced swim test, hole board test etc. Histopathological evidences also suggest the significance of plant extract alone & with diacerein. CONCLUSION The findings of present research work revealed the neuroprotective effect of both A. obesum extract as well as diacerein.
Collapse
Affiliation(s)
- Neeraj Kumar Sharma
- Faculty of Medical & Paramedical Sciences, Madhyanchal Professional University, Bhopal 462044, India
| | - Kislaya Mishra
- Department of Pharmacology, Hygia Institute of Pharmaceutical Education and Research, Lucknow 226020, India.
| |
Collapse
|
28
|
Wang T, Yang J, Wang G, Zhao F, Jin Y. Factors ameliorate pro-inflammatory microglia polarization through inhibition of reactive astrocytes induced by 2-chloroethanol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115130. [PMID: 37311391 DOI: 10.1016/j.ecoenv.2023.115130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
Our previous studies have demonstrated that the crosstalk between astrocytes and microglia may trigger and amplify the neuroinflammatory response and, in turn, cause brain edema in 1,2-dichloroethane (1,2-DCE)-intoxicated mice. Moreover, findings from our in vitro studies showed that astrocytes are more sensitive to 2-chloroethanol (2-CE), an intermediate metabolite of 1,2-DCE, than microglia, and 2-CE-induced reactive astrocytes (RAs) can promote microglia polarization through releasing the pro-inflammatory mediators. Therefore, it is essential to explore therapeutic agents that may ameliorate microglia polarization through inhibition of 2-CE-induced RAs, which remains unclear till now. Results of this study revealed that exposure to 2-CE could induce RAs with pro-inflammatory effects, and fluorocitrate (FC), GIBH-130 (GI) and diacerein (Dia) pretreatment could all abolish the pro-inflammatory effects of 2-CE-induced RAs. FC and GI pretreatment might suppress 2-CE-induced RAs through inhibition of p38 mitogen-activated protein kinase (p38 MAPK)/activator protein-1 (AP-1) and nuclear factor-kappaB (NF-κB) signaling pathways, but Dia pretreatment might only inhibit p38 MAPK/NF-κB signaling pathway. FC, GI, and Dia pretreatment could all suppress the pro-inflammatory microglia polarization through inhibition of 2-CE-induced RAs. Meanwhile, GI and Dia pretreatment could also restored the anti-inflammatory microglia polarization via inhibition of 2-CE-induced RAs. However, FC pretreatment could not affect the anti-inflammatory polarization of microglia through inhibition of 2-CE-induced RAs. Taken together, findings from the present study demonstrated that FC, GI, and Dia might be the potential candidates with different characteristic for therapeutic use in 1,2-DCE poisoning.
Collapse
Affiliation(s)
- Tong Wang
- Department of Basic Medical Sciences, School of medicine, Taizhou University, Jiaojiang 318000, Zhejiang, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jinhan Yang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
29
|
The Effective Treatment of Purpurin on Inflammation and Adjuvant-Induced Arthritis. Molecules 2023; 28:molecules28010366. [PMID: 36615560 PMCID: PMC9824476 DOI: 10.3390/molecules28010366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Rubia cordifolia L. (Rubiaceae), one of the traditional anti-rheumatic herbal medicines in China, has been used to treat rheumatoid arthritis (RA) since ancient times. Purpurin, an active compound of Rubia cordifolia L., has been identified in previous studies and exerts antibacterial, antigenotoxic, anticancer, and antioxidant effects. However, the efficacy and the underlying mechanism of purpurin to alleviate RA are unclear. In this study, the effect of purpurin on inflammation was investigated using macrophage RAW264.7 inflammatory cells, induced by lipopolysaccharide (LPS), and adjuvant-induced arthritis (AIA) rat was established to explore the effect of purpurin on joint damage and immune disorders; the network pharmacology and molecular docking were integrated to dig out the prospective target. Purpurin showed significantly anti-inflammatory effect by reducing the content of IL-6, TNF-α, and IL-1β and increasing IL-10. Besides, purpurin obviously improved joint injury and hypotoxicity in the liver and spleen and regulated the level of FOXP3 and CD4+/CD8+. Furthermore, purpurin reduced the MMP3 content of AIA rats. Network pharmacology and molecular docking also suggested that MMP3 may be the key target of purpurin against RA. The results of this study strongly indicated that purpurin has a potential effect on anti-RA.
Collapse
|
30
|
Abdel-Aziz AM, Fathy EM, Hafez HM, Ahmed AF, Mohamed MZ. TLR4/ MyD88/NF-κB signaling pathway involved in the protective effect of diacerein against lung fibrosis in rats. Hum Exp Toxicol 2023; 42:9603271231200213. [PMID: 37664986 DOI: 10.1177/09603271231200213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
PURPOSE Pulmonary fibrosis (PF) is an inescapable problem. Diacerein, a chondro-protective drug, has antioxidant and anti-inflammatory effects. Its effect on PF injury has not yet been fully clarified. Therefore, the current study aimed to detect its protective effect on lung tissue with the explanation of possible underlying mechanisms. METHODS Adult male albino rats were assigned to four groups: control group, diacerein control group, PF non-treated group, and PF diacerein pretreated group. Lung tissue oxidative stress parameters, inflammatory biomarkers mainly Toll-like receptors-4 (TLR4), and myeloid differentiation factor 88 (MyD88) levels were determined. Histopathological examination of lung tissue and immunohistochemical studies of nuclear factor-kappa B (NF-κB), and transforming growth factor- β (TGF-β) were also done. RESULTS Diacerein pretreatment has the ability to restore the PF damaging effect, proved by the reduction of the oxidative stress and lung tissue inflammation via downregulation of TLR4/NF-κB signaling pathway together with the restoration of TGF-β level and improvement of the histopathological and immunohistochemical study findings in the lung tissue. CONCLUSION These results suggested the protective effect of diacerein on PF relies on its antioxidant and anti-inflammatory effects reducing TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
| | - Eman Mahmoud Fathy
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Heba M Hafez
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Amira F Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Histology and Cell Biology, Misr University for Science and Technology, 6th of October City, Egypt
| | - Mervat Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
31
|
Karateev AE, Nesterenko VA, Makarov MA, Lila AM. Chronic post-traumatic pain: rheumatological and orthopedic aspects. RHEUMATOLOGY SCIENCE AND PRACTICE 2022. [DOI: 10.47360/1995-4484-2022-526-537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Trauma causes a complex local and systemic reaction of the macroorganism, the consequences of which can be various functional, neurological and psychoemotional disorders. One of the most painful complications of injuries of the musculoskeletal system is chronic post-traumatic pain (CPTP), which occurs, depending on the severity of the damage, in 10–50% of cases. The pathogenesis of this syndrome is multifactorial and includes the development of chronic inflammation, degenerative changes (fibrosis, angiogenesis, heterotopic ossification), pathology of the muscular and nervous systems, neuroplastic changes leading to the development of central sensitization, as well as depression, anxiety and catastrophization. Risk factors for CPTP should be considered the severity of injury, comorbid diseases and conditions (in particular, obesity), stress and serious trauma-related experiences (within the framework of post-traumatic stress disorder), the development of post-traumatic osteoarthritis and chronic tendopathy, genetic predisposition, deficiencies in treatment and rehabilitation in the early period after injury. To date, there is no clear system of prevention and treatment of CPTP. Considering the pathogenesis of this suffering, adequate anesthesia after injury, active anti–inflammatory therapy (including local injections of glucocorticoids), the use of hyaluronic acid, slow-acting symptomatic agents and autologous cellular preparations – platelet-riched plasma, mesenchymal stem cells, etc. are of fundamental importance. However, therapeutic and surgical methods of CPTP control require further study
Collapse
Affiliation(s)
| | | | | | - A. M. Lila
- V.A. Nasonova Research Institute of Rheumatology; Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation
| |
Collapse
|
32
|
Wang M, Luo W, Yu T, Liang S, Zou C, Sun J, Li G, Liang G. Diacerein alleviates Ang II-induced cardiac inflammation and remodeling by inhibiting the MAPKs/c-Myc pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154387. [PMID: 36027716 DOI: 10.1016/j.phymed.2022.154387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Heart failure is a common event in the course of hypertension. Recent studies have highlighted the key role of the non-hemodynamic activity of angiotensin II (Ang II) in hypertension-related cardiac inflammation and remodeling. A naturally occurring compound, diacerein, exhibits anti-inflammatory activities in various systems. HYPOTHESIS/PURPOSE In this study, we have examined the potential effects of diacerein on Ang II-induced heart failure. METHODS C57BL/6 mice were administered Ang II by micro-osmotic pump infusion for 4 weeks to develop hypertensive heart failure. Mice were treated with diacerein by gavage for final 2 weeks. RNA-sequencing analysis was performed to explore the potential mechanism of diacerein. RESULTS We found that diacerein could inhibit inflammation, myocardial fibrosis, and hypertrophy to prevent heart dysfunction, without the alteration of blood pressure. To explore the potential mechanism of diacerein, RNA-sequencing analysis was performed, indicating that MAPKs/c-Myc pathway is involved in that cardioprotective effects of Diacerein. We further confirmed that diacerein inhibits Ang II-activated MAPKs/c-Myc pathway to reduce inflammatory response in mouse hearts and cultured cardiomyocytes. Deficiency of MAPKs or c-Myc in cardiomyocytes abolished the anti-inflammatory effects of diacerein. CONCLUSION Our results indicate that diacerein protects hearts in Ang II-induced mice through inhibiting MAPKs/c-Myc-mediated inflammatory responses, rendering diacerein a potential therapeutic candidate agent for hypertensive heart failure.
Collapse
Affiliation(s)
- Mengyang Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cardiology and Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tianxiang Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shiqi Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cardiology and Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chunpeng Zou
- Department of Ultrasonography, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jinfeng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
33
|
Zohny MH, Alrouji M, Alhajlah S, AlOmeir O, Ewees MGED, Ghaffar DMA, El Adle Khalaf N, Mohammed OA, Abdeldaiem MSI, El-Bahouty WB, Elrabat A, Zakaria S, Abdel-Nasser ZM, Haleem AA, El-Gharbawy DM, Abdelhady R, Kaddah MMY, Shata A, Saber S. Diacetylrhein, an anthraquinone antiarthritic agent, suppresses dextran sodium sulfate-induced inflammation in rats: A possible mechanism for a protective effect against ulcerative colitis. Biomed Pharmacother 2022; 154:113651. [PMID: 36081290 DOI: 10.1016/j.biopha.2022.113651] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory life-threatening and premalignant disorder with no cure that even might end up with surgical removal of a large section or even all of the colon. It is characterized by relapsing-remitting courses of intestinal inflammation and mucosal damage in which oxidative stress and exaggerated inflammatory response play a significant role. Most of the current medications to maintain remission are symptomatic and have many adverse reactions. Therefore, the potential for improved management of patients with UC continues to increase. Yet, the benefits of using the antiarthritic agent diacetylrhein to counteract inflammation in UC are still obscure. Hence, our study was designed to explore its potential role in UC using a model of dextran sodium sulfate-induced acute colitis in rats. Our results revealed that diacetylrhein targeted the NLRP3 and inhibited the inflammasome assembly. Consequently, caspase-1 activity and the inflammatory cytokines IL-1β and IL-18 were inhibited leading to a curbed pyroptosis process. Additionally, diacetylrhein revealed a significant antiapoptotic potential as revealed by the levels of pro-apoptotic and anti-apoptotic proteins. Concomitant to these effects, diacetylrhein also interrupted NFκB signals leading to improved microscopic features of inflamed colon and decreased colon weight to length ratio, indices of disease activity, and macroscopic damage. Additionally, a reduction in the myeloperoxidase activity, IL-6, and TGF-β alongside an increase in the gene expression of Ocln and ZO-1 were detected. To conclude diacetylrhein showed a significant antioxidant and anti-inflammatory potential and therefore might represent a promising agent in the management of acute UC.
Collapse
Affiliation(s)
- Mona H Zohny
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Othman AlOmeir
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| | | | - Dalia M Abdel Ghaffar
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Noura El Adle Khalaf
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia.
| | - Mahmoud Said Ibrahim Abdeldaiem
- Clinical Pharmacy Department, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Pharmacy Practice Department, Faculty of Pharmacy, Sinai University, Ismailia, Egypt.
| | | | - Amr Elrabat
- Gastroenterology and Hepatology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Sahar Zakaria
- Department of Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Zeinab M Abdel-Nasser
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 11787, Egypt.
| | - Amira A Haleem
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Doaa M El-Gharbawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt.
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt.
| | - Ahmed Shata
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| |
Collapse
|
34
|
Youssef NS, Elzatony AS, Abdel Baky NA. Diacerein attenuate LPS-induced acute lung injury via inhibiting ER stress and apoptosis: Impact on the crosstalk between SphK1/S1P, TLR4/NFκB/STAT3, and NLRP3/IL-1β signaling pathways. Life Sci 2022; 308:120915. [PMID: 36055546 DOI: 10.1016/j.lfs.2022.120915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 10/31/2022]
Abstract
AIMS Acute lung injury (ALI) is a life-threatening clinical problem with high mortality rate and limited treatments or preventive options that represents a major challenge for clinicians. Diacerein (DIA) is a multi-target anthraquinone derivative with potent anti-inflammatory action. The aim of this study is to assess the protective effect of DIA and its potential molecular targets against lipopolysaccharide (LPS)-induced ALI in rats. MATERIALS AND METHODS Adult male Sprague-Dawley rats were orally administrated DIA (50 mg/kg) for 5 consecutive days followed by a single intraperitoneal injection of LPS (5mg/kg). KEY FINDINGS DIA mitigated oxidative lung injury in LPS-challenged rats via significantly decreasing lung wet/dry (W/D) ratio, inflammatory cells infiltration, and lipid peroxidation, with concomitant elevation in enzymatic and non-enzymatic antioxidant levels in lung tissue. Likewise, DIA alleviated endoplasmic reticulum stress and markedly halted inflammation triggered by LPS challenge in pulmonary tissue by suppressing NLRP3/IL-1β and TLR4/NF-κB signaling with parallel decrease in proinflammatory cytokine levels. Interestingly, DIA down regulated Sphk1/S1P axis, reduced GSK-3β and STAT3 proteins expression, and markedly decreased caspase-3 besides increasing Bcl-2 levels in lung tissue of LPS-challenged animals. These biochemical findings was simultaneously associated with marked improvement in histological alterations of lung tissue. SIGNIFICANCE These findings verify the protective effect of DIA against LPS-induced ALI through targeting oxidative stress, endoplasmic reticulum stress, and apoptosis. Importantly, DIA halted the hyperinflammatory state triggered by LPS via multi-faceted inhibitory effect on different signaling pathways, hence DIA could potentially reduce mortality in patients with ALI.
Collapse
Affiliation(s)
- Nagwa Salah Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Asmaa Sameer Elzatony
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Nayira A Abdel Baky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
35
|
Belyaeva IB, Mazurov VI. Pleiotropic effects of diacerein in comorbid patients with osteoarthritis. MODERN RHEUMATOLOGY JOURNAL 2022; 16:98-104. [DOI: 10.14412/1996-7012-2022-4-98-104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The article presents an analysis of the therapeutic effect of the drug diacerein (D), which has been used in osteoarthritis (OA) for more than 20 years and is included in the clinical guidelines of the Association of Rheumatologists of Russia (2021) and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal diseases (ESCEO, 2019) for the treatment of OA. The main pathogenic effect of D in OA is to suppress the synthesis of interleukin 1, stimulate the production of articular cartilage proteoglycans, and slow down abnormal remodeling of the subchondral bone. The advantages of D in the treatment of patients with OA and comorbidities are presented – a prolonged anti-inflammatory and analgesic effect and good tolerability. These properties of D allow to control the symptoms of OA and improve the quality of life of patients. The structure-modifying effect of D is based on its ability to stimulate the synthesis of articular cartilage proteoglycans with long-term use and prevent abnormal remodeling of the subchondral bone, which leads to a decrease in the risk of OA progression and a delay in total joint arthroplasty. An important advantage of D is its positive metabolic effect in patients with type 2 diabetes mellitus and obesity, which is associated with the ability of D to reduce the level of glycated hemoglobin and body mass index. Data are presented on the absence of adverse cardiovascular effects when using D, which allows us to recommend its use in patients with OA who have comorbid cardiovascular diseases, as well as contraindications for non-steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- I. B. Belyaeva
- North-Western State Medical University named after I.I. Mechnikov, Ministry of Health of Russia
| | - V. I. Mazurov
- North-Western State Medical University named after I.I. Mechnikov, Ministry of Health of Russia
| |
Collapse
|
36
|
Chen X, Zhu X, Dong J, Chen F, Gao Q, Zhang L, Cai D, Dong H, Ruan B, Wang Y, Jiang Q, Cao W. Reversal of Epigenetic Peroxisome Proliferator-Activated Receptor-γ Suppression by Diacerein Alleviates Oxidative Stress and Osteoarthritis in Mice. Antioxid Redox Signal 2022; 37:40-53. [PMID: 35196878 DOI: 10.1089/ars.2021.0219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aims: The pathogenesis of osteoarthritis (OA) is characterized by oxidative stress (OS) and sustained inflammation that are substantially associated with epigenetic DNA methylation alterations of osteogenic gene expression. Diacerein as an anthraquinone anti-OA drug exhibits multiple chondroprotective properties, but less clarified pharmacological actions. Since anthraquinone contain an epigenetic modulating property, in this study we investigate whether the anti-OA functions of diacerein involve DNA methylation modulation and antioxidant signaling. Results: The OA mice incurred by destabilization of medial meniscus exhibited marked suppression of peroxisome proliferator-activated receptor-gamma (PPARγ), a chondroprotective transcription factor with anti-inflammation and OS-balancing properties, aberrant upregulations of DNA methyltransferase (DNMT)1/3a, and PPARγ promoter hypermethylation in knee joint cartilage. Diacerein treatment mitigated the cartilage damage and significantly inhibited the DNMT1/3a upregulation, the PPARγ promoter hypermethylation, and the PPARγ loss, and it effectively corrected the adverse expression of antioxidant enzymes and inflammatory cytokines. In cultured chondrocytes, diacerein reduced the interleukin-1β-induced PPARγ suppression and the abnormal expression of its downstream antioxidant enzymes in a gain of DNMT and PPARγ inhibition-sensitive manner, and in PPARγ knockout mice, the anti-OA effects of diacerein were significantly reduced. Innovation: Our work reveals a novel anti-OA pharmacological property of diacerein and identifies the aberrant DNMT elevation and the resultant PPARγ suppression as an important epigenetic pathway that mediates diacerein's anti-OA activities. Conclusion: DNA methylation aberration and the resultant PPARγ suppression contribute significantly to epigenetic OA pathogenesis, and targeting PPARγ suppression via DNA demethylation is an important component of diacerein's anti-OA functions. Antioxid. Redox Signal. 37, 40-53.
Collapse
Affiliation(s)
- Xingren Chen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Xiaobo Zhu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Jian Dong
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Fang Chen
- Nanjing University School of Medicine, Department of Basic Medical Science, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Qi Gao
- Nanjing University School of Medicine, Department of Basic Medical Science, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Lijun Zhang
- Nanjing University School of Medicine, Department of Basic Medical Science, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Dawei Cai
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Hui Dong
- Department of Orthopedics, Northern Jiangsu People's Hospital, The Affiliated Hospital of Nanjing University Medical School, Yangzhou, China
| | - Binjia Ruan
- Department of Orthopedics, Northern Jiangsu People's Hospital, The Affiliated Hospital of Nanjing University Medical School, Yangzhou, China
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital, The Affiliated Hospital of Nanjing University Medical School, Yangzhou, China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Wangsen Cao
- Nanjing University School of Medicine, Department of Basic Medical Science, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| |
Collapse
|
37
|
Effects of Anthraquinones on Immune Responses and Inflammatory Diseases. Molecules 2022; 27:molecules27123831. [PMID: 35744949 PMCID: PMC9230691 DOI: 10.3390/molecules27123831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
The anthraquinones (AQs) and derivatives are widely distributed in nature, including plants, fungi, and insects, with effects of anti-inflammation and anti-oxidation, antibacterial and antiviral, anti-osteoporosis, anti-tumor, etc. Inflammation, including acute and chronic, is a comprehensive response to foreign pathogens under a variety of physiological and pathological processes. AQs could attenuate symptoms and tissue damages through anti-inflammatory or immuno-modulatory effects. The review aims to provide a scientific summary of AQs on immune responses under different pathological conditions, such as digestive diseases, respiratory diseases, central nervous system diseases, etc. It is hoped that the present paper will provide ideas for future studies of the immuno-regulatory effect of AQs and the therapeutic potential for drug development and clinical use of AQs and derivatives.
Collapse
|
38
|
Wang M, Sun J, Yu T, Wang M, Jin L, Liang S, Luo W, Wang Y, Li G, Liang G. Diacerein protects liver against APAP-induced injury via targeting JNK and inhibiting JNK-mediated oxidative stress and apoptosis. Biomed Pharmacother 2022; 149:112917. [PMID: 36068777 DOI: 10.1016/j.biopha.2022.112917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022] Open
|
39
|
Nishal S, Jhawat V, Phaugat P, Dutt R. DoE Based Formulation Development and Characterization of Topical Nanoemulgel of Diacerein: In-Vitro Release and Permeation Studies. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Roy S, Dhaneshwar S, Mahmood T. Exploring the Potential of IL-1β Inhibitor Diacerein and its Combination with 5-Aminosalicylic Acid for the Possible Ameliorating Effect in TNBS-induced Experimental Colitis in Wistar Rats. CURRENT DRUG THERAPY 2022. [DOI: 10.2174/1574885517666220328142715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Pro-inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin (IL), and oxidative stress are crucial players in the pathophysiology of inflammatory bowel disease (IBD) that contribute in perpetuating intestinal inflammation. Targeting them presents a novel approach in disease management. In the present study, the potential of an antiosteoarthritic IL-inhibitor drug, diacerein (DIA) was investigated in 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)- instigated ulcerative colitis (UC) in Wistar rats. A comparative study was also undertaken to investigate the potential of combination therapy of DIA with the standard drug 5-aminosalicylic acid (5-ASA) versus monotherapy.
Methods:
Colitis was developed by single intra-colonic administration of TNBS (100mg/kg); whereas drugs 5-ASA (25.5 mg/kg), DIA (100 mg/kg), and DIA+5-ASA (100+ 25.5 mg/kg) were administered orally for five days post-induction to various groups of rats. Parameters like disease activity score, colon/body weight ratio, colon length, diameter, gut pH were assessed, and histopathological analysis was carried out. Biochemical markers of colonic inflammation such as IL-1β, TNF-α, reduced glutathione (GSH), and malondialdehyde (MDA) were also estimated.
Results:
Combination of DIA and 5-ASA demonstrated the most significant reduction of the colon to body weight ratio and disease activity score. It prominently restored the colon length, diameter, and gut pH to normal. It attenuated the biochemical alterations induced by TNBS, indicating a highly significant defensive outcome against colonic inflammation. The histopathological report demonstrated the renovating effect of the combination of disrupted colonic histology with minimally distressing liver, stomach, or pancreas compared to individual drugs.
Conclusion:
The combination remarkably downregulated the level of inflammation by suppressing both provocative cytokines and reactive oxygen species production. It can be evaluated further in a clinical setup as a novel and promising drug therapy for UC.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Tarique Mahmood
- Faculty of Pharmacy, Integral University, Dasauli, Lucknow, India
| |
Collapse
|
41
|
Elshal M, Abdelmageed ME. Diacerein counteracts acetaminophen-induced hepatotoxicity in mice via targeting NLRP3/caspase-1/IL-1β and IL-4/MCP-1 signaling pathways. Arch Pharm Res 2022; 45:142-158. [PMID: 35244883 PMCID: PMC8967791 DOI: 10.1007/s12272-022-01373-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/18/2022] [Indexed: 12/22/2022]
Abstract
The current study aims at repurposing the anti-arthritic drug diacerein (DCN) for the treatment of acetaminophen hepatotoxicity and investigating the potential underlying mechanisms. Mice were randomly divided into six groups receiving either no treatment (control group), 20 mg/kg DCN i.p, 400 mg/kg acetaminophen i.p, DCN 4 h before acetaminophen, DCN 2 h after acetaminophen, or 400 mg/kg N-acetylcysteine (NAC) i.p, 2 h after acetaminophen. Biomarkers of liver dysfunction, oxidative stress, and apoptosis were assessed. Hepatic necroinflammatory changes were evaluated along with hepatic expression of NF-κB and caspase-1. The levels of NLRP3, IL-1β, IL-4, MCP-1, and TNF-α in the liver, as well as CYP2E1 mRNA expression, were measured. Diacerein significantly reduced biomarkers of liver dysfunction, oxidative stress, hepatocyte necrosis, and infiltration of neutrophils and macrophages whether administered 4 h before or 2 h after acetaminophen. Further, the effects were comparable to those of NAC. Diacerein also counteracted acetaminophen-induced hepatocellular apoptosis by increasing Bcl-2 and decreasing Bax and caspase-3 expression levels. Moreover, DCN normalized hepatic TNF-α and significantly decreased NF-κB p65 expression. Accordingly, DCN can prevent or reverse acetaminophen hepatotoxicity in mice, suggesting potential utility as a repurposed drug for clinical treatment.
Collapse
Affiliation(s)
- Mahmoud Elshal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, El Gomhoria Street, Eldakahlia, 35516 Egypt
| | - Marwa E. Abdelmageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, El Gomhoria Street, Eldakahlia, 35516 Egypt
| |
Collapse
|
42
|
Ebada HMK, Nasra MMA, Nassra RA, Abdallah OY. Chondroitin sulfate-functionalized lipid nanoreservoirs: a novel cartilage-targeting approach for intra-articular delivery of cassic acid for osteoarthritis treatment. Drug Deliv 2022; 29:652-663. [PMID: 35188017 PMCID: PMC8865121 DOI: 10.1080/10717544.2022.2041130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Novel intra-articular nanoreservoirs were implemented employing different cartilage targeting approaches to improve cartilage bioavailability of a chondroprotective drug, cassic acid (CA), for effective amelioration of cartilage deterioration off-targeting CA gastrointestinal disorders. Herein, we compared active cartilage-targeting approach via chondroitin sulfate (CHS) functionalization versus passive targeting using positively charged nanoparticles to target negatively charged cartilage matrix. Firstly, CA integrated nanoreservoirs (CA-NRs) were fabricated based on ionic conjugation between CA and cationic hydrophobic surface modifier octadecylamine (ODA) and were further functionalized with CHS to develop CHS-CA-NRs. Confocal laser microscope was used to visualize the accumulation of nanoparticles into the cartilage tissue. Both targeting approaches promoted CA local cartilage availability and prolonged its residence time. Compared to passive targeted CA-NRs, active targeted CHS-CA-NRs showed higher fluorescence signals in proximity to and inside chondrocytes which lasted for up to 21 days. In MIA-osteoarthritic rats, CHS-CA-NRs showed superior antiosteoarthritic activity, exhibiting highest cartilage repair compared to CA-NRs. Additionally, CHS-CA-NRs significantly inhibited OA inflammatory cytokine, degradation enzyme and oxidative stress and improved cartilage matrix biosynthesis. Conclusively, CHS-CA-NRs improved OA repair showing a superior efficacy for articular cartilage targeting with CHS which could be a potential advance for OA therapy.
Collapse
Affiliation(s)
- Heba M K Ebada
- Central Lab, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Maha M A Nasra
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rasha A Nassra
- Department of Medical Biochemistery, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
43
|
Samaha MM, Helal MG, El-Sherbiny M, Said E, Salem HA. Diacerein versus adipoRon as adiponectin modulators in experimentally-induced end-stage type 2 diabetes mellitus in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103806. [PMID: 34974166 DOI: 10.1016/j.etap.2021.103806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The objective of the present study is to evaluate and compare the possible anti-diabetic effects of adipoRon and diacerein in type 2 diabetes mellitus (T2DM) rats. T2DM is marked by impaired oxidative, inflammatory and metabolic signaling. Indeed, T2DM progression is associated with elevated HbA1C%, low adiponectin and insulin concentration. Moreover, in this study epididymal adipose tissue and soleus muscle MDA contents significantly escalated, while serum TAC and epididymal adipose Nrf2 significantly declined. Nevertheless, serum TNF-α, epididymal NLRP3, NF-κB, PPARγ and CD68 expression rose significantly with a parallel significant reduction in serum IL-10 and soleus muscle expression of IRS1. Both adipoRon and diacerein significantly improved adiponectin and insulin secretion with augmentation of anti-oxidant defenses and diminution of oxidative burden, with obvious anti-inflammatory consequences (p < 0.05). Thus, adipoRon and diacerein positively modulated adiponectin expression with down-regulation of NF-κB/NLRP3/PPARγ expression with subsequent improvement in glycemic control, inflammatory and oxidative signaling.
Collapse
Affiliation(s)
- Mahmoud M Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Faculty of Pharmacy, New Mansoura University, 7723730 New Mansoura, Egypt.
| | - Hatem A Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
44
|
Nowaczyk A, Szwedowski D, Dallo I, Nowaczyk J. Overview of First-Line and Second-Line Pharmacotherapies for Osteoarthritis with Special Focus on Intra-Articular Treatment. Int J Mol Sci 2022; 23:1566. [PMID: 35163488 PMCID: PMC8835883 DOI: 10.3390/ijms23031566] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) can be defined as the result of pathological processes of various etiologies leading to damage to the articular structures. Although the mechanism of degenerative changes has become better understood due to the plethora of biochemical and genetic studies, the drug that could stop the degenerative cascade is still unknown. All available forms of OA therapy are based on symptomatic treatment. According to actual guidelines, comprehensive treatment of OA should always include a combination of various therapeutic options aimed at common goals, which are pain relief in the first place, and then the improvement of function. Local treatment has become more common practice, which takes place between rehabilitation and pharmacological treatment in the hierarchy of procedures. Only in the case of no improvement and the presence of advanced lesions visible in imaging tests, should surgery be considered. Currently, an increasing number of studies are being published suggesting that intra-articular injections may be as effective or even more effective than non-steroidal anti-inflammatory drugs (NSAIDs) and result in fewer systemic adverse events. The most commonly used preparations are hyaluronic acid (HA), glucocorticosteroids (GS), and also platelet-rich plasma (PRP) in recent years. This review aims to present the mechanism of action and clinical effectiveness of different pharmacological options in relieving pain and improving functions in OA as well as the emerging approach in intra-articular treatment with PRP.
Collapse
Affiliation(s)
- Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, LudwikRydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Dawid Szwedowski
- Department of Orthopaedics and Trauma Surgery, Provincial Polyclinical Hospital, 87-100 Toruń, Poland;
- Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation, Gobbi N.P.O., 20133 Milan, Italy
| | - Ignacio Dallo
- Unit of Biological Therapies, SportMe Medical Center, Department of Orthopaedic Surgery and Sports Medicine, 41013 Seville, Spain;
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina St., 87-100 Toruń, Poland
| |
Collapse
|
45
|
Rajput A, Mondal A, Pandey SK, Husain SM. Synthesis of rhein and diacerein: a chemoenzymatic approach using anthrol reductase of Talaromyces islandicus. Org Biomol Chem 2022; 20:358-361. [PMID: 34919103 DOI: 10.1039/d1ob02202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report two methods for the synthesis of the osteoarthritis drug rhein and its prodrug diacerein using a chemoenzymatic approach. The strategy relies on the use of an NADPH-dependent anthrol reductase of Talaromyces islandicus (ARti-2), which mediates the regioselective and reductive deoxygenation of anthraquinones. The work further implies similar biosynthesis of rhein in fungi.
Collapse
Affiliation(s)
- Anshul Rajput
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. .,Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, U.P., India
| | - Amit Mondal
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, U.P., India
| | - Syed Masood Husain
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
46
|
Patel V, Joharapurkar A, Jain M. Therapeutic Potential of Diacerein in Management of Pain. Curr Drug Res Rev 2022; 14:215-224. [PMID: 36281831 DOI: 10.2174/2589977514666220428124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 06/16/2023]
Abstract
Diacerein (DCN), an analogue of rhein (a glycosidal compound of natural origin), is currently used in the treatment of osteoarthritis and is given a fast-track designation for development to treat epidermolysis bullosa (EB). It is a nonsteroidal anti-inflammatory drug having disease-modifying properties in osteoarthritis and anti-inflammatory effects for the treatment of EB. Diacerein has a beneficial effect on pain relief and demonstrated antioxidant and anti-apoptotic effects, which are useful in renal disease, diabetes, and other disorders. This review discusses the possible mechanism of diacerein in the management of pain. The potential role of rhein and diacerein in the treatment of neuropathic, inflammatory and nociceptive pain is also reviewed. The effect of diacerein and rhein on mediators of pain, such as transient receptor potential cation channel subfamily V (TRPV1), Substance P, glutamate, inflammatory cytokines, nitric oxide, matrix metalloproteinases, histamine, palmitoylethanolamide, nuclear factor-kappa B (NFkB), and prostaglandin, has also been discussed. The data highlights the role of diacerein in neuropathic, nociceptive and inflammatory pain. Clinical trials and mechanism of action studies are needed to ascertain the role of diacerein, rhein or their analogues in the management of pain, alone or in combination with other approved therapies.
Collapse
Affiliation(s)
- Vishal Patel
- Department of Pharmacology & Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Sarkhej-Bavla N.H.No.8A, Moraiya, Ahmedabad, 382210, India
| | - Amit Joharapurkar
- Department of Pharmacology & Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Sarkhej-Bavla N.H.No.8A, Moraiya, Ahmedabad, 382210, India
| | - Mukul Jain
- Department of Pharmacology & Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Sarkhej-Bavla N.H.No.8A, Moraiya, Ahmedabad, 382210, India
| |
Collapse
|
47
|
He A, Shen J, Xue Y, Xiang Li, Li Y, Huang L, Lv D, Luo M. Diacerein attenuates vascular dysfunction by reducing inflammatory response and insulin resistance in type 2 diabetic rats. Biochem Biophys Res Commun 2021; 585:68-74. [PMID: 34801936 DOI: 10.1016/j.bbrc.2021.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022]
Abstract
AIM To examine the effect of diacerein on vascular dysfunction in type 2 diabetic rats and elucidate the mechanism of diacerein. METHODS In a rat model, type 2 diabetes was induced by high-fat diet and streptozotocin. Vascular function was assessed in vascular reactivity experiment. The effect of diacerein (10 or 20 mg/kg/day) on blood glucose, inflammation and insulin signaling, and modulators in vascular tissue in diabetic rats were investigated by molecular and biochemical approaches. RESULTS In this study, diacerein inhibited diabetes-induced vascular dysfunction. Diacerein treatment normalized blood glucose, insulin tolerance test, inflammatory cytokine levels and nitric oxide synthases expression in diabetic rats. Moreover, diacerein inhibited NF-κB and NLRP3 pathways and activated insulin signaling pathway related proteins IRS-1 and AKT in diabetic rats. CONCLUSION Diacerein improved vascular function effectively in diabetic rats by suppressing inflammation and reducing insulin resistance. These results suggest that diacerein may represent a novel therapy for patients with diabetes.
Collapse
Affiliation(s)
- An He
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jian Shen
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuzhou Xue
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Li
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuanjing Li
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Longxiang Huang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dingyi Lv
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Minghao Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
48
|
Agarwal V, Kaushik AS, Rehman M, Chaudhary R, Jawaid T, Kamal M, Mishra V. Interleukin-6 expression and its modulation by diacerein in a rat model of chronic stress induced cardiac dysfunction. Heliyon 2021; 7:e08522. [PMID: 34917808 PMCID: PMC8665349 DOI: 10.1016/j.heliyon.2021.e08522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
People with chronic stress have higher levels of pro-inflammatory cytokines, which enhance their susceptibility to cardiovascular diseases. Diacerein has ability to modulate pro-inflammatory cytokines such as IL-1β and IL-6; however, its efficacy in chronic stress associated cardiovascular diseases is not yet assessed. In this study, we standardized a rat model of chronic unpredictable stress (CUS) demonstrating cardiovascular dysfunctions and further assessed the effect of IL-6 modulator, diacerein, on cardiovascular functions in CUS exposed rats. The CUS procedure consisted of exposing male albino Wistar rats to random stressors, everyday for 8 weeks. The binding affinity of diacerein with IL-6 was ascertained using Docking tools viz AutoDock and SwissDock. Moreover, diacerein was administered (50 mg/kg/day x 20 days P.O) post CUS exposure to rats and the serum IL-6 levels and heart functions of CUS rats were determined by ELISA and ECG-HRV analysis, respectively. 8 weeks of CUS exposure resulted in two-fold increase in serum corticosterone and IL-6 levels in rats. The ECG and HRV analysis of CUS rats showed altered sinus rhythm, elevated heart rate, systolic blood pressure and sympathetic tone. Molecular docking studies revealed diacerein high binding affinity towards IL-6 receptor. The post-treatment of diacerein in CUS rats prevented these cardiovascular dysfunctions. Our findings thus suggests that IL-6 may have a prominent role in chronic stress induced cardiovascular dysfunctions and diacerein, could be used as a preventive measure for such conditions.
Collapse
Affiliation(s)
- Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box- 173, Al-Kharj 11942, Saudi Arabia
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India
| |
Collapse
|
49
|
Abdel-Aziz MA, Ahmed HMS, El-Nekeety AA, Abdel-Wahhab MA. Osteoarthritis complications and the recent therapeutic approaches. Inflammopharmacology 2021; 29:1653-1667. [PMID: 34755232 DOI: 10.1007/s10787-021-00888-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
The accelerated prevalence of osteoarthritis (OA) disease worldwide and the lack of convenient management led to the frequent search for unprecedented and specific treatment approaches. OA patients usually suffer from many annoying complications that negatively influence their quality of life, especially in the elderly. Articular erosions may lead eventually to the loss of joint function as a whole which occurs over time according to the risk factors presented in each case and the grade of the disease. Conventional therapies are advancing, showing most appropriate results but still greatly associated with many adverse effects and have restricted curative actions as well. Hence, novel management tools are usually required. In this review, we summarized the recent approaches in OA treatment and the role of natural products, dietary supplements and nanogold application in OA treatment to provide new research tracks for more therapeutic opportunities to those who are in care in this field.
Collapse
Affiliation(s)
- Manal A Abdel-Aziz
- Toxicology and Pharmacology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Helmy M S Ahmed
- Toxicology and Pharmacology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Aziza A El-Nekeety
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
50
|
Martorell M, Castro N, Victoriano M, Capó X, Tejada S, Vitalini S, Pezzani R, Sureda A. An Update of Anthraquinone Derivatives Emodin, Diacerein, and Catenarin in Diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3313419. [PMID: 34589130 PMCID: PMC8476274 DOI: 10.1155/2021/3313419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Diabetes is part of metabolic diseases and is characterized by high blood sugar levels over a prolonged period as result of an insulin-deficient production or an inappropriate response to insulin by our cells. This chronic disease was the direct cause of 1.6 million deaths in 2016 as reported by the World Health Organization. Emodin is a natural product and active ingredient of various Chinese herbs with the chemical formula 1,3,8-trihydroxy-6-methylanthraquinone. Diacerein is another naturally occurring anthraquinone (1,8-diacetoxy-3-carboxyanthraquinone) commonly used as commercial drug to treat osteoarthritis. These two anthraquinone derivatives have been shown to exert antidiabetic activities. Emodin seems to enhance the glucose tolerance and insulin sensibility via activation of PPARγ and modulation of metabolic-related genes. Diacerein seems to decrease inflammatory cytokines and increase insulin secretion enhancing insulin sensibility and therefore improving glucose control. Other naturally occurring anthraquinone derivatives, such as catenarin (1,4,6,8-tetrahydroxy-3-methylanthraquinone), have been shown to have antidiabetic activities although few studies have been performed. The synthesis of new emodin derivatives is increasing, but these new molecules have not been tested for diabetes treatment. In the current work, available literature on anthraquinone derivatives' effects in diabetes disease is reviewed. Moreover, we discuss the chemistry, food sources, bioavailability, and toxicity of the naturally occurring anthraquinone with antidiabetic effects.
Collapse
Affiliation(s)
- Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | - Natalia Castro
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca 07122, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University Research Institute of Health Sciences (IUNICS), University of Balearic Islands, Palma E-07122, Balearic Islands, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid E-28029, Spain
- Research Institute of the Balearic Islands, Palma de Mallorca E-07120, Spain
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via G. Celoria 2 20133, Milan, Italy
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova 35128, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca 07122, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid E-28029, Spain
- Research Institute of the Balearic Islands, Palma de Mallorca E-07120, Spain
| |
Collapse
|