1
|
Castellano G, Bonnet Da Silva J, Pietropaolo S. The role of gene-environment interactions in social dysfunction: Focus on preclinical evidence from mouse studies. Neuropharmacology 2024; 261:110179. [PMID: 39369849 DOI: 10.1016/j.neuropharm.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Human and animal research has demonstrated that genetic and environmental factors can strongly modulate behavioral function, including the expression of social behaviors and their dysfunctionalities. Several genes have been linked to pathologies characterized by alterations in social behaviors, e.g., aggressive/antisocial personality disorder (ASPD), or autism spectrum disorder (ASD). Environmental stimulation (e.g., physical exercise, environmental enrichment) or adversity (e.g., chronic stress, social isolation) may respectively improve or impair social interactions. While the independent contribution of genetic and environmental factors to social behaviors has been assessed in a variety of human and animal studies, the impact of their interactive effects on social functions has been less extensively investigated. Genetic mutations and environmental changes can indeed influence each other through complex mutual effects, e.g., inducing synergistic, antagonistic or interactive behavioral outcomes. This complexity is difficult to be disentangled in human populations, thus encouraging studies in animal models, especially in the mouse species which is the most suitable for genetic manipulations. Here we review the available preclinical evidence on the impact of gene-environment interactions on social behaviors and their dysfunction, focusing on studies in laboratory mice. We included findings combining naturally occurring mutations, selectively bred or transgenic mice with multiple environmental manipulations, including positive (environmental enrichment, physical exercise) and aversive (social isolation, maternal separation, and stress) experiences. The impact of these results is critically discussed in terms of their generalizability across mouse models and social tests, as well as their implications for human studies on social dysfunction.
Collapse
Affiliation(s)
- Giulia Castellano
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000, Bordeaux, France
| | | | | |
Collapse
|
2
|
Moskalenko AM, Ikrin AN, Kozlova AV, Mukhamadeev RR, de Abreu MS, Riga V, Kolesnikova TO, Kalueff AV. Decoding Molecular Bases of Rodent Social Hetero-Grooming Behavior Using in Silico Analyses and Bioinformatics Tools. Neuroscience 2024; 554:146-155. [PMID: 38876356 DOI: 10.1016/j.neuroscience.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Highly prevalent in laboratory rodents, 'social' hetero-grooming behavior is translationally relevant to modeling a wide range of neuropsychiatric disorders. Here, we comprehensively evaluated all known to date mouse genes linked to aberrant hetero-grooming phenotype, and applied bioinformatics tools to construct a network of their established protein-protein interactions (PPI). We next identified several distinct molecular clusters within this complex network, including neuronal differentiation, cytoskeletal, WNT-signaling and synapsins-associated pathways. Using additional bioinformatics analyses, we further identified 'central' (hub) proteins within these molecular clusters, likely key for mouse hetero-grooming behavior. Overall, a more comprehensive characterization of intricate molecular pathways linked to aberrant rodent grooming may markedly advance our understanding of underlying cellular mechanisms and related neurological disorders, eventually helping discover novel targets for their pharmacological or gene therapy interventions.
Collapse
Affiliation(s)
- Anastasia M Moskalenko
- Graduate Program in Genetics and Genetic Technologies, Sirius University of Science and Technology, Sochi 354340, Russia; Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Aleksey N Ikrin
- Graduate Program in Genetics and Genetic Technologies, Sirius University of Science and Technology, Sochi 354340, Russia; Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Alena V Kozlova
- Graduate Program in Genetics and Genetic Technologies, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Radmir R Mukhamadeev
- Graduate Program in Bioinformatics and Genomics, Sirius University of Science and Technology, Sochi 354340, Russia; Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050, Brazil.
| | - Vyacheslav Riga
- Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Tatiana O Kolesnikova
- Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Allan V Kalueff
- Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 194021, Russia; Suzhou Key Laboratory of Neurobiology and Cell Signaling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China.
| |
Collapse
|
3
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
4
|
Lucas ME, Hemsworth LM, Butler KL, Morrison RS, Tilbrook AJ, Marchant JN, Rault JL, Galea RY, Hemsworth PH. Early human contact and housing for pigs - part 3: ability to cope with the environment. Animal 2024; 18:101166. [PMID: 38772077 DOI: 10.1016/j.animal.2024.101166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/23/2024] Open
Abstract
Early experiences can have long-term impacts on stress adaptability. This paper is the last of three in a series on early experiences and stress in pigs, and reports on the effects of early human contact and housing on the ability of pigs to cope with their general environment. Using a 2 × 2 factorial design, 48 litters of pigs were reared in either a farrowing crate (FC) or a loose farrowing pen (LP; PigSAFE pen) which was larger, more physically complex and allowed the sow to move freely. Piglets were provided with either routine contact from stockpeople (C), or routine contact plus regular opportunities for positive human contact (+HC) involving 5 min of scratching, patting and stroking imposed to the litter 5 days/week from 0 to 4 weeks of age. At 4 weeks of age (preweaning), C piglets that were reared in FC had considerably lower concentrations of serum brain-derived neurotrophic factor (BDNF) than piglets from the other treatment combinations. Compared to C pigs, +HC pigs had fewer injuries at 4 weeks of age. There were no clear effects of human contact on BDNF concentrations or injuries after weaning, or on basal cortisol or immunoglobulin-A concentrations, behavioural time budgets, tear staining, growth, or piglet survival. Compared to FC piglets, LP piglets showed more play behaviour and interactions with the dam and less repetitive nosing towards pen mates during lactation. There was no evidence that early housing affected pigs' behavioural time budgets or physiology after weaning. Tear staining severity was greater in LP piglets at 4 weeks of age, but this may have been associated with the higher growth rates of LP piglets preweaning. There was no effect of lactation housing on growth after weaning. Preweaning piglet mortality was higher in the loose system. The findings on BDNF concentrations, injuries and play behaviour suggest improved welfare during the treatment period in +HC and LP piglets compared to C and FC piglets, respectively. These results together with those from the other papers in this series indicate that positive human interaction early in life promotes stress adaptability in pigs. Furthermore, while the farrowing crate environment deprives piglets of opportunities for play behaviour and sow interaction, there was no evidence that rearing in crates negatively affected pig welfare or stress resilience after weaning. Whether these findings are specific to the two housing systems studied here, or can be generalised to other housing designs, warrants further research.
Collapse
Affiliation(s)
- M E Lucas
- The Animal Welfare Science Centre, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - L M Hemsworth
- The Animal Welfare Science Centre, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - K L Butler
- The Animal Welfare Science Centre, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - R S Morrison
- Rivalea Australia Pty Ltd, Corowa, Victoria 2464, Australia
| | - A J Tilbrook
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Australia; School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, Queensland 4343, Australia
| | - J N Marchant
- Organic Plus Trust, Alexandria, VA 22302, USA; A World of Good Initiative Inc., Dover, DE 19901, USA
| | - J-L Rault
- Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna A-1210, Austria
| | - R Y Galea
- The Animal Welfare Science Centre, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - P H Hemsworth
- The Animal Welfare Science Centre, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Pasquetta L, Ferreyra E, Wille-Bille A, Pautassi RM, Ramirez A, Piovano J, Molina JC, Miranda-Morales RS. C57BL/6J offspring mice reared by a single-mother exhibit, compared to mice reared in a biparental parenting structure, distinct neural activation patterns and heightened ethanol-induced anxiolysis. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06627-4. [PMID: 38811403 DOI: 10.1007/s00213-024-06627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
RATIONALE Parenting experiences with caregivers play a key role in neurodevelopment. We recently reported that adolescents reared by a single-mother (SM) display an anxiety-prone phenotype and drink more alcohol, compared to peers derived from a biparental (BP) rearing condition. OBJECTIVES To investigate if SM and BP offspring infant mice exhibit differential sensitivity to ethanol-induced locomotor activity and differential activity patterns in brain areas related to anxiety response. We also analyzed anxiety response and ethanol-induced anxiolysis in SM and BP adolescents. METHODS Mice reared in SM or BP conditions were assessed for (a) ethanol-induced locomotor activity at infancy, (b) central expression of Fos-like proteins (likely represented mostly by FosB, a transcription factor that accumulates after chronic stimuli exposure and serves as a molecular marker of neural plasticity) and cathecolaminergic activity, and (c) anxiety-like behavior and ethanol-induced anxiolysis in adolescence. RESULTS Infant mice were sensitive to the stimulating effects of 2.0 g/kg alcohol, regardless parenting structure. SM mice exhibited, relative to BP mice, a significantly greater number of Fos-like positive cells in the central amygdala and basolateral amygdala nuclei. Ethanol treatment, but not parenting condition, induced greater activation of dopaminergic neurons in ventral tegmental area. SM, but not BP, adolescent mice were sensitive to ethanol-induced anxiolysis. CONCLUSIONS These results highlight the complex relationship between parenting experiences and neurodevelopment. The SM parenting may result in greater neural activation patterns in brain areas associated with anxiety response, potentially contributing to increased basal anxiety and alcohol sensitivity.
Collapse
Affiliation(s)
- Lucila Pasquetta
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
| | - Eliana Ferreyra
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
| | - Aranza Wille-Bille
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Abraham Ramirez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Jesica Piovano
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
| | - Juan Carlos Molina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Roberto Sebastián Miranda-Morales
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina.
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| |
Collapse
|
6
|
Poggini S, Matte Bon G, Ciano Albanese N, Karpova N, Castrén E, D'Andrea I, Branchi I. Subjective experience of the environment determines serotoninergic antidepressant treatment outcome in male mice. J Affect Disord 2024; 350:900-908. [PMID: 38246279 DOI: 10.1016/j.jad.2024.01.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND The effects of the selective serotonin reuptake inhibitors (SSRIs), the first-line antidepressant treatment, have been proposed to be affected, at least in part, by the living environment. Since the quality of the environment depends not only on its objective features, but also on the subjective experience, we hypothesized that the latter plays a key role in determining SSRI treatment outcome. METHODS We chronically administered the SSRI fluoxetine to two groups of adult CD-1 male mice that reportedly show distinct subjective experiences of the environment measured as consistent and significantly different responses to the same emotional and social stimuli. These distinct socioemotional profiles were generated by rearing mice either in standard laboratory conditions (SN) or in a communal nest (CN) where three dams breed together their offspring, sharing caregiving behavior. RESULTS At adulthood, CN mice displayed higher levels of agonistic and anxiety-like behaviors than SN mice, indicating that they experience the environment as more socially challenging and potentially dangerous. We then administered fluoxetine, which increased offensive and anxious response in SN, while producing opposite effects in CN mice. BDNF regulation was modified by the treatment accordingly. LIMITATIONS Subjective experience in mice was assessed as behavioral response to the environment. CONCLUSIONS These results show that the subjective experience of the environment determines fluoxetine outcome. In a translational perspective, our findings suggest considering not only the objective quality, but also the subjective appraisal, of the patient's living environment for developing effective personalized therapeutic approaches in psychiatry.
Collapse
Affiliation(s)
- Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gloria Matte Bon
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy; Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Naomi Ciano Albanese
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Nina Karpova
- Neuroscience Center, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Ivana D'Andrea
- Institut national de la santé et de la recherche médicale (INSERM) UMR-S 1270, Sorbonne Université, Sciences and Engineering Faculty, Institut du Fer à Moulin, Paris, France
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
7
|
La Loggia O, Wilson AJ, Taborsky B. Early social complexity influences social behaviour but not social trajectories in a cooperatively breeding cichlid fish. ROYAL SOCIETY OPEN SCIENCE 2024; 11:230740. [PMID: 38571911 PMCID: PMC10990469 DOI: 10.1098/rsos.230740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/09/2023] [Accepted: 01/31/2024] [Indexed: 04/05/2024]
Abstract
Social competence-defined as the ability to optimize social behaviour according to available social information-can be influenced by the social environment experienced in early life. In cooperatively breeding vertebrates, the current group size influences behavioural phenotypes, but it is not known whether the group size experienced in early life influences behavioural phenotypes generally or social competence specifically. We tested whether being reared in large versus small groups for the first two months of life affects social behaviours, and associated life-history traits, in the cooperatively breeding cichlid Neolamprologus pulcher between the ages of four and twelve months. As we predicted, fish raised in larger and more complex groups showed higher social competence later in life. This was shown in several ways: they exhibited more, and earlier, submissive behaviour in response to aggression from a dominant conspecific, and-in comparison to fish raised in small groups-they exhibited more flexibility in the expression of submissive behaviour. By contrast, there was no evidence that early social complexity, as captured by the group size, affects aggression or exploration behaviour nor did it influence the propensity to disperse or show helping behaviour. Our results emphasize the importance of early-life social complexity for the development of social competence.
Collapse
Affiliation(s)
- Océane La Loggia
- Institute for Ecology and Evolution, Behavioural Ecology Division, University of Bern, Bern, Switzerland
| | - Alastair J. Wilson
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Barbara Taborsky
- Institute for Ecology and Evolution, Behavioural Ecology Division, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Zhang Y, Yang W, Xu W, Pan KY. Association between psychosocial working conditions and well-being before retirement: a community-based study. PSYCHOL HEALTH MED 2024; 29:574-588. [PMID: 37899630 DOI: 10.1080/13548506.2023.2274316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/18/2023] [Indexed: 10/31/2023]
Abstract
Psychosocial working conditions have been linked to mental health outcomes, but their association with well-being is poorly studied. We aimed to investigate the association between psychosocial working conditions and well-being before retirement, and to explore the role of gender and leisure activities in the association. From the Swedish National Study on Aging and Care in Kungsholmen, 598 community dwellers aged 60-65 years were included in the cross-sectional study. Lifelong occupational history was obtained through an interview. Job demands and job control in the longest-held occupation were graded with job exposure matrices. Psychosocial working conditions were classified into high strain (high demands, low control), low strain (low demands, high control), passive job (low demands, low control), and active job (high demands, high control). Well-being was assessed with the 10-item version of positive and negative affect schedule, and scored using confirmatory factor analysis. Engagement in leisure activities was categorized as low, moderate, and high. Data were analyzed using linear regression. Both high job control and high job demands were dose-dependently associated with higher well-being. Overall, compared to active jobs, passive jobs were associated with lower well-being (β -0.19, 95% CI -0.35 to -0.02, P = 0.028). Passive (β -0.28, 95% CI -0.51 to -0.04, P = 0.020) and high strain (β -0.31, 95% CI -0.52 to -0.10, P = 0.004) jobs were associated with lower well-being in men, but not in women. The association between passive jobs and well-being was attenuated by high leisure activities, while the association between high strain and well-being was magnified by low leisure activities. In conclusion, negative psychosocial working conditions are associated with poor well-being, especially in men. Leisure activities may modulate the association. Our study highlights that promoting favorable working conditions can be a target to improve well-being among employees and active participation in leisure activities is encouraged to cope with work-related stress for better well-being.
Collapse
Affiliation(s)
- Yuchen Zhang
- King's Business School, King's College London, London, UK
- Aging Research Center, Department of Neurobiology, Health Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Wenzhe Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Weili Xu
- Aging Research Center, Department of Neurobiology, Health Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Kuan-Yu Pan
- Unit of Occupational Medicine, Institute of Environmental Medicine, Stockholm, Sweden
| |
Collapse
|
9
|
Rullo L, Losapio LM, Morosini C, Mottarlini F, Schiavi S, Buzzelli V, Ascone F, Ciccocioppo R, Fattore L, Caffino L, Fumagalli F, Romualdi P, Trezza V, Candeletti S. Outcomes of early social experiences on glucocorticoid and endocannabinoid systems in the prefrontal cortex of male and female adolescent rats. Front Cell Neurosci 2023; 17:1270195. [PMID: 38174157 PMCID: PMC10762649 DOI: 10.3389/fncel.2023.1270195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Social and emotional experiences differently shape individual's neurodevelopment inducing substantial changes in neurobiological substrates and behavior, particularly when they occur early in life. In this scenario, the present study was aimed at (i) investigating the impact of early social environments on emotional reactivity of adolescent male and female rats and (ii) uncovering the underlying molecular features, focusing on the cortical endocannabinoid (eCB) and glucocorticoid systems. To this aim, we applied a protocol of environmental manipulation based on early postnatal socially enriched or impoverished conditions. Social enrichment was realized through communal nesting (CN). Conversely, an early social isolation (ESI) protocol was applied (post-natal days 14-21) to mimic an adverse early social environment. The two forms of social manipulation resulted in specific behavioral and molecular outcomes in both male and female rat offspring. Despite the combination of CN and ESI did not affect emotional reactivity in both sexes, the molecular results reveal that the preventive exposure to CN differently altered mRNA and protein expression of the main components of the glucocorticoid and eCB systems in male and female rats. In particular, adolescent females exposed to the combination of CN and ESI showed increased corticosterone levels, unaltered genomic glucocorticoid receptor, reduced cannabinoid receptor type-1 and fatty acid amide hydrolase protein levels, suggesting that the CN condition evokes different reorganization of these systems in males and females.
Collapse
Affiliation(s)
- Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Loredana Maria Losapio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti,” Università degli Studi di Milano, Milan, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Department of Science, Roma Tre University, Rome, Italy
| | - Valeria Buzzelli
- Section of Biomedical Sciences and Technologies, Department of Science, Roma Tre University, Rome, Italy
| | - Fabrizio Ascone
- Section of Biomedical Sciences and Technologies, Department of Science, Roma Tre University, Rome, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, Cagliari, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti,” Università degli Studi di Milano, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti,” Università degli Studi di Milano, Milan, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of Science, Roma Tre University, Rome, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Curley JP, Champagne FA. Shaping the development of complex social behavior. Ann N Y Acad Sci 2023; 1530:46-63. [PMID: 37855311 DOI: 10.1111/nyas.15076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Early life experiences can have an enduring impact on the brain and behavior, with implications for stress reactivity, cognition, and social behavior. In particular, the neural systems that contribute to the expression of social behavior are altered by early life social environments. However, paradigms that have been used to alter the social environment during development have typically focused on exposure to stress, adversity, and deprivation of species-typical social stimulation. Here, we explore whether complex social environments can shape the development of complex social behavior. We describe lab-based paradigms for studying early life social complexity in rodents that are generally focused on enriching the social and sensory experiences of the neonatal and juvenile periods of development. The impact of these experiences on social behavior and neuroplasticity is highlighted. Finally, we discuss the degree to which our current approaches for studying social behavior outcomes give insight into "complex" social behavior and how social complexity can be better integrated into lab-based methodologies.
Collapse
Affiliation(s)
- James P Curley
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| | - Frances A Champagne
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
11
|
Bratzu J, Ciscato M, Pisanu A, Talani G, Frau R, Porcu P, Diana M, Fumagalli F, Romualdi P, Rullo L, Trezza V, Ciccocioppo R, Sanna F, Fattore L. Communal nesting differentially attenuates the impact of pre-weaning social isolation on behavior in male and female rats during adolescence and adulthood. Front Behav Neurosci 2023; 17:1257417. [PMID: 37915532 PMCID: PMC10616881 DOI: 10.3389/fnbeh.2023.1257417] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Early social isolation (ESI) disrupts neurodevelopmental processes, potentially leading to long-lasting emotional and cognitive changes in adulthood. Communal nesting (CN), i.e., the sharing of parental responsibilities between multiple individuals in a nest, creates a socially enriching environment known to impact social and anxiety-related behaviors. Methods This study examines the effects of (i) the CN condition and of (ii) ESI during the 3rd week of life (i.e., pre-weaning ESI) on motor, cognitive, and emotional domains during adolescence and adulthood in male and female rats reared in the two different housing conditions, as well as (iii) the potential of CN to mitigate the impact of ESI on offspring. Results We found that in a spontaneous locomotor activity test, females exhibited higher activity levels compared to males. In female groups, adolescents reared in standard housing (SH) condition spent less time in the center of the arena, suggestive of increased anxiety levels, while the CN condition increased the time spent in the center during adolescence, but not adulthood, independently from ESI. The prepulse inhibition (PPI) test showed a reduced PPI in ESI adolescent animals of both sexes and in adult males (but not in adult females), with CN restoring PPI in males, but not in adolescent females. Further, in the marble burying test SH-ESI adolescent males exhibited higher marble burying behavior than all other groups, suggestive of obsessive-compulsive traits. CN completely reversed this stress-induced effect. Interestingly, ESI and CN did not have a significant impact on burying behavior in adult animals of both sexes. Discussion Overall, our findings (i) assess the effects of ESI on locomotion, sensorimotor gating, and compulsive-like behaviors, (ii) reveal distinct vulnerabilities of males and females within these domains, and (iii) show how early-life social enrichment may successfully counteract some of the behavioral alterations induced by early-life social stress in a sex-dependent manner. This study strengthens the notion that social experiences during early-life can shape emotional and cognitive outcomes in adulthood, and points to the importance of social enrichment interventions for mitigating the negative effects of early social stress on neurodevelopment.
Collapse
Affiliation(s)
- Jessica Bratzu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Maria Ciscato
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Augusta Pisanu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Giuseppe Talani
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Roberto Frau
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Marco Diana
- G.Minardi’ Cognitive Neuroscience Laboratory, CPMB Science Department, University of Sassari, Sassari, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, University of Milan, Milan, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Viviana Trezza
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Liana Fattore
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
12
|
Bozkurt S, Lannin NA, Mychasiuk R, Semple BD. Environmental modifications to rehabilitate social behavior deficits after acquired brain injury: What is the evidence? Neurosci Biobehav Rev 2023; 152:105278. [PMID: 37295762 DOI: 10.1016/j.neubiorev.2023.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/22/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
Social behavior deficits are a common, debilitating consequence of traumatic brain injury and stroke, particularly when sustained during childhood. Numerous factors influence the manifestation of social problems after acquired brain injuries, raising the question of whether environmental manipulations can minimize or prevent such deficits. Here, we examine both clinical and preclinical evidence addressing this question, with a particular focus on environmental enrichment paradigms and differing housing conditions. We aimed to understand whether environmental manipulations can ameliorate injury-induced social behavior deficits. In summary, promising data from experimental models supports a beneficial role of environmental enrichment on social behavior. However, limited studies have considered social outcomes in the chronic setting, and few studies have addressed the social context specifically as an important component of the post-injury environment. Clinically, limited high-caliber evidence supports the use of specific interventions for social deficits after acquired brain injuries. An improved understanding of how the post-injury environment interacts with the injured brain, particularly during development, is needed to validate the implementation of rehabilitative interventions that involve manipulating an individuals' environment.
Collapse
Affiliation(s)
- Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Natasha A Lannin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia; School of Allied Health (Occupational Therapy), La Trobe University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
13
|
Shen F, Zhang Z, Guo H, Fu Y, Zhang D, Zhang X. Effects of Two Environmental Enrichment Methods on Cognitive Ability and Growth Performance of Juvenile Black Rockfish Sebastes schlegelii. Animals (Basel) 2023; 13:2131. [PMID: 37443928 DOI: 10.3390/ani13132131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
A widely used approach to restoring marine fishery resources is stock enhancement using hatchery-reared fish. However, artificial rearing environments, which are often lacking in enrichment, may negatively affect the cognition, welfare, and adaptive capacity to new environments of juvenile fish, thereby leading to low post-release survival rates. This study examined the effects of habitat and social enrichment on the growth performance and cognitive ability of Sebastes schlegelii. Following seven weeks of environmental enrichment, a T-maze experiment was conducted, and the telencephalon and visceral mass of the fish were sampled to measure the growth (growth hormone: GH; insulin-like growth factor-1: IGF-1; and somatostatin: SS) and cognitive abilities (brain-derived neurotrophic factor: BDNF; and nerve growth factor: NGF)-related indicator levels. The results indicated that, although the final body length, final body weight, and specific growth rate of both enrichment groups were lower than those of the control group, both methods of enrichment had a positive impact on growth-related factors (increased GH, increased IGF-1, and decreased SS). The enrichment groups demonstrated a stronger learning ability in the T-maze test, and the levels of BDNF and NGF in the telencephalon were significantly higher in the enrichment groups than those in the control group. Additionally, there was a significant interaction between the two enrichment methods on the NGF level. This study confirms that a more complex and enriching environment is beneficial for cultivating the cognitive abilities of cultured juvenile S. schlegelii, and the result can provide a reference for the improvement of the stock enhancement of this species.
Collapse
Affiliation(s)
- Fengyuan Shen
- East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, 300 Jungong Road, Shanghai 200090, China
| | - Zonghang Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Haoyu Guo
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yiqiu Fu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Dong Zhang
- East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, 300 Jungong Road, Shanghai 200090, China
| | - Xiumei Zhang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
14
|
Tarsha MS, Narvaez D. The evolved nest, oxytocin functioning, and prosocial development. Front Psychol 2023; 14:1113944. [PMID: 37425179 PMCID: PMC10323226 DOI: 10.3389/fpsyg.2023.1113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/16/2023] [Indexed: 07/11/2023] Open
Abstract
Prosociality, orientation to attuned, empathic relationships, is built from the ground up, through supportive care in early life that fosters healthy neurobiological structures that shape behavior. Numerous social and environmental factors within early life have been identified as critical variables influencing child physiological and psychological outcomes indicating a growing need to synthesize which factors are the most influential. To address this gap, we examined the influence of early life experiences according to the evolved developmental niche or evolved nest and its influence on child neurobiological and sociomoral outcomes, specifically, the oxytocinergic system and prosociality, respectively. To-date, this is the first review to utilize the evolved nest framework as an investigatory lens to probe connections between early life experience and child neurobiological and sociomoral outcomes. The evolved nest is comprised of characteristics over 30 million years old and is organized to meet a child's basic needs as they mature. Converging evidence indicates that humanity's evolved nest meets the needs of a rapidly developing brain, optimizing normal development. The evolved nest for young children includes soothing perinatal experiences, breastfeeding, positive touch, responsive care, multiple allomothers, self-directed play, social embeddedness, and nature immersion. We examined what is known about the effects of each evolved nest component on oxytocinergic functioning, a critical neurobiological building block for pro-sociomorality. We also examined the effects of the evolved nest on prosociality generally. We reviewed empirical studies from human and animal research, meta-analyses and theoretical articles. The review suggests that evolved nest components influence oxytocinergic functioning in parents and children and help form the foundations for prosociality. Future research and policy should consider the importance of the first years of life in programming the neuroendocrine system that undergirds wellbeing and prosociality. Complex, interaction effects among evolved nest components as well as among physiological and sociomoral processes need to be studied. The most sensible framework for examining what builds and enhances prosociality may be the millions-year-old evolved nest.
Collapse
|
15
|
Reyes-Contreras M, de Vries B, van der Molen JC, Groothuis TGG, Taborsky B. Egg-mediated maternal effects in a cooperatively breeding cichlid fish. Sci Rep 2023; 13:9759. [PMID: 37328515 PMCID: PMC10276030 DOI: 10.1038/s41598-023-35550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/19/2023] [Indexed: 06/18/2023] Open
Abstract
Mothers can influence offspring phenotype through egg-mediated maternal effects, which can be influenced by cues mothers obtain from their environment during offspring production. Developing embryos use these components but have mechanisms to alter maternal signals. Here we aimed to understand the role of mothers and embryos in how maternal effects might shape offspring social phenotype. In the cooperatively breeding fish Neolamprologus pulcher different social phenotypes develop in large and small social groups differing in predation risk and social complexity. We manipulated the maternal social environment of N. pulcher females during egg laying by allocating them either to a small or a large social group. We compared egg mass and clutch size and the concentration of corticosteroid metabolites between social environments, and between fertilized and unfertilized eggs to investigate how embryos deal with maternal signalling. Mothers in small groups produced larger clutches but neither laid smaller eggs nor bestowed eggs differently with corticosteroids. Fertilized eggs scored lower on a principal component representing three corticosteroid metabolites, namely 11-deoxycortisol, cortisone, and 11-deoxycorticosterone. We did not detect egg-mediated maternal effects induced by the maternal social environment. We discuss that divergent social phenotypes induced by different group sizes may be triggered by own offspring experience.
Collapse
Affiliation(s)
- Maria Reyes-Contreras
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, 3032, Hinterkappelen, Switzerland
| | - Bonnie de Vries
- The Groningen Institute for Evolutionary Life Science, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - J C van der Molen
- Laboratorium Bijzondere Chemie, Cluster Endocrinologie and Metabole Ziekten, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - T G G Groothuis
- The Groningen Institute for Evolutionary Life Science, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Barbara Taborsky
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, 3032, Hinterkappelen, Switzerland.
| |
Collapse
|
16
|
Ham GX, Lim KE, Augustine GJ, Leong V. Synchrony in parent-offspring social interactions across development: A cross-species review of rodents and humans. J Neuroendocrinol 2023:e13241. [PMID: 36929715 DOI: 10.1111/jne.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
In humans, parent-child neural synchrony has been shown to support early communication, social attunement and learning. Further, some animal species (including rodents and bats) are now known to share neural synchrony during certain forms of social behaviour. However, very little is known about the developmental origins and sequelae of neural synchrony, and whether this neural mechanism might play a causal role in the control of social and communicative behaviour across species. Rodent models are optimal for exploring such questions of causality, with a plethora of tools available for both disruption/induction (optogenetics) and even mechanistic dissection of synchrony-induction pathways (in vivo electrical or optical recording of neural activity). However, before the benefits of rodent models for advancing research on parent-infant synchrony can be realised, it is first important to address a gap in understanding the forms of parent-pup synchrony that occur during rodent development, and how these social relationships evolve over time. Accordingly, this review seeks to identify parent-pup social behaviours that could potentially drive or facilitate synchrony and to discuss key differences or limitations when comparing mouse to human models of parent-infant synchrony. Uniquely, our review will focus on parent-pup dyadic social behaviours that have particular analogies to the human context, including instrumental, social interactive and vocal communicative behaviours. This review is intended to serve as a primer on the study of neurobehavioral synchrony across human and rodent dyadic developmental models.
Collapse
Affiliation(s)
- Gao Xiang Ham
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- Lee Kong China School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kai En Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - George J Augustine
- Lee Kong China School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Victoria Leong
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Pediatrics, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Solomon-Lane TK, Butler RM, Hofmann HA. Vasopressin mediates nonapeptide and glucocorticoid signaling and social dynamics in juvenile dominance hierarchies of a highly social cichlid fish. Horm Behav 2022; 145:105238. [PMID: 35932752 DOI: 10.1016/j.yhbeh.2022.105238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Early-life social experience can strongly affect adult behavior, yet the behavioral mechanisms underlying developmental trajectories are poorly understood. Here, we use the highly social cichlid, Burton's Mouthbrooder (Astatotilapia burtoni) to investigate juvenile social status and behavior, as well as the underlying neuroendocrine mechanisms. We placed juveniles in pairs or triads and found that they readily establish social status hierarchies, with some group structural variation depending on group size, as well as the relative body size of the group members. Next, we used intracerebroventricular injections to test the hypothesis that arginine vasopressin (AVP) regulates juvenile social behavior and status, similar to adult A. burtoni. While we found no direct behavioral effects of experimentally increasing (via vasotocin) or decreasing (via antagonist Manning Compound) AVP signaling, social interactions directed at the treated individual were significantly altered. This group-level effect of central AVP manipulation was also reflected in a significant shift in whole brain expression of genes involved in nonapeptide signaling (AVP, oxytocin, and oxytocin receptor) and the neuroendocrine stress axis (corticotropin-releasing factor (CRF), glucocorticoid receptors (GR) 1a and 1b). Further, social status was associated with the expression of genes involved in glucocorticoid signaling (GR1a, GR1b, GR2, mineralocorticoid receptor), social interactions with the dominant fish, and nonapeptide signaling activity (AVP, AVP receptor V1aR2, OTR). Together, our results considerably expand our understanding of the context-specific emergence of social dominance hierarchies in juveniles and demonstrate a role for nonapeptide and stress axis signaling in the regulation of social status and social group dynamics.
Collapse
Affiliation(s)
- Tessa K Solomon-Lane
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States of America.
| | - Rebecca M Butler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Cell & Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States of America
| |
Collapse
|
18
|
Gallego-Abenza M, Boucherie PH, Bugnyar T. Early social environment affects attention to social cues in juvenile common ravens, Corvus corax. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220132. [PMID: 35774139 PMCID: PMC9240683 DOI: 10.1098/rsos.220132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/06/2022] [Indexed: 05/03/2023]
Abstract
Social competence, i.e. defined as the ability to adjust the expression of social behaviour to the available social information, is known to be influenced by early-life conditions. Brood size might be one of the factors determining such early conditions, particularly in species with extended parental care. We here tested in ravens whether growing up in families of different sizes affects the chicks' responsiveness to social information. We experimentally manipulated the brood size of 13 captive raven families, creating either small or large families. Simulating dispersal, juveniles were separated from their parents and temporarily housed in one of two captive non-breeder groups. After five weeks of socialization, each raven was individually tested in a playback setting with food-associated calls from three social categories: sibling, familiar unrelated raven they were housed with, and unfamiliar unrelated raven from the other non-breeder aviary. We found that individuals reared in small families were more attentive than birds from large families, in particular towards the familiar unrelated peer. These results indicate that variation in family size during upbringing can affect how juvenile ravens value social information. Whether the observed attention patterns translate into behavioural preferences under daily life conditions remains to be tested in future studies.
Collapse
Affiliation(s)
- Mario Gallego-Abenza
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
- Konrad Lorenz Forschungsstelle, Core Facility for Behaviour and Cognition, University of Vienna, Grünau im Almtal, Austria
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Palmyre H. Boucherie
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Thomas Bugnyar
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
- Konrad Lorenz Forschungsstelle, Core Facility for Behaviour and Cognition, University of Vienna, Grünau im Almtal, Austria
| |
Collapse
|
19
|
Patterson SK, Strum SC, Silk JB. Early life adversity has long-term effects on sociality and interaction style in female baboons. Proc Biol Sci 2022; 289:20212244. [PMID: 35105243 PMCID: PMC8808103 DOI: 10.1098/rspb.2021.2244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Social bonds enhance fitness in many group-living animals, generating interest in the processes that create individual variation in sociality. Previous work on female baboons shows that early life adversity and temperament both influence social connectedness in adulthood. Early life adversity might shape sociality by reducing ability to invest in social relationships or through effects on attractiveness as a social partner. We examine how females' early life adversity predicts sociality and temperament in wild olive baboons, and evaluate whether temperament mediates the relationship between early life adversity and sociality. We use behavioural data on 31 females to quantify sociality. We measure interaction style as the tendency to produce grunts (signals of benign intent) in contexts in which the vocalization does not produce immediate benefits to the actor. Early life adversity was negatively correlated with overall sociality, but was a stronger predictor of social behaviours received than behaviours initiated. Females who experienced less early life adversity had more benign interaction styles and benign interaction styles were associated with receiving more social behaviours. Interaction style may partially mediate the association between early life adversity and sociality. These analyses add to our growing understanding of the processes connecting early life experiences to adult sociality.
Collapse
Affiliation(s)
- Sam K. Patterson
- Department of Anthropology, New York University, New York, NY, USA
| | - Shirley C. Strum
- Department of Anthropology, University of California, San Diego, CA, USA,Uaso Ngiro Baboon Project, Nairobi, Kenya
| | - Joan B. Silk
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA,Institute for Human Origins, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
20
|
Pleiotropic effects of BDNF on the cerebellum and hippocampus: Implications for neurodevelopmental disorders. Neurobiol Dis 2022; 163:105606. [PMID: 34974125 DOI: 10.1016/j.nbd.2021.105606] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the mammalian brain, essential not only to the development of the central nervous system but also to synaptic plasticity. BDNF is present in various brain areas, but highest levels of expression are seen in the cerebellum and hippocampus. After birth, BDNF acts in the cerebellum as a mitogenic and chemotactic factor, stimulating the cerebellar granule cell precursors to proliferate, migrate and maturate, while in the hippocampus BDNF plays a fundamental role in synaptic transmission and plasticity, representing a key regulator for the long-term potentiation, learning and memory. Furthermore, the expression of BDNF is highly regulated and changes of its expression are associated with both physiological and pathological conditions. The purpose of this review is to provide an overview of the current state of knowledge on the BDNF biology and its neurotrophic role in the proper development and functioning of neurons and synapses in two important brain areas of postnatal neurogenesis, the cerebellum and hippocampus. Dysregulation of BDNF expression and signaling, resulting in alterations in neuronal maturation and plasticity in both systems, is a common hallmark of several neurodevelopmental diseases, such as autism spectrum disorder, suggesting that neuronal malfunction present in these disorders is the result of excessive or reduced of BDNF support. We believe that the more the relevance of the pathophysiological actions of BDNF, and its downstream signals, in early postnatal development will be highlighted, the more likely it is that new neuroprotective therapeutic strategies will be identified in the treatment of various neurodevelopmental disorders.
Collapse
|
21
|
Multidimensional nature of dominant behavior: Insights from behavioral neuroscience. Neurosci Biobehav Rev 2021; 132:603-620. [PMID: 34902440 DOI: 10.1016/j.neubiorev.2021.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/29/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
Social interactions for many species of animals are critical for survival, wellbeing, and reproduction. Optimal navigation of a social system increases chances for survival and reproduction, therefore there is strong incentive to fit into social structures. Social animals rely heavily on dominant-submissive behaviors in establishment of stable social hierarchies. There is a link between extreme manifestation of dominance/submissiveness and behavioral deviations. To understand neural substrates affiliated with a specific hierarchical rank, there is a real need for reliable animal behavioral models. Different paradigms have been consolidated over time to study the neurobiology of social rank behavior in a standardized manner using rodent models to unravel the neural pathways and substrates involved in normal and abnormal intraspecific social interactions. This review summarizes and discusses the commonly used behavioral tests and new directions for the assessment of dominance in rodents. We discuss the hierarchy inheritable nature and other critical issues regarding hierarchical rank manifestation which may help in designing social-rank-related studies that serve as promising pre-clinical tools in behavioral psychiatry.
Collapse
|
22
|
Souza-Talarico JN, Bromberg E, Santos JLF, Freitas BS, Silva DF, Duarte YAO. Family and Community Support, Brain-Derived Neurotrophic Factor, and Cognitive Performance in Older Adults: Findings From the Health, Wellbeing and Aging Study Population-Based Cohort. Front Behav Neurosci 2021; 15:717847. [PMID: 34621159 PMCID: PMC8490800 DOI: 10.3389/fnbeh.2021.717847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Social networks can modulate physiological responses, protects against the detrimental consequences of prolonged stress, and enhance health outcomes. Family ties represent an essential source of social networks among older adults. However, the impact of family support on cognitive performance and the biological factors influencing that relationship is still unclear. We aimed to determine the relationship between family support, cognitive performance and BDNF levels. Methods: Cross-sectional data from three-hundred, eight-six individuals aged on average 60 years enrolled in the Health, Wellbeing and Aging Study (SABE), a population-cohort study, were assessed for family support, community support and cognitive performance. Structural and functional family support was evaluated based on family size and interactions allied to scores in the Family APGAR questionnaire. Community assistance (received or provided) assessed the community support. Cognitive performance was determined using the Mini-Mental State Examination (MMSE), verbal fluency (animals per minute) and backward digital span. Blood samples were obtained to determine BDNF levels. Results: Multivariate analysis showed that functional family support, but not structural, was associated with higher MMSE, verbal fluency and digit span scores, even controlling for potential cofounders (p < 0.001). Providing support to the community, rather than receiving support from others, was associated with better cognitive performance (p < 0.001). BDNF concentration was not associated with community support, family function, or cognitive performance. Conclusion: These findings suggest that emotional components of functional family and community support (e.g., loving and empathic relationship) may be more significant to cognitive health than size and frequency of social interactions.
Collapse
Affiliation(s)
- Juliana Nery Souza-Talarico
- College of Nursing, The University of Iowa, Iowa City, IA, United States.,School of Nursing, University of Sao Paulo, São Paulo, Brazil
| | - Elke Bromberg
- Department of Morphophysiological Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Science and Technology for Translational Medicine (INCT-TM)/Brazilian National Research Council (CNPq), Ribeirão Preto, Brazil
| | | | - Betania Souza Freitas
- Department of Morphophysiological Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Yeda Aparecida Oliveira Duarte
- School of Nursing, University of Sao Paulo, São Paulo, Brazil.,Faculty of Public Health, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Effects of two different early socialization models on social behavior and physiology of suckling piglets. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Fischer S, Balshine S, Hadolt MC, Schaedelin FC. Siblings matter: Family heterogeneity improves associative learning later in life. Ethology 2021. [DOI: 10.1111/eth.13196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Stefan Fischer
- Department of Interdisciplinary Life Sciences Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Vienna Austria
- Department of Behavioural and Cognitive Biology University of Vienna Vienna Austria
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour McMaster University Hamilton ON Canada
| | - Michaela C. Hadolt
- Department of Interdisciplinary Life Sciences Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Vienna Austria
| | - Franziska C. Schaedelin
- Department of Interdisciplinary Life Sciences Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Vienna Austria
| |
Collapse
|
25
|
Affiliation(s)
- Barbara Taborsky
- Behavioural Ecology Division Institute of Ecology and Evolution University of Bern Bern Switzerland
| |
Collapse
|
26
|
Lynch KS. The neuroethology of avian brood parasitism. J Exp Biol 2021; 224:272057. [PMID: 34486660 DOI: 10.1242/jeb.222307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Obligate brood-parasitic birds never build nests, incubate eggs or supply nestlings with food or protection. Instead, they leave their eggs in nests of other species and rely on host parents to raise their offspring, which allows the parasite to continue reproducing throughout the breeding season. Although this may be a clever fitness strategy, it is loaded with a set of dynamic challenges for brood parasites, including recognizing individuals from their own species while growing up constantly surrounded by unrelated individuals, remembering the location of potential host nests for successful reproduction and learning the song of their species while spending time being entirely surrounded by another species during a critical developmental period, a predicament that has been likened to being 'raised by wolves'. Here, I will describe what we currently know about the neurobiology associated with the challenges of being a brood parasite and what is known about the proximate mechanisms of brood parasite evolution. The neuroethology of five behaviors (mostly social) in brood parasites is discussed, including: (1) parental care (or the lack thereof), (2) species recognition, (3) song learning, (4) spatial memory and (5) pair-bonding and mate choice. This Review highlights how studies of brood parasites can lend a unique perspective to enduring neuroethological questions and describes the ways in which studying brood-parasitic species enhances our understanding of ecologically relevant behaviors.
Collapse
Affiliation(s)
- Kathleen S Lynch
- Hofstra University, Department of Biology, Hempstead, NY 11549, USA
| |
Collapse
|
27
|
Xu L, Zhu L, Zhu L, Chen D, Cai K, Liu Z, Chen A. Moderate Exercise Combined with Enriched Environment Enhances Learning and Memory through BDNF/TrkB Signaling Pathway in Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168283. [PMID: 34444034 PMCID: PMC8392212 DOI: 10.3390/ijerph18168283] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/19/2023]
Abstract
This study aimed to investigate the effects and potential mechanisms of exercise combined with an enriched environment on learning and memory in rats. Forty healthy male Wistar rats (7 weeks old) were randomly assigned into 4 groups (N = 10 in each group): control (C) group, treadmill exercise (TE) group, enriched environment (EE) group and the TE + EE group. The Morris water maze (MWM) test was used to evaluate the learning and memory ability in all rats after eight weeks of exposure in the different conditions. Moreover, we employed enzyme-linked immunosorbent assay (ELISA) to determine the expression of brain-derived neurotrophic factor (BDNF) and receptor tyrosine kinase B (TrkB) in the rats. The data showed that the escape latency and the number of platform crossings were significantly better in the TE + EE group compared to the TE, EE or C groups (p < 0.05). In addition, there was upregulation of BDNF and TrkB in rats in the TE + EE group compared to those in the TE, EE or C groups (p < 0.05). Taken together, the data robustly demonstrate that the combination of TE + EE enhances learning and memory ability and upregulates the expression of both BDNF and TrkB in rats. Thus, the BDNF/TrkB signaling pathway might be modulating the effect of exercise and enriched environment in improving learning and memory ability in rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aiguo Chen
- Correspondence: ; Tel.: +86-139-5272-5968
| |
Collapse
|
28
|
Demers-Mathieu V, Hines DJ, Hines RM, Lavangnananda S, Fels S, Medo E. Influence of Previous COVID-19 and Mastitis Infections on the Secretion of Brain-Derived Neurotrophic Factor and Nerve Growth Factor in Human Milk. Int J Mol Sci 2021; 22:3846. [PMID: 33917718 PMCID: PMC8068104 DOI: 10.3390/ijms22083846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) play a critical role in neurodevelopment, where breast milk is a significant dietary source. The impact of previous COVID-19 infection and mastitis on the concentration of BDNF and NGF in human milk was investigated. METHODS Concentrations of BDNF and NGF were measured via ELISA in human milk samples collected from 12 mothers with a confirmed COVID-19 PCR, 13 mothers with viral symptoms suggestive of COVID-19, and 22 unexposed mothers (pre-pandemic Ctl-2018). These neurotrophins were also determined in 12 mothers with previous mastitis and 18 mothers without mastitis. RESULTS The NGF concentration in human milk was lower in the COVID-19 PCR and viral symptoms groups than in the unexposed group, but BDNF did not differ significantly. Within the COVID-19 group, BDNF was higher in mothers who reported headaches or loss of smell/taste when compared with mothers without the respective symptom. BDNF was lower in mothers with mastitis than in mothers without mastitis. CONCLUSIONS Previous COVID-19 and mastitis infections changed differently the secretion of NGF and BDNF in human milk. Whether the changes in NGF and BDNF levels in milk from mothers with infection influence their infant's development remains to be investigated.
Collapse
Affiliation(s)
- Veronique Demers-Mathieu
- Department of Neonatal Immunology and Microbiology, Medolac Laboratories A Public Benefit Corporation, Boulder City, NV 89005, USA; (S.L.); (S.F.); (E.M.)
| | - Dustin J. Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (D.J.H.); (R.M.H.)
| | - Rochelle M. Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (D.J.H.); (R.M.H.)
| | - Sirima Lavangnananda
- Department of Neonatal Immunology and Microbiology, Medolac Laboratories A Public Benefit Corporation, Boulder City, NV 89005, USA; (S.L.); (S.F.); (E.M.)
| | - Shawn Fels
- Department of Neonatal Immunology and Microbiology, Medolac Laboratories A Public Benefit Corporation, Boulder City, NV 89005, USA; (S.L.); (S.F.); (E.M.)
| | - Elena Medo
- Department of Neonatal Immunology and Microbiology, Medolac Laboratories A Public Benefit Corporation, Boulder City, NV 89005, USA; (S.L.); (S.F.); (E.M.)
| |
Collapse
|
29
|
Babicola L, Ventura R, D'Addario SL, Ielpo D, Andolina D, Di Segni M. Long term effects of early life stress on HPA circuit in rodent models. Mol Cell Endocrinol 2021; 521:111125. [PMID: 33333214 DOI: 10.1016/j.mce.2020.111125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023]
Abstract
Adaptation to environmental challenges represents a critical process for survival, requiring the complex integration of information derived from both external cues and internal signals regarding current conditions and previous experiences. The Hypothalamic-pituitary-adrenal axis plays a central role in this process inducing the activation of a neuroendocrine signaling cascade that affects the delicate balance of activity and cross-talk between areas that are involved in sensorial, emotional, and cognitive processing such as the hippocampus, amygdala, Prefrontal Cortex, Ventral Tegmental Area, and dorsal raphe. Early life stress, especially early critical experiences with caregivers, influences the functional and structural organization of these areas, affects these processes in a long-lasting manner and may result in long-term maladaptive and psychopathological outcomes, depending on the complex interaction between genetic and environmental factors. This review summarizes the results of studies that have modeled this early postnatal stress in rodents during the first 2 postnatal weeks, focusing on the long-term effects on molecular and structural alteration in brain areas involved in Hypothalamic-pituitary-adrenal axis function. Moreover, a brief investigation of epigenetic mechanisms and specific genetic targets mediating the long-term effects of these early environmental manipulations and at the basis of differential neurobiological and behavioral effects during adulthood is provided.
Collapse
Affiliation(s)
- Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
30
|
Schnell AK, Clayton NS. Cephalopods: Ambassadors for rethinking cognition. Biochem Biophys Res Commun 2021; 564:27-36. [PMID: 33390247 DOI: 10.1016/j.bbrc.2020.12.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 11/28/2022]
Abstract
Traditional approaches in comparative cognition have a long history of focusing on a narrow range of vertebrate species. However, in recent years the range of model species has expanded. Despite this development, invertebrate taxa are still largely neglected in comparative cognition, which limits our ability to locate the origins of cognitive traits. The time has come to rethink cognition and develop a more comprehensive understanding of cognitive evolution by expanding comparative analyses to include a diverse range of invertebrate taxa. In this review, we contend that cephalopods are suitable ambassadors for rethinking cognition. Cephalopods have large complex brains, exhibit sophisticated behavioral traits, and increasing evidence suggests that they possess complex cognitive abilities once thought to be unique to large-brained vertebrates. Comparing cephalopods with vertebrates, whose cognition has evolved independently, provides prominent opportunities to circumvent current limitations in comparative cognition that have arisen from traditional vertebrate comparisons. Increased efforts in investigating the cognitive abilities of cephalopods have also led to important welfare-related improvements. These large-brained molluscs are paving the way for a more inclusive approach to investigating cognitive evolution that we hope will extend to other invertebrate taxa.
Collapse
|
31
|
Guan J, Ding Y, Rong Y, Geng Y, Lai L, Qi D, Tang Y, Yang L, Li J, Zhou T, Wu E, Wu R. Early Life Stress Increases Brain Glutamate and Induces Neurobehavioral Manifestations in Rats. ACS Chem Neurosci 2020; 11:4169-4178. [PMID: 33179901 DOI: 10.1021/acschemneuro.0c00454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Early life stress (ELS) is associated with an increased risk of developing depression and anxiety disorders. Disturbances of the neurobiological glutamatergic system are implicated in depression; however, the long-term effects of ELS on glutamate (Glu) metabolites remain unclear. Our study used 7T proton magnetic resonance spectroscopy (7T 1H MRS) to detect metabolic Glu in a rat model to investigate maternal deprivation (MD)-induced ELS. MD was established in Sprague-Dawley rats by periodic separation from mothers and peers. Changes in the hippocampal volume and Glu metabolism were detected by 7T 1H MRS after testing for depression-like behavior via open field, sucrose preference, and Morris water maze tests. Adult MD offspring exhibited depression-like behavior. Compared to the control, the MD group exhibited reduced ratio of central activity time to total time and decreased sucrose consumption (p < 0.05). MD rats spent less time in the fourth quadrant, where the platform was originally placed, in the Morris water maze test. According to 7T 1H MRS, hippocampus of MD rats had elevated Glu and glutamate + glutamine (Glu+Gln) levels compared with the control group hippocampi, but Gln, γ-aminobutyric acid (GABA), and glutamate + glutamine (Glu+Gln) in the prefrontal cortex of MD rats showed a downward trend. Depression-like behavior and cognition deficits related to ELS may induce region-specific changes in Glu metabolism in the prefrontal cortex and hippocampus. The novel, noninvasive 7T 1H MRS-identified associations between Glu levels and ELS may guide future clinical studies.
Collapse
Affiliation(s)
- Jitian Guan
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76502, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas 76502, United States
| | - Yan Ding
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Yunjie Rong
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yiqun Geng
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76502, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas 76502, United States
- Laboratory of Molecular Pathology, Shantou University Medical College, Shantou 515031, China
| | - Lingfeng Lai
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76502, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas 76502, United States
| | - Yanyan Tang
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Lin Yang
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Juntao Li
- Department of Breast Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Teng Zhou
- Department of Computer Science, Shantou University, Shantou 515041, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76502, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas 76502, United States
- Department of Surgery, Texas A & M University Health Science Center College of Medicine, Temple 76508, Texas United States
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A & M University Health Science Center, College Station, Texas 77843, United States
- LIVESTRONG Cancer Institutes, Dell Medical School, the University of Texas at Austin, Austin, Texas 78712, United States
| | - Renhua Wu
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
32
|
Weller JE, Turner SP, Futro A, Donbavand J, Brims M, Arnott G. The influence of early life socialisation on cognition in the domestic pig (Sus scrofa domestica). Sci Rep 2020; 10:19077. [PMID: 33154415 PMCID: PMC7644636 DOI: 10.1038/s41598-020-76110-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
Previously, the benefits of early-life socialisation on later-life social development have been reported in pigs. Here we investigated the effect of pre-weaning socialisation on the later-life cognitive ability of pigs using a range of techniques. Pre-weaning, 101 piglets had access to a neighbouring pen from ~ 15 days of age and interacted with non-littermates (socialised). An additional 89 piglets remained isolated within their home pen (controls). After weaning, 100 individuals were selected for a range of cognitive tests including a food reward T-maze test, reversal learning T-maze test, a social preference T-maze test, and a puzzle box test. Performance during the food reward test was not influenced by treatment. Treatment effected improvement over the course of the reversal learning test, with controls showing a significant decrease in trial duration after the first two trials. During the social preference test, socialised pigs spent significantly more time in the presence of larger stimulus pigs than controls and were quicker to leave the middle of the maze, suggesting improved social skills. Neither sex nor treatment was observed to influence pig's ability to solve the puzzle box. Thus, overall, evidence from the social preference test suggests an effect of pre-weaning socialisation on aspects of social cognitive development.
Collapse
Affiliation(s)
- Jennifer E Weller
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, UK.
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.
| | - Simon P Turner
- Animal Behaviour & Welfare, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Agnieszka Futro
- Animal Behaviour & Welfare, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Jo Donbavand
- Animal Behaviour & Welfare, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Mark Brims
- Animal Behaviour & Welfare, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Gareth Arnott
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, UK
| |
Collapse
|
33
|
Cordier JM, Aguggia JP, Danelon V, Mir FR, Rivarola MA, Mascó D. Postweaning Enriched Environment Enhances Cognitive Function and Brain-Derived Neurotrophic Factor Signaling in the Hippocampus in Maternally Separated Rats. Neuroscience 2020; 453:138-147. [PMID: 33039520 DOI: 10.1016/j.neuroscience.2020.09.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Adverse environments during early life may lead to different neurophysiological and behavioral consequences, including depression and learning and memory deficits that persist into adulthood. Previously, we demonstrated that exposure to an enriched environment during adolescence mitigates the cognitive impairment observed after maternal separation in a task-specific manner. However, underlying neural mechanisms are still not fully understood. The current study examines the effects of neonatal maternal separation (MS) and postweaning environmental enrichment (EE) on spatial learning and memory performance in a short version of the Barnes Maze, active and passive behaviors in the forced swim test, and on TrkB/BDNF receptor expression in the hippocampus. Our results revealed that MS impaired acquisition learning and that enriched rats performed better than non-enriched rats in acquisition trials, regardless of early conditions. During the probe, enriched-housed rats demonstrated better performance than those reared in standard conditions. No significant differences between groups were found in the forced swim test. Both MS and EE increase full-length TrkB expression, and the combination of MS and EE treatment caused the highest levels of this protein expression. Similarly, truncated TrkB expression was higher in the MS/EE group. Animal facility rearing (AFR) non-enriched groups present the lowest activation of phosphorylated Erk, a canonical downstream kinase of TrkB signaling. Taken together, our results demonstrate the importance of enriched environment as an intervention to ameliorate the effects of maternal separation on spatial learning and memory. TrkB/BDNF signaling could mediate neuroplastic changes related to learning and memory during exposure to enriched environment.
Collapse
Affiliation(s)
- Javier Maximiliano Cordier
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Córdoba -Córdoba, Argentina
| | - Julieta Paola Aguggia
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Córdoba, Enrique Barros esq. Enfermera Gordillo. Ciudad Universitaria, CP: 5016, Córdoba, Argentina
| | - Víctor Danelon
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, CP: 5016, Córdoba, Argentina
| | - Franco Rafael Mir
- Cátedra de Fisiología Animal, Departamento de Ciencias Exactas Físicas y Naturales, Universidad Nacional de La Rioja, Av. Luis M. de la Fuente S/N, Ciudad Universitaria de la Ciencia y de la Técnica, F5300 La Rioja, Argentina; Cátedra de Fisiología Animal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299 X5000JJC- Córdoba, Argentina
| | - María Angélica Rivarola
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Córdoba, Enrique Barros esq. Enfermera Gordillo. Ciudad Universitaria, CP: 5016, Córdoba, Argentina; Cátedra de Fisiología Animal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299 X5000JJC- Córdoba, Argentina.
| | - Daniel Mascó
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, CP: 5016, Córdoba, Argentina
| |
Collapse
|
34
|
van der Veen R, Bonapersona V, Joëls M. The relevance of a rodent cohort in the Consortium on Individual Development. Dev Cogn Neurosci 2020; 45:100846. [PMID: 32957026 PMCID: PMC7509002 DOI: 10.1016/j.dcn.2020.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/29/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022] Open
Abstract
One of the features of the Consortium on Individual Development is the existence of a rodent cohort, in parallel with the human cohorts. Here we give an overview of the current status. We first elaborate on the choice of rat and mouse models mimicking early life adverse or beneficial conditions during development. We performed a systematic literature search on early life adversity and adult social behavior to address the status quo. Next, we describe the behavioral tasks we used and designed to examine behavioral control and social competence in rodents. The results so far indicate that manipulation of the environment in the first postnatal week only subtly affects social behavior. Stronger effects were seen in the model that targeted early adolescence; once adult, these rats are characterized by increased attention, a higher degree of impulsiveness and reduced social interest in peers. Many experiments in our rodent models with tightly controlled conditions were inspired by findings in human cohorts, and now allow in-depth mechanistic investigations. Vice versa, some of the findings in rodents are currently followed up by dedicated investigations in the human cohorts. This exemplifies the added value of animal investigations in a consortium encompassing primarily human developmental cohorts.
Collapse
Affiliation(s)
- Rixt van der Veen
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Faculty of Social and Behavioral Sciences, Leiden University, Leiden, the Netherlands.
| | - Valeria Bonapersona
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marian Joëls
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
35
|
Garrido A, Cruces J, Ceprián N, Hernández-Sánchez C, De Pablo F, De la Fuente M. Social Environment Ameliorates Behavioral and Immune Impairments in Tyrosine Hydroxylase Haploinsufficient Female Mice. J Neuroimmune Pharmacol 2020; 16:548-566. [PMID: 32772235 DOI: 10.1007/s11481-020-09947-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/20/2020] [Indexed: 11/27/2022]
Abstract
The social environment can influence the functional capacity of nervous and immune systems, and consequently the state of health, especially in aged individuals. Adult female tyrosine hydroxylase haploinsufficient (TH-HZ) mice exhibit behavioral impairments, premature immunosenescence and oxidative- inflammatory stress. All these deteriorations are associated with a lower lifespan than wild type (WT) counterparts. The aim was to analyze whether the cohabitation with WT animals could revert or at least ameliorate the deterioration in the nervous and immune systems that female TH-HZ mice show at adult age. Female TH-HZ and WT mice at age of 3-4 weeks were divided into following groups: control TH-HZ (5 TH-HZ mice in the cage; TH-HZ100%), control WT (5 WT mice in the cage; WT100%), TH-HZ > 50% and WT < 50% (5 TH-HZ with 2 WT mice in each cage) as well as TH-HZ < 50% and WT > 50% (2 TH-HZ and 5 WT mice in each cage). At the age of 37-38 weeks, all mice were submitted to a battery of behavioral tests, evaluating sensorimotor abilities, exploratory capacities and anxiety-like behaviors. Subsequently, peritoneal leukocytes were extracted and several immune functions as well as oxidative and inflammatory stress parameters were analyzed. The results showed that the TH-HZ < 50% group had improved behavioral responses, especially anxiety-like behaviors, and the immunosenescence and oxidative stress of their peritoneal leukocytes were ameliorated. However, WT mice that cohabited with TH-HZ mice presented higher anxiety-like behaviors and deterioration in immune functions and in their inflammatory stress parameters. Thus, this social environment is capable of ameliorating the impairments associated with a haploinsufficiency of the th gene. Graphical Abstract.
Collapse
Affiliation(s)
- A Garrido
- Department of Genetics, Physiology and Microbiology (Physiology Unit), School of Biology, Complutense University of Madrid, José Antonio Nováis 12, 28040, Madrid, Spain.,Institute of Investigation of Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - J Cruces
- Department of Genetics, Physiology and Microbiology (Physiology Unit), School of Biology, Complutense University of Madrid, José Antonio Nováis 12, 28040, Madrid, Spain.,Institute of Investigation of Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - N Ceprián
- Department of Genetics, Physiology and Microbiology (Physiology Unit), School of Biology, Complutense University of Madrid, José Antonio Nováis 12, 28040, Madrid, Spain.,Institute of Investigation of Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - C Hernández-Sánchez
- 3D Lab (Development, Differentiation and Degeneration), Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - F De Pablo
- 3D Lab (Development, Differentiation and Degeneration), Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Physiology Unit), School of Biology, Complutense University of Madrid, José Antonio Nováis 12, 28040, Madrid, Spain. .,Institute of Investigation of Hospital 12 de Octubre (i+12), 28041, Madrid, Spain.
| |
Collapse
|
36
|
Pereira PDC, Henrique EP, Porfírio DM, Crispim CCDS, Campos MTB, de Oliveira RM, Silva IMS, Guerreiro LCF, da Silva TWP, da Silva ADJF, Rosa JBDS, de Azevedo DLF, Lima CGC, Castro de Abreu C, Filho CS, Diniz DLWP, Magalhães NGDM, Guerreiro-Diniz C, Diniz CWP, Diniz DG. Environmental Enrichment Improved Learning and Memory, Increased Telencephalic Cell Proliferation, and Induced Differential Gene Expression in Colossoma macropomum. Front Pharmacol 2020; 11:840. [PMID: 32595498 PMCID: PMC7303308 DOI: 10.3389/fphar.2020.00840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/21/2020] [Indexed: 01/06/2023] Open
Abstract
Fish use spatial cognition based on allocentric cues to navigate, but little is known about how environmental enrichment (EE) affects learning and memory in correlation with hematological changes or gene expression in the fish brain. Here we investigated these questions in Colossoma macropomum (Teleostei). Fish were housed for 192 days in either EE or in an impoverished environment (IE) aquarium. EE contained toys, natural plants, and a 12-h/day water stream for voluntary exercise, whereas IE had no toys, plants, or water stream. A third plus maze aquarium was used for spatial and object recognition tests. Compared with IE, the EE fish showed greater learning rates, body length, and body weight. After behavioral tests, whole brain tissue was taken, stored in RNA-later, and then homogenized for DNA sequencing after conversion of isolated RNA. To compare read mapping and gene expression profiles across libraries for neurotranscriptome differential expression, we mapped back RNA-seq reads to the C. macropomum de novo assembled transcriptome. The results showed significant differential behavior, cell counts and gene expression in EE and IE individuals. As compared with IE, we found a greater number of cells in the telencephalon of individuals maintained in EE but no significant difference in the tectum opticum, suggesting differential plasticity in these areas. A total of 107,669 transcripts were found that ultimately yielded 64 differentially expressed transcripts between IE and EE brains. Another group of adult fish growing in aquaculture conditions were either subjected to exercise using running water flow or maintained sedentary. Flow cytometry analysis of peripheral blood showed a significantly higher density of lymphocytes, and platelets but no significant differences in erythrocytes and granulocytes. Thus, under the influence of contrasting environments, our findings showed differential changes at the behavioral, cellular, and molecular levels. We propose that the differential expression of selected transcripts, number of telencephalic cell counts, learning and memory performance, and selective hematological cell changes may be part of Teleostei adaptive physiological responses triggered by EE visuospatial and somatomotor stimulation. Our findings suggest abundant differential gene expression changes depending on environment and provide a basis for exploring gene regulation mechanisms under EE in C. macropomum.
Collapse
Affiliation(s)
- Patrick Douglas Corrêa Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Ediely Pereira Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Danillo Monteiro Porfírio
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | | | - Maitê Thaís Barros Campos
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Renata Melo de Oliveira
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Isabella Mesquita Sfair Silva
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Luma Cristina Ferreira Guerreiro
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Tiago Werley Pires da Silva
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | | | - João Batista da Silva Rosa
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | | | - Cecília Gabriella Coutinho Lima
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Cintya Castro de Abreu
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Carlos Santos Filho
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | | | - Nara Gyzely de Morais Magalhães
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Cristovam Guerreiro-Diniz
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| |
Collapse
|
37
|
Knop J, van IJzendoorn MH, Bakermans-Kranenburg MJ, Joëls M, van der Veen R. Maternal care of heterozygous dopamine receptor D4 knockout mice: Differential susceptibility to early-life rearing conditions. GENES BRAIN AND BEHAVIOR 2020; 19:e12655. [PMID: 32306548 PMCID: PMC7540036 DOI: 10.1111/gbb.12655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 12/27/2022]
Abstract
The differential susceptibility hypothesis proposes that individuals who are more susceptible to the negative effects of adverse rearing conditions may also benefit more from enriched environments. Evidence derived from human experiments suggests the lower efficacy dopamine receptor D4 (DRD4) 7‐repeat as a main factor in exhibiting these for better and for worse characteristics. However, human studies lack the genetic and environmental control offered by animal experiments, complicating assessment of causal relations. To study differential susceptibility in an animal model, we exposed Drd4+/− mice and control litter mates to a limited nesting/bedding (LN), standard nesting (SN) or communal nesting (CN) rearing environment from postnatal day (P) 2‐14. Puberty onset was examined from P24 to P36 and adult females were assessed on maternal care towards their own offspring. In both males and females, LN reared mice showed a delay in puberty onset that was partly mediated by a reduction in body weight at weaning, irrespective of Drd4 genotype. During adulthood, LN reared females exhibited characteristics of poor maternal care, whereas dams reared in CN environments showed lower rates of unpredictability towards their own offspring. Differential susceptibility was observed only for licking/grooming levels of female offspring towards their litter; LN reared Drd4+/− mice exhibited the lowest and CN reared Drd4+/− mice the highest levels of licking/grooming. These results indicate that both genetic and early‐environmental factors play an important role in shaping maternal care of the offspring for better and for worse.
Collapse
Affiliation(s)
- Jelle Knop
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Faculty of Social and Behavioural Sciences, Leiden University, Leiden, The Netherlands
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands.,Primary Care Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rixt van der Veen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Faculty of Social and Behavioural Sciences, Leiden University, Leiden, The Netherlands
| |
Collapse
|
38
|
Rosso P, Iannitelli A, Pacitti F, Quartini A, Fico E, Fiore M, Greco A, Ralli M, Tirassa P. Vagus nerve stimulation and Neurotrophins: a biological psychiatric perspective. Neurosci Biobehav Rev 2020; 113:338-353. [PMID: 32278791 DOI: 10.1016/j.neubiorev.2020.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Since 2004, vagus nerve stimulation (VNS) has been used in treatment-resistant or treatment-intolerant depressive episodes. Today, VNS is suggested as possible therapy for a larger spectrum of psychiatric disorders, including schizophrenia, obsessive compulsive disorders, and panic disorders. Despite a large body of literature supports the application of VNS in patients' treatment, the exact mechanism of action of VNS remains not fully understood. In the present study, the major knowledges on the brain areas and neuronal pathways regulating neuroimmune and autonomic response subserving VNS effects are reviewed. Furthermore, the involvement of the neurotrophins (NTs) Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF) in vagus nerve (VN) physiology and stimulation is revised. The data on brain NGF/BDNF synthesis and in turn on the activity-dependent plasticity, connectivity rearrangement and neurogenesis, are presented and discussed as potential biomarkers for optimizing stimulatory parameters for VNS. A vagus nerve-neurotrophin interaction model in the brain is finally proposed as a working hypothesis for future studies addressed to understand pathophysiology of psychiatric disturbance.
Collapse
Affiliation(s)
- Pamela Rosso
- National Research Council (CNR), Institute of Biochemistry & Cell Biology (IBBC), Rome, Italy
| | - Angela Iannitelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Pacitti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy; Psychiatry Unit San Salvatore Hospital, L'Aquila, Italy
| | - Adele Quartini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elena Fico
- National Research Council (CNR), Institute of Biochemistry & Cell Biology (IBBC), Rome, Italy
| | - Marco Fiore
- National Research Council (CNR), Institute of Biochemistry & Cell Biology (IBBC), Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Paola Tirassa
- National Research Council (CNR), Institute of Biochemistry & Cell Biology (IBBC), Rome, Italy.
| |
Collapse
|
39
|
Sara S, Mohammad K, Nader S, Maryam I, Marzieh S, Elham J, Neda S. Using the NGF/IL-6 ratio as a reliable criterion to show the beneficial effects of progesterone after experimental diffuse brain injury. Heliyon 2020; 6:e03844. [PMID: 32373743 PMCID: PMC7191606 DOI: 10.1016/j.heliyon.2020.e03844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/08/2019] [Accepted: 04/21/2020] [Indexed: 01/19/2023] Open
Abstract
Acute progesterone injection has been shown to reduce brain edema following traumatic brain injury (TBI) due to its neuroprotective effect. We investigated the effects of sustained release of progesterone through implantation of subcutaneous capsules on rat's brain edema and alteration of cerebrospinal fluid (CSF), and serum ratio of NGF/IL-6 after TBI. This experiment was performed on ovariectomized (OVX) rats and the brain injury was induced by Marmarou's method. A high and a low dose of progesterone (HP and LP) was injected intraperitoneally two h after the brain injury. In addition, in the capsule progesterone-treated group (CP), the intervention was implemented 6 h after the brain injury. Brain edema, NGF and IL-6 biomarkers in serum and cerebrospinal fluid (CSF) were measured 48 h after the TBI in injection groups and one week after the TBI in the CP group. No significant difference was found in the two groups or in the admonition methods. After TBI, the NGF level increased and IL-6 level decreased by injection of both doses, as well as by taking the capsule. Ratio of NGF/IL-6 in CSF increased significantly by all forms of progesterone administration. The increase in the level of NGF and IL-6 after TBI was higher in CSF than in serum. These results indicated that effects of progesterone in capsule form were better than the injection form. Progesterone probably works by increasing NGF and reducing IL-6. Future studies should investigate the ratio of these biomarkers as a variable to determine the neuroprotective effects of another drug.
Collapse
Affiliation(s)
- Shirazpour Sara
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Khaksari Mohammad
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahrokhi Nader
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Iranpour Maryam
- Pathology and Stem Cell Research Center, Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahryari Marzieh
- Department of Physiology, Neuroscience Research Center, Medical Faculty, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jafari Elham
- Pathology and Stem Cell Research Center, Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran
| | - Salmani Neda
- Department of Psychology, Genetic Institute, Islamic Azad University of Zarand, Keman, Iran
| |
Collapse
|
40
|
Lynch KS, Louder MIM, Friesen CN, Fischer EK, Xiang A, Steele A, Shalov J. Examining the disconnect between prolactin and parental care in avian brood parasites. GENES BRAIN AND BEHAVIOR 2020; 19:e12653. [PMID: 32198809 DOI: 10.1111/gbb.12653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/20/2020] [Accepted: 03/17/2020] [Indexed: 01/16/2023]
Abstract
Prolactin is often referred to as the "parental hormone" but there are examples in which prolactin and parental behavior are disconnected. One intriguing example is in avian obligate brood parasites; species exhibiting high circulating prolactin but no parental care. To understand this disconnect, we examined transcriptional and behavioral responses to prolactin in brown-headed (Molothrus ater) and bronzed (M aeneus) brood parasitic cowbirds. We first examine prolactin-dependent regulation of transcriptome wide gene expression in the preoptic area (POA), a brain region associated with parental care across vertebrates. We next examined prolactin-dependent abundance of seven parental care-related candidate genes in hypothalamic regions that are prolactin-responsive in other avian species. We found no evidence of prolactin sensitivity in cowbirds in either case. To understand this prolactin insensitivity, we compared prolactin receptor transcript abundance between parasitic and nonparasitic species and between prolactin treated and untreated cowbirds. We observed significantly lower prolactin receptor transcript abundance in brown-headed but not bronzed cowbird POA compared with a nonparasite and no prolactin-dependent changes in either parasitic species. Finally, estrogen-primed female brown-headed cowbirds with or without prolactin treatment exhibited significantly greater avoidance of nestling begging stimuli compared with untreated birds. Taken together, our results suggest that modified prolactin receptor distributions in the POA and surrounding hypothalamic regions disconnect prolactin from parental care in brood parasitic cowbirds.
Collapse
Affiliation(s)
- Kathleen S Lynch
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Matthew I M Louder
- Department of Biology, East Carolina University, Greenville, North Carolina, USA.,International Research Center for Neurointelligence, University of Tokyo, Tokyo, Japan.,Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana, Illinois, USA
| | - Caitlin N Friesen
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Eva K Fischer
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana, Illinois, USA
| | - Angell Xiang
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Angela Steele
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Julia Shalov
- Department of Biology, Hofstra University, Hempstead, New York, USA
| |
Collapse
|
41
|
Reyes-Contreras M, Glauser G, Rennison DJ, Taborsky B. Early-life manipulation of cortisol and its receptor alters stress axis programming and social competence. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180119. [PMID: 30966879 DOI: 10.1098/rstb.2018.0119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In many vertebrate species, early social experience generates long-term effects on later life social behaviour. These effects are accompanied by persistent modifications in the expression of genes implicated in the stress axis. It is unknown, however, whether stress axis programming can affect the development of social competence, and if so, by which mechanism(s). Here, we used pharmacological manipulations to persistently reprogramme the hypothalamic-pituitary-interrenal axis of juvenile cooperatively breeding cichlids, Neolamprologus pulcher. During the first two months of life, juveniles were repeatedly treated with cortisol, mifepristone or control treatments. Three months after the last manipulation, we tested for treatment effects on (i) social competence, (ii) the expression of genes coding for corticotropin-releasing factor ( crf), glucocorticoid receptor ( gr1) and mineralocorticoid receptor ( mr) in the telencephalon and hypothalamus and (iii) cortisol levels. Social competence in a social challenge was reduced in cortisol-treated juveniles, which is in accordance with previous work applying early-life manipulations using different social experiences. During early life, both cortisol and mifepristone treatments induced a persistent downregulation of crf and upregulation of mr in the telencephalon. We suggest that these persistent changes in stress gene expression may represent an effective physiological mechanism for coping with stress. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.
Collapse
Affiliation(s)
- Maria Reyes-Contreras
- 1 Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern , Wohlenstrasse 50A, 3032 Hinterkappelen , Switzerland
| | - Gaétan Glauser
- 2 Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchâtel , Avenue de Bellevaux 51, 2009 Neuchâtel , Switzerland
| | - Diana J Rennison
- 3 Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern , Baltzerstrasse 6, 3012 Bern , Switzerland
| | - Barbara Taborsky
- 1 Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern , Wohlenstrasse 50A, 3032 Hinterkappelen , Switzerland
| |
Collapse
|
42
|
Fu Y, Depue RA. A novel neurobehavioral framework of the effects of positive early postnatal experience on incentive and consummatory reward sensitivity. Neurosci Biobehav Rev 2019; 107:615-640. [DOI: 10.1016/j.neubiorev.2019.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
|
43
|
Pirooznia M, Niranjan T, Chen YC, Tunc I, Goes FS, Avramopoulos D, Potash JB, Huganir RL, Zandi PP, Wang T. Affected Sib-Pair Analyses Identify Signaling Networks Associated With Social Behavioral Deficits in Autism. Front Genet 2019; 10:1186. [PMID: 31827489 PMCID: PMC6892440 DOI: 10.3389/fgene.2019.01186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/25/2019] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorders (ASDs) are characterized by deficits in three core behavioral domains: reciprocal social interactions, communication, and restricted interests and/or repetitive behaviors. Several hundreds of risk genes for autism have been identified, however, it remains a challenge to associate these genes with specific core behavioral deficits. In multiplex autism families, affected sibs often show significant differences in severity of individual core phenotypes. We hypothesize that a higher mutation burden contributes to a larger difference in the severity of specific core phenotypes between affected sibs. We tested this hypothesis on social behavioral deficits in autism. We sequenced synaptome genes (n = 1,886) in affected male sib-pairs (n = 274) in families from the Autism Genetics Research Exchange (AGRE) and identified rare (MAF ≤ 1%) and predicted functional variants. We selected affected sib-pairs with a large (≥10; n = 92 pairs) or a small (≤4; n = 108 pairs) difference in total cumulative Autism Diagnostic Interview-Revised (ADI-R) social scores (SOCT_CS). We compared burdens of unshared variants present only in sibs with severe social deficits and found a higher burden in SOCT_CS≥10 compared to SOCT_CS ≤ 4 (SOCT_CS≥10: 705.1 ± 16.2; SOCT_CS ≤ 4, 668.3 ± 9.0; p = 0.025). Unshared SOCT_CS≥10 genes only in sibs with severe social deficits are significantly enriched in the SFARI gene set. Network analyses of these genes using InWeb_IM, molecular signatures database (MSigDB), and GeNetMeta identified enrichment for phosphoinositide 3-kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) (Enrichment Score [eScore] p value = 3.36E−07; n = 8 genes) and Nerve growth factor (NGF) (eScore p value = 8.94E−07; n = 9 genes) networks. These studies support a key role for these signaling networks in social behavioral deficits and present a novel approach to associate risk genes and signaling networks with core behavioral domains in autism.
Collapse
Affiliation(s)
- Mehdi Pirooznia
- Bioinformatics and Computational Biology Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD, United States.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tejasvi Niranjan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yun-Ching Chen
- Bioinformatics and Computational Biology Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD, United States
| | - Ilker Tunc
- Bioinformatics and Computational Biology Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD, United States
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dimitrios Avramopoulos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - James B Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Mental Health and Epidemiology, Johns Hopkins University School of Public Health, Baltimore, MD, United States
| | - Tao Wang
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
44
|
Pinho GM, Ortiz-Ross X, Reese AN, Blumstein DT. Correlates of maternal glucocorticoid levels in a socially flexible rodent. Horm Behav 2019; 116:104577. [PMID: 31442430 DOI: 10.1016/j.yhbeh.2019.104577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/27/2022]
Abstract
While it is generally accepted that social isolation has detrimental effects on social species, little is known about the importance of social interactions in less social species-particularly for wild reproductive females. We studied socially-flexible yellow-bellied marmots (Marmota flaviventer) and asked whether features of the social environment are associated with maternal fecal glucocorticoid metabolite (FGM) concentrations. Since changes in maternal baseline glucocorticoids may have positive or negative consequences for offspring fitness, we were also interested in estimating their relationship with measures of reproductive success. We fitted generalized linear mixed effects models to a dataset including maternal FGM measurements, social network metrics, maternal/alloparental care, and pup FGM and survival. Agonistic interactions were positively associated with maternal FGM levels, while mothers that engaged in relatively more affiliative interactions had reduced FGM levels when living in environments with low predator pressure. Pups associated with mothers exhibiting high FGM levels had low annual survival rates, received less maternal/alloparental care and had higher FGM levels. Interestingly, offspring from mothers with high FGM levels were more likely to survive the summer when born in small litters. In sum, social interactions likely influence and are influenced by glucocorticoid levels of facultatively social females. Potential benefits of social bonds may be context-specific, and agonistic interactions may be tightly correlated with fitness. Female marmots exhibiting high FGM levels had overall low reproductive success, which is predicted by the cort-fitness hypothesis. However, under adverse conditions, offspring summer survival can be maximized if pups are born in small litters.
Collapse
Affiliation(s)
- Gabriela M Pinho
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA.
| | | | - Andrew N Reese
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA; Rocky Mountain Biological Laboratory, Box 519, Crested Butte, CO 81224, USA.
| |
Collapse
|
45
|
David I, Canario L, Combes S, Demars J. Intergenerational Transmission of Characters Through Genetics, Epigenetics, Microbiota, and Learning in Livestock. Front Genet 2019; 10:1058. [PMID: 31737041 PMCID: PMC6834772 DOI: 10.3389/fgene.2019.01058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Evolutionary biologists studying wild species have demonstrated that genetic and non-genetic sources of information are inherited across generations and are therefore responsible for phenotypic resemblance between relatives. Although it has been postulated that non-genetic sources of inheritance are important in natural selection, they are not taken into account for livestock selection that is based on genetic inheritance only. According to the natural selection theory, the contribution of non-genetic inheritance may be significant for the transmission of characters. If this theory is confirmed in livestock, not considering non-genetic means of transmission in selection schemes might prevent achieving maximum progress in the livestock populations being selected. The present discussion paper reviews the different mechanisms of genetic and non-genetic inheritance reported in the literature as occurring in livestock species. Non-genetic sources of inheritance comprise information transmitted via physical means, such as epigenetic and microbiota inheritance, and those transmitted via learning mechanisms: behavioral, cultural and ecological inheritance. In the first part of this paper we review the evidence that suggests that both genetic and non-genetic information contribute to inheritance in livestock (i.e. transmitted from one generation to the next and causing phenotypic differences between individuals) and discuss how the environment may influence non-genetic inherited factors. Then, in a second step, we consider methods for favoring the transmission of non-genetic inherited factors by estimating and selecting animals on their extended transmissible value and/or introducing favorable non-genetic factors via the animals’ environment.
Collapse
Affiliation(s)
- Ingrid David
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| | - Laurianne Canario
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| | - Julie Demars
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| |
Collapse
|
46
|
Solomon-Lane TK, Hofmann HA. Early-life social environment alters juvenile behavior and neuroendocrine function in a highly social cichlid fish. Horm Behav 2019; 115:104552. [PMID: 31276665 DOI: 10.1016/j.yhbeh.2019.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/26/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Early-life experiences can shape adult behavior, with consequences for fitness and health, yet fundamental questions remain unanswered about how early-life social experiences are translated into variation in brain and behavior. The African cichlid fish Astatotilapia burtoni, a model system in social neuroscience, is well known for its highly plastic social phenotypes in adulthood. Here, we rear juveniles in either social groups or pairs to investigate the effects of early-life social environments on behavior and neuroendocrine gene expression. We find that both juvenile behavior and neuroendocrine function are sensitive to early-life effects. Behavior robustly co-varies across multiple contexts (open field, social cue investigation, and dominance behavior assays) to form a behavioral syndrome, with pair-reared juveniles towards the end of syndrome that is less active and socially interactive. Pair-reared juveniles also submit more readily as subordinates. In a separate cohort, we measured whole brain expression of stress and sex hormone genes. Expression of glucocorticoid receptor 1a was elevated in group-reared juveniles, supporting a highly-conserved role for the stress axis mediating early-life effects. The effect of rearing environment on androgen receptor α and estrogen receptor α expression was mediated by treatment duration (1 vs. 5 weeks). Finally, expression of corticotropin-releasing factor and glucocorticoid receptor 2 decreased significantly over time. Rearing environment also caused striking differences in gene co-expression, such that expression was tightly integrated in pair-reared juveniles but not group-reared or isolates. Together, this research demonstrates the important developmental origins of behavioral phenotypes and identifies potential behavioral and neuroendocrine mechanisms.
Collapse
Affiliation(s)
- Tessa K Solomon-Lane
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States of America; Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, United States of America.
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States of America; Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, United States of America
| |
Collapse
|
47
|
Olguin SL, Zimmerman A, Zhang H, Allan A, Caldwell KC, Brigman JL. Increased Maternal Care Rescues Altered Reinstatement Responding Following Moderate Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2019; 43:1949-1956. [PMID: 31318985 DOI: 10.1111/acer.14149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/12/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) commonly include deficits in learning, memory, and executive control that can have a severe negative impact on quality of life across the life span. It is still unclear how prenatal alcohol exposure (PAE) affects executive control processes, such as control over reward seeking, that lead to inappropriate behavior later in life. Learning and reinstatement of a previously learned response after extinction is a simple, well-validated measure of both acquisition of a rewarded instrumental response and sensitivity to reward and reward-associated cues. We investigated the effects of PAE on learning, extinction, and reinstatement of a simple instrumental response for food reward. Next, we assessed the effectiveness of an early intervention, communal nest (CN) housing, on increased reinstatement of an extinguished response seen after PAE. METHODS To assess the effects of PAE on control over reward seeking, we tested male and female PAE and saccharine (SAC) controls raised in a standard nest (SN) on the acquisition, extinction, and food reward-induced reinstatement of an instrumental response utilizing a touch screen-based paradigm. Next, in order to examine the effects of an early-life intervention on these behaviors, we tested PAE and SAC mice raised in a CN early-life environment on these behaviors. RESULTS PAE mice readily acquired and extinguished a simple touch response to a white square stimulus. However, PAE mice showed significantly increased and persistent reinstatement compared to controls. Increased maternal care via rearing in CN slowed acquisition and sped extinction learning and rescued the significantly increased reinstatement responding in PAE mice. CONCLUSIONS Together these results demonstrate that even moderate PAE is sufficient to alter control over reward seeking as measured by reinstatement. Importantly, an early-life intervention previously shown to improve cognitive outcomes in PAE mice was sufficient to ameliorate this effect.
Collapse
Affiliation(s)
- Sarah L Olguin
- Department of Neurosciences, (SLO, AZ, AA, KCC, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico.,New Mexico Alcohol Research Center, (SLO, AA, KCC, JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| | - Amber Zimmerman
- Department of Neurosciences, (SLO, AZ, AA, KCC, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Haikun Zhang
- Center for Brain Repair and Recovery, (HZ, JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| | - Andrea Allan
- Department of Neurosciences, (SLO, AZ, AA, KCC, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico.,New Mexico Alcohol Research Center, (SLO, AA, KCC, JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| | - Kevin C Caldwell
- Department of Neurosciences, (SLO, AZ, AA, KCC, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico.,New Mexico Alcohol Research Center, (SLO, AA, KCC, JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| | - Jonathan L Brigman
- Department of Neurosciences, (SLO, AZ, AA, KCC, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico.,New Mexico Alcohol Research Center, (SLO, AA, KCC, JLB), UNM Health Sciences Center, Albuquerque, New Mexico.,Center for Brain Repair and Recovery, (HZ, JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
48
|
Atrooz F, Liu H, Salim S. Stress, psychiatric disorders, molecular targets, and more. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:77-105. [PMID: 31601407 DOI: 10.1016/bs.pmbts.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mental health is central to normal health outcomes. A widely accepted theory is that chronic persistent stress during adulthood as well as during early life triggers onset of neuropsychiatric ailments. However, questions related to how that occurs, and why are some individuals resistant to stress while others are not, remain unanswered. An integrated, multisystemic stress response involving neuroinflammatory, neuroendocrine, epigenetic and metabolic cascades have been suggested to have causative links. Several theories have been proposed over the years to conceptualize this link including the cytokine hypothesis, the endocrine hypothesis, the oxidative stress hypothesis and the oxido-neuroinflammation hypothesis. The data discussed in this review describes potential biochemical basis of the link between stress, and stress-induced neuronal, behavioral and emotional deficits, providing insights into potentially novel drug targets.
Collapse
Affiliation(s)
- Fatin Atrooz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Hesong Liu
- Baylor College of Medicine, Houston, TX, United States
| | - Samina Salim
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States.
| |
Collapse
|
49
|
Biggio F, Mostallino M, Talani G, Locci V, Mostallino R, Calandra G, Sanna E, Biggio G. Social enrichment reverses the isolation-induced deficits of neuronal plasticity in the hippocampus of male rats. Neuropharmacology 2019; 151:45-54. [DOI: 10.1016/j.neuropharm.2019.03.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
|
50
|
Knop J, van IJzendoorn MH, Bakermans-Kranenburg MJ, Joëls M, van der Veen R. The effects of different rearing conditions on sexual maturation and maternal care in heterozygous mineralocorticoid receptor knockout mice. Horm Behav 2019; 112:54-64. [PMID: 30953639 DOI: 10.1016/j.yhbeh.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/14/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
Sexual and social development is affected by a complex interplay between genetic makeup and the early-life rearing environment. While many rodent studies focused primarily on the detrimental effects of early-life stress, human literature suggests that genetic susceptibility may not be restricted to negative environments; it may also enhance the beneficial effects of positive rearing conditions. To examine this interaction in a controlled setting, heterozygous mineralocorticoid receptor knockout (MR+/-) mice and control litter mates were exposed to a limited nesting/bedding (LN, impoverished), standard nesting (SN, control) or communal nesting (CN, enriched) paradigm from postnatal day 2-9 (P2-P9). Offspring was monitored for puberty onset between P24-P36 and, in females, maternal care-giving (i.e. as F1) during adulthood, after which basal corticosterone was measured. Different home-cage environments resulted in profound differences in received maternal care and offspring body weight. In male offspring, LN resulted in delayed puberty onset that was mediated by body weight and unpredictability of maternal care received during early development. In female offspring, rearing condition did not significantly alter sexual maturation and had little effect on their own maternal care-giving behavior. Genotype did affect maternal care: female MR+/- offspring exhibited a less active nursing style and upregulated fragmentation during adulthood, irrespective of early life conditions. Basal corticosterone levels were highest in MR+/- mice with a background of LN. Overall, we found a gene-by-environment interaction with respect to basal corticosterone levels, but not for sexual maturation or maternal behavior.
Collapse
Affiliation(s)
- Jelle Knop
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Faculty of Social and Behavioural Sciences, Leiden University, Leiden, the Netherlands
| | - Marinus H van IJzendoorn
- Dept. of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands; Primary Care Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Marian Joëls
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rixt van der Veen
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Faculty of Social and Behavioural Sciences, Leiden University, Leiden, the Netherlands.
| |
Collapse
|