1
|
Li H, Gao J, Song H, Yang X, Li C, Zhang Y, Wang J, Liu Y, Wang D, Li H. Changes in the medial prefrontal cortex metabolites after 6 months of medication therapy for patients with bipolar disorder: A 1H-MRS study. CNS Neurosci Ther 2024; 30:e70048. [PMID: 39300492 PMCID: PMC11412791 DOI: 10.1111/cns.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
AIMS The study aimed to assess brain metabolite differences in the medial prefrontal cortex (mPFC) between acute and euthymic episodes of bipolar disorder (BD) with both mania and depression over a 6-month medication treatment period. METHODS We utilized 1H-MRS technology to assess the metabolite levels in 53 individuals with BD (32 in depressive phase, 21 in manic phase) and 34 healthy controls (HCs) at baseline. After 6 months of medication treatment, 40 subjects underwent a follow-up scan in euthymic state. Metabolite levels, including N-acetyl aspartate (NAA), glutamate (Glu), and Glutamine (Gln), were measured in the mPFC. RESULTS Patients experiencing depressive and manic episodes exhibited a notable reduction in NAA/Cr + PCr ratios at baseline compared to healthy controls (p = 0.004; p = 0.006) in baseline, compared with HCs. Over the 6-month follow-up period, the manic group displayed a significant decrease in Gln/Cr + PCr compared to the initial acute phase (p = 0.03). No significant alterations were found in depressed group between baseline and follow-up. CONCLUSION This study suggests that NAA/Cr + PCr ratios and Gln/Cr + PCr ratios in the mPFC may be associated with manic and depressive episodes, implicating that Gln and NAA might be useful biomarkers for distinguishing mood phases in BD and elucidating its mechanisms.
Collapse
Affiliation(s)
- Haijin Li
- Department of PsychiatryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ju Gao
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
| | - Huihui Song
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
| | - Xuna Yang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
| | - Cai Li
- Department of PharmacyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yue Zhang
- Department of PsychiatryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiahui Wang
- Department of PsychiatryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yitong Liu
- Department of PsychiatryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dong Wang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
| | - Hong Li
- Department of PsychiatryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
2
|
Argyropoulos GD, Christidi F, Karavasilis E, Bede P, Velonakis G, Antoniou A, Seimenis I, Kelekis N, Smyrnis N, Papakonstantinou O, Efstathopoulos E, Ferentinos P. A Magnetic Resonance Spectroscopy Study on Polarity Subphenotypes in Bipolar Disorder. Diagnostics (Basel) 2024; 14:1170. [PMID: 38893696 PMCID: PMC11172378 DOI: 10.3390/diagnostics14111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Although magnetic resonance spectroscopy (MRS) has provided in vivo measurements of brain chemical profiles in bipolar disorder (BD), there are no data on clinically and therapeutically important onset polarity (OP) and predominant polarity (PP). We conducted a proton MRS study in BD polarity subphenotypes, focusing on emotion regulation brain regions. Forty-one euthymic BD patients stratified according to OP and PP and sixteen healthy controls (HC) were compared. 1H-MRS spectra of the anterior and posterior cingulate cortex (ACC, PCC), left and right hippocampus (LHIPPO, RHIPPO) were acquired at 3.0T to determine metabolite concentrations. We found significant main effects of OP in ACC mI, mI/tNAA, mI/tCr, mI/tCho, PCC tCho, and RHIPPO tNAA/tCho and tCho/tCr. Although PP had no significant main effects, several medium and large effect sizes emerged. Compared to HC, manic subphenotypes (i.e., manic-OP, manic-PP) showed greater differences in RHIPPO and PCC, whereas depressive suphenotypes (i.e., depressive-OP, depressive-PP) in ACC. Effect sizes were consistent between OP and PP as high intraclass correlation coefficients (ICC) were confirmed. Our findings support the utility of MRS in the study of the neurobiological underpinnings of OP and PP, highlighting that the regional specificity of metabolite changes within the emotion regulation network consistently marks both polarity subphenotypes.
Collapse
Affiliation(s)
- Georgios D. Argyropoulos
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
| | - Foteini Christidi
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.A.); (N.S.); (P.F.)
- School of Medicine, Democritus University of Alexandroupolis, 681 00 Alexandroupolis, Greece
- Computational Neuroimaging Group, Trinity College Dublin, D08 NHY1 Dublin, Ireland;
| | - Efstratios Karavasilis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
- School of Medicine, Democritus University of Alexandroupolis, 681 00 Alexandroupolis, Greece
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, D08 NHY1 Dublin, Ireland;
- Department of Neurology, St James’s Hospital, D08 W9RT Dublin, Ireland
| | - Georgios Velonakis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
| | - Anastasia Antoniou
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.A.); (N.S.); (P.F.)
| | - Ioannis Seimenis
- Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Nikolaos Kelekis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
| | - Nikolaos Smyrnis
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.A.); (N.S.); (P.F.)
| | - Olympia Papakonstantinou
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
| | - Efstathios Efstathopoulos
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
| | - Panagiotis Ferentinos
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.A.); (N.S.); (P.F.)
| |
Collapse
|
3
|
Bortolozzi A, Fico G, Berk M, Solmi M, Fornaro M, Quevedo J, Zarate CA, Kessing LV, Vieta E, Carvalho AF. New Advances in the Pharmacology and Toxicology of Lithium: A Neurobiologically Oriented Overview. Pharmacol Rev 2024; 76:323-357. [PMID: 38697859 PMCID: PMC11068842 DOI: 10.1124/pharmrev.120.000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Giovanna Fico
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michael Berk
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Marco Solmi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michele Fornaro
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Joao Quevedo
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Carlos A Zarate
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Lars V Kessing
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Andre F Carvalho
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| |
Collapse
|
4
|
Kirkland AE, Green R, Browning BD, Aghamoosa S, Meyerhoff DJ, Ferguson PL, Tomko RL, Gray KM, Squeglia LM. Multi-modal neuroimaging reveals differences in alcohol-cue reactivity but not neurometabolite concentrations in adolescents who drink alcohol. Drug Alcohol Depend 2024; 257:111254. [PMID: 38457964 PMCID: PMC11031292 DOI: 10.1016/j.drugalcdep.2024.111254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND The objective of this multi-modal neuroimaging study was to identify neuroscience-informed treatment targets for adolescent alcohol use disorder (AUD) by examining potential neural alterations associated with adolescent alcohol use. METHODS Adolescents (ages 17-19) who heavily used (n=49) or did not use alcohol (n=22) were recruited for a multi-modal neuroimaging protocol, including proton magnetic resonance spectroscopy within the dorsal anterior cingulate cortex (dACC) and an fMRI alcohol cue-reactivity task. The alcohol cue-reactivity task was analyzed across 11 a priori regions-of-interest (ROI), including the dACC, and in an exploratory whole-brain approach. Correlations were run between neurometabolite levels and alcohol cue-reactivity in the dACC. RESULTS There were no significant group differences in absolute neurometabolite concentrations. Compared to the control group, the alcohol-using group exhibited heightened alcohol cue reactivity in the left amygdala ROI (p=0.04). The whole-brain approach identified higher alcohol cue reactivity in the alcohol-using group compared to controls in the amygdala and occipital regions, and lower reactivity in the parietal lobe. Whole-brain sex effects were noted, with females displaying higher reactivity regardless of group. No significant correlations were found between neurometabolite levels and alcohol cue-reactivity in the dACC. CONCLUSIONS The null neurometabolic findings may be due to age, relatively low severity of alcohol use, and non-treatment-seeking status of the participants. Females showed overall higher reactivity to alcohol cues, indicating a sex effect regardless of alcohol use history. Higher amygdala reactivity in alcohol-using adolescents suggests that emotional processing related to alcohol cues may be a useful target for future adolescent AUD interventions.
Collapse
Affiliation(s)
- Anna E Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - ReJoyce Green
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Brittney D Browning
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Stephanie Aghamoosa
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Dieter J Meyerhoff
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Pamela L Ferguson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Rachel L Tomko
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Kevin M Gray
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
5
|
Caffino L, Targa G, Mallien AS, Mottarlini F, Rizzi B, Homberg JR, Gass P, Fumagalli F. Chronic Lithium Treatment Alters NMDA and AMPA Receptor Synaptic Availability and Dendritic Spine Organization in the Rat Hippocampus. Curr Neuropharmacol 2024; 22:2045-2058. [PMID: 37711124 PMCID: PMC11333793 DOI: 10.2174/1570159x21666230913144420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND The mechanisms underlying the action of lithium (LiCl) in bipolar disorder (BD) are still far from being completely understood. Previous evidence has revealed that BD is characterized by glutamate hyperexcitability, suggesting that LiCl may act, at least partially, by toning down glutamatergic signaling abnormalities. OBJECTIVE In this study, taking advantage of western blot and confocal microscopy, we used a combination of integrative molecular and morphological approaches in rats exposed to repeated administration of LiCl at a therapeutic dose (between 0.6 and 1.2 mmol/l) and sacrificed at two different time points, i.e., 24 hours and 7 days after the last exposure. RESULTS We report that repeated LiCl treatment activates multiple, parallel, but also converging forms of compensatory neuroplasticity related to glutamatergic signaling. More specifically, LiCl promoted a wave of neuroplasticity in the hippocampus, involving the synaptic recruitment of GluN2A-containing NMDA receptors, GluA1-containing AMPA receptors, and the neurotrophin BDNF that are indicative of a more plastic spine. The latter is evidenced by morphological analyses showing changes in dendritic spine morphology, such as increased length and head diameter of such spines. These changes may counteract the potentially negative extra-synaptic movements of GluN2B-containing NMDA receptors as well as the increase in the formation of GluA2-lacking Ca2+-permeable AMPA receptors. CONCLUSION Our findings highlight a previously unknown cohesive picture of the glutamatergic implications of LiCl action that persist long after the end of its administration, revealing for the first time a profound and persistent reorganization of the glutamatergic postsynaptic density receptor composition and structure.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Anne Stephanie Mallien
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, The Netherlands
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| |
Collapse
|
6
|
Caballero-Florán RN, Nelson AD, Min L, Jenkins PM. Effects of chronic lithium treatment on neuronal excitability and GABAergic transmission in an Ank3 mutant mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564203. [PMID: 37961630 PMCID: PMC10634991 DOI: 10.1101/2023.10.26.564203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Bipolar disorder (BD) is a common psychiatric disease that can lead to psychosocial disability, decreased quality of life, and high risk for suicide. Genome-wide association studies have shown that the ANK3 gene is a significant risk factor for BD, but the mechanisms involved in BD pathophysiology are not yet fully understood. Previous work has shown that ankyrin-G, the protein encoded by ANK3, stabilizes inhibitory synapses in vivo through its interaction with the GABAA receptor-associated protein (GABARAP). We generated a mouse model with a missense p.W1989R mutation in Ank3, that abolishes the interaction between ankyrin-G and GABARAP, which leads to reduced inhibitory signaling in the somatosensory cortex and increased pyramidal cell excitability. Humans with the same mutation exhibit BD symptoms, which can be attenuated with lithium therapy. In this study, we describe that chronic treatment of Ank3 p.W1989R mice with lithium normalizes neuronal excitability in cortical pyramidal neurons and increases inhibitory GABAergic postsynaptic currents. The same outcome in inhibitory transmission was observed when mice were treated with the GSK-3β inhibitor Tideglusib. These results suggest that lithium treatment modulates the excitability of pyramidal neurons in the cerebral cortex by increasing GABAergic neurotransmission, likely via GSK-3 inhibition. In addition to the importance of these findings regarding ANK3 variants as a risk factor for BD development, this study may have significant implications for treating other psychiatric disorders associated with alterations in inhibitory signaling, such as schizophrenia, autism spectrum disorder, and major depressive disorder.
Collapse
Affiliation(s)
| | - Andrew D Nelson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143
| | - Lia Min
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
7
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Kong L, Guo X, Shen Y, Xu L, Huang H, Lu J, Hu S. Pushing the Frontiers: Optogenetics for Illuminating the Neural Pathophysiology of Bipolar Disorder. Int J Biol Sci 2023; 19:4539-4551. [PMID: 37781027 PMCID: PMC10535711 DOI: 10.7150/ijbs.84923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/20/2023] [Indexed: 10/03/2023] Open
Abstract
Bipolar disorder (BD), a disabling mental disorder, is featured by the oscillation between episodes of depression and mania, along with disturbance in the biological rhythms. It is on an urgent demand to identify the intricate mechanisms of BD pathophysiology. Based on the continuous progression of neural science techniques, the dysfunction of circuits in the central nervous system was currently thought to be tightly associated with BD development. Yet, challenge exists since it depends on techniques that can manipulate spatiotemporal dynamics of neuron activity. Notably, the emergence of optogenetics has empowered researchers with precise timing and local manipulation, providing a possible approach for deciphering the pathological underpinnings of mental disorders. Although the application of optogenetics in BD research remains preliminary due to the scarcity of valid animal models, this technique will advance the psychiatric research at neural circuit level. In this review, we summarized the crucial aberrant brain activity and function pertaining to emotion and rhythm abnormities, thereby elucidating the underlying neural substrates of BD, and highlighted the importance of optogenetics in the pursuit of BD research.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaonan Guo
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuting Shen
- School of Psychiatry, Wenzhou Medical University, Wenzhou 325000, China
| | - Le Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Huimin Huang
- School of Psychiatry, Wenzhou Medical University, Wenzhou 325000, China
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou 310003, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
9
|
Kirkland AE, Browning BD, Green R, Liu H, Maralit AM, Ferguson PL, Meyerhoff DJ, Prisciandaro JJ, Miranda R, Brady KT, Tomko RL, Gray KM, Squeglia LM. N-acetylcysteine does not alter neurometabolite levels in non-treatment seeking adolescents who use alcohol heavily: A preliminary randomized clinical trial. Neuropsychopharmacology 2023; 48:1184-1193. [PMID: 36878996 PMCID: PMC10267108 DOI: 10.1038/s41386-023-01553-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
Current treatments for adolescent alcohol use disorder (AUD) are mainly psychosocial and limited in their efficacy. As such, pharmacotherapies are being investigated as potential adjunctive treatments to bolster treatment outcomes. N-acetylcysteine is a promising candidate pharmacotherapy for adolescent AUD because of its tolerability and demonstrated ability to modulate glutamatergic, GABAergic, and glutathione systems. The primary objective of this double-blind, placebo-controlled, within-subjects crossover preliminary investigation was to measure potential changes within glutamate + glutamine (Glx), GABA, and glutathione levels in the dorsal anterior cingulate cortex (dACC) using proton magnetic resonance spectroscopy during 10-days of N-acetylcysteine (1200 mg twice daily) compared to 10-days of placebo in non-treatment seeking adolescents who use alcohol heavily (N = 31; 55% female). Medication adherence was confirmed via video. Effects on alcohol use were measured using Timeline Follow-Back as an exploratory aim. Linear mixed effects models controlling for baseline metabolite levels, brain tissue composition, alcohol use, cannabis use, and medication adherence found no significant differences in Glx, GABA, or glutathione levels in the dACC after N-acetylcysteine compared to placebo. There were also no measurable effects on alcohol use; however, this finding was underpowered. Findings were consistent in the subsample of participants who met criteria for AUD (n = 19). The preliminary null findings in brain metabolite levels may be due to the young age of participants, relatively low severity of alcohol use, and non-treatment seeking status of the population investigated. Future studies can use these findings to conduct larger, well-powered studies within adolescents with AUD.
Collapse
Affiliation(s)
- Anna E Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Brittney D Browning
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - ReJoyce Green
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Helen Liu
- College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Anna M Maralit
- Department of Psychological Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Pamela L Ferguson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Dieter J Meyerhoff
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - James J Prisciandaro
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Robert Miranda
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI, USA
| | - Kathleen T Brady
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Rachel L Tomko
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Kevin M Gray
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
10
|
León BE, Peyton L, Essa H, Wieden T, Marion N, Childers WE, Abou-Gharbia M, Choi DS. A novel monobactam lacking antimicrobial activity, MC-100093, reduces sex-specific ethanol preference and depressive-like behaviors in mice. Neuropharmacology 2023; 232:109515. [PMID: 37001726 PMCID: PMC10144181 DOI: 10.1016/j.neuropharm.2023.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Several β-lactam derivatives upregulate astrocytic glutamate transporter type 1expression and are known to improve measures in models of mood and alcohol use disorders (AUD) through normalizing glutamatergic states. However, long-term, and high doses of β-lactams may cause adverse side effects for treating mood disorders and AUD. Studies suggest that MC-100093, a novel β-lactam lacking antimicrobial activity, rescues GLT1 expression. Thus, we sought to investigate whether MC-100093 improves affective behaviors and reduces voluntary ethanol drinking. We intraperitoneally administered MC-100093 (50 mg/kg) or vehicle once per day to C57BL/6J male and female mice (8-10 weeks old) over 6 days. We employed the open field test and the elevated plus maze to examine the effect of MC-100093 on anxiety-like behaviors. We assayed MC-100093's effects on depressive-like behaviors using the tail suspension and forced swim tests. Next, utilizing a separate cohort of male and female C57BL6 mice, we assessed the effects MC100093 treatment on voluntary ethanol drinking utilizing the 2-bottle choice continuous access drinking paradigm. After screening and selecting high-drinking mice, we systematically administered MC-100093 (50 mg/kg) or vehicle to the high-drinking mice over 6 days. Overall, we found that MC-100093 treatment resulted in sex-specific pharmacological effects with female mice displaying reduced innate depressive-like behaviors during the tail suspension and force swim testing juxtaposed with male treated mice who displayed no changes in tail suspension and a paradoxical increased depressive-like behavior during the forced swim testing. Additionally, we found that MC100093 treatment reduced female preference for 10% EtOH during the 2-bottle choice continuous access drinking with no effects of MC100093 treatment detected in male mice. Overall, this data suggests sex-specific regulation of innate depressive-like behavior and voluntary EtOH drinking by MC100093 treatment. Western blot analysis of the medial prefrontal cortex and hippocampus revealed no changes in male or female GLT1 protein abundance relative to GAPDH.
Collapse
Affiliation(s)
- Brandon Emanuel León
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA; Regenerative Sciences Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Hesham Essa
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Tia Wieden
- Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA
| | - Nicole Marion
- Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA
| | - Wayne E Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA; Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, 59905, USA.
| |
Collapse
|
11
|
Pathak D, Sriram K. Neuron-astrocyte omnidirectional signaling in neurological health and disease. Front Mol Neurosci 2023; 16:1169320. [PMID: 37363320 PMCID: PMC10286832 DOI: 10.3389/fnmol.2023.1169320] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Astrocytes are an abundantly distributed population of glial cells in the central nervous system (CNS) that perform myriad functions in the normal and injured/diseased brain. Astrocytes exhibit heterogeneous phenotypes in response to various insults, a process known as astrocyte reactivity. The accuracy and precision of brain signaling are primarily based on interactions involving neurons, astrocytes, oligodendrocytes, microglia, pericytes, and dendritic cells within the CNS. Astrocytes have emerged as a critical entity within the brain because of their unique role in recycling neurotransmitters, actively modulating the ionic environment, regulating cholesterol and sphingolipid metabolism, and influencing cellular crosstalk in diverse neural injury conditions and neurodegenerative disorders. However, little is known about how an astrocyte functions in synapse formation, axon specification, neuroplasticity, neural homeostasis, neural network activity following dynamic surveillance, and CNS structure in neurological diseases. Interestingly, the tripartite synapse hypothesis came to light to fill some knowledge gaps that constitute an interaction of a subpopulation of astrocytes, neurons, and synapses. This review highlights astrocytes' role in health and neurological/neurodegenerative diseases arising from the omnidirectional signaling between astrocytes and neurons at the tripartite synapse. The review also recapitulates the disruption of the tripartite synapse with a focus on perturbations of the homeostatic astrocytic function as a key driver to modulate the molecular and physiological processes toward neurodegenerative diseases.
Collapse
|
12
|
Merritt K, McCutcheon RA, Aleman A, Ashley S, Beck K, Block W, Bloemen OJN, Borgan F, Boules C, Bustillo JR, Capizzano AA, Coughlin JM, David A, de la Fuente-Sandoval C, Demjaha A, Dempster K, Do KQ, Du F, Falkai P, Galińska-Skok B, Gallinat J, Gasparovic C, Ginestet CE, Goto N, Graff-Guerrero A, Ho BC, Howes O, Jauhar S, Jeon P, Kato T, Kaufmann CA, Kegeles LS, Keshavan MS, Kim SY, King B, Kunugi H, Lauriello J, León-Ortiz P, Liemburg E, Mcilwain ME, Modinos G, Mouchlianitis E, Nakamura J, Nenadic I, Öngür D, Ota M, Palaniyappan L, Pantelis C, Patel T, Plitman E, Posporelis S, Purdon SE, Reichenbach JR, Renshaw PF, Reyes-Madrigal F, Russell BR, Sawa A, Schaefer M, Shungu DC, Smesny S, Stanley JA, Stone J, Szulc A, Taylor R, Thakkar KN, Théberge J, Tibbo PG, van Amelsvoort T, Walecki J, Williamson PC, Wood SJ, Xin L, Yamasue H, McGuire P, Egerton A. Variability and magnitude of brain glutamate levels in schizophrenia: a meta and mega-analysis. Mol Psychiatry 2023; 28:2039-2048. [PMID: 36806762 PMCID: PMC10575771 DOI: 10.1038/s41380-023-01991-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/19/2023]
Abstract
Glutamatergic dysfunction is implicated in schizophrenia pathoaetiology, but this may vary in extent between patients. It is unclear whether inter-individual variability in glutamate is greater in schizophrenia than the general population. We conducted meta-analyses to assess (1) variability of glutamate measures in patients relative to controls (log coefficient of variation ratio: CVR); (2) standardised mean differences (SMD) using Hedges g; (3) modal distribution of individual-level glutamate data (Hartigan's unimodality dip test). MEDLINE and EMBASE databases were searched from inception to September 2022 for proton magnetic resonance spectroscopy (1H-MRS) studies reporting glutamate, glutamine or Glx in schizophrenia. 123 studies reporting on 8256 patients and 7532 controls were included. Compared with controls, patients demonstrated greater variability in glutamatergic metabolites in the medial frontal cortex (MFC, glutamate: CVR = 0.15, p < 0.001; glutamine: CVR = 0.15, p = 0.003; Glx: CVR = 0.11, p = 0.002), dorsolateral prefrontal cortex (glutamine: CVR = 0.14, p = 0.05; Glx: CVR = 0.25, p < 0.001) and thalamus (glutamate: CVR = 0.16, p = 0.008; Glx: CVR = 0.19, p = 0.008). Studies in younger, more symptomatic patients were associated with greater variability in the basal ganglia (BG glutamate with age: z = -0.03, p = 0.003, symptoms: z = 0.007, p = 0.02) and temporal lobe (glutamate with age: z = -0.03, p = 0.02), while studies with older, more symptomatic patients associated with greater variability in MFC (glutamate with age: z = 0.01, p = 0.02, glutamine with symptoms: z = 0.01, p = 0.02). For individual patient data, most studies showed a unimodal distribution of glutamatergic metabolites. Meta-analysis of mean differences found lower MFC glutamate (g = -0.15, p = 0.03), higher thalamic glutamine (g = 0.53, p < 0.001) and higher BG Glx in patients relative to controls (g = 0.28, p < 0.001). Proportion of males was negatively associated with MFC glutamate (z = -0.02, p < 0.001) and frontal white matter Glx (z = -0.03, p = 0.02) in patients relative to controls. Patient PANSS total score was positively associated with glutamate SMD in BG (z = 0.01, p = 0.01) and temporal lobe (z = 0.05, p = 0.008). Further research into the mechanisms underlying greater glutamatergic metabolite variability in schizophrenia and their clinical consequences may inform the identification of patient subgroups for future treatment strategies.
Collapse
Affiliation(s)
- Kate Merritt
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK.
| | | | - André Aleman
- Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, China
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sarah Ashley
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK
| | - Katherine Beck
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Wolfgang Block
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Oswald J N Bloemen
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Christiana Boules
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Research, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Aristides A Capizzano
- Department of Radiology, Division of Neuroradiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anthony David
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Arsime Demjaha
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kara Dempster
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Kim Q Do
- Center for Psychiatric Neuroscience (CNP), Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Peter Falkai
- Department of Psychiatry, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Beata Galińska-Skok
- Department of Psychiatry, Medical University of Bialystok, Bialystok, Poland
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Cedric E Ginestet
- Department of Biostatistics and Health Informatics (S2.06), Institute of Psychiatry, Psychology and Neuroscience King's College London, London, UK
| | - Naoki Goto
- Department of Psychiatry, Kokura Gamo Hospital, Kitakyushu, Fukuoka, 8020978, Japan
| | - Ariel Graff-Guerrero
- Multimodal Neuroimaging Schizophrenia Group, Research Imaging Centre, Geriatric Mental Health Program at Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Beng-Choon Ho
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sameer Jauhar
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Peter Jeon
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Charles A Kaufmann
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute (NYSPI), New York, NY, USA
| | - Lawrence S Kegeles
- Columbia University, Department of Psychiatry, New York State Psychiatric Institute (NYSPI), New York, NY, USA
| | | | | | - Bridget King
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hiroshi Kunugi
- National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-0031, Japan
| | - J Lauriello
- Jefferson Health-Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Edith Liemburg
- Rob Giel Research Center, Department of Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
| | - Meghan E Mcilwain
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Gemma Modinos
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Elias Mouchlianitis
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jun Nakamura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Miho Ota
- National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-0031, Japan
| | - Lena Palaniyappan
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Tulsi Patel
- Division of Psychiatry, UCL, Institute of Mental Health, London, UK
| | - Eric Plitman
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Sotirios Posporelis
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, BR3 3BX, UK
| | - Scot E Purdon
- Neuropsychology Department, Alberta Hospital Edmonton, Edmonton, AB, Canada
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology (IDIR), Jena University Hospital, Jena, Germany
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Bruce R Russell
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Mental Health, Biomedical Engineering, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Martin Schaefer
- Department of Psychiatry, Psychotherapy, Psychosomatics and Addiction Medicine, Kliniken Essen-Mitte, Essen, Germany
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medical College, New York City, NY, USA
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jeffrey A Stanley
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - James Stone
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Reggie Taylor
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, MI, USA
| | - Jean Théberge
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | | | - Peter C Williamson
- Lawson Health Research Institute, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
| | - Stephen J Wood
- Orygen, Melbourne, VIC, Australia
- Institute for Mental Health, University of Birmingham, Edgbaston, UK
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Philip McGuire
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alice Egerton
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
13
|
Mocci I, Casu MA, Sogos V, Liscia A, Angius R, Cadeddu F, Fanti M, Muroni P, Talani G, Diana A, Collu M, Setzu MD. Effects of memantine on mania-like phenotypes exhibited by Drosophila Shaker mutants. CNS Neurosci Ther 2023. [PMID: 36942502 DOI: 10.1111/cns.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Increased glutamate levels and electrolytic fluctuations have been observed in acutely manic patients. Despite some efficacy of the non-competitive NMDA receptor antagonist memantine (Mem), such as antidepressant-like and mood-stabilizer drugs in clinical studies, its specific mechanisms of action are still uncertain. The present study aims to better characterize the Drosophila melanogaster fly Shaker mutants (SH), as a translational model of manic episodes within bipolar disorder in humans, and to investigate the potential anti-manic properties of Mem. METHODS AND RESULTS Our findings showed typical behavioral abnormalities in SH, which mirrored with the overexpression of NMDAR-NR1 protein subunit, matched well to glutamate up-regulation. Such molecular features were associated to a significant reduction of SH brain volume in comparison to Wild Type strain flies (WT). Here we report on the ability of Mem treatment to ameliorate behavioral aberrations of SH (similar to that of Lithium), and its ability to reduce NMDAR-NR1 over-expression. CONCLUSIONS Our results show the involvement of the glutamatergic system in the SH, given the interaction between the Shaker channel and the NMDA receptor, suggesting this model as a promising tool for studying the neurobiology of bipolar disorders. Moreover, our results show Mem as a potential disease-modifying therapy, providing insight on new mechanisms of action.
Collapse
Affiliation(s)
- Ignazia Mocci
- Institute of Translational Pharmacology, National Research Council, Science and Technology Park of Sardinia, Cagliari, Italy
| | - Maria Antonietta Casu
- Institute of Translational Pharmacology, National Research Council, Science and Technology Park of Sardinia, Cagliari, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Anna Liscia
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Rossella Angius
- Unit of Biomedical Research Support, NMR Laboratory and Bioanalytical Technologies, Sardegna Ricerche, Science and Technology Park of Sardinia, Cagliari, Italy
| | - Francesca Cadeddu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maura Fanti
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Patrizia Muroni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Giuseppe Talani
- Institute of Neuroscience, National Research Council, Monserrato, Italy
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Collu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Dolores Setzu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
14
|
Glutamatergic Neurometabolite Levels in Bipolar Disorder: A Systematic Review and Meta-analysis of Proton Magnetic Resonance Spectroscopy Studies. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:140-150. [PMID: 36754485 DOI: 10.1016/j.bpsc.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND The glutamatergic system is thought to play an important role in the pathophysiology of bipolar disorder (BD). While there has been an increase in proton magnetic resonance spectroscopy studies examining this neurotransmission system, the results are inconsistent. Possible reasons for the inconsistency, including clinical features such as mood state and childhood versus adulthood age, were not addressed in previous meta-analyses. METHODS This systematic review and meta-analysis of proton magnetic resonance spectroscopy studies of BD included 40 studies, with 1135 patients with BD and 964 healthy control (HC) subjects. RESULTS Glutamate plus glutamine and glutamine levels in the anterior cingulate cortex of patients with BD were significantly elevated compared with those of HC subjects (standardized mean difference = 0.42, 0.48, respectively). Subgroup analyses showed that adult BD patients had significantly higher levels of glutamate plus glutamine than adult HC subjects, but this was not the case in pediatric patients. For mood states, anterior cingulate cortex glutamate plus glutamine levels were higher in patients with bipolar depression than those in HC subjects. CONCLUSIONS Our results imply that glutamatergic dysfunction in the anterior cingulate cortex may be implicated in the pathophysiology of BD, which is most evident in adult BD patients and patients with bipolar depression.
Collapse
|
15
|
Wartchow KM, Scaini G, Quevedo J. Glial-Neuronal Interaction in Synapses: A Possible Mechanism of the Pathophysiology of Bipolar Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:191-208. [PMID: 36949311 DOI: 10.1007/978-981-19-7376-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Bipolar disorder (BD) is a severe and chronic psychiatric disorder that affects approximately 1-4% of the world population and is characterized by recurrent episodes of mania or hypomania and depression. BD is also associated with illnesses marked by immune activation, such as metabolic syndrome, obesity, type 2 diabetes mellitus, and cardiovascular diseases. Indeed, a connection has been suggested between neuroinflammation and peripheral inflammatory markers in the pathophysiology of BD, which can be associated with the modulation of many dysfunctional processes, including synaptic plasticity, neurotransmission, neurogenesis, neuronal survival, apoptosis, and even cognitive/behavioral functioning. Rising evidence suggests that synaptic dysregulations, especially glutamatergic system dysfunction, are directly involved in mood disorders. It is becoming clear that dysregulations in connection and structural changes of glial cells play a central role in the BD pathophysiology. This book chapter highlighted the latest findings that support the theory of synaptic dysfunction in BD, providing an overview of the alterations in neurotransmitters release, astrocytic uptake, and receptor signaling, as well as the role of inflammation on glial cells in mood disorders. Particular emphasis is given to the alterations in presynaptic and postsynaptic neurons and glial cells, all cellular elements of the "tripartite synapse," compromising the neurotransmitters system, excitatory-inhibitory balance, and neurotrophic states of local networks in mood disorders. Together, these studies provide a foundation of knowledge about the exact role of the glial-neuronal interaction in mood disorders.
Collapse
Affiliation(s)
- Krista M Wartchow
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
16
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
17
|
Unnisa A, Greig NH, Kamal MA. Modelling the Interplay Between Neuron-Glia Cell Dysfunction and Glial Therapy in Autism Spectrum Disorder. Curr Neuropharmacol 2023; 21:547-559. [PMID: 36545725 PMCID: PMC10207919 DOI: 10.2174/1570159x21666221221142743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complicated, interpersonally defined, static condition of the underdeveloped brain. Although the aetiology of autism remains unclear, disturbance of neuronglia interactions has lately been proposed as a significant event in the pathophysiology of ASD. In recent years, the contribution of glial cells to autism has been overlooked. In addition to neurons, glial cells play an essential role in mental activities, and a new strategy that emphasises neuron-glia interactions should be applied. Disturbance of neuron-glia connections has lately been proposed as a significant event in the pathophysiology of ASD because aberrant neuronal network formation and dysfunctional neurotransmission are fundamental to the pathology of the condition. In ASD, neuron and glial cell number changes cause brain circuits to malfunction and impact behaviour. A study revealed that reactive glial cells result in the loss of synaptic functioning and induce autism under inflammatory conditions. Recent discoveries also suggest that dysfunction or changes in the ability of microglia to carry out physiological and defensive functions (such as failure in synaptic elimination or aberrant microglial activation) may be crucial for developing brain diseases, especially autism. The cerebellum, white matter, and cortical regions of autistic patients showed significant microglial activation. Reactive glial cells result in the loss of synaptic functioning and induce autism under inflammatory conditions. Replacement of defective glial cells (Cell-replacement treatment), glial progenitor cell-based therapy, and medication therapy (inhibition of microglia activation) are all utilised to treat glial dysfunction. This review discusses the role of glial cells in ASD and the various potential approaches to treating glial cell dysfunction.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, KSA;
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, MD 21224, USA
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, Peterlee place, Hebersham, NSW 2770, Australia
| |
Collapse
|
18
|
Kruse AO, Bustillo JR. Glutamatergic dysfunction in Schizophrenia. Transl Psychiatry 2022; 12:500. [PMID: 36463316 PMCID: PMC9719533 DOI: 10.1038/s41398-022-02253-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
The NMDA-R hypofunction model of schizophrenia started with the clinical observation of the precipitation of psychotic symptoms in patients with schizophrenia exposed to PCP or ketamine. Healthy volunteers exposed to acute low doses of ketamine experienced mild psychosis but also negative and cognitive type symptoms reminiscent of the full clinical picture of schizophrenia. In rodents, acute systemic ketamine resulted in a paradoxical increase in extracellular frontal glutamate as well as of dopamine. Similar increase in prefrontal glutamate was documented with acute ketamine in healthy volunteers with 1H-MRS. Furthermore, sub-chronic low dose PCP lead to reductions in frontal dendritic tree density in rodents. In post-mortem ultrastructural studies in schizophrenia, a broad reduction in dendritic complexity and somal volume of pyramidal cells has been repeatedly described. This most likely accounts for the broad, subtle progressive cortical thinning described with MRI in- vivo. Additionally, prefrontal reductions in the obligatory GluN1 subunit of the NMDA-R has been repeatedly found in post-mortem tissue. The vast 1H-MRS literature in schizophrenia has documented trait-like small increases in glutamate concentrations in striatum very early in the illness, before antipsychotic treatment (the same structure where increased pre-synaptic release of dopamine has been reported with PET). The more recent genetic literature has reliably detected very small risk effects for common variants involving several glutamate-related genes. The pharmacological literature has followed two main tracks, directly informed by the NMDA-R hypo model: agonism at the glycine site (as mostly add-on studies targeting negative and cognitive symptoms); and pre-synaptic modulation of glutamatergic release (as single agents for acute psychosis). Unfortunately, both approaches have failed so far. There is little doubt that brain glutamatergic abnormalities are present in schizophrenia and that some of these are related to the etiology of the illness. The genetic literature directly supports a non- specific etiological role for glutamatergic dysfunction. Whether NMDA-R hypofunction as a specific mechanism accounts for any important component of the illness is still not evident. However, a glutamatergic model still has heuristic value to guide future research in schizophrenia. New tools to jointly examine brain glutamatergic, GABA-ergic and dopaminergic systems in-vivo, early in the illness, may lay the ground for a next generation of clinical trials that go beyond dopamine D2 blockade.
Collapse
Affiliation(s)
- Andreas O Kruse
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
19
|
The neuroprotective and neuroplastic potential of glutamatergic therapeutic drugs in bipolar disorder. Neurosci Biobehav Rev 2022; 142:104906. [DOI: 10.1016/j.neubiorev.2022.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
|
20
|
Gao Y, Mack AA, Litteral C, Delamere NA, El-Mallakh RS. NMDA receptor inhibition prevents intracellular sodium elevations in human olfactory neuroepithelial precursors derived from bipolar patients. Sci Rep 2022; 12:10437. [PMID: 35729322 PMCID: PMC9213398 DOI: 10.1038/s41598-022-14187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Dysregulation of ion flux across membranes and glutamate-induced excitotoxicity appear to be important pathophysiologic abnormalities in bipolar illness. Understanding ion control and responses to ionic stress is important to decipher the pathogenesis of this disorder. Monensin alone significantly increased [Na]i in ONPs from bipolar individuals (5.08 ± 0.71 vs baseline 3.13 ± 0.93, P = 0.03) and AP5 had no effect (2.0 ± 1.2 vs baseline 3.13 ± 0.93, P = 0.27). However, the combination of AP5 and monensin resulted in normalization of [Na]i (3.25 ± 1.28 vs baseline 3.13 ± 0.93, P = 0.89). This effect was not observed in cells from non-bipolar individuals (monensin alone, 1.72 ± 1.10 vs baseline 2.42 ± 1.80, P = 0.25; AP5 alone, 1.37 ± 0.74 vs baseline 2.42 ± 1.80; AP5 combined with monensin, 1.53 ± 0.98 vs baseline 2.42 ± 1.80, P = 0.31). Sodium regulation is central to neuronal function and may be disturbed in patients with bipolar disorder. Monensin is an ionophore, meaning that it incorporates itself into the membrane and allows sodium to enter independent of cellular membrane proteins. While the mechanism remains obscure, the observation that the NMDA receptor antagonist, AP5, normalizes [Na]i only in olfactory neuroepithelial precursors obtained from bipolar illness may provide novel insights into ion regulation in tissues from subjects with bipolar illness.
Collapse
Affiliation(s)
- Yonglin Gao
- Department of Psychiatry and Behavioral Sciences, Mood Disorders Research Program, Depression Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Aaron A Mack
- Department of Psychiatry and Behavioral Sciences, Mood Disorders Research Program, Depression Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Carleigh Litteral
- Department of Psychiatry and Behavioral Sciences, Mood Disorders Research Program, Depression Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Nicholas A Delamere
- Department of Physiology, University of Arizona, PO Box 245051, Tucson, AZ, 85724-5051, USA
| | - Rif S El-Mallakh
- Department of Psychiatry and Behavioral Sciences, Mood Disorders Research Program, Depression Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
21
|
Glutamatergic and GABAergic metabolite levels in schizophrenia-spectrum disorders: a meta-analysis of 1H-magnetic resonance spectroscopy studies. Mol Psychiatry 2022; 27:744-757. [PMID: 34584230 DOI: 10.1038/s41380-021-01297-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The glutamate (Glu) and gamma aminobutyric acid (GABA) hypotheses of schizophrenia were proposed in the 1980s. However, current findings on those metabolite levels in schizophrenia have been inconsistent, and the relationship between their abnormalities and the pathophysiology of schizophrenia remains unclear. To summarize the nature of the alterations of glutamatergic and GABAergic systems in schizophrenia, we conducted meta-analyses of proton magnetic resonance spectroscopy (1H-MRS) studies examining these metabolite levels. METHODS A systematic literature search was conducted using Embase, Medline, PsycINFO, and PubMed. Original studies that compared four metabolite levels (Glu, glutamine [Gln], Glx [Glu+Gln], and GABA), as measured by 1H-MRS, between individuals at high risk for psychosis, patients with first-episode psychosis, or patients with schizophrenia and healthy controls (HC) were included. A random-effects model was used to calculate the effect sizes for group differences in these metabolite levels of 18 regions of interest between the whole group or schizophrenia group and HC. Subgroup analysis and meta-regression were performed based on the status of antipsychotic treatment, illness stage, treatment resistance, and magnetic field strength. RESULTS One-hundred-thirty-four studies met the eligibility criteria, totaling 7993 participants with SZ-spectrum disorders and 8744 HC. 14 out of 18 ROIs had enough numbers of studies to examine the group difference in the metabolite levels. In the whole group, Glx levels in the basal ganglia (g = 0.32; 95% CIs: 0.18-0.45) were elevated. Subgroup analyses showed elevated Glx levels in the hippocampus (g = 0.47; 95% CIs: 0.21-0.73) and dorsolateral prefrontal cortex (g = 0.25; 95% CIs: 0.05-0.44) in unmedicated patients than HC. GABA levels in the MCC were decreased in the first-episode psychosis group compared with HC (g = -0.40; 95% CIs: -0.62 to -0.17). Treatment-resistant schizophrenia (TRS) group had elevated Glx and Glu levels in the MCC (Glx: g = 0.7; 95% CIs: 0.38-1.01; Glu: g = 0.63; 95% CIs: 0.31-0.94) while MCC Glu levels were decreased in the patient group except TRS (g = -0.17; 95% CIs: -0.33 to -0.01). CONCLUSIONS Increased glutamatergic metabolite levels and reduced GABA levels indicate that the disruption of excitatory/inhibitory balance may be related to the pathophysiology of schizophrenia-spectrum disorders.
Collapse
|
22
|
Astroglial Serotonin Receptors as the Central Target of Classic Antidepressants. ADVANCES IN NEUROBIOLOGY 2021; 26:317-347. [PMID: 34888840 DOI: 10.1007/978-3-030-77375-5_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Major depressive disorder (MDD) presents multiple clinical phenotypes and has complex underlying pathological mechanisms. Existing theories cannot completely explain the pathophysiological mechanism(s) of MDD, while the pharmacology of current antidepressants is far from being fully understood. Astrocytes, the homeostatic and defensive cells of the central nervous system, contribute to shaping behaviors, and regulating mood and emotions. A detailed introduction on the role of astrocytes in depressive disorders is thus required, to which this chapter is dedicated. We also focus on the interactions between classic antidepressants and serotonin receptors, overview the role of astrocytes in the pharmacological mechanisms of various antidepressants, and present astrocytes as targets for the treatment of bipolar disorder. We provide a foundation of knowledge on the role of astrocytes in depressive disorders and astroglial 5-HT2B receptors as targets for selective serotonin reuptake inhibitors in vivo and in vitro.
Collapse
|
23
|
Abstract
Bipolar disorder (BD) is a complex group of neuropsychiatric disorders, typically comprising both manic and depressive episodes. The underlying neuropathology of BD is not established, but a consistent feature is progressive thinning of cortical grey matter (GM) and white matter (WM) in specific pathways, due to loss of subpopulations of neurons and astrocytes, with accompanying disturbance of connectivity. Dysregulation of astrocyte homeostatic functions are implicated in BD, notably regulation of glutamate, calcium signalling, circadian rhythms and metabolism. Furthermore, the beneficial therapeutic effects of the frontline treatments for BD are due at least in part to their positive actions on astrocytes, notably lithium, valproic acid (VPA) and carbamazepine (CBZ), as well as antidepressants and antipsychotics that are used in the management of this disorder. Treatments for BD are ineffective in a large proportion of cases, and astrocytes represent new therapeutic targets that can also serve as biomarkers of illness progression and treatment responsiveness in BD.
Collapse
|
24
|
Costa BM, Kwapisz LC, Mehrkens B, Bledsoe DN, Vacca BN, Johnston TV, Razzaq R, Manickam D, Klein BG. A glutamate concentration-biased allosteric modulator potentiates NMDA-induced ion influx in neurons. Pharmacol Res Perspect 2021; 9:e00859. [PMID: 34476911 PMCID: PMC8413904 DOI: 10.1002/prp2.859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 11/11/2022] Open
Abstract
Precisely controlled synaptic glutamate concentration is essential for the normal function of the N-methyl D-aspartate (NMDA) receptors. Atypical fluctuations in synaptic glutamate homeostasis lead to aberrant NMDA receptor activity that results in the pathogenesis of neurological and psychiatric disorders. Therefore, glutamate concentration-dependent NMDA receptor modulators would be clinically useful agents with fewer on-target adverse effects. In the present study, we have characterized a novel compound (CNS4) that potentiates NMDA receptor currents based on glutamate concentration. This compound alters glutamate potency and exhibits no voltage-dependent effect. Patch-clamp electrophysiology recordings confirmed agonist concentration-dependent changes in maximum inducible currents. Dynamic Ca2+ and Na+ imaging assays using rat brain cortical, striatal and cerebellar neurons revealed CNS4 potentiated ion influx through native NMDA receptor activity. Overall, CNS4 is novel in chemical structure, mechanism of action and agonist concentration-biased allosteric modulatory effect. This compound or its future analogs will serve as useful candidates to develop drug-like compounds for the treatment of treatment-resistant schizophrenia and major depression disorders associated with hypoglutamatergic neurotransmission.
Collapse
Affiliation(s)
- Blaise M. Costa
- Center for One Health ResearchVirginia Maryland College of Veterinary MedicineVirginia TechBlacksburgVirginiaUSA
- Edward Via Virginia College of Osteopathic Medicine (VCOMBlacksburgVirginiaUSA
- School of NeuroscienceVirginia TechBlacksburgVirginiaUSA
| | - Lina Cortés Kwapisz
- Center for One Health ResearchVirginia Maryland College of Veterinary MedicineVirginia TechBlacksburgVirginiaUSA
| | - Brittney Mehrkens
- Center for One Health ResearchVirginia Maryland College of Veterinary MedicineVirginia TechBlacksburgVirginiaUSA
| | - Douglas N. Bledsoe
- Center for One Health ResearchVirginia Maryland College of Veterinary MedicineVirginia TechBlacksburgVirginiaUSA
- Present address:
Virginia Commonwealth UniversityRichmondVirginiaUSA
| | - Bryanna N. Vacca
- Center for One Health ResearchVirginia Maryland College of Veterinary MedicineVirginia TechBlacksburgVirginiaUSA
- Present address:
University of North CarolinaChapel HillNorth CarolinaUSA
| | - Tullia V. Johnston
- Center for One Health ResearchVirginia Maryland College of Veterinary MedicineVirginia TechBlacksburgVirginiaUSA
| | - Rehan Razzaq
- Edward Via Virginia College of Osteopathic Medicine (VCOMBlacksburgVirginiaUSA
| | | | - Bradley G. Klein
- Center for One Health ResearchVirginia Maryland College of Veterinary MedicineVirginia TechBlacksburgVirginiaUSA
- School of NeuroscienceVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
25
|
Zhang X, Alnafisah RS, Hamoud ARA, Shukla R, Wen Z, McCullumsmith RE, O'Donovan SM. Role of Astrocytes in Major Neuropsychiatric Disorders. Neurochem Res 2021; 46:2715-2730. [PMID: 33411227 DOI: 10.1007/s11064-020-03212-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Astrocytes are the primary homeostatic cells of the central nervous system, essential for normal neuronal development and function, metabolism and response to injury and inflammation. Here, we review postmortem studies examining changes in astrocytes in subjects diagnosed with the neuropsychiatric disorders schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BPD). We discuss the astrocyte-related changes described in the brain in these disorders and the potential effects of psychotropic medication on these findings. Finally, we describe emerging tools that can be used to study the role of astrocytes in neuropsychiatric illness.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Rawan S Alnafisah
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Abdul-Rizaq A Hamoud
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Rammohan Shukla
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA.,Neurosciences Institute, ProMedica, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
26
|
Prescot A, Huber R, Kanekar S, Kondo D, Prisciandaro J, Ongur D, Renshaw PF. Effect of moderate altitude on human cerebral metabolite levels: A preliminary, multi-site, proton magnetic resonance spectroscopy investigation. Psychiatry Res Neuroimaging 2021; 314:111314. [PMID: 34098247 DOI: 10.1016/j.pscychresns.2021.111314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022]
Abstract
Epidemiological studies show that altitude-of-residence is an independent risk factor for worsening rates of mood disorders, substance abuse, and suicide. Proton (1H) magnetic resonance spectroscopy (MRS) studies in rodent models of moderate-to-high altitude exposure have documented significant alterations in total creatine, glutamate, and myo-inositol, neurometabolites involved in bioenergetic homeostasis and neuronal/glial cell function. This preliminary study utilized 3 Tesla 1H MRS to study anterior cingulate cortex (ACC) and parietal-occipital cortex (POC) neurochemistry in healthy subjects residing in Utah (n = 19), Massachusetts (n = 10), and South Carolina (n = 10), to test the hypothesis that individuals residing at moderate altitude (Utah; 1,372 m) would show neurometabolite alterations vs. subjects living at sea level. Expressed as ratios to total N-acetyl aspartate (NAA), Utah participants showed lower ACC (p = 0.03) and POC (p < 0.01) total creatine, a trend towards lower ACC glutamate (p = 0.06), and lower POC myo-inositol (p = 0.02). Study limitations include small sample sizes and uncorrected multiple comparisons. To our knowledge, this is the first MRS investigation to identify potential neurochemical differences in individuals residing at moderate altitudes vs. sea level, warranting future 1H MRS studies in larger cohorts and across a range of altitudes-of-residence.
Collapse
Affiliation(s)
- Andrew Prescot
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States.
| | - Rebekah Huber
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Shami Kanekar
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, United States; Rocky Mountain Mental Illness Research, Education and Clinical Center (MIRECC), George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, UT, United States
| | - Douglas Kondo
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, United States; Rocky Mountain Mental Illness Research, Education and Clinical Center (MIRECC), George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, UT, United States
| | - James Prisciandaro
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States
| | - Dost Ongur
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Cambridge, MA, United States
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, United States; Rocky Mountain Mental Illness Research, Education and Clinical Center (MIRECC), George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, UT, United States
| |
Collapse
|
27
|
Bio DS, Moreno RA, Garcia-Otaduy MC, Nery F, Lafer B, Soeiro-de-Souza MG. Altered brain creatine cycle metabolites in bipolar I disorder with childhood abuse: A 1H magnetic resonance spectroscopy study. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110233. [PMID: 33387596 DOI: 10.1016/j.pnpbp.2020.110233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Childhood abuse (CA) is a risk factor for a number of psychiatric disorders and has been associated with higher risk of developing bipolar disorders (BD). CA in BD has been associated with more severe clinical outcomes, but the neurobiological explanation for this is unknown. Few studies have explored in vivo measurement of brain metabolites using proton magnetic resonance spectroscopy (1H-MRS) in CA and no studies have investigated the association of CA severity with brain neurometabolites in BD. OBJECTIVE To investigate whether CA severity is associated with changes in anterior cingulate cortex (ACC) neurometabolite profile in BD and HC subjects. METHODS Fifty-nine BD I euthymic patients and fifty-nine HC subjects were assessed using the Childhood Trauma Questionnaire (CTQ) and underwent a 3-Tesla 1H-MRS scan. Severity of childhood abuse (physical, sexual and emotional) and its association with levels of brain metabolites was analyzed within each group. RESULTS BD patients had higher total scores on the CTQ and higher severity rates of sexual and physical abuse compared to HC subjects. Greater severity of physical and sexual abuse was associated with increased ACC PCr level and lower Cr/PCr ratio in the BD group only. CONCLUSION Sexual and physical abuse in BD patients, but not in HC subjects, appeared to be associated with creatine metabolism in the ACC, which can influence neuronal mitochondrial energy production. Further studies should investigate whether this is the mechanism underlying the association between CA and worse clinical outcomes in BD.
Collapse
Affiliation(s)
- Danielle Soares Bio
- Mood Disorders Unit (PROGRUDA), Department of Psychiatry, School of Medicine, University of São Paulo, Brazil
| | - Ricardo Alberto Moreno
- Mood Disorders Unit (PROGRUDA), Department of Psychiatry, School of Medicine, University of São Paulo, Brazil
| | | | - Fabiano Nery
- University of Cincinnati Medical Center, United States
| | - Beny Lafer
- Bipolar Disorders Program (PROMAN), Department of Psychiatry, School of Medicine, University of São Paulo, Brazil
| | | |
Collapse
|
28
|
Bustillo JR, Mayer EG, Upston J, Jones T, Garcia C, Sheriff S, Maudsley A, Tohen M, Gasparovic C, Lenroot R. Increased Glutamate Plus Glutamine in the Right Middle Cingulate in Early Schizophrenia but Not in Bipolar Psychosis: A Whole Brain 1H-MRS Study. Front Psychiatry 2021; 12:660850. [PMID: 34163382 PMCID: PMC8215955 DOI: 10.3389/fpsyt.2021.660850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 01/11/2023] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) studies have examined glutamatergic abnormalities in schizophrenia and bipolar-I disorders, mostly in single voxels. Though the critical nodes remain unknown, schizophrenia and bipolar-I involve brain networks with broad abnormalities. To provide insight on the biochemical differences that may underlie these networks, the combined glutamine and glutamate signal (Glx) and other metabolites were examined in patients in early psychosis with whole brain 1H-MRS imaging (1H-MRSI). Data were acquired in young schizophrenia subjects (N = 48), bipolar-I subjects (N = 21) and healthy controls (N = 51). Group contrasts for Glx, as well as for N-acetyl aspartate, choline, myo-inositol and creatine, from all voxels that met spectral quality criteria were analyzed in standardized brain space, followed by cluster-corrected level alpha-value (CCLAV ≤ 0.05) analysis. Schizophrenia subjects had higher Glx in the right middle cingulate gyrus (19 voxels, CCLAV = 0.05) than bipolar-I subjects. Healthy controls had intermediate Glx values, though not significant. Schizophrenia subjects also had higher N-acetyl aspartate (three clusters, left occipital, left frontal, right frontal), choline (two clusters, left and right frontal) and myo-inositol (one cluster, left frontal) than bipolar-I, with healthy controls having intermediate values. These increases were likely accounted for by antipsychotic medication effects in the schizophrenia subgroup for N-acetyl aspartate and choline. Likewise, creatine was increased in two clusters in treated vs. antipsychotic-naïve schizophrenia, supporting a medication effect. Conversely, the increments in Glx in right cingulate were not driven by antipsychotic medication exposure. We conclude that increments in Glx in the cingulate may be critical to the pathophysiology of schizophrenia and are consistent with the NMDA hypo-function model. This model however may be more specific to schizophrenia than to psychosis in general. Postmortem and neuromodulation schizophrenia studies focusing on right cingulate, may provide critical mechanistic and therapeutic advancements, respectively.
Collapse
Affiliation(s)
- Juan R. Bustillo
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Elizabeth G. Mayer
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Joel Upston
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, United States
| | - Thomas Jones
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Crystal Garcia
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami, Miami, FL, United States
| | - Andrew Maudsley
- Department of Radiology, University of Miami, Miami, FL, United States
| | - Mauricio Tohen
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | | | - Rhoshel Lenroot
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
29
|
Khayachi A, Ase A, Liao C, Kamesh A, Kuhlmann N, Schorova L, Chaumette B, Dion P, Alda M, Séguéla P, Rouleau G, Milnerwood A. Chronic lithium treatment alters the excitatory/ inhibitory balance of synaptic networks and reduces mGluR5-PKC signalling in mouse cortical neurons. J Psychiatry Neurosci 2021; 46:E402-E414. [PMID: 34077150 PMCID: PMC8327978 DOI: 10.1503/jpn.200185] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 01/30/2021] [Indexed: 12/20/2022] Open
Abstract
Background Bipolar disorder is characterized by cyclical alternation between mania and depression, often comorbid with psychosis and suicide. Compared with other medications, the mood stabilizer lithium is the most effective treatment for the prevention of manic and depressive episodes. However, the pathophysiology of bipolar disorder and lithium’s mode of action are yet to be fully understood. Evidence suggests a change in the balance of excitatory and inhibitory activity, favouring excitation in bipolar disorder. In the present study, we sought to establish a holistic understanding of the neuronal consequences of lithium exposure in mouse cortical neurons, and to identify underlying mechanisms of action. Methods We used a range of technical approaches to determine the effects of acute and chronic lithium treatment on mature mouse cortical neurons. We combined RNA screening and biochemical and electrophysiological approaches with confocal immunofluorescence and live-cell calcium imaging. Results We found that only chronic lithium treatment significantly reduced intracellular calcium flux, specifically by activating metabotropic glutamatergic receptor 5. This was associated with altered phosphorylation of protein kinase C and glycogen synthase kinase 3, reduced neuronal excitability and several alterations to synapse function. Consequently, lithium treatment shifts the excitatory–inhibitory balance toward inhibition. Limitations The mechanisms we identified should be validated in future by similar experiments in whole animals and human neurons. Conclusion Together, the results revealed how lithium dampens neuronal excitability and the activity of the glutamatergic network, both of which are predicted to be overactive in the manic phase of bipolar disorder. Our working model of lithium action enables the development of targeted strategies to restore the balance of overactive networks, mimicking the therapeutic benefits of lithium but with reduced toxicity.
Collapse
Affiliation(s)
- Anouar Khayachi
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Ariel Ase
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Calwing Liao
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Anusha Kamesh
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Naila Kuhlmann
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Lenka Schorova
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Boris Chaumette
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Patrick Dion
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Martin Alda
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Philippe Séguéla
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Guy Rouleau
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Austen Milnerwood
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| |
Collapse
|
30
|
Anterior cingulate cortex neurometabolites in bipolar disorder are influenced by mood state and medication: A meta-analysis of 1H-MRS studies. Eur Neuropsychopharmacol 2021; 47:62-73. [PMID: 33581932 DOI: 10.1016/j.euroneuro.2021.01.096] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
The anterior cingulate cortex (ACC), a brain region that mediates affect and cognition by connecting the frontal cortex to limbic structures, has been consistently implicated in the neurobiology of Bipolar Disorder (BD). Proton magnetic resonance spectroscopy (1H-MRS) studies have extensively compared in vivo neurometabolite levels of BD patients and healthy controls (HC) in the ACC. However, these studies have not been analyzed in a systematic review or meta-analysis and nor has the influence of mood state and medication on neurometabolites been examined in this cortical region. A systematic review and a meta-analysis of 1H-MRS studies comparing ACC neurometabolite profiles of adult BD patients and HC subjects was conducted, retrieving 27 articles published between 2000 and 2018. Overall increased ACC levels of Glx [glutamine (Gln) + glutamate)/Creatine], Gln, choline (Cho) and Cho/Creatine were found in BD compared to HC. Bipolar depression was associated with higher Cho levels, while euthymia correlated with higher glutamine (Gln) and Cho. Mood stabilizers appeared to affect ACC Glu and Gln metabolites. Increased ACC Cho observed in euthymia, depression and in medication-free groups could be considered a trait marker in BD and attributed to increased cell membrane phospholipid turnover. Overall increased ACC Glx was associated with elevated Gln levels, particularly influenced by euthymia, but no abnormality in Glu was detected. Further 1H-MRS studies, on other voxels, should assess more homogeneous (mood state-specific), larger BD samples and account for medication status using more sensitive 1H-MRS techniques.
Collapse
|
31
|
Merritt K, McGuire PK, Egerton A, Aleman A, Block W, Bloemen OJN, Borgan F, Bustillo JR, Capizzano AA, Coughlin JM, De la Fuente-Sandoval C, Demjaha A, Dempster K, Do KQ, Du F, Falkai P, Galinska-Skok B, Gallinat J, Gasparovic C, Ginestet CE, Goto N, Graff-Guerrero A, Ho BC, Howes OD, Jauhar S, Jeon P, Kato T, Kaufmann CA, Kegeles LS, Keshavan M, Kim SY, Kunugi H, Lauriello J, Liemburg EJ, Mcilwain ME, Modinos G, Mouchlianitis ED, Nakamura J, Nenadic I, Öngür D, Ota M, Palaniyappan L, Pantelis C, Plitman E, Posporelis S, Purdon SE, Reichenbach JR, Renshaw PF, Russell BR, Sawa A, Schaefer M, Shungu DC, Smesny S, Stanley JA, Stone JM, Szulc A, Taylor R, Thakkar K, Théberge J, Tibbo PG, van Amelsvoort T, Walecki J, Williamson PC, Wood SJ, Xin L, Yamasue H. Association of Age, Antipsychotic Medication, and Symptom Severity in Schizophrenia With Proton Magnetic Resonance Spectroscopy Brain Glutamate Level: A Mega-analysis of Individual Participant-Level Data. JAMA Psychiatry 2021; 78:667-681. [PMID: 33881460 PMCID: PMC8060889 DOI: 10.1001/jamapsychiatry.2021.0380] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Importance Proton magnetic resonance spectroscopy (1H-MRS) studies indicate that altered brain glutamatergic function may be associated with the pathophysiology of schizophrenia and the response to antipsychotic treatment. However, the association of altered glutamatergic function with clinical and demographic factors is unclear. Objective To assess the associations of age, symptom severity, level of functioning, and antipsychotic treatment with brain glutamatergic metabolites. Data Sources The MEDLINE database was searched to identify journal articles published between January 1, 1980, and June 3, 2020, using the following search terms: MRS or magnetic resonance spectroscopy and (1) schizophrenia or (2) psychosis or (3) UHR or (4) ARMS or (5) ultra-high risk or (6) clinical high risk or (7) genetic high risk or (8) prodrome* or (9) schizoaffective. Authors of 114 1H-MRS studies measuring glutamate (Glu) levels in patients with schizophrenia were contacted between January 2014 and June 2020 and asked to provide individual participant data. Study Selection In total, 45 1H-MRS studies contributed data. Data Extraction and Synthesis Associations of Glu, Glu plus glutamine (Glx), or total creatine plus phosphocreatine levels with age, antipsychotic medication dose, symptom severity, and functioning were assessed using linear mixed models, with study as a random factor. Main Outcomes and Measures Glu, Glx, and Cr values in the medial frontal cortex (MFC) and medial temporal lobe (MTL). Results In total, 42 studies were included, with data for 1251 patients with schizophrenia (mean [SD] age, 30.3 [10.4] years) and 1197 healthy volunteers (mean [SD] age, 27.5 [8.8] years). The MFC Glu (F1,1211.9 = 4.311, P = .04) and Glx (F1,1079.2 = 5.287, P = .02) levels were lower in patients than in healthy volunteers, and although creatine levels appeared lower in patients, the difference was not significant (F1,1395.9 = 3.622, P = .06). In both patients and volunteers, the MFC Glu level was negatively associated with age (Glu to Cr ratio, F1,1522.4 = 47.533, P < .001; cerebrospinal fluid-corrected Glu, F1,1216.7 = 5.610, P = .02), showing a 0.2-unit reduction per decade. In patients, antipsychotic dose (in chlorpromazine equivalents) was negatively associated with MFC Glu (estimate, 0.10 reduction per 100 mg; SE, 0.03) and MFC Glx (estimate, -0.11; SE, 0.04) levels. The MFC Glu to Cr ratio was positively associated with total symptom severity (estimate, 0.01 per 10 points; SE, 0.005) and positive symptom severity (estimate, 0.04; SE, 0.02) and was negatively associated with level of global functioning (estimate, 0.04; SE, 0.01). In the MTL, the Glx to Cr ratio was positively associated with total symptom severity (estimate, 0.06; SE, 0.03), negative symptoms (estimate, 0.2; SE, 0.07), and worse Clinical Global Impression score (estimate, 0.2 per point; SE, 0.06). The MFC creatine level increased with age (estimate, 0.2; SE, 0.05) but was not associated with either symptom severity or antipsychotic medication dose. Conclusions and Relevance Findings from this mega-analysis suggest that lower brain Glu levels in patients with schizophrenia may be associated with antipsychotic medication exposure rather than with greater age-related decline. Higher brain Glu levels may act as a biomarker of illness severity in schizophrenia.
Collapse
Affiliation(s)
- Kate Merritt
- Division of Psychiatry, Institute of Mental Health, UCL, London, United Kingdom
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Philip K McGuire
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Alice Egerton
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - André Aleman
- Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, China
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wolfgang Block
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Oswald J N Bloemen
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Research, University of New Mexico School of Medicine, Albuquerque
| | - Aristides A Capizzano
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor
| | - Jennifer Marie Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Camilo De la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Arsime Demjaha
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Kara Dempster
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Peter Falkai
- Department of Psychiatry, University Hospital, LMU Munich, Munich, Germany
| | - Beata Galinska-Skok
- Department of Psychiatry, Medical University of Bialystok, Bialystok, Poland
| | - Jurgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Germany
| | | | - Cedric E Ginestet
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience King's College London, London, United Kingdom
| | - Naoki Goto
- Department of Psychiatry, Kokura Gamo Hospital, Kitakyushu, Fukuoka, Japan
| | - Ariel Graff-Guerrero
- Multimodal Neuroimaging Schizophrenia Group, Research Imaging Centre, Geriatric Mental Health Program at Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Beng Choon Ho
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City
| | - Oliver D Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Sameer Jauhar
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Peter Jeon
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Charles A Kaufmann
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York
| | - Lawrence S Kegeles
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York
| | | | | | - Hiroshi Kunugi
- National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - John Lauriello
- Jefferson Health-Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Edith Jantine Liemburg
- Rob Giel Research Center, Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
| | - Meghan E Mcilwain
- School of Pharmacy, University of Auckland, Grafton, Auckland, New Zealand
| | - Gemma Modinos
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Elias D Mouchlianitis
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Jun Nakamura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Germany
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
- Editor, JAMA Psychiatry
| | - Miho Ota
- National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Lena Palaniyappan
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Eric Plitman
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Sotirios Posporelis
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- South London and Maudsley, Bethlem Royal Hospital, Beckenham, United Kingdom
| | - Scot E Purdon
- Neuropsychology Department, Alberta Hospital Edmonton, Edmonton, Alberta, Canada
- Edmonton Early Intervention in Psychosis Clinic, Edmonton, Alberta, Canada
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City
| | - Bruce R Russell
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
- Department of Mental Health, Johns Hopkins University, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Martin Schaefer
- Department of Psychiatry, Psychotherapy, Psychosomatics and Addiction Medicine, Kliniken Essen-Mitte, Essen, Germany
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jeffrey A Stanley
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - James M Stone
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Poland
| | - Reggie Taylor
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- Lawson Health Research Institute, London, Ontario, Canada
| | - Katy Thakkar
- Department of Psychology, Michigan State University, East Lansing
- Division of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing
| | - Jean Théberge
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Department of Psychiatry, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | | | - Peter C Williamson
- Department of Psychiatry, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Stephen James Wood
- Orygen, Melbourne, Australia
- Institute for Mental Health, University of Birmingham, Edgbaston, United Kingdom
- Centre for Youth Mental Health, University of Melbourne, Australia
| | - Lijing Xin
- Animal Imaging and Technology Core, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
32
|
Özakman S, Gören MZ, Nurten A, Tekin N, Kalaycı R, Enginar N. Effects of tamoxifen and glutamate and glutamine levels in brain regions in repeated sleep deprivation-induced mania model in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:619-629. [PMID: 33104849 DOI: 10.1007/s00210-020-02001-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Protein kinase C inhibitor tamoxifen reduces symptoms of acute mania in bipolar patients and mania-like behaviors in animals. Memory impairment and altered levels of glutamate and glutamate/glutamine ratio have been reported in mania. Tamoxifen suppresses glutamate release which plays an important role in memory. The present study evaluated whether tamoxifen's activity participates in its antimanic efficacy in repeated sleep deprivation mania model. Mice were divided into control and 24-h sleep-deprived groups and were treated with vehicle or 1 mg/kg tamoxifen twice daily for 8 days. Sleep deprivation was repeated three times at intervals of 2 days. Square crossing and rearing were recorded as measures of locomotor activity. Memory and risk taking behavior were evaluated using novel object recognition and staircase tests, respectively. Glutamate and glutamine levels were measured in the frontal cortex and hippocampus. Behavioral tests were conducted 24 h after the second or immediately after the third sleep deprivations. Sleep deprivation increased locomotor activity and risk taking. Glutamate and glutamine levels and glutamate/glutamine ratio in the frontal cortex and hippocampus were unaffected. Locomotor hyperactivity was prevented by tamoxifen treatment. No change in the recognition index suggested lack of memory impairment in the model. These findings confirm the relevance of repeated sleep deprivation as a mania model and tamoxifen as an antimanic agent. However, future research is needed to further address lack of memory impairment in the model and lack of glutamatergic influence on the model and antimanic effect of tamoxifen.
Collapse
Affiliation(s)
- Selda Özakman
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - M Zafer Gören
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Nurdan Tekin
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Rivaze Kalaycı
- Department of Laboratory Animals Science, Istanbul University Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Nurhan Enginar
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
33
|
Determinants of Schizophrenia Endophenotypes Based on Neuroimaging and Biochemical Parameters. Biomedicines 2021; 9:biomedicines9040372. [PMID: 33916324 PMCID: PMC8066217 DOI: 10.3390/biomedicines9040372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Despite extensive research, there is no convincing evidence of a reliable diagnostic biomarker for schizophrenia beyond clinical observation. Disorders of glutamatergic neurotransmission associated with N-methyl-D-aspartate (NMDA) receptor insufficiency, neuroinflammation, and redox dysregulation are the principal common mechanism linking changes in the periphery with the brain, ultimately contributing to the emergence of negative symptoms of schizophrenia that underlie differential diagnosis. The aim of the study was to evaluate the influence of these systems via peripheral and cerebral biochemical indices in relation to the patient's clinical condition. Using neuroimaging diagnostics, we were able to define endophenotypes of schizophrenia based on objective laboratory data that form the basis of a personalized approach to diagnosis and treatment. The two distinguished endophenotypes differed in terms of the quality of life, specific schizophrenia symptoms, and glutamatergic neurotransmission metabolites in the anterior cingulate gyrus. Our results, as well as further studies of the excitatory or inhibitory balance of microcircuits, relating the redox systems on the periphery with the distant regions of the brain might allow for predicting potential biomarkers of neuropsychiatric diseases, including schizophrenia. To the best of our knowledge, our study is the first to identify an objective molecular biomarker of schizophrenia outcome.
Collapse
|
34
|
Mapping Disease Course Across the Mood Disorder Spectrum Through a Research Domain Criteria Framework. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:706-715. [PMID: 33508498 DOI: 10.1016/j.bpsc.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/25/2020] [Accepted: 01/07/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND The National Institute of Mental Health Research Domain Criteria (RDoC) initiative aims to establish a neurobiologically valid framework for classifying mental illness. Here, we examined whether the RDoC construct of reward learning and three aspects of its underlying neurocircuitry predicted symptom trajectories in individuals with mood pathology. METHODS Aligning with the RDoC approach, we recruited individuals (n = 80 with mood disorders [58 unipolar and 22 bipolar] and n = 32 control subjects; 63.4% female) based on their performance on a laboratory-based reward learning task rather than clinical diagnosis. We then assessed 1) anterior cingulate cortex prediction errors using electroencephalography, 2) striatal reward prediction errors using functional magnetic resonance imaging, and 3) medial prefrontal cortex glutamatergic function (mPFC Gln/Glu) using 1H magnetic resonance spectroscopy. Severity of anhedonia, (hypo)mania, and impulsivity were measured at baseline, 3 months, and 6 months. RESULTS Greater homogeneity in aspects of brain function (mPFC Gln/Glu) was observed when individuals were classified according to reward learning ability rather than diagnosis. Furthermore, mPFC Gln/Glu levels predicted more severe (hypo)manic symptoms cross-sectionally, predicted worsening (hypo)manic symptoms longitudinally, and explained greater variance in future (hypo)manic symptoms than diagnostic information. However, rather than being transdiagnostic, this effect was specific to individuals with bipolar disorder. Prediction error indices were unrelated to symptom severity. CONCLUSIONS Although findings are preliminary and require replication, they suggest that heightened mPFC Gln/Glu warrants further consideration as a predictor of future (hypo)mania. Importantly, this work highlights the value of an RDoC approach that works in tandem with, rather than independent of, traditional diagnostic frameworks.
Collapse
|
35
|
Proton Magnetic Resonance Spectroscopy of N-acetyl Aspartate in Chronic Schizophrenia, First Episode of Psychosis and High-Risk of Psychosis: A Systematic Review and Meta-Analysis. Neurosci Biobehav Rev 2020; 119:255-267. [PMID: 33068555 DOI: 10.1016/j.neubiorev.2020.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/01/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
N-acetyl-aspartate (NAA) is a readily measured marker of neuronal metabolism. Previous analyses in schizophrenia have shown NAA levels are low in frontal, temporal and thalamic regions, but may be underpowered to detect effects in other regions, in high-risk states and in first episode psychosis. We searched for magnetic resonance spectroscopy studies comparing NAA in chronic schizophrenia, first episode psychosis and high risk of psychosis to controls. 182 studies were included and meta-analysed using a random-effects model for each region and illness stage. NAA levels were significantly lower than controls in the frontal lobe [Hedge's g = -0.36, p < 0.001], hippocampus [-0.52, p < 0.001], temporal lobe [-0.35, p = 0.031], thalamus [-0.32, p = 0.012] and parietal lobe [-0.25, p = 0.028] in chronic schizophrenia, and lower than controls in the frontal lobe [-0.26, p = 0.002], anterior cingulate cortex [-0.24, p = 0.016] and thalamus [-0.28, p = 0.028] in first episode psychosis. NAA was lower in high-risk of psychosis in the hippocampus [-0.20, p = 0.049]. In schizophrenia, NAA alterations appear to begin in hippocampus, frontal cortex and thalamus, and extend later to many other regions.
Collapse
|
36
|
Kavalali ET, Monteggia LM. Targeting Homeostatic Synaptic Plasticity for Treatment of Mood Disorders. Neuron 2020; 106:715-726. [PMID: 32497508 DOI: 10.1016/j.neuron.2020.05.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/23/2023]
Abstract
Ketamine exerts rapid antidepressant action in depressed and treatment-resistant depressed patients within hours. At the same time, ketamine elicits a unique form of functional synaptic plasticity that shares several attributes and molecular mechanisms with well-characterized forms of homeostatic synaptic scaling. Lithium is a widely used mood stabilizer also proposed to act via synaptic scaling for its antimanic effects. Several studies to date have identified specific forms of homeostatic synaptic plasticity that are elicited by these drugs used to treat neuropsychiatric disorders. In the last two decades, extensive work on homeostatic synaptic plasticity mechanisms have shown that they diverge from classical synaptic plasticity mechanisms that process and store information and thus present a novel avenue for synaptic regulation with limited direct interference with cognitive processes. In this review, we discuss the intersection of the findings from neuropsychiatric treatments and homeostatic plasticity studies to highlight a potentially wider paradigm for treatment advance.
Collapse
Affiliation(s)
- Ege T Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA.
| | - Lisa M Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA.
| |
Collapse
|
37
|
Dysfunctional d-aspartate metabolism in BTBR mouse model of idiopathic autism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140531. [PMID: 32853769 DOI: 10.1016/j.bbapap.2020.140531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASD) comprise a heterogeneous group of neurodevelopmental conditions characterized by impairment in social interaction, deviance in communication, and repetitive behaviors. Dysfunctional ionotropic NMDA and AMPA receptors, and metabotropic glutamate receptor 5 activity at excitatory synapses has been recently linked to multiple forms of ASD. Despite emerging evidence showing that d-aspartate and d-serine are important neuromodulators of glutamatergic transmission, no systematic investigation on the occurrence of these D-amino acids in preclinical ASD models has been carried out. METHODS Through HPLC and qPCR analyses we investigated d-aspartate and d-serine metabolism in the brain and serum of four ASD mouse models. These include BTBR mice, an idiopathic model of ASD, and Cntnap2-/-, Shank3-/-, and 16p11.2+/- mice, three established genetic mouse lines recapitulating high confidence ASD-associated mutations. RESULTS Biochemical and gene expression mapping in Cntnap2-/-, Shank3-/-, and 16p11.2+/- failed to find gross cerebral and serum alterations in d-aspartate and d-serine metabolism. Conversely, we found a striking and stereoselective increased d-aspartate content in the prefrontal cortex, hippocampus and serum of inbred BTBR mice. Consistent with biochemical assessments, in the same brain areas we also found a robust reduction in mRNA levels of d-aspartate oxidase, encoding the enzyme responsible for d-aspartate catabolism. CONCLUSIONS Our results demonstrated the presence of disrupted d-aspartate metabolism in a widely used animal model of idiopathic ASD. GENERAL SIGNIFICANCE Overall, this work calls for a deeper investigation of D-amino acids in the etiopathology of ASD and related developmental disorders.
Collapse
|
38
|
Corcoran M, Hawkins EL, O'Hora D, Whalley HC, Hall J, Lawrie SM, Dauvermann MR. Are working memory and glutamate concentrations involved in early-life stress and severity of psychosis? Brain Behav 2020; 10:e01616. [PMID: 32385970 PMCID: PMC7303391 DOI: 10.1002/brb3.1616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/18/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Occurrences of early-life stress (ELS) are associated with the severity of psychotic symptoms and working memory (WM) deficits in patients with psychosis (PSY). This study investigated potential mediation roles of WM behavioral performance and glutamate concentrations in prefrontal brain regions on the association between ELS and psychotic symptom severity in PSY. METHOD Forty-seven patients with PSY (established schizophrenia, n = 30; bipolar disorder, n = 17) completed measures of psychotic symptom severity. In addition, data on ELS and WM performance were collected in both patients with PSY and healthy controls (HC; n = 41). Resting-state glutamate concentrations in the bilateral dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) were also assessed with proton magnetic resonance spectroscopy for both PSY and HC groups. t tests, analyses of variance, and regression analyses were utilized. RESULTS Participants with PSY reported significantly more ELS occurrences and showed poorer WM performance than HC. Furthermore, individuals with PSY displayed lower glutamate concentrations in the left DLPFC than HC. Neither ELS nor WM performance were predictive of severity of psychotic symptoms in participants with PSY. However, we found a significant negative correlation between glutamate concentrations in the left DLPFC and ELS occurrence in HC only. CONCLUSION In individuals with PSY, the current study found no evidence that the association between ELS and psychotic symptoms is mediated by WM performance or prefrontal glutamate concentrations. In HC, the association between ELS experience and glutamate concentrations may indicate a neurometabolite effect of ELS that is independent of an illness effect in psychosis.
Collapse
Affiliation(s)
- Mark Corcoran
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Emma L Hawkins
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Denis O'Hora
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | | | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | | | - Maria R Dauvermann
- School of Psychology, National University of Ireland Galway, Galway, Ireland.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
39
|
Mansur RB, Lee Y, McIntyre RS, Brietzke E. What is bipolar disorder? A disease model of dysregulated energy expenditure. Neurosci Biobehav Rev 2020; 113:529-545. [PMID: 32305381 DOI: 10.1016/j.neubiorev.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 12/24/2022]
Abstract
Advances in the understanding and management of bipolar disorder (BD) have been slow to emerge. Despite notable recent developments in neurosciences, our conceptualization of the nature of this mental disorder has not meaningfully progressed. One of the key reasons for this scenario is the continuing lack of a comprehensive disease model. Within the increasing complexity of modern research methods, there is a clear need for an overarching theoretical framework, in which findings are assimilated and predictions are generated. In this review and hypothesis article, we propose such a framework, one in which dysregulated energy expenditure is a primary, sufficient cause for BD. Our proposed model is centered on the disruption of the molecular and cellular network regulating energy production and expenditure, as well its potential secondary adaptations and compensatory mechanisms. We also focus on the putative longitudinal progression of this pathological process, considering its most likely periods for onset, such as critical periods that challenges energy homeostasis (e.g. neurodevelopment, social isolation), and the resulting short and long-term phenotypical manifestations.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Kingston General Hospital, Providence Care Hospital, Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| |
Collapse
|
40
|
Singh S, Sangam SR, Senthilkumar R. Regulation of Dietary Amino Acids and Voltage-Gated Calcium Channels in Autism Spectrum Disorder. ADVANCES IN NEUROBIOLOGY 2020; 24:647-660. [DOI: 10.1007/978-3-030-30402-7_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
41
|
Wada M, Kurose S, Miyazaki T, Nakajima S, Masuda F, Mimura Y, Nishida H, Ogyu K, Tsugawa S, Mashima Y, Plitman E, Chakravarty MM, Mimura M, Noda Y. The P300 event-related potential in bipolar disorder: A systematic review and meta-analysis. J Affect Disord 2019; 256:234-249. [PMID: 31200163 DOI: 10.1016/j.jad.2019.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/21/2019] [Accepted: 06/03/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Neurophysiology including P300, that is a typical index of event-related potential, may be potential biomarkers for bipolar disorder (BD) and it can be useful towards elucidating the pathophysiology of BD. However, previous findings from P300 studies were inconsistent due to the heterogeneity of research methods, which make it difficult to understand the neurobiological significance of them. The aim of this study is to conduct a meta-analysis on P300 in patients with BD. METHOD A literature search was conducted using PubMed to identify studies that compared P300 event-related potential between patients with BD and healthy controls (HCs). We analyzed P300 indices such as amplitude and latency of P3a and P3b in auditory or visual paradigms. Further, moderator analyses were conducted to investigate the influence of patient characteristics (i.e. history of psychosis, diagnostic subcategories [BD-I/BD-II], and phase of illness [euthymic, manic, or depressive]) on P300 indices. RESULT Out of 124 initial records, we included 30 articles (BD: N = 1331; HCs: N = 1818). Patients with BD showed reduced P3a and P3b amplitude in both paradigms and delayed P3b latency in auditory paradigms compared to HCs. There was no influence on the history of psychosis, diagnostic subcategories, or phase of illness on P300 indices. LIMITATION The difference in medication use was difficult to control and it may affect the results. CONCLUSION This meta-analysis provides evidence for P300 abnormalities in patients with BD compared to HCs. Our results suggest that P300 may be trait markers rather than state markers in this illness.
Collapse
Affiliation(s)
- Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Shin Kurose
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Takahiro Miyazaki
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Fumi Masuda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hana Nishida
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Kamiyu Ogyu
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yuuki Mashima
- Center Hospital of the National Center for Global Health and Medicine, Japan
| | - Eric Plitman
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University Biological and Biomedical Engineering, McGill University, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
42
|
Hwang J, DeLisi LE, Öngür D, Riley C, Zuo C, Shi X, Sung YH, Kondo D, Kim TS, Villafuerte R, Smedberg D, Yurgelun-Todd D, Renshaw PF. Cerebral bioenergetic differences measured by phosphorus-31 magnetic resonance spectroscopy between bipolar disorder and healthy subjects living in two different regions suggesting possible effects of altitude. Psychiatry Clin Neurosci 2019; 73:581-589. [PMID: 31125152 PMCID: PMC6771782 DOI: 10.1111/pcn.12893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022]
Abstract
AIM Increased oxidative stress in cerebral mitochondria may follow exposure to the systemic hypobaric hypoxia associated with residing at higher altitudes. Because mitochondrial dysfunction is implicated in bipolar disorder (BD) pathophysiology, this may impact the cerebral bioenergetics in BD. In this study, we evaluated the cerebral bioenergetics of BD and healthy control (HC) subjects at two sites, located at sea level and at moderate altitude. METHODS Forty-three veterans with BD and 33 HC veterans were recruited in Boston (n = 22) and Salt Lake City (SLC; n = 54). Levels of phosphocreatine, β nucleoside triphosphate (βNTP), inorganic phosphate, and pH over total phosphate (TP) were measured using phosphorus-31 magnetic resonance spectroscopy in the following brain regions: anterior cingulate cortex and posterior occipital cortex, as well as bilateral prefrontal and occipitoparietal (OP) white matter (WM). RESULTS A significant main effect of site was found in βNTP/TP (Boston > SLC) and phosphocreatine/TP (Boston < SLC) in most cortical and WM regions, and inorganic phosphate/TP (Boston < SLC) in OP regions. A main effect analysis of BD diagnosis demonstrated a lower pH in posterior occipital cortex and right OP WM and a lower βNTP/TP in right prefrontal WM in BD subjects, compared to HC subjects. CONCLUSION The study showed that there were cerebral bioenergetic differences in both BD and HC veteran participants at two different sites, which may be partly explained by altitude difference. Future studies are needed to replicate these results in order to elucidate the dysfunctional mitochondrial changes that occur in response to hypobaric hypoxia.
Collapse
Affiliation(s)
- Jaeuk Hwang
- Department of Psychiatry, University of Utah, Salt Lake City, USA.,Department of Psychiatry, Soonchunhyang University Hospital, Seoul, South Korea
| | - Lynn E DeLisi
- US Department of Veterans Affairs Boston Healthcare System, Brockton, USA
| | - Dost Öngür
- Brain Imaging Center, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, USA
| | - Colin Riley
- Department of Psychiatry, University of Utah, Salt Lake City, USA
| | - Chun Zuo
- Brain Imaging Center, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, USA
| | - Xianfeng Shi
- Department of Psychiatry, University of Utah, Salt Lake City, USA
| | - Young-Hoon Sung
- Department of Psychiatry, University of Utah, Salt Lake City, USA
| | - Douglas Kondo
- Department of Psychiatry, University of Utah, Salt Lake City, USA.,Rocky Mountain Mental Illness Research, Education and Clinical Center, US Department of Veterans Affairs Healthcare System, Salt Lake City, USA
| | - Tae-Suk Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Rosemond Villafuerte
- Brain Imaging Center, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, USA
| | - Diane Smedberg
- US Department of Veterans Affairs Boston Healthcare System, Brockton, USA
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah, Salt Lake City, USA.,Rocky Mountain Mental Illness Research, Education and Clinical Center, US Department of Veterans Affairs Healthcare System, Salt Lake City, USA
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, USA.,Rocky Mountain Mental Illness Research, Education and Clinical Center, US Department of Veterans Affairs Healthcare System, Salt Lake City, USA
| |
Collapse
|
43
|
Mellen EJ, Harper DG, Ravichandran C, Jensen E, Silveri M, Forester BP. Lamotrigine Therapy and Biomarkers of Cerebral Energy Metabolism in Older Age Bipolar Depression. Am J Geriatr Psychiatry 2019; 27:783-793. [PMID: 31000323 DOI: 10.1016/j.jagp.2019.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study compared brain energy metabolism, as measured by cerebral concentrations of glutamate (Glu), glutamine (Gln), and N-acetyl aspartate (NAA), in older age bipolar depression (OABD) to that of psychiatrically healthy comparison subjects using proton (1H) magnetic resonance spectroscopy imaging at 4-Tesla. Metabolite levels were assessed in OABD subjects before and after 8 weeks of lamotrigine therapy with the goal of determining relationships between cerebral energy metabolism, depression symptom severity, and changes in depression symptom response. METHODS Individuals (n = 21, mean age: 62.0 ± 5.9 years) with bipolar disorder, current episode depressed, and a healthy comparison group (n = 14, mean age: 67.5 ± 8.8 years) were selected. Participants with bipolar disorder, current episode depressed, were treated in open label fashion with lamotrigine monotherapy for 8 weeks. All subjects were scanned with 1H magnetic resonance spectroscopy at 4T at baseline and again after 8 weeks to assess levels of cerebral metabolites in the anterior cingulate cortex and parieto-occipital cortex. Metabolite levels were examined as ratios relative to creatine (Cr). Response to 8 weeks of lamotrigine treatment in the bipolar disorder, current episode depressed group, was assessed as a continuous measure on the Montgomery-Asberg Depression Rating Scale. RESULTS NAA/Cr ratio in OABD was significantly lower by 14% (95% confidence interval: [1%, 26%]) than in comparison subjects at baseline. However, there were no associations between NAA/Cr, Glu/Cr, or Gln/Cr and either depression severity or lamotrigine treatment. CONCLUSION Group differences in NAA suggest evidence for a deficit in cerebral energy metabolism in OABD.
Collapse
Affiliation(s)
- Emily J Mellen
- McLean Hospital Division of Geriatric Psychiatry (EJM, DGH, BPF), Belmont, MA
| | - David G Harper
- McLean Hospital Division of Geriatric Psychiatry (EJM, DGH, BPF), Belmont, MA; Department of Psychiatry (DGH, CR, EJ, MS, BPF), Harvard Medical School, Boston
| | - Caitlin Ravichandran
- Department of Psychiatry (DGH, CR, EJ, MS, BPF), Harvard Medical School, Boston; Program for Neuropsychiatric Research (CR), McLean Hospital, Belmont, MA; Lurie Center for Autism (CR), Massachusetts General Hospital, Lexington, MA
| | - Eric Jensen
- Department of Psychiatry (DGH, CR, EJ, MS, BPF), Harvard Medical School, Boston; Brain Imaging Center (EJ), McLean Hospital, Belmont, MA
| | - Marisa Silveri
- Department of Psychiatry (DGH, CR, EJ, MS, BPF), Harvard Medical School, Boston; Neurodevelopmental Laboratory on Addictions and Mental Health (MS), McLean Hospital, Belmont, MA
| | - Brent P Forester
- McLean Hospital Division of Geriatric Psychiatry (EJM, DGH, BPF), Belmont, MA; Department of Psychiatry (DGH, CR, EJ, MS, BPF), Harvard Medical School, Boston.
| |
Collapse
|
44
|
Smaragdi A, Chavez S, Lobaugh NJ, Meyer JH, Kolla NJ. Differential levels of prefrontal cortex glutamate+glutamine in adults with antisocial personality disorder and bipolar disorder: A proton magnetic resonance spectroscopy study. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:250-255. [PMID: 30959086 DOI: 10.1016/j.pnpbp.2019.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 03/20/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023]
Abstract
As the main excitatory neurotransmitter in the central nervous system, glutamate, as measured in combination with glutamine (Glx), is implicated in several psychopathologies when levels are aberrant. One illness that shows heightened Glx levels is bipolar disorder (BD), an illness characterized by high impulsivity. In addition, although animal studies have reported elevated levels of Glx in aggressive and impulsive phenotypes, no study, to our knowledge, has reported Glx in the human cortex in relation to aggression. Here, we addressed the question of whether elevated levels of Glx would be present in patients with BD and antisocial personality disorder (ASPD), a condition associated with aggression and, like BD, also presents high impulsivity. We recruited individuals with ASPD (n = 18), individuals with BD (n = 16), and a healthy control group (n = 24). We used proton magnetic resonance spectroscopy to measure relative neurometabolite concentrations in the left dorsolateral prefrontal cortex (dlPFC) and supra-genual anterior cingulate cortex (ACC), two brain regions associated with impulsivity and behavior control. We found significantly elevated levels of Glx in the ASPD group relative to the BD and healthy control groups in the dlPFC (p = .014), and a positive correlation between Glx levels and aggression in the dlPFC in the ASPD group alone (r = .59, p = .026). These findings suggest a link between aggression in ASPD and Glx levels.
Collapse
Affiliation(s)
- Areti Smaragdi
- Research Imaging Centre, Campbell Family Mental Health Research Institute, and Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Violence Prevention Neurobiological Research Unit, Forensic Psychiatry, CAMH, Toronto, ON, Canada; Child Development Institute, Toronto, ON, Canada
| | - Sofia Chavez
- Research Imaging Centre, Campbell Family Mental Health Research Institute, and Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Faculty of Medicine, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Nancy J Lobaugh
- Research Imaging Centre, Campbell Family Mental Health Research Institute, and Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Faculty of Medicine, Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Jeffrey H Meyer
- Research Imaging Centre, Campbell Family Mental Health Research Institute, and Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Faculty of Medicine, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Nathan J Kolla
- Research Imaging Centre, Campbell Family Mental Health Research Institute, and Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Violence Prevention Neurobiological Research Unit, Forensic Psychiatry, CAMH, Toronto, ON, Canada; Faculty of Medicine, Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Faculty of Arts and Science, Department of Criminology and Sociological Studies, University of Toronto, Toronto, ON, Canada; Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada.
| |
Collapse
|
45
|
Bustillo JR, Jones T, Qualls C, Chavez L, Lin D, Lenroot RK, Gasparovic C. Proton magnetic resonance spectroscopic imaging of gray and white matter in bipolar-I and schizophrenia. J Affect Disord 2019; 246:745-753. [PMID: 30623820 DOI: 10.1016/j.jad.2018.12.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/19/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Glutamine plus glutamate (Glx), as well as N-acetylaspartate compounds, (NAAc), a marker of neuronal viability, are quantified with proton magnetic resonance spectroscopy (1H-MRS) and have been reported altered in psychotic disorders. However, few studies have compared these neurometabolites in bipolar disorder and schizophrenia. METHODS Used 1H-MRS imaging from an axial supraventricular slab of gray matter (GM; medial-frontal and medial-parietal) and white matter (WM; bilateral-frontal and bilateral-parietal) voxels. Bipolar-I with history of psychosis (N = 43), schizophrenia (N = 41) and healthy controls (HC; N = 45) were studied (age range: 17-65). RESULTS Amongst younger (age ≤40 years-median split) bipolar-I vs HC subjects Glx was increased (p < 0.001), while NAAc was reduced in WM (p < 0.001). In GM, NAAc (p < 0.001) and myo-inositol (p = 0.002) were reduced. Amongst older bipolar-I (vs HC) in WM regions we found reductions in: NAAc (p < 0.001), glycerophospho-choline + phospho-choline (p < 0.001), creatine + phospho-creatine (p < 0.001) and myo-inositol (p < 0.001); in GM only Glx was increased (p < 0.005). Contrasts between bipolar-I and schizophrenia produced fewer results: amongst younger subjects, reduced NAAc (p < 0.001) in WM and lower myo-inositol in GM (p = 0.04) in bipolar-I vs schizophrenia. In the older patients, bipolar-I had lower GM NAAc (p = 0.009) than schizophrenia. LIMITATIONS First, differential exposure to antipsychotic and mood stabilizing medication across the groups. Second, differences in substance use histories among the groups. Third, neglect of peripheral and ventral cortical and subcortical regions. Finally, limited power to detect bipolar/schizophrenia differences. CONCLUSIONS Chronically-treated bipolar-I have increased Glx and reduced NAAc, suggestive of neuronal dysfunction. The NAAc reductions are more severe in bipolar-I than in schizophrenia patients.
Collapse
Affiliation(s)
- Juan R Bustillo
- Department of Psychiatry, University of New Mexico, Albuquerque, United States; Department of Neurosciences, University of New Mexico, Albuquerque, United States.
| | - Thomas Jones
- Department of Psychiatry, University of New Mexico, Albuquerque, United States
| | - Clifford Qualls
- Department of Mathematics & Statistics, University of New Mexico, Albuquerque, United States
| | - Leslie Chavez
- Department of Psychiatry, University of New Mexico, Albuquerque, United States
| | - Denise Lin
- Department of Psychiatry, University of New Mexico, Albuquerque, United States
| | - Rhoshel K Lenroot
- Department of Psychiatry, University of New Mexico, Albuquerque, United States
| | | |
Collapse
|
46
|
Kraal AZ, Arvanitis NR, Jaeger AP, Ellingrod VL. Could Dietary Glutamate Play a Role in Psychiatric Distress? Neuropsychobiology 2019; 79:13-19. [PMID: 30699435 PMCID: PMC6667320 DOI: 10.1159/000496294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
Glutamate is an amino acid that functions as an excitatory neurotransmitter. It has also been associated with somatic and psychiatric distress and is implicated in the pathophysiology of psychiatric disorders such as schizophrenia. Ingestion of dietary glutamate, such as monosodium glutamate (MSG), has been mechanistically linked with greater distress among patients with chronic pain conditions, though findings have been equivocal. Preliminary research suggests that an MSG-restricted diet confers beneficial effects on somatic symptoms and well-being for some individuals with chronic pain conditions. In addition to associations with somatic distress, glutamate has been associated with the onset and progression of psychiatric symptoms. Thus, the role of dietary glutamate in psychiatric distress represents an underdeveloped and potentially important area for future research aimed at clarifying pathophysiological mechanisms and identifying targets for dietary intervention in psychiatric illnesses.
Collapse
Affiliation(s)
- A. Zarina Kraal
- University of Michigan, Department of Psychology, Ann Arbor, MI, USA,University of Michigan, College of Pharmacy, Ann Arbor, MI, USA
| | | | | | - Vicki L Ellingrod
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA, .,College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA,
| |
Collapse
|
47
|
Choline Compounds of the Frontal Lobe and Temporal Glutamatergic System in Bipolar and Schizophrenia Proton Magnetic Resonance Spectroscopy Study. DISEASE MARKERS 2019; 2018:3654894. [PMID: 30595760 PMCID: PMC6286772 DOI: 10.1155/2018/3654894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
Purpose Modern neuroimaging techniques allow investigating brain structures and substances involved in the pathophysiology of mental disorders, trying to find new markers of these disorders. To better understanding of the pathophysiology and differential diagnosis of schizophrenia and bipolar disorder, this study was conducted to assess the neurochemical alterations in the frontal and temporal lobes in hospitalized patients with schizophrenia and bipolar disorder. Methods Twenty-one subjects with schizophrenia (paranoid and differentiated types), 16 subjects with bipolar I disorder (manic, depressive, and mixed episode), and 20 healthy subjects were studied. Magnetic resonance (MR) imaging and proton resonance magnetic spectroscopy (1H MRS) were performed on a 1.5 T scanner. Voxels of 8 cm3 were positioned in the left frontal and left temporal lobes. Results Glx/H2O (GABA, glutamine, and glutamate/nonsuppressed water signal) ratios were significantly increased in the left temporal lobe in schizophrenia, but not in bipolar disorder, compared with controls. Cho/H2O (choline/nonsuppressed water signal) ratios in the left frontal lobe had a tendency to increase in bipolar disorder and schizophrenia, relative to controls. A lower temporal lobe NAA/H2O ratio in mixed than in manic and depressive episode of bipolar patients was also found. No other significant differences were found among three studied groups as regards NAA, Cr, and mI ratios. Conclusions Our results partially confirm the role of a glutamatergic system in schizophrenia, however, only in a temporal lobe. We also point to the importance of the choline-containing compounds (marker of cellular density) in the frontal lobe of patients suffering from bipolar disorder and schizophrenia. We also found the deleterious effect of mixed bipolar episode on the integrity and functioning of the temporal lobe. Glutamatergic left temporal spectroscopic changes may potentially help in differential diagnosis of schizophrenia from bipolar disorder.
Collapse
|
48
|
Soeiro-de-Souza MG, Otaduy MCG, Machado-Vieira R, Moreno RA, Nery FG, Leite C, Lafer B. Lithium-associated anterior cingulate neurometabolic profile in euthymic Bipolar I disorder: A 1H-MRS study. J Affect Disord 2018; 241:192-199. [PMID: 30130684 DOI: 10.1016/j.jad.2018.08.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 01/28/2023]
Abstract
OBJECTIVE In the treatment of Bipolar disorder (BD), achieving euthymia is highly complex and usually requires a combination of mood stabilizers. The mechanism of action in stabilizing mood has not been fully elucidated, but alterations in N-Acetylaspartate (NAA), Myo-Inositol (mI) and Choline (Cho) have been implicated. Proton magnetic resonance spectroscopy (1H-MRS) is the gold standard technique for measuring brain NAA, Cho and mI in vivo. The objective of this study was to investigate the association of lithium use in BD type I and brain levels of NAA, mI and Cho in the (anterior cingulate cortex) ACC. METHODS 129 BD type I subjects and 79 healthy controls (HC) were submitted to a 3-Tesla brain magnetic resonance imaging scan (1H-MRS) using a PRESS ACC single voxel (8cm3) sequence. RESULTS BD patients exhibited higher NAA and Cho levels compared to HC. Lithium prescription was associated with lower mI (combination + monotherapy) and higher NAA levels (monotherapy). CONCLUSION The results observed add to the knowledge about the mechanisms of action of mood stabilizers on brain metabolites during euthymia. Additionally, the observed decrease in mI levels associated with lithium monotherapy is an in vivo finding that supports the inositol-depletion hypothesis of lithium pharmacodynamics.
Collapse
Affiliation(s)
- Marcio Gerhardt Soeiro-de-Souza
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, University of Sao Paulo, Brazil; Genetics and Pharmacogenetics Unit (PROGENE), Department and Institute of Psychiatry, University of Sao Paulo, Brazil.
| | - Maria Concepcion Garcia Otaduy
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), Brazil
| | | | - Ricardo Alberto Moreno
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, University of Sao Paulo, Brazil
| | - Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, USA
| | - Claudia Leite
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), Brazil
| | - Beny Lafer
- Bipolar Disorders Program (PROMAN), Department and Institute of Psychiatry, University of São Paulo, Brazil
| |
Collapse
|
49
|
Teixeira AL, Colpo GD, Fries GR, Bauer IE, Selvaraj S. Biomarkers for bipolar disorder: current status and challenges ahead. Expert Rev Neurother 2018; 19:67-81. [PMID: 30451546 DOI: 10.1080/14737175.2019.1550361] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is a chronic psychiatric disorder marked by clinical and pathophysiological heterogeneity. There is a high expectation that personalized approaches can improve the management of patients with BD. For that, identification and validation of potential biomarkers are fundamental. Areas covered: This manuscript will critically review the current status of different biomarkers for BD, including peripheral, genetic, neuroimaging, and neurophysiological candidates, discussing the challenges to move the field forward. Expert commentary: There are no lab or complementary tests currently recommended for the diagnosis or management of patients with BD. Panels composed by multiple biomarkers will probably contribute to stratifying patients according to their clinical stage, therapeutic response, and prognosis.
Collapse
Affiliation(s)
- Antonio L Teixeira
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA.,b Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina , Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , Brazil
| | - Gabriela D Colpo
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Gabriel R Fries
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Isabelle E Bauer
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Sudhakar Selvaraj
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| |
Collapse
|
50
|
Sánchez-Blázquez P, Cortés-Montero E, Rodríguez-Muñoz M, Garzón J. Sigma 1 Receptor Antagonists Inhibit Manic-Like Behaviors in Two Congenital Strains of Mice. Int J Neuropsychopharmacol 2018; 21:938-948. [PMID: 29860313 PMCID: PMC6165958 DOI: 10.1093/ijnp/pyy049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/04/2018] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
Background Several currently available animal models reproduce select behavioral facets of human mania as well as the abnormal glutamatergic neurotransmission and dysregulation of glycogen synthase kinase 3β that accompanies this disease. Methods In this study, we addressed the therapeutic potential of ligands of sigma receptor type 1 (σ1R) in 2 putative models of mania: the "manic" Black Swiss outbred mice from Taconic farms (BStac) and mice with the 129 genetic background and histidine triad nucleotide-binding protein 1 (HINT1) deletion (HINT1-/- mice) that exhibit bipolar-like behaviors. Results The activity of control mice, which do not exhibit manic-like behaviors in the forced swim test, was significantly enhanced by MK801, an inhibitor of glutamate N-methyl-D-aspartate receptor activity, an effect that was not or barely observed in manic-like mice. Typical mood stabilizers, such as glycogen synthase kinase 3β inhibitors, but not σ1R ligands, reduced the N-methyl-D-aspartate receptor-mediated behaviors in control mice. Notably, σ1R antagonists S1RA, PD144418, BD1047, and BD1063, but not σ1R agonists PRE084 and PPCC, attenuated the manic-like behaviors of BStac and HINT1-/- mice by increasing antiactivity behaviors. The antimanic effects of a single administration of σ1R antagonists persisted for at least 24 hours, and these drugs did not alter the behavior of the "bipolar" HINT1-/- mice during pro-depressive episodes. Conclusions σ1R antagonists exhibit a selective normalizing effect on specific behavioral domains of mania without altering control (normal) or depressive-like behaviors.
Collapse
Affiliation(s)
- Pilar Sánchez-Blázquez
- Neuropharmacology, Department of Translational Neurosciences, Instituto Cajal, CSIC, Madrid, Spain
| | - Elsa Cortés-Montero
- Neuropharmacology, Department of Translational Neurosciences, Instituto Cajal, CSIC, Madrid, Spain
| | - María Rodríguez-Muñoz
- Neuropharmacology, Department of Translational Neurosciences, Instituto Cajal, CSIC, Madrid, Spain
| | - Javier Garzón
- Neuropharmacology, Department of Translational Neurosciences, Instituto Cajal, CSIC, Madrid, Spain
| |
Collapse
|