1
|
Chopra S, Dhamala E, Lawhead C, Ricard JA, Orchard ER, An L, Chen P, Wulan N, Kumar P, Rubenstein A, Moses J, Chen L, Levi P, Holmes A, Aquino K, Fornito A, Harpaz-Rotem I, Germine LT, Baker JT, Yeo BTT, Holmes AJ. Generalizable and replicable brain-based predictions of cognitive functioning across common psychiatric illness. SCIENCE ADVANCES 2024; 10:eadn1862. [PMID: 39504381 PMCID: PMC11540040 DOI: 10.1126/sciadv.adn1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
A primary aim of computational psychiatry is to establish predictive models linking individual differences in brain functioning with symptoms. In particular, cognitive impairments are transdiagnostic, treatment resistant, and associated with poor outcomes. Recent work suggests that thousands of participants may be necessary for the accurate and reliable prediction of cognition, questioning the utility of most patient collection efforts. Here, using a transfer learning framework, we train a model on functional neuroimaging data from the UK Biobank to predict cognitive functioning in three transdiagnostic samples (ns = 101 to 224). We demonstrate prediction performance in all three samples comparable to that reported in larger prediction studies and a boost of up to 116% relative to classical models trained directly in the smaller samples. Critically, the model generalizes across datasets, maintaining performance when trained and tested across independent samples. This work establishes that predictive models derived in large population-level datasets can boost the prediction of cognition across clinical studies.
Collapse
Affiliation(s)
- Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT, USA
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elvisha Dhamala
- Department of Psychology, Yale University, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA
- Institute of Behavioral Sciences, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Connor Lawhead
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | - Edwina R. Orchard
- Department of Psychology, Yale University, New Haven, CT, USA
- Yale Child Study Center, School of Medicine, Yale University, New Haven, CT, USA
| | - Lijun An
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- National Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Pansheng Chen
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- National Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Naren Wulan
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- National Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Poornima Kumar
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Centre for Depression, Anxiety and Stress Research, McLean Hospital, Boston, MA, USA
| | | | - Julia Moses
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Lia Chen
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Priscila Levi
- Turner Institute for Brain and Mental Health, Monash Biomedical Imaging, and School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Alexander Holmes
- Turner Institute for Brain and Mental Health, Monash Biomedical Imaging, and School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Kevin Aquino
- Turner Institute for Brain and Mental Health, Monash Biomedical Imaging, and School of Psychological Sciences, Monash University, Melbourne, Australia
- BrainKey Inc., San Francisco, CA, USA
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash Biomedical Imaging, and School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Ilan Harpaz-Rotem
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Laura T. Germine
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Boston, MA, USA
| | - Justin T. Baker
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Boston, MA, USA
| | - B. T. Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- National Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Avram J. Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
2
|
Bahrami S, Nordengen K, Rokicki J, Shadrin AA, Rahman Z, Smeland OB, Jaholkowski PP, Parker N, Parekh P, O'Connell KS, Elvsåshagen T, Toft M, Djurovic S, Dale AM, Westlye LT, Kaufmann T, Andreassen OA. The genetic landscape of basal ganglia and implications for common brain disorders. Nat Commun 2024; 15:8476. [PMID: 39353893 PMCID: PMC11445552 DOI: 10.1038/s41467-024-52583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
The basal ganglia are subcortical brain structures involved in motor control, cognition, and emotion regulation. We conducted univariate and multivariate genome-wide association analyses (GWAS) to explore the genetic architecture of basal ganglia volumes using brain scans obtained from 34,794 Europeans with replication in 4,808 white and generalization in 5,220 non-white Europeans. Our multivariate GWAS identified 72 genetic loci associated with basal ganglia volumes with a replication rate of 55.6% at P < 0.05 and 87.5% showed the same direction, revealing a distributed genetic architecture across basal ganglia structures. Of these, 50 loci were novel, including exonic regions of APOE, NBR1 and HLAA. We examined the genetic overlap between basal ganglia volumes and several neurological and psychiatric disorders. The strongest genetic overlap was between basal ganglia and Parkinson's disease, as supported by robust LD-score regression-based genetic correlations. Mendelian randomization indicated genetic liability to larger striatal volume as potentially causal for Parkinson's disease, in addition to a suggestive causal effect of greater genetic liability to Alzheimer's disease on smaller accumbens. Functional analyses implicated neurogenesis, neuron differentiation and development in basal ganglia volumes. These results enhance our understanding of the genetic architecture and molecular associations of basal ganglia structure and their role in brain disorders.
Collapse
Grants
- R01 MH129742 NIMH NIH HHS
- Stiftelsen Kristian Gerhard Jebsen (Kristian Gerhard Jebsen Foundation)
- Norwegian Health Association (22731, 25598), the South-Eastern Norway Regional Health Authority (2013-123, 2017-112, 2019-108, 2014-097, 2015-073, 2016-083), the Research Council of Norway (276082, 323961. 213837, 223273, 248778, 273291, 262656, 229129, 283798, 311993, 324499. 204966, 249795, 273345).
Collapse
Affiliation(s)
- Shahram Bahrami
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway.
| | - Kaja Nordengen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Jaroslav Rokicki
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Alexey A Shadrin
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Zillur Rahman
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Nadine Parker
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pravesh Parekh
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Torbjørn Elvsåshagen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Department of Behavioral Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mathias Toft
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Lars T Westlye
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Ole A Andreassen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway.
- Department of Psychiatry, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
3
|
Nestor LJ, Vei Lim T, Robbins TW, Ersche KD. Reduced brain connectivity underlying value-based choices and outcomes in stimulant use disorder. Neuroimage Clin 2024; 44:103676. [PMID: 39357470 PMCID: PMC11474215 DOI: 10.1016/j.nicl.2024.103676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Patients with stimulant use disorder (SUD) show impairments when making value-based choices that are associated with disruptions in neural processing across brain networks. Making optimal choices requires learning from outcomes to update knowledge and further optimise ongoing behaviour. The optimal functioning of neural systems that underpin the ability to make favourable choices is an essential component for life functioning, and successful recovery in patients with SUD. Therefore, we sought to investigate the neural processes that underpin value-based choices in SUD patients. We hypothesise that patients with SUD have reduced functional connectivity while making financial choices during a probabilistic reinforcement learning task. METHODS We investigated connectivity associated with loss and reward value-based choices and their outcomes in patients with SUD and healthy control participants during a pharmacological magnetic resonance imaging study. Participants received a single dose of a dopamine receptor agonist, pramipexole, and a dopamine receptor antagonist, amisulpride, in a randomised, double-blind, placebo-controlled, balanced, crossover design. Functional task-related connectivity was analysed taking a whole brain connectomics approach to identify networks that are differentially modulated by dopaminergic receptor functioning. RESULTS SUD patients showed widespread reductions in connectivity during both reward and loss value-based choices and outcomes, which were negatively correlated with the duration of stimulant drug use. Disturbances to functional brain connectivity in SUD patients during task performance were not modulated acutely by either amisulpride or pramipexole. CONCLUSIONS Reductions in brain connectivity, particularly when making value-based choices and processing outcomes, may underlie learning impairments in SUD patients. Given that acute dopaminergic modulation did not improve brain connectivity impairments in SUD patients, it is likely that alternative treatments are needed.
Collapse
Affiliation(s)
- Liam J Nestor
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Tsen Vei Lim
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
4
|
Zhao Q, Gao Z, Yu W, Xiao Y, Hu N, Wei X, Tao B, Zhu F, Li S, Lui S. Multivariate associations between neuroanatomy and cognition in unmedicated and medicated individuals with schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:62. [PMID: 39004627 PMCID: PMC11247086 DOI: 10.1038/s41537-024-00482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Previous studies that focused on univariate correlations between neuroanatomy and cognition in schizophrenia identified some inconsistent findings. Moreover, antipsychotic medication may impact the brain-behavior profiles in affected individuals. It remains unclear whether unmedicated and medicated individuals with schizophrenia would share common neuroanatomy-cognition associations. Therefore, we aimed to investigate multivariate neuroanatomy-cognition relationships in both groups. A sample of 59 drug-naïve individuals with first-episode schizophrenia (FES) and a sample of 115 antipsychotic-treated individuals with schizophrenia were finally included. Multivariate modeling was conducted in the two patient samples between multiple cognitive domains and neuroanatomic features, such as cortical thickness (CT), cortical surface area (CSA), and subcortical volume (SV). We observed distinct multivariate correlational patterns between the two samples of individuals with schizophrenia. In the FES sample, better performance in token motor, symbol coding, and verbal fluency tests was associated with greater thalamic volumes but lower CT in the prefrontal and anterior cingulate cortices. Two significant multivariate correlations were identified in antipsychotic-treated individuals: 1) worse verbal memory performance was related to smaller volumes for the most subcortical structures and smaller CSA mainly in the temporal regions and inferior parietal lobule; 2) a lower symbol coding test score was correlated with smaller CSA in the right parahippocampal gyrus but greater volume in the right caudate. These multivariate patterns were sample-specific and not confounded by imaging quality, illness duration, antipsychotic dose, or psychopathological symptoms. Our findings may help to understand the neurobiological basis of cognitive impairments and the development of cognition-targeted interventions.
Collapse
Affiliation(s)
- Qiannan Zhao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ziyang Gao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Wei Yu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yuan Xiao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Na Hu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xia Wei
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Bo Tao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Fei Zhu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Siyi Li
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
5
|
Lohia K, Soans RS, Saxena R, Mahajan K, Gandhi TK. Distinct rich and diverse clubs regulate coarse and fine binocular disparity processing: Evidence from stereoscopic task-based fMRI. iScience 2024; 27:109831. [PMID: 38784010 PMCID: PMC11111836 DOI: 10.1016/j.isci.2024.109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/07/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
While cortical regions involved in processing binocular disparities have been studied extensively, little is known on how the human visual system adapts to changing disparity magnitudes. In this paper, we investigate causal mechanisms of coarse and fine binocular disparity processing using fMRI with a clinically validated, custom anaglyph-based stimulus. We make use of Granger causality and graph measures to reveal the existence of distinct rich and diverse clubs across different disparity magnitudes. We demonstrate that Middle Temporal area (MT) plays a specialized role with overlapping rich and diverse characteristics. Next, we show that subtle interhemispheric differences exist across various brain regions, despite an overall right hemisphere dominance. Finally, we pass the graph measures through the decision tree and found that the diverse clubs outperform rich clubs in decoding disparity magnitudes. Our study sets the stage for conducting further investigations on binocular disparity processing, particularly in the context of neuro-ophthalmic disorders with binocular impairments.
Collapse
Affiliation(s)
- Kritika Lohia
- Department of Electrical Engineering, Indian Institute of Technology – Delhi, New Delhi, India
| | - Rijul Saurabh Soans
- Department of Electrical Engineering, Indian Institute of Technology – Delhi, New Delhi, India
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Rohit Saxena
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | | | - Tapan K. Gandhi
- Department of Electrical Engineering, Indian Institute of Technology – Delhi, New Delhi, India
| |
Collapse
|
6
|
Lho SK, Kim T, Moon SY, Kim M, Kwon JS. Alteration in left frontoparietal connectivity correlates with impaired cognitive reappraisal in early psychosis. Schizophr Res 2024; 267:130-137. [PMID: 38531160 DOI: 10.1016/j.schres.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Impaired cognitive reappraisal is a notable symptom of early psychosis, but its neurobiological basis remains underexplored. We aimed to identify the underlying neurobiological mechanism of this impairment by using resting-state functional connectivity (FC) analyses focused on brain regions related to cognitive reappraisal. METHODS Resting-state functional magnetic resonance images were collected from 36 first-episode psychosis (FEP) patients, 32 clinical high-risk (CHR) individuals, and 48 healthy controls (HCs). Whole-brain FC maps using seed regions associated with cognitive reappraisal were generated and compared across the FEP, CHR and HC groups. We assessed the correlation between resting-state FC, reappraisal success ratio, positive symptom severity and social functioning controlling for covariates. RESULTS FEP patients showed higher FC between the left superior parietal lobe and left inferior frontal gyrus than HCs. Higher FC between the left superior parietal lobe and left inferior frontal gyrus negatively correlated with the reappraisal success ratio in the FEP group after controlling for covariates. Lower FC correlated with lower positive symptom severity and improved global functioning in the FEP group. CONCLUSIONS Alteration in left frontoparietal connectivity reflects impaired cognitive reappraisal in early psychosis, and such alteration correlates with increased positive symptoms and decreased global functioning. These findings offer a potential path for interventions targeting newly emerging symptoms in the early stages of psychosis.
Collapse
Affiliation(s)
- Silvia Kyungjin Lho
- Department of Psychiatry, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sun-Young Moon
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Public Health Service, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Jun Soo Kwon
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| |
Collapse
|
7
|
Nestor LJ, Luijten M, Ziauddeen H, Regenthal R, Sahakian BJ, Robbins TW, Ersche KD. The Modulatory Effects of Atomoxetine on Aberrant Connectivity During Attentional Processing in Cocaine Use Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:314-325. [PMID: 37619670 DOI: 10.1016/j.bpsc.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Cocaine use disorder is associated with cognitive deficits that reflect dysfunctional processing across neural systems. Because there are currently no approved medications, treatment centers provide behavioral interventions that have only short-term efficacy. This suggests that behavioral interventions are not sufficient by themselves to lead to the maintenance of abstinence in patients with cocaine use disorder. Self-control, which includes the regulation of attention, is critical for dealing with many daily challenges that would benefit from medication interventions that can ameliorate cognitive neural disturbances. METHODS To address this important clinical gap, we conducted a randomized, double-blind, placebo-controlled, crossover design study in patients with cocaine use disorder (n = 23) and healthy control participants (n = 28). We assessed the modulatory effects of acute atomoxetine (40 mg) on attention and conflict monitoring and their associated neural activation and connectivity correlates during performance on the Eriksen flanker task. The Eriksen flanker task examines basic attentional processing using congruent stimuli and the effects of conflict monitoring and response inhibition using incongruent stimuli, the latter of which necessitates the executive control of attention. RESULTS We found that atomoxetine improved task accuracy only in the cocaine group but modulated connectivity within distinct brain networks in both groups during congruent trials. During incongruent trials, the cocaine group showed increased task-related activation in the right inferior frontal and anterior cingulate gyri, as well as greater network connectivity than the control group across treatments. CONCLUSIONS The findings of the current study support a modulatory effect of acute atomoxetine on attention and associated connectivity in cocaine use disorder.
Collapse
Affiliation(s)
- Liam J Nestor
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Maartje Luijten
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Fiona Stanley and Fremantle Hospital Group, Perth, Australia
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Barbara J Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
8
|
Holmes A, Levi PT, Chen YC, Chopra S, Aquino KM, Pang JC, Fornito A. Disruptions of Hierarchical Cortical Organization in Early Psychosis and Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1240-1250. [PMID: 37683727 DOI: 10.1016/j.bpsc.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND The cerebral cortex is organized hierarchically along an axis that spans unimodal sensorimotor to transmodal association areas. This hierarchy is often characterized using low-dimensional embeddings, termed gradients, of interregional functional coupling estimates measured with resting-state functional magnetic resonance imaging. Such analyses may offer insights into the pathophysiology of schizophrenia, which has been frequently linked to dysfunctional interactions between association and sensorimotor areas. METHODS To examine disruptions of hierarchical cortical function across distinct stages of psychosis, we applied diffusion map embedding to 2 independent functional magnetic resonance imaging datasets: one comprising 114 patients with early psychosis and 48 control participants, and the other comprising 50 patients with established schizophrenia and 121 control participants. Then, we analyzed the primary sensorimotor-to-association and secondary visual-to-sensorimotor gradients of each participant in both datasets. RESULTS There were no significant differences in regional gradient scores between patients with early psychosis and control participants. Patients with established schizophrenia showed significant differences in the secondary, but not primary, gradient compared with control participants. Gradient differences in schizophrenia were characterized by lower within-network dispersion in the dorsal attention (false discovery rate [FDR]-corrected p [pFDR] < .001), visual (pFDR = .003), frontoparietal (pFDR = .018), and limbic (pFDR = .020) networks and lower between-network dispersion between the visual network and other networks (pFDR < .001). CONCLUSIONS These findings indicate that differences in cortical hierarchical function occur along the secondary visual-to-sensorimotor axis rather than the primary sensorimotor-to-association axis as previously thought. The absence of differences in early psychosis suggests that visual-sensorimotor abnormalities may emerge as the illness progresses.
Collapse
Affiliation(s)
- Alexander Holmes
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia.
| | - Priscila T Levi
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| | - Yu-Chi Chen
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia; Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Kevin M Aquino
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - James C Pang
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Gao J, Jiang R, Tang X, Chen J, Yu M, Zhou C, Wang X, Zhang H, Huang C, Yang Y, Zhang X, Cui Z, Zhang X. A neuromarker for deficit syndrome in schizophrenia from a combination of structural and functional magnetic resonance imaging. CNS Neurosci Ther 2023; 29:3774-3785. [PMID: 37288482 PMCID: PMC10651988 DOI: 10.1111/cns.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023] Open
Abstract
AIM Deficit schizophrenia (DS), defined by primary and enduring negative symptoms, has been proposed as a promising homogeneous subtype of schizophrenia. It has been demonstrated that unimodal neuroimaging characteristics of DS were different from non-deficit schizophrenia (NDS), however, whether multimodal-based neuroimaging features could identify deficit syndrome remains to be determined. METHODS Functional and structural multimodal magnetic resonance imaging of DS, NDS and healthy controls were scanned. Voxel-based features of gray matter volume, fractional amplitude of low-frequency fluctuations, and regional homogeneity were extracted. The support vector machine classification models were constructed using these features separately and jointly. The most discriminative features were defined as the first 10% of features with the greatest weights. Moreover, relevance vector regression was applied to explore the predictive values of these top-weighted features in predicting negative symptoms. RESULTS The multimodal classifier achieved a higher accuracy (75.48%) compared with the single modal model in distinguishing DS from NDS. The most predictive brain regions were mainly located in the default mode and visual networks, exhibiting differences between functional and structural features. Further, the identified discriminative features significantly predicted scores of diminished expressivity factor in DS but not NDS. CONCLUSIONS The present study demonstrated that local properties of brain regions extracted from multimodal imaging data could distinguish DS from NDS with a machine learning-based approach and confirmed the relationship between distinctive features and the negative symptoms subdomain. These findings may improve the identification of potential neuroimaging signatures and improve the clinical assessment of the deficit syndrome.
Collapse
Affiliation(s)
- Ju Gao
- Institute of Mental HealthSuzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
- Department of Geriatric PsychiatryNanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Rongtao Jiang
- Department of Radiology & Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
| | - Xiaowei Tang
- Department of PsychiatryWutaishan Hospital of YangzhouYangzhouChina
| | - Jiu Chen
- Department of Geriatric PsychiatryNanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Miao Yu
- Department of Geriatric PsychiatryNanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Chao Zhou
- Department of Geriatric PsychiatryNanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Xiang Wang
- Medical Psychological Institute of the Second Xiangya HospitalChangshaChina
| | - Hongying Zhang
- Department of RadiologySubei People's Hospital of Jiangsu ProvinceYangzhouChina
| | - Chengbing Huang
- Department of Geriatric PsychiatryNanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
- Department of PsychiatryHuai'an No. 3 People's HospitalHuai'anChina
| | - Yong Yang
- Institute of Mental HealthSuzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
| | - Xiaobin Zhang
- Institute of Mental HealthSuzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
| | - Zaixu Cui
- Chinese Institute for Brain ResearchBeijingChina
| | - Xiangrong Zhang
- Department of Geriatric PsychiatryNanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
- Department of PsychiatryThe Affiliated Xuzhou Oriental Hospital of Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
10
|
Shao T, Huang J, Zhao Y, Wang W, Tian X, Hei G, Kang D, Gao Y, Liu F, Zhao J, Liu B, Yuan TF, Wu R. Metformin improves cognitive impairment in patients with schizophrenia: associated with enhanced functional connectivity of dorsolateral prefrontal cortex. Transl Psychiatry 2023; 13:315. [PMID: 37821461 PMCID: PMC10567690 DOI: 10.1038/s41398-023-02616-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Cognitive impairment is a core feature of schizophrenia, which is aggravated by antipsychotics-induced metabolic disturbance and lacks effective pharmacologic treatments in clinical practice. Our previous study demonstrated the efficiency of metformin in alleviating metabolic disturbance following antipsychotic administration. Here we report that metformin could ameliorate cognitive impairment and improve functional connectivity (FC) in prefrontal regions. This is an open-labeled, evaluator-blinded study. Clinically stable patients with schizophrenia were randomly assigned to receive antipsychotics plus metformin (N = 48) or antipsychotics alone (N = 24) for 24 weeks. The improvement in cognition was assessed by the MATRICS Consensus Cognitive Battery (MCCB). Its association with metabolic measurements, and voxel-wise whole-brain FC with dorsolateral prefrontal cortex (DLPFC) subregions as seeds were evaluated. When compared to the antipsychotics alone group, the addition of metformin resulted in significantly greater improvements in the MCCB composite score, speed of processing, working memory, verbal learning, and visual learning. A significant time × group interaction effect of increased FC between DLPFC and the anterior cingulate cortex (ACC)/middle cingulate cortex (MCC), and between DLPFC subregions were observed after metformin treatment, which was positively correlated with MCCB cognitive performance. Furthermore, the FC between left DLPFC A9/46d to right ACC/MCC significantly mediated metformin-induced speed of processing improvement; the FC between left A46 to right ACC significantly mediated metformin-induced verbal learning improvement. Collectively, these findings demonstrate that metformin can improve cognitive impairments in schizophrenia patients and is partly related to the FC changes in the DLPFC. Trial Registration: The trial was registered with ClinicalTrials.gov (NCT03271866). The full trial protocol is provided in Supplementary Material.
Collapse
Affiliation(s)
- Tiannan Shao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China
| | - Yuxin Zhao
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Weiyan Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China
| | - Xiaohan Tian
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, PR China
| | - Gangrui Hei
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Dongyu Kang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China
| | - Yong Gao
- Department of Orthopedics, The First People's Hospital of Changde, Changde Hospital Affiliated to Xiangya Medical College of Central South University, Changde, 415900, PR China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, PR China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, PR China
| | - Renrong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China.
| |
Collapse
|
11
|
Ruiz-Torras S, Gudayol-Ferré E, Fernández-Vazquez O, Cañete-Massé C, Peró-Cebollero M, Guàrdia-Olmos J. Hypoconnectivity networks in schizophrenia patients: A voxel-wise meta-analysis of Rs-fMRI. Int J Clin Health Psychol 2023; 23:100395. [PMID: 37533450 PMCID: PMC10392089 DOI: 10.1016/j.ijchp.2023.100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
In recent years several meta-analyses regarding resting-state functional connectivity in patients with schizophrenia have been published. The authors have used different data analysis techniques: regional homogeneity, seed-based data analysis, independent component analysis, and amplitude of low frequencies. Hence, we aim to perform a meta-analysis to identify connectivity networks with different activation patterns between people diagnosed with schizophrenia and healthy controls using voxel-wise analysis. METHOD We collected primary studies exploring whole brain connectivity by functional magnetic resonance imaging at rest in patients with schizophrenia compared with healthy controls. We identified 25 studies included high-quality studies that included 1285 patients with schizophrenia and 1279 healthy controls. RESULTS The results indicate hypoactivation in the right precentral gyrus and the left superior temporal gyrus of patients with schizophrenia compared with healthy controls. CONCLUSIONS These regions have been linked with some clinical symptoms usually present in Plea with schizophrenia, such as auditory verbal hallucinations, formal thought disorder, and the comprehension and production of gestures.
Collapse
Affiliation(s)
- Silvia Ruiz-Torras
- Clínica Psicològica de la Universitat de Barcelona, Fundació Josep Finestres, Universitat de Barcelona, Spain
| | | | | | - Cristina Cañete-Massé
- Facultat de Psicologia, Secció de Psicologia Quantitativa, Universitat de Barcelona, Spain
- UB Institute of Complex Systems, Universitat de Barcelona, Spain
| | - Maribel Peró-Cebollero
- Facultat de Psicologia, Secció de Psicologia Quantitativa, Universitat de Barcelona, Spain
- UB Institute of Complex Systems, Universitat de Barcelona, Spain
- Institute of Neuroscience, Universitat de Barcelona, Spain
| | - Joan Guàrdia-Olmos
- Facultat de Psicologia, Secció de Psicologia Quantitativa, Universitat de Barcelona, Spain
- UB Institute of Complex Systems, Universitat de Barcelona, Spain
- Institute of Neuroscience, Universitat de Barcelona, Spain
| |
Collapse
|
12
|
Passiatore R, Antonucci LA, DeRamus TP, Fazio L, Stolfa G, Sportelli L, Kikidis GC, Blasi G, Chen Q, Dukart J, Goldman AL, Mattay VS, Popolizio T, Rampino A, Sambataro F, Selvaggi P, Ulrich W, Weinberger DR, Bertolino A, Calhoun VD, Pergola G. Changes in patterns of age-related network connectivity are associated with risk for schizophrenia. Proc Natl Acad Sci U S A 2023; 120:e2221533120. [PMID: 37527347 PMCID: PMC10410767 DOI: 10.1073/pnas.2221533120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/24/2023] [Indexed: 08/03/2023] Open
Abstract
Alterations in fMRI-based brain functional network connectivity (FNC) are associated with schizophrenia (SCZ) and the genetic risk or subthreshold clinical symptoms preceding the onset of SCZ, which often occurs in early adulthood. Thus, age-sensitive FNC changes may be relevant to SCZ risk-related FNC. We used independent component analysis to estimate FNC from childhood to adulthood in 9,236 individuals. To capture individual brain features more accurately than single-session fMRI, we studied an average of three fMRI scans per individual. To identify potential familial risk-related FNC changes, we compared age-related FNC in first-degree relatives of SCZ patients mostly including unaffected siblings (SIB) with neurotypical controls (NC) at the same age stage. Then, we examined how polygenic risk scores for SCZ influenced risk-related FNC patterns. Finally, we investigated the same risk-related FNC patterns in adult SCZ patients (oSCZ) and young individuals with subclinical psychotic symptoms (PSY). Age-sensitive risk-related FNC patterns emerge during adolescence and early adulthood, but not before. Young SIB always followed older NC patterns, with decreased FNC in a cerebellar-occipitoparietal circuit and increased FNC in two prefrontal-sensorimotor circuits when compared to young NC. Two of these FNC alterations were also found in oSCZ, with one exhibiting reversed pattern. All were linked to polygenic risk for SCZ in unrelated individuals (R2 varied from 0.02 to 0.05). Young PSY showed FNC alterations in the same direction as SIB when compared to NC. These results suggest that age-related neurotypical FNC correlates with genetic risk for SCZ and is detectable with MRI in young participants.
Collapse
Affiliation(s)
- Roberta Passiatore
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, 30303Atlanta, GA
- Institute of Neuroscience and Medicine, Brain and Behavior, Research Centre Jülich, 52428Jülich, Germany
| | - Linda A. Antonucci
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
| | - Thomas P. DeRamus
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, 30303Atlanta, GA
| | - Leonardo Fazio
- Department of Medicine and Surgery, Libera Università Mediterranea Giuseppe Degennaro, 70010Casamassima, Italy
| | - Giuseppe Stolfa
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
| | - Leonardo Sportelli
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205Baltimore, MD
| | - Gianluca C. Kikidis
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205Baltimore, MD
| | - Giuseppe Blasi
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Psychiatric Unit, University Hospital, 70124Bari, Italy
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205Baltimore, MD
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain and Behavior, Research Centre Jülich, 52428Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Aaron L. Goldman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205Baltimore, MD
| | - Venkata S. Mattay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205Baltimore, MD
- Department of Neurology and Radiology, Johns Hopkins Medical Campus, 21287Baltimore, MD
| | - Teresa Popolizio
- Neuroradiology Unit, Scientific Institute for Research, Hospitalization and Health Care, Casa Sollievo della Sofferenza, 71013San Giovanni Rotondo, Foggia, Italy
| | - Antonio Rampino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Psychiatric Unit, University Hospital, 70124Bari, Italy
| | - Fabio Sambataro
- Section of Psychiatry, Department of Neuroscience, University of Padova, 35121Padua, Italy
| | - Pierluigi Selvaggi
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Psychiatric Unit, University Hospital, 70124Bari, Italy
| | - William Ulrich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205Baltimore, MD
| | - Apulian Network on Risk for Psychosis
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Department of Mental Health, Azienda Sanitaria Locale Foggia, 71121Foggia, Italy
- Department of Clinical and Experimental Medicine, University of Foggia, 71122Foggia, Italy
- Department of Mental Health, Azienda Sanitaria Locale Barletta-Andria-Trani, 76123Andria, Italy
- Department of Mental Health, Azienda Sanitaria Locale Bari, 70132Bari, Italy
- Department of Mental Health, Azienda Sanitaria Locale Brindisi, 72100Brindisi, Italy
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205Baltimore, MD
- Department of Neurology and Radiology, Johns Hopkins Medical Campus, 21287Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 21205Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, 21287Baltimore, MD
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 21287Baltimore, MD
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Psychiatric Unit, University Hospital, 70124Bari, Italy
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, 30303Atlanta, GA
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 21205Baltimore, MD
| |
Collapse
|
13
|
Falakshahi H, Rokham H, Miller R, Liu J, Calhoun VD. Network Differential in Gaussian Graphical Models from Multimodal Neuroimaging Data . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-6. [PMID: 38083176 DOI: 10.1109/embc40787.2023.10340856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Multimodal brain network analysis has the potential to provide insights into the mechanisms of brain disorders. Most previous studies have analyzed either unimodal brain graphs or focused on local/global graphic metrics with little consideration of details of disrupted paths in the patient group. As we show, the combination of multimodal brain graphs and disrupted path-based analysis can be highly illuminating to recognize path-based disease biomarkers. In this study, we first propose a way to estimate multimodal brain graphs using static functional network connectivity (sFNC) and gray matter features using a Gaussian graphical model of schizophrenia versus controls. Next, applying the graph theory approach we identify disconnectors or connectors in the patient group graph that create additional paths or cause absent paths compared to the control graph. Results showed several edges in the schizophrenia group graph that trigger missing or additional paths. Identified edges associated with these disrupted paths were identified both within and between dFNC and gray matter which highlights the importance of considering multimodal studies and moving beyond pairwise edges to provide a more comprehensive understanding of brain disorders.Clinical Relevance- We identified a path-based biomarker in schizophrenia, by imitating the structure of paths in a multimodal (sMIR+fMRI) brain graph of the control group. Identified cross-modal edges associated with disrupted paths were related to the middle temporal gyrus and cerebellar regions.
Collapse
|
14
|
Chen HJ, Ke J, Qiu J, Xu Q, Zhong Y, Lu GM, Wu Y, Qi R, Chen F. Altered whole-brain resting-state functional connectivity and brain network topology in typhoon-related post-traumatic stress disorder. Ther Adv Psychopharmacol 2023; 13:20451253231175302. [PMID: 37342156 PMCID: PMC10278414 DOI: 10.1177/20451253231175302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/24/2023] [Indexed: 06/22/2023] Open
Abstract
Background Altered resting-state functional connectivity has been found in patients with post-traumatic stress disorder (PTSD). However, the alteration of resting-state functional connectivity at whole-brain level in typhoon-traumatized individuals with PTSD remains largely unknown. Objectives To investigate changes in whole-brain resting-state functional connectivity and brain network topology in typhoon-traumatized subjects with and without PTSD. Design Cross-sectional study. Methods Twenty-seven patients with typhoon-related PTSD, 33 trauma-exposed controls (TEC), and 30 healthy controls (HC) underwent resting-state functional MRI scanning. The whole brain resting-state functional connectivity network was constructed based on the automated anatomical labeling atlas. The graph theory method was used to analyze the topological properties of the large-scale resting-state functional connectivity network. Whole-brain resting-state functional connectivity and the topological network property were compared by analyzing the variance. Results There was no significant difference in the area under the curve of γ, λ, σ, global efficiency, and local efficiency among the three groups. The PTSD group showed increased dorsal cingulate cortex (dACC) resting-state functional connectivity with the postcentral gyrus (PoCG) and paracentral lobe and increased nodal betweenness centrality in the precuneus relative to both control groups. Compared with the PTSD and HC groups, the TEC group showed increased resting-state functional connectivity between the hippocampus and PoCG and increased connectivity strength in the putamen. In addition, compared with the HC group, both the PTSD and TEC groups showed increased connectivity strength and nodal efficiency in the insula. Conclusion Aberrant resting-state functional connectivity and topology were found in all trauma-exposed individuals. These findings broaden our knowledge of the neuropathological mechanisms of PTSD.
Collapse
Affiliation(s)
- Hui Juan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Jun Ke
- Department of Medical Imaging, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Qiu
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yuan Zhong
- Department of Medical Imaging, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yanglei Wu
- MR Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua Street, Xiuying District, Haikou 570311, Hainan, China
| |
Collapse
|
15
|
Tao B, Xiao Y, Li B, Yu W, Zhu F, Gao Z, Cao H, Gong Q, Gu S, Qiu C, Lui S. Linked patterns of interhemispheric functional connectivity and microstructural characteristics of the corpus callosum in antipsychotic-naive first-episode schizophrenia. Asian J Psychiatr 2023; 86:103659. [PMID: 37327564 DOI: 10.1016/j.ajp.2023.103659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Many magnetic resonance imaging (MRI) studies have showed significant structural abnormalities of the corpus callosum (CC) and dysregulated interhemispheric functional connectivity (FC) in schizophrenia. Although the hemispheres are mainly linked through CC, few studies directly examined the relationship between aberrant interhemispheric FC and the white matter deficits of the CC in schizophrenia. METHODS One hundred and sixty-nine antipsychotic-naive first-episode schizophrenia patients (AN-FES) and 214 healthy controls (HCs) were recruited. Diffusional and functional MRI data were obtained for each participant, and fractional anisotropy (FA) values of the five CC subregions and interhemispheric FC for each participant were acquired. Between-group differences in these metrics were compared using multivariate analysis of covariance (MANCOVA). Moreover, sparse canonical correlation analysis (sCCA) was conducted to explore correlations of fibers integrity of the CC subregions with dysregulated interhemispheric FC in patients. RESULTS Compared with HCs, the patients with schizophrenia showed significantly reduced FA values of the CC subregions and dysregulated connectivity between two cerebral hemispheres. The canonical correlation coefficients identified five significant sCCA modes between FA and FC (r > 0.75, p < 0.001), suggesting strong relationships between FA values of the CC subregions and interhemispheric FC in patients. CONCLUSION Our findings support a key role of CC in maintaining ongoing functional communication between two cerebral hemispheres, and suggest that microstructural changes of white matter fibers crossing different CC subregions may affect special interhemispheric FC in schizophrenia.
Collapse
Affiliation(s)
- Bo Tao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuan Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bin Li
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 2006 Xiyuan Avenue, West Hi-Tech Zone, 611731, Chengdu, China
| | - Wei Yu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fei Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ziyang Gao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hengyi Cao
- Center for Psychiatry Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Shi Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 2006 Xiyuan Avenue, West Hi-Tech Zone, 611731, Chengdu, China..
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, 28 Dianxin Street, Chengdu, China.
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Wang X, Chang Z, Wang R. Opposite effects of positive and negative symptoms on resting-state brain networks in schizophrenia. Commun Biol 2023; 6:279. [PMID: 36932140 PMCID: PMC10023794 DOI: 10.1038/s42003-023-04637-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Schizophrenia is a severe psychotic disorder characterized by positive and negative symptoms, but their neural bases remain poorly understood. Here, we utilized a nested-spectral partition (NSP) approach to detect hierarchical modules in resting-state brain functional networks in schizophrenia patients and healthy controls, and we studied dynamic transitions of segregation and integration as well as their relationships with clinical symptoms. Schizophrenia brains showed a more stable integrating process and a more variable segregating process, thus maintaining higher segregation, especially in the limbic system. Hallucinations were associated with higher integration in attention systems, and avolition was related to a more variable segregating process in default-mode network (DMN) and control systems. In a machine-learning model, NSP-based features outperformed graph measures at predicting positive and negative symptoms. Multivariate analysis confirmed that positive and negative symptoms had opposite effects on dynamic segregation and integration of brain networks. Gene ontology analysis revealed that the effect of negative symptoms was related to autistic, aggressive and violent behavior; the effect of positive symptoms was associated with hyperammonemia and acidosis; and the interaction effect was correlated with abnormal motor function. Our findings could contribute to the development of more accurate diagnostic criteria for positive and negative symptoms in schizophrenia.
Collapse
Affiliation(s)
- Xinrui Wang
- College of Science, Xi'an University of Science and Technology, Xi'an, Shaanxi, China
| | - Zhao Chang
- College of Science, Xi'an University of Science and Technology, Xi'an, Shaanxi, China
| | - Rong Wang
- College of Science, Xi'an University of Science and Technology, Xi'an, Shaanxi, China.
| |
Collapse
|
17
|
Ji JL, Lencz T, Gallego J, Neufeld N, Voineskos A, Malhotra A, Anticevic A. Informing individualized multi-scale neural signatures of clozapine response in patients with treatment-refractory schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.10.23286854. [PMID: 36993630 PMCID: PMC10055439 DOI: 10.1101/2023.03.10.23286854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Clozapine is currently the only antipsychotic with demonstrated efficacy in treatment-refractory schizophrenia (TRS). However, response to clozapine differs widely between TRS patients, and there are no available clinical or neural predictive indicators that could be used to increase or accelerate the use of clozapine in patients who stand to benefit. Furthermore, it remains unclear how the neuropharmacology of clozapine contributes to its therapeutic effects. Identifying the mechanisms underlying clozapine's therapeutic effects across domains of symptomatology could be crucial for development of new optimized therapies for TRS. Here, we present results from a prospective neuroimaging study that quantitatively related heterogeneous patterns of clinical clozapine response to neural functional connectivity at baseline. We show that we can reliably capture specific dimensions of clozapine clinical response by quantifying the full variation across item-level clinical scales, and that these dimensions can be mapped to neural features that are sensitive to clozapine-induced symptom change. Thus, these features may act as "failure modes" that can provide an early indication of treatment (non-)responsiveness. Lastly, we related the response-relevant neural maps to spatial expression profiles of genes coding for receptors implicated in clozapine's pharmacology, demonstrating that distinct dimensions of clozapine symptom-informed neural features may be associated with specific receptor targets. Collectively, this study informs prognostic neuro-behavioral measures for clozapine as a more optimal treatment for selected patients with TRS. We provide support for the identification of neuro-behavioral targets linked to pharmacological efficacy that can be further developed to inform optimal early treatment decisions in schizophrenia.
Collapse
|
18
|
The Feature of Sleep Spindle Deficits in Patients With Schizophrenia With and Without Auditory Verbal Hallucinations. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:331-342. [PMID: 34380082 DOI: 10.1016/j.bpsc.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/10/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous sleep electroencephalography studies have detected abnormalities in sleep architecture and sleep spindle deficits in schizophrenia (SCZ), but the consistency of these results was not robust, which might be due to the small sample size and the influence of clinical factors such as the various medication therapies and symptom heterogeneity. This study aimed to regard auditory verbal hallucinations (AVHs) as a pointcut to downscale the heterogeneity of SCZ and explore whether some sleep architecture and spindle parameters were more severely impaired in SCZ patients with AVHs compared with those without AVHs. METHODS A total of 90 SCZ patients with AVHs, 92 SCZ patients without AVHs, and 91 healthy control subjects were recruited, and parameters of sleep architecture and spindle activities were compared between groups. The correlation between significant sleep parameters and clinical indicators was analyzed. RESULTS Deficits of sleep spindle activities at prefrontal electrodes and intrahemispheric spindle coherence were observed in both AVH and non-AVH groups, several of which were more serious in the AVH group. In addition, deficits of spindle activities at central and occipital electrodes and interhemispheric spindle coherence mainly manifested accompanying AVH symptoms, most of which were retained in the medication-naive first-episode patients, and were associated with Auditory Hallucination Rating Scale scores. CONCLUSIONS Our results suggest that the underlying mechanism of spindle deficits might be different between SCZ patients with and without AVHs. In the future, the sleep feature of SCZ patients with different symptoms and the influence of clinical factors, such as medication therapy, should be further illustrated.
Collapse
|
19
|
Gao Z, Xiao Y, Zhu F, Tao B, Yu W, Lui S. The whole-brain connectome landscape in patients with schizophrenia: a systematic review and meta-analysis of graph theoretical characteristics. Neurosci Biobehav Rev 2023; 148:105144. [PMID: 36990373 DOI: 10.1016/j.neubiorev.2023.105144] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
The alterations of connectome in schizophrenia have been reported, but the results remain inconsistent. We conducted a systematic review and random-effects meta-analysis on structural or functional connectome MRI studies comparing global graph theoretical characteristics between schizophrenia and healthy controls. Meta-regression and subgroup analyses were performed to examine confounding effects. Based on the included 48 studies, Structural connectome in schizophrenia showed a significant decrease in segregation (lower clustering coefficient and local efficiency, Hedge's g= -0.352 and -0.864, respectively) and integration (higher characteristic path length and lower global efficiency, Hedge's g= 0.532 and -0.577 respectively). The functional connectome showed no difference between groups except γ. Moderator analysis indicated that clinical and methodological factors exerted a potential effect on the graph theoretical characteristics. Our analysis revealed a weaker small-worldization trend in structural connectome of schizophrenia. For the relatively unchanged functional connectome, more homogenous and high-quality studies are warranted to elucidate whether the change was blurred by heterogeneity or the presentation of pathophysiological reconfiguration.
Collapse
|
20
|
Nestor LJ, Ghahremani DG, London ED. Reduced neural functional connectivity during working memory performance in methamphetamine use disorder. Drug Alcohol Depend 2023; 243:109764. [PMID: 36610253 DOI: 10.1016/j.drugalcdep.2023.109764] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/20/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
BACKGROUND Methamphetamine misuse, a surging cause of morbidity and mortality worldwide, identifies Methamphetamine Use Disorder (MUD) as a critical public health problem. Treatment for MUD typically is sought during early abstinence when patients are experiencing cognitive difficulties that may hamper their engagement in treatment and recovery. Cognitive difficulties, particularly those that involve executive functions, likely reflect disruptions in neural functioning involving multiple brain areas and circuits. METHODS To extend knowledge in this area, we compared individuals with MUD (MUD group, n = 30) in early abstinence (3-11 days abstinent) with a healthy control group (HC, n = 33) on brain activation and network connectivity and topology, using functional magnetic resonance imaging (fMRI) during performance on an N-back working memory task. The N-back task involves the maintenance and manipulation of information in short-term memory and engages multiple neural processes related to executive functioning. The task was administered at two working-memory difficulty loads (1-back and 2-back). RESULTS Compared with the HC group, the MUD group had worse task performance but no differences in task-related brain activation. Network-based statistics analyses, however, revealed that the MUD group exhibited less functional network connectivity at both difficulty loads of the N-back task than the HC group. Additional graph theory analyses showed that path lengths were longer, and clustering was lower across these networks, which also exhibited disrupted small-world properties in the MUD group. CONCLUSION These results suggest a decoupling in network dynamics that may underlie deficits in cognition during early abstinence in MUD patients.
Collapse
Affiliation(s)
- Liam J Nestor
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, USA
| | - Dara G Ghahremani
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, USA
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, USA; Brain Research Institute, University of California at Los Angeles, USA; Department of Molecular and Medical Pharmacology, University of California at Los Angeles, USA.
| |
Collapse
|
21
|
Ilioska I, Oldehinkel M, Llera A, Chopra S, Looden T, Chauvin R, Van Rooij D, Floris DL, Tillmann J, Moessnang C, Banaschewski T, Holt RJ, Loth E, Charman T, Murphy DGM, Ecker C, Mennes M, Beckmann CF, Fornito A, Buitelaar JK. Connectome-wide Mega-analysis Reveals Robust Patterns of Atypical Functional Connectivity in Autism. Biol Psychiatry 2022:S0006-3223(22)01852-2. [PMID: 36925414 DOI: 10.1016/j.biopsych.2022.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/19/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neuroimaging studies of functional connectivity (FC) in autism have been hampered by small sample sizes and inconsistent findings with regard to whether connectivity is increased or decreased in individuals with autism, whether these alterations affect focal systems or reflect a brain-wide pattern, and whether these are age and/or sex dependent. METHODS The study included resting-state functional magnetic resonance imaging and clinical data from the EU-AIMS LEAP (European Autism Interventions Longitudinal European Autism Project) and the ABIDE (Autism Brain Imaging Data Exchange) 1 and 2 initiatives of 1824 (796 with autism) participants with an age range of 5-58 years. Between-group differences in FC were assessed, and associations between FC and clinical symptom ratings were investigated through canonical correlation analysis. RESULTS Autism was associated with a brainwide pattern of hypo- and hyperconnectivity. Hypoconnectivity predominantly affected sensory and higher-order attentional networks and correlated with social impairments, restrictive and repetitive behavior, and sensory processing. Hyperconnectivity was observed primarily between the default mode network and the rest of the brain and between cortical and subcortical systems. This pattern was strongly associated with social impairments and sensory processing. Interactions between diagnosis and age or sex were not statistically significant. CONCLUSIONS The FC alterations observed, which primarily involve hypoconnectivity of primary sensory and attention networks and hyperconnectivity of the default mode network and subcortex with the rest of the brain, do not appear to be age or sex dependent and correlate with clinical dimensions of social difficulties, restrictive and repetitive behaviors, and alterations in sensory processing. These findings suggest that the observed connectivity alterations are stable, trait-like features of autism that are related to the main symptom domains of the condition.
Collapse
Affiliation(s)
- Iva Ilioska
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Turner Institute for Brain and Mental Health, School of Psychological Science, and Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia.
| | - Marianne Oldehinkel
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Turner Institute for Brain and Mental Health, School of Psychological Science, and Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Alberto Llera
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Science, and Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Tristan Looden
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Roselyne Chauvin
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Daan Van Rooij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Dorothea L Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Julian Tillmann
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rosemary J Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Christine Ecker
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Maarten Mennes
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Christian F Beckmann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Science, and Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands
| |
Collapse
|
22
|
Cheng P, Liu Z, Yang J, Sun F, Fan Z, Yang J. Decreased integration of default-mode network during a working memory task in schizophrenia with severe attention deficits. Front Cell Neurosci 2022; 16:1006797. [PMID: 36425664 PMCID: PMC9679280 DOI: 10.3389/fncel.2022.1006797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Working memory (WM) and attention deficits are both important features of schizophrenia. WM is closely related to attention, for it acted as an important characteristic in activating and manipulating WM. However, the knowledge of neural mechanisms underlying the relationship between WM and attention deficits in schizophrenia is poorly investigated. Methods Graph theory was used to examine the network topology at the whole-brain and large-scale network levels among 125 schizophrenia patients with different severity of attention deficits (65 mild attention deficits; 46 moderate attention deficits; and 14 severe attention deficits) and 53 healthy controls (HCs) during an N-back WM task. These analyses were repeated in the same participants during the resting state. Results In the WM task, there were omnibus differences in small-worldness and normalized clustering coefficient at a whole-brain level and normalized characterized path length of the default-mode network (DMN) among all groups. Post hoc analysis further indicated that all patient groups showed increased small-worldness and normalized clustering coefficient of the whole brain compared with HCs, and schizophrenia with severe attention deficits showed increased normalized characterized path length of the DMN compared with schizophrenia with mild attention deficits and HCs. However, these observations were not persisted under the resting state. Further correlation analyses indicated that the increased normalized characterized path length of the DMN was correlated with more severe attentional deficits and poorer accuracy of the WM task. Conclusion Our research demonstrated that, compared with the schizophrenia patients with less attention deficits, disrupted integration of the DMN may more particularly underlie the WM deficits in schizophrenia patients with severe attention deficits.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, Changsha, China
| | - Zhening Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, Changsha, China
- *Correspondence: Zhening Liu,
| | - Jun Yang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, Changsha, China
| | - Fuping Sun
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, Changsha, China
| | - Zebin Fan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, Changsha, China
- Zebin Fan,
| | - Jie Yang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, Changsha, China
- Jie Yang,
| |
Collapse
|
23
|
Bekhbat M, Li Z, Mehta ND, Treadway MT, Lucido MJ, Woolwine BJ, Haroon E, Miller AH, Felger JC. Functional connectivity in reward circuitry and symptoms of anhedonia as therapeutic targets in depression with high inflammation: evidence from a dopamine challenge study. Mol Psychiatry 2022; 27:4113-4121. [PMID: 35927580 PMCID: PMC9718669 DOI: 10.1038/s41380-022-01715-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
Abstract
Increased inflammation in major depressive disorder (MDD) has been associated with low functional connectivity (FC) in corticostriatal reward circuits and symptoms of anhedonia, relationships which may involve the impact of inflammation on synthesis and release of dopamine. To test this hypothesis while establishing a platform to examine target engagement of potential therapies in patients with increased inflammation, medically stable unmedicated adult MDD outpatients enrolled to have a range of inflammation (as indexed by plasma C-reactive protein [CRP] levels) were studied at two visits involving acute challenge with the dopamine precursor levodopa (L-DOPA; 250 mg) and placebo (double-blind, randomized order ~1-week apart). The primary outcome of resting-state (rs)FC in a classic ventral striatum to ventromedial prefrontal cortex reward circuit was calculated using a targeted, a priori approach. Data available both pre- and post-challenge (n = 31/40) established stability of rsFC across visits and determined CRP > 2 mg/L as a cut-point for patients exhibiting positive FC responses (post minus pre) to L-DOPA versus placebo (p < 0.01). Higher post-L-DOPA FC in patients with CRP > 2 mg/L was confirmed in all patients (n = 40) where rsFC data were available post-challenge (B = 0.15, p = 0.006), and in those with task-based (tb)FC during reward anticipation (B = 0.15, p = 0.013). While effort-based motivation outside the scanner positively correlated with rsFC independent of treatment or CRP, change in anhedonia scores negatively correlated with rsFC after L-DOPA only in patients with CRP > 2 mg/L (r = -0.56, p = 0.012). FC in reward circuitry should be further validated in larger samples as a biomarker of target engagement for potential treatments including dopaminergic agents in MDD patients with increased inflammation.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Zhihao Li
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
- School of Psychology and Sociology, Shenzhen University, Shenzhen, 518060, Guangdong Sheng, China
| | - Namrataa D Mehta
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Michael T Treadway
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
- The Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Michael J Lucido
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Bobbi J Woolwine
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
- The Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
- The Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA.
- The Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
24
|
Oishi K, Soldan A, Pettigrew C, Hsu J, Mori S, Albert M, Oishi K. Changes in pairwise functional connectivity associated with changes in cognitive performance in cognitively normal older individuals: A two-year observational study. Neurosci Lett 2022; 781:136618. [PMID: 35398188 PMCID: PMC9990522 DOI: 10.1016/j.neulet.2022.136618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Neurobiological substrates of cognitive decline in cognitively normal older individuals have been investigated by resting-state functional magnetic resonance imaging, but little is known about the relationship between longitudinal changes in the whole brain. In this study, we examined two-year changes in functional connectivity among 80 gray matter areas and investigated the relationship to two-year changes in cognitive performance. A cross-validated permutation variable importance measure was applied to select features related to a change in cognitive performance. Age-corrected changes in eleven pairs of functional connections were selected as important features, all related to brain areas that belong to the default mode network. A linear regression model with cross-validation demonstrated a mean correlation coefficient of 0.55 between measured and predicted changes in the cognitive composite score. These results suggest that intra- and inter-network connections in the default mode network are associated with cognitive changes over two years among cognitively normal individuals.
Collapse
Affiliation(s)
- Kumiko Oishi
- Center for Imaging Science, The Johns Hopkins University, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Anja Soldan
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Corinne Pettigrew
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Johnny Hsu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
25
|
Soldevila-Matías P, Albajes-Eizagirre A, Radua J, García-Martí G, Rubio JM, Tordesillas-Gutierrez D, Fuentes-Durá I, Solanes A, Fortea L, Oliver D, Sanjuán J. Precuneus and insular hypoactivation during cognitive processing in first-episode psychosis: Systematic review and meta-analysis of fMRI studies. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2022; 15:101-116. [PMID: 35840277 DOI: 10.1016/j.rpsmen.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/09/2020] [Indexed: 06/15/2023]
Abstract
INTRODUCTION The neural correlates of the cognitive dysfunction in first-episode psychosis (FEP) are still unclear. The present review and meta-analysis provide an update of the location of the abnormalities in the fMRI-measured brain response to cognitive processes in individuals with FEP. METHODS Systematic review and voxel-based meta-analysis of cross-sectional fMRI studies comparing neural responses to cognitive tasks between individuals with FEP and healthy controls (HC) according to PRISMA guidelines. RESULTS Twenty-six studies were included, comprising 598 individuals with FEP and 567 HC. Individual studies reported statistically significant hypoactivation in the dorsolateral prefrontal cortex (6 studies), frontal lobe (8 studies), cingulate (6 studies) and insula (5 studies). The meta-analysis showed statistically significant hypoactivation in the left anterior insula, precuneus and bilateral striatum. CONCLUSIONS While the studies tend to highlight frontal hypoactivation during cognitive tasks in FEP, our meta-analytic results show that the left precuneus and insula primarily display aberrant activation in FEP that may be associated with salience attribution to external stimuli and related to deficits in perception and regulation.
Collapse
Affiliation(s)
- Pau Soldevila-Matías
- Research Institute of the Hospital Clínic Universitari of Valencia (INCLIVA), Valencia, Spain; Department of Basic Psychology, Faculty of Psychology, University of Valencia, Valencia, Spain
| | - Anton Albajes-Eizagirre
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain; Center for Networking Biomedical Research in Mental Health (CIBERSAM), Spain
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain; Center for Networking Biomedical Research in Mental Health (CIBERSAM), Spain; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Gracián García-Martí
- Center for Networking Biomedical Research in Mental Health (CIBERSAM), Spain; Biomedical Engineering Unit/Radiology Department, Quirónsalud Hospital, Spain
| | - José M Rubio
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, USA; The Feinstein Institute, Northwell Health Hospital, New York, USA
| | - Diana Tordesillas-Gutierrez
- Center for Networking Biomedical Research in Mental Health (CIBERSAM), Spain; University Hospital Marqués de Valdecilla (IDIVAL), Department of Psychiatry, School of Medicine, University of Cantabria, Spain; Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain
| | - Inmaculada Fuentes-Durá
- Center for Networking Biomedical Research in Mental Health (CIBERSAM), Spain; Department of Personality, Assessment and Psychological Treatment, Faculty of Psychology, University of Valencia, Valencia, Spain
| | - Aleix Solanes
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for Networking Biomedical Research in Mental Health (CIBERSAM), Spain
| | - Lydia Fortea
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for Networking Biomedical Research in Mental Health (CIBERSAM), Spain
| | - Dominic Oliver
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; OASIS Service, South London and the Maudsley NHS Foundation Trust, London, UK
| | - Julio Sanjuán
- Research Institute of the Hospital Clínic Universitari of Valencia (INCLIVA), Valencia, Spain; Center for Networking Biomedical Research in Mental Health (CIBERSAM), Spain; Department of Psychiatric, University of Valencia, School of Medicine, Valencia, Spain
| |
Collapse
|
26
|
Functional network connectivity and topology during naturalistic stimulus is altered in first-episode psychosis. Schizophr Res 2022; 241:83-91. [PMID: 35092893 DOI: 10.1016/j.schres.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Psychotic disorders have been suggested to derive from dysfunctional integration of signaling between brain regions. Earlier studies have found several changes in functional network synchronization as well as altered network topology in patients with psychotic disorders. However, studies have used mainly resting-state that makes it more difficult to link functional alterations to any specific stimulus or experience. We set out to examine functional connectivity as well as graph (topological) measures and their association to symptoms in first-episode psychosis patients during movie viewing. Our goal was to understand whole-brain functional dynamics of complex naturalistic information processing in psychosis and changes in brain functional organization related to symptoms. METHODS 71 first-episode psychosis patients and 57 control subjects watched scenes from the movie Alice in Wonderland during 3 T fMRI. We compared functional connectivity and graph measures indicating integration, segregation and centrality between groups, and examined the association between topology and symptom scores in the patient group. RESULTS We identified a subnetwork with predominantly decreased links of functional connectivity in first-episode psychosis patients. The subnetwork was mainly comprised of nodes of and links between the cingulo-opercular, sensorimotor and default-mode networks. In topological measures, we observed between-group differences in properties of centrality. CONCLUSIONS Functional brain networks are affected during naturalistic information processing already in the early stages of psychosis, concentrated in salience- and cognitive control-related hubs and subnetworks. Understanding these aberrant dynamics could add to better targeted cognitive and behavioral interventions in the early stages of psychotic disorders.
Collapse
|
27
|
Qin Z, Liang HB, Li M, Hu Y, Wu J, Qiao Y, Liu JR, Du X. Disrupted White Matter Functional Connectivity With the Cerebral Cortex in Migraine Patients. Front Neurosci 2022; 15:799854. [PMID: 35095401 PMCID: PMC8793828 DOI: 10.3389/fnins.2021.799854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
Background: In attempts to understand the migraine patients’ overall brain functional architecture, blood oxygenation level-dependent (BOLD) signals in the white matter (WM) and gray matter (GM) were considered in the current study. Migraine, a severe and multiphasic brain condition, is characterized by recurrent attacks of headaches. BOLD fluctuations in a resting state exhibit similar temporal and spectral profiles in both WM and GM. It is feasible to explore the functional interactions between WM tracts and GM regions in migraine. Methods: Forty-eight migraineurs without aura (MWoA) and 48 healthy controls underwent resting-state functional magnetic resonance imaging. Pearson’s correlations between the mean time courses of 48 white matter (WM) bundles and 82 gray matter (GM) regions were computed for each subject. Two-sample t-tests were performed on the Pearson’s correlation coefficients (CC) to compare the differences between the MWoA and healthy controls in the GM-averaged CC of each bundle and the WM-averaged CC of each GM region. Results: The MWoAs exhibited an overall decreased average temporal CC between BOLD signals in 82 GM regions and 48 WM bundles compared with healthy controls, while little was increased. In particular, WM bundles such as left anterior corona radiata, left external capsule and bilateral superior longitudinal fasciculus had significantly decreased mean CCs with GM in MWoA. On the other hand, 16 GM regions had significantly decreased mean CCs with WM in MWoA, including some areas that are parts of the somatosensory regions, auditory cortex, temporal areas, frontal areas, cingulate cortex, and parietal cortex. Conclusion: Decreased functional connections between WM bundles and GM regions might contribute to disrupted functional connectivity between the parts of the pain processing pathway in MWoAs, which indicated that functional and connectivity abnormalities in cortical regions may not be limited to GM regions but are instead associated with functional abnormalities in WM tracts.
Collapse
Affiliation(s)
- Zhaoxia Qin
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Department of Medical Imaging, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Huai-Bin Liang
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Yue Hu
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wu
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Qiao
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Ren Liu
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jian-Ren Liu,
| | - Xiaoxia Du
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Xiaoxia Du,
| |
Collapse
|
28
|
Pelgrim TAD, Bossong MG, Cuiza A, Alliende LM, Mena C, Tepper A, Ramirez-Mahaluf JP, Iruretagoyena B, Ornstein C, Fritsch R, Cruz JP, Tejos C, Repetto G, Crossley N. Abnormal nodal and global network organization in resting state functional MRI from subjects with the 22q11 deletion syndrome. Sci Rep 2021; 11:21623. [PMID: 34732759 PMCID: PMC8566599 DOI: 10.1038/s41598-021-00873-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
The 22q11 deletion syndrome is a genetic disorder associated with a high risk of developing psychosis, and is therefore considered a neurodevelopmental model for studying the pathogenesis of schizophrenia. Studies have shown that localized abnormal functional brain connectivity is present in 22q11 deletion syndrome like in schizophrenia. However, it is less clear whether these abnormal cortical interactions lead to global or regional network disorganization as seen in schizophrenia. We analyzed from a graph-theory perspective fMRI data from 40 22q11 deletion syndrome patients and 67 healthy controls, and reconstructed functional networks from 105 brain regions. Between-group differences were examined by evaluating edge-wise strength and graph theoretical metrics of local (weighted degree, nodal efficiency, nodal local efficiency) and global topological properties (modularity, local and global efficiency). Connectivity strength was globally reduced in patients, driven by a large network comprising 147 reduced connections. The 22q11 deletion syndrome network presented with abnormal local topological properties, with decreased local efficiency and reductions in weighted degree particularly in hub nodes. We found evidence for abnormal integration but intact segregation of the 22q11 deletion syndrome network. Results suggest that 22q11 deletion syndrome patients present with similar aberrant local network organization as seen in schizophrenia, and this network configuration might represent a vulnerability factor to psychosis.
Collapse
Affiliation(s)
- Teuntje A D Pelgrim
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Matthijs G Bossong
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Analía Cuiza
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luz María Alliende
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Mena
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angeles Tepper
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Claudia Ornstein
- Departamento de Psiquiatria y Salud Mental, Hospital Clinico Universidad de Chile, Santiago, Chile
| | - Rosemarie Fritsch
- Departamento de Psiquiatria y Salud Mental, Hospital Clinico Universidad de Chile, Santiago, Chile
| | - Juan Pablo Cruz
- Department of Radiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian Tejos
- Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gabriela Repetto
- Genetic and Genomic Center, Universidad del Desarrollo, Santiago, Chile
| | - Nicolas Crossley
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile.
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Escuela de Medicina, Pontificia Universidad Católica, Diagonal Paraguay 362, Santiago, Chile.
| |
Collapse
|
29
|
Ji JL, Helmer M, Fonteneau C, Burt JB, Tamayo Z, Demšar J, Adkinson BD, Savić A, Preller KH, Moujaes F, Vollenweider FX, Martin WJ, Repovš G, Cho YT, Pittenger C, Murray JD, Anticevic A. Mapping brain-behavior space relationships along the psychosis spectrum. eLife 2021; 10:e66968. [PMID: 34313219 PMCID: PMC8315806 DOI: 10.7554/elife.66968] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/14/2021] [Indexed: 12/29/2022] Open
Abstract
Difficulties in advancing effective patient-specific therapies for psychiatric disorders highlight a need to develop a stable neurobiologically grounded mapping between neural and symptom variation. This gap is particularly acute for psychosis-spectrum disorders (PSD). Here, in a sample of 436 PSD patients spanning several diagnoses, we derived and replicated a dimensionality-reduced symptom space across hallmark psychopathology symptoms and cognitive deficits. In turn, these symptom axes mapped onto distinct, reproducible brain maps. Critically, we found that multivariate brain-behavior mapping techniques (e.g. canonical correlation analysis) do not produce stable results with current sample sizes. However, we show that a univariate brain-behavioral space (BBS) can resolve stable individualized prediction. Finally, we show a proof-of-principle framework for relating personalized BBS metrics with molecular targets via serotonin and glutamate receptor manipulations and neural gene expression maps derived from the Allen Human Brain Atlas. Collectively, these results highlight a stable and data-driven BBS mapping across PSD, which offers an actionable path that can be iteratively optimized for personalized clinical biomarker endpoints.
Collapse
Affiliation(s)
- Jie Lisa Ji
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale University School of MedicineNew HavenUnited States
| | - Markus Helmer
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Clara Fonteneau
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | | | - Zailyn Tamayo
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Jure Demšar
- Department of Psychology, University of LjubljanaLjubljanaSlovenia
- Faculty of Computer and Information Science, University of LjubljanaLjubljanaSlovenia
| | - Brendan D Adkinson
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale University School of MedicineNew HavenUnited States
| | | | - Katrin H Preller
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - Flora Moujaes
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - Franz X Vollenweider
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - William J Martin
- The Janssen Pharmaceutical Companies of Johnson and JohnsonSan FranciscoUnited States
| | - Grega Repovš
- Department of Psychiatry, University of ZagrebZagrebCroatia
| | - Youngsun T Cho
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Child Study Center, Yale University School of MedicineNew HavenUnited States
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Child Study Center, Yale University School of MedicineNew HavenUnited States
| | - John D Murray
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale University School of MedicineNew HavenUnited States
- Department of Physics, Yale UniversityNew HavenUnited States
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale University School of MedicineNew HavenUnited States
- Department of Psychology, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
30
|
Associations between long-term psychosis risk, probabilistic category learning, and attenuated psychotic symptoms with cortical surface morphometry. Brain Imaging Behav 2021; 16:91-106. [PMID: 34218406 DOI: 10.1007/s11682-021-00479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
Neuroimaging studies have consistently found structural cortical abnormalities in individuals with schizophrenia, especially in structural hubs. However, it is unclear what abnormalities predate psychosis onset and whether abnormalities are related to behavioral performance and symptoms associated with psychosis risk. Using surface-based morphometry, we examined cortical volume, gyrification, and thickness in a psychosis risk group at long-term risk for developing a psychotic disorder (n = 18; i.e., extreme positive schizotypy plus interview-rated attenuated psychotic symptoms [APS]) and control group (n = 19). Overall, the psychosis risk group exhibited cortical abnormalities in multiple structural hub regions, with abnormalities associated with poorer probabilistic category learning, a behavioral measure strongly associated with psychosis risk. For instance, the psychosis risk group had hypogyria in a right posterior midcingulate cortical hub and left superior parietal cortical hub, as well as decreased volume in a right pericalcarine hub. Morphometric measures in all of these regions were also associated with poorer probabilistic category learning. In addition to decreased right pericalcarine volume, the psychosis risk group exhibited a number of other structural abnormalities in visual network structural hub regions, consistent with previous evidence of visual perception deficits in psychosis risk. Further, severity of APS hallucinations, delusional ideation, and suspiciousness/persecutory ideas were associated with gyrification abnormalities, with all domains associated with hypogyria of the right lateral orbitofrontal cortex. Thus, current results suggest that structural abnormalities, especially in structural hubs, are present in psychosis risk and are associated both with poor learning on a psychosis risk-related task and with APS severity.
Collapse
|
31
|
Hearne LJ, Mill RD, Keane BP, Repovš G, Anticevic A, Cole MW. Activity flow underlying abnormalities in brain activations and cognition in schizophrenia. SCIENCE ADVANCES 2021; 7:7/29/eabf2513. [PMID: 34261649 PMCID: PMC8279516 DOI: 10.1126/sciadv.abf2513] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/28/2021] [Indexed: 05/03/2023]
Abstract
Cognitive dysfunction is a core feature of many brain disorders, including schizophrenia (SZ), and has been linked to aberrant brain activations. However, it is unclear how these activation abnormalities emerge. We propose that aberrant flow of brain activity across functional connectivity (FC) pathways leads to altered activations that produce cognitive dysfunction in SZ. We tested this hypothesis using activity flow mapping, an approach that models the movement of task-related activity between brain regions as a function of FC. Using functional magnetic resonance imaging data from SZ individuals and healthy controls during a working memory task, we found that activity flow models accurately predict aberrant cognitive activations across multiple brain networks. Within the same framework, we simulated a connectivity-based clinical intervention, predicting specific treatments that normalized brain activations and behavior in patients. Our results suggest that dysfunctional task-evoked activity flow is a large-scale network mechanism contributing to cognitive dysfunction in SZ.
Collapse
Affiliation(s)
- Luke J Hearne
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA.
| | - Ravi D Mill
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Brian P Keane
- University Behavioral Health Care, Department of Psychiatry, and Center for Cognitive Science, Rutgers University, Piscataway, NJ, USA
- Departments of Psychiatry and Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Grega Repovš
- Department of Psychology, University of Ljubljana, Aškerčeva 2, Ljubljana SI-1000, Slovenia
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| |
Collapse
|
32
|
Calvin OL, Redish AD. Global disruption in excitation-inhibition balance can cause localized network dysfunction and Schizophrenia-like context-integration deficits. PLoS Comput Biol 2021; 17:e1008985. [PMID: 34033641 PMCID: PMC8184155 DOI: 10.1371/journal.pcbi.1008985] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 06/07/2021] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
Poor context integration, the process of incorporating both previous and current information in decision making, is a cognitive symptom of schizophrenia. The maintenance of the contextual information has been shown to be sensitive to changes in excitation-inhibition (EI) balance. Many regions of the brain are sensitive to EI imbalances, however, so it is unknown how systemic manipulations affect the specific regions that are important to context integration. We constructed a multi-structure, biophysically-realistic agent that could perform context-integration as is assessed by the dot pattern expectancy task. The agent included a perceptual network, a memory network, and a decision making system and was capable of successfully performing the dot pattern expectancy task. Systemic manipulation of the agent’s EI balance produced localized dysfunction of the memory structure, which resulted in schizophrenia-like deficits at context integration. When the agent’s pyramidal cells were less excitatory, the agent fixated upon the cue and initiated responding later than the default agent, which were like the deficits one would predict that individuals on the autistic spectrum would make. This modelling suggests that it may be possible to parse between different types of context integration deficits by adding distractors to context integration tasks and by closely examining a participant’s reaction times. Schizophrenia is a debilitating mental health disorder and its underlying etiology is currently unknown. Neural imbalances in the neural excitation and inhibition of specific regions of the brain have been hypothesized to cause symptoms of schizophrenia. Most regions of the brain have specific excitation-inhibition balances that permit their functioning in the processing of information. How systemic changes in the excitation-inhibition balance cause specific deficits and dysfunction within neural circuits is unknown. A common cognitive deficit in schizophrenia is difficulty with context integration, which is the ability to successfully use previous and current information when making decisions. We assessed how this symptom could be caused by an imbalance in neural excitation and inhibition by simulating the effects of potential imbalances in a model agent. Global imbalances in the agent’s neural excitation and inhibition led to impairment of specific circuits. These dysfunctional circuits produced behavioral deficits that were like those observed in individuals with schizophrenia. These simulations suggested how specific neural circuits may be disrupted by global changes in excitation or inhibition, ways to improve the assessment of context integration, new approaches to analyzing behavior, and why it may be beneficial to assess context integration in autism spectrum disorder.
Collapse
Affiliation(s)
- Olivia L. Calvin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United State of America
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota, United State of America
| | - A. David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United State of America
- * E-mail:
| |
Collapse
|
33
|
Xu Q, Weng Y, Liu C, Qiu L, Yang Y, Zhou Y, Wang F, Lu G, Zhang LJ, Qi R. Distributed Functional Connectome of White Matter in Patients With Functional Dyspepsia. Front Hum Neurosci 2021; 15:589578. [PMID: 33935665 PMCID: PMC8085333 DOI: 10.3389/fnhum.2021.589578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose: We aimed to find out the distributed functional connectome of white matter in patients with functional dyspepsia (FD). Methods: 20 patients with FD and 24 age- and gender-matched healthy controls were included into the study. The functional connectome of white matter and graph theory were used to these participants. Two-sample t-test was used for the detection the abnormal graph properties in FD. Pearson correlation was used for the relationship between properties and the clinical and neuropshychological information. Results: Patients with FD and healthy controls showed small-world properties in functional connectome of white matter. Compared with healthy controls, the FD group showed decreased global properties (Cp, S, Eglobal, and Elocal). Four pairs of fiber bundles that are connected to the frontal lobe, insula, and thalamus were affected in the FD group. Duration and Pittsburgh Sleep Quality Index positively correlated with the betweenness centrality of white matter regions of interest. Conclusion: FD patients turned to a non-optimized functional organization of WM brain network. Frontal lobe, insula, and thalamus were key regions in brain information exchange of FD. It provided some novel imaging evidences for the mechanism of FD.
Collapse
Affiliation(s)
- Qiang Xu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chang Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lianli Qiu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yulin Yang
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifei Zhou
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fangyu Wang
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangming Lu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
34
|
De Berardis D, De Filippis S, Masi G, Vicari S, Zuddas A. A Neurodevelopment Approach for a Transitional Model of Early Onset Schizophrenia. Brain Sci 2021; 11:brainsci11020275. [PMID: 33672396 PMCID: PMC7926620 DOI: 10.3390/brainsci11020275] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
In the last decades, the conceptualization of schizophrenia has dramatically changed, moving from a neurodegenerative process occurring in early adult life to a neurodevelopmental disorder starting be-fore birth, showing a variety of premorbid and prodromal symptoms and, in relatively few cases, evolving in the full-blown psychotic syndrome. High rates of co-occurring different neurodevelopmental disorders such as Autism spectrum disorder and ADHD, predating the onset of SCZ, and neurobio-logical underpinning with significant similarities, support the notion of a pan-developmental disturbance consisting of impairments in neuromotor, receptive language, social and cognitive development. Con-sidering that many SCZ risk factors may be similar to symptoms of other neurodevelopmental psychi-atric disorders, transition processes from child & adolescent to adult systems of care should include both high risk people as well as subject with other neurodevelopmental psychiatric disorders with different levels of severity. This descriptive mini-review discuss the need of innovative clinical approaches, re-considering specific diagnostic categories, stimulating a careful analysis of risk factors and promoting the appropriate use of new and safer medications.
Collapse
Affiliation(s)
- Domenico De Berardis
- Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital “G. Mazzini,” National Health Service (NHS), 64100 ASL 4 Teramo, Italy
- Department of Neurosciences and Imaging, University “G. D’Annunzio”, 66100 Chieti, Italy
- Correspondence:
| | - Sergio De Filippis
- Department of Neuropsychiatry, Villa von Siebenthal Neuropsychiatric Hospital and Clinic, Genzano di Roma, 100045 Rome, Italy;
| | - Gabriele Masi
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, 56128 Pisa, Italy;
| | - Stefano Vicari
- Department of Life Sciences and Publich Health, Catholic University, 00135 Rome, Italy;
- Child & Adolescent Psychiatry, Bambino Gesù Children’s Hospital, 00168 Rome, Italy
| | - Alessandro Zuddas
- Child and Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, University of Cagliari and “A Cao” Paediatric Hospital, “G Brotzu” Hospital Trust, 109134 Cagliari, Italy;
| |
Collapse
|
35
|
Luo L, Li Q, You W, Wang Y, Tang W, Li B, Yang Y, Sweeney JA, Li F, Gong Q. Altered brain functional network dynamics in obsessive-compulsive disorder. Hum Brain Mapp 2021; 42:2061-2076. [PMID: 33522660 PMCID: PMC8046074 DOI: 10.1002/hbm.25345] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/20/2020] [Accepted: 01/07/2021] [Indexed: 02/05/2023] Open
Abstract
Obsessive–compulsive disorder (OCD) is a debilitating and disabling neuropsychiatric disorder, whose neurobiological basis remains unclear. Although traditional static resting‐state magnetic resonance imaging (rfMRI) studies have found aberrant functional connectivity (FC) in OCD, alterations in whole‐brain FC and topological properties in the context of brain dynamics remain relatively unexplored. The rfMRI data of 29 patients with OCD and 40 healthy controls were analyzed using group independent component analysis to obtain independent components (ICs) and a sliding‐window approach to generate dynamic functional connectivity (dFC) matrices. dFC patterns were clustered into three reoccurring states, and state transition metrics were obtained. Then, graph‐theory methods were applied to dFC matrices to calculate the variability of network topological organization. The occurrence of a state (State 1) with the highest modularity index and lowest mean FC between networks was increased significantly in OCD, and the fractional time in brain State 1 was positively correlated with anxiety level in patients. State 1 was characterized by having positive connections within default mode (DMN) and salience networks (SAN), and negative coupling between the two networks. Additionally, ICs belonging to DMN and SAN showed lower temporal variability of nodal degree centrality and efficiency in patients, which was related to longer illness duration and higher current obsession ratings. Our results provide evidence of clinically relevant aberrant dynamic brain activity in OCD. Increased functional segregation among networks and impaired functional flexibility in connections among brain regions in DMN and SAN may play important roles in the neuropathology of OCD.
Collapse
Affiliation(s)
- Lekai Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wanfang You
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yuxia Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wanjie Tang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Bin Li
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yanchun Yang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China.,Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
36
|
Meyers JL, Chorlian DB, Bigdeli TB, Johnson EC, Aliev F, Agrawal A, Almasy L, Anokhin A, Edenberg HJ, Foroud T, Goate A, Kamarajan C, Kinreich S, Nurnberger J, Pandey AK, Pandey G, Plawecki MH, Salvatore JE, Zhang J, Fanous A, Porjesz B. The association of polygenic risk for schizophrenia, bipolar disorder, and depression with neural connectivity in adolescents and young adults: examining developmental and sex differences. Transl Psychiatry 2021; 11:54. [PMID: 33446638 PMCID: PMC7809462 DOI: 10.1038/s41398-020-01185-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 02/03/2023] Open
Abstract
Neurodevelopmental abnormalities in neural connectivity have been long implicated in the etiology of schizophrenia (SCZ); however, it remains unclear whether these neural connectivity patterns are associated with genetic risk for SCZ in unaffected individuals (i.e., an absence of clinical features of SCZ or a family history of SCZ). We examine whether polygenic risk scores (PRS) for SCZ are associated with functional neural connectivity in adolescents and young adults without SCZ, whether this association is moderated by sex and age, and if similar associations are observed for genetically related neuropsychiatric PRS. One-thousand four-hundred twenty-six offspring from 913 families, unaffected with SCZ, were drawn from the Collaborative Study of the Genetics of Alcoholism (COGA) prospective cohort (median age at first interview = 15.6 (12-26), 51.6% female, 98.1% European American, 41% with a family history of alcohol dependence). Participants were followed longitudinally with resting-state EEG connectivity (i.e., coherence) assessed every two years. Higher SCZ PRS were associated with elevated theta (3-7 Hz) and alpha (7-12 Hz) EEG coherence. Associations differed by sex and age; the most robust associations were observed between PRS and parietal-occipital, central-parietal, and frontal-parietal alpha coherence among males between ages 15-19 (B: 0.15-0.21, p < 10-4). Significant associations among EEG coherence and Bipolar and Depression PRS were observed, but differed from SCZ PRS in terms of sex, age, and topography. Findings reveal that polygenic risk for SCZ is robustly associated with increased functional neural connectivity among young adults without a SCZ diagnosis. Striking differences were observed between men and women throughout development, mapping onto key periods of risk for the onset of psychotic illness and underlining the critical importance of examining sex differences in associations with neuropsychiatric PRS across development.
Collapse
Affiliation(s)
- J. L. Meyers
- grid.189747.40000 0000 9554 2494Department of Psychiatry, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203 USA
| | - D. B. Chorlian
- grid.189747.40000 0000 9554 2494Department of Psychiatry, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203 USA
| | - T. B. Bigdeli
- grid.189747.40000 0000 9554 2494Department of Psychiatry, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203 USA
| | - E. C. Johnson
- grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - F. Aliev
- grid.224260.00000 0004 0458 8737Department of Psychology & College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, VA 23284 USA ,grid.440448.80000 0004 0384 3505Faculty of Business, Karabuk University, Karabuk, Turkey
| | - A. Agrawal
- grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - L. Almasy
- grid.25879.310000 0004 1936 8972Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - A. Anokhin
- grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - H. J. Edenberg
- grid.257413.60000 0001 2287 3919Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,grid.257413.60000 0001 2287 3919Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - T. Foroud
- grid.257413.60000 0001 2287 3919Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - A. Goate
- grid.59734.3c0000 0001 0670 2351Departments of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - C. Kamarajan
- grid.189747.40000 0000 9554 2494Department of Psychiatry, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203 USA
| | - S. Kinreich
- grid.189747.40000 0000 9554 2494Department of Psychiatry, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203 USA
| | - J. Nurnberger
- grid.257413.60000 0001 2287 3919Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - A. K. Pandey
- grid.189747.40000 0000 9554 2494Department of Psychiatry, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203 USA
| | - G. Pandey
- grid.189747.40000 0000 9554 2494Department of Psychiatry, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203 USA
| | - M. H. Plawecki
- grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110 USA ,grid.257413.60000 0001 2287 3919Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - J. E. Salvatore
- grid.224260.00000 0004 0458 8737Department of Psychology & College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, VA 23284 USA ,grid.224260.00000 0004 0458 8737Virginia Institute of Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - J. Zhang
- grid.189747.40000 0000 9554 2494Department of Psychiatry, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203 USA
| | - A. Fanous
- grid.189747.40000 0000 9554 2494Department of Psychiatry, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203 USA
| | - B. Porjesz
- grid.189747.40000 0000 9554 2494Department of Psychiatry, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203 USA
| |
Collapse
|
37
|
Schutte MJL, Bohlken MM, Collin G, Abramovic L, Boks MPM, Cahn W, Dauwan M, van Dellen E, van Haren NEM, Hugdahl K, Koops S, Mandl RCW, Sommer IEC. Functional connectome differences in individuals with hallucinations across the psychosis continuum. Sci Rep 2021; 11:1108. [PMID: 33441965 PMCID: PMC7806763 DOI: 10.1038/s41598-020-80657-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
Hallucinations may arise from an imbalance between sensory and higher cognitive brain regions, reflected by alterations in functional connectivity. It is unknown whether hallucinations across the psychosis continuum exhibit similar alterations in functional connectivity, suggesting a common neural mechanism, or whether different mechanisms link to hallucinations across phenotypes. We acquired resting-state functional MRI scans of 483 participants, including 40 non-clinical individuals with hallucinations, 99 schizophrenia patients with hallucinations, 74 bipolar-I disorder patients with hallucinations, 42 bipolar-I disorder patients without hallucinations, and 228 healthy controls. The weighted connectivity matrices were compared using network-based statistics. Non-clinical individuals with hallucinations and schizophrenia patients with hallucinations exhibited increased connectivity, mainly among fronto-temporal and fronto-insula/cingulate areas compared to controls (P < 0.001 adjusted). Differential effects were observed for bipolar-I disorder patients with hallucinations versus controls, mainly characterized by decreased connectivity between fronto-temporal and fronto-striatal areas (P = 0.012 adjusted). No connectivity alterations were found between bipolar-I disorder patients without hallucinations and controls. Our results support the notion that hallucinations in non-clinical individuals and schizophrenia patients are related to altered interactions between sensory and higher-order cognitive brain regions. However, a different dysconnectivity pattern was observed for bipolar-I disorder patients with hallucinations, which implies a different neural mechanism across the psychosis continuum.
Collapse
Affiliation(s)
- Maya J L Schutte
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Neuroimaging Center, PO Box 196, 9700 AD, Groningen, The Netherlands.
| | - Marc M Bohlken
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Guusje Collin
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.,Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA.,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lucija Abramovic
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marco P M Boks
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Meenakshi Dauwan
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Neuroimaging Center, PO Box 196, 9700 AD, Groningen, The Netherlands
| | - Edwin van Dellen
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.,Department of Intensive Care Medicine and UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Neeltje E M van Haren
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.,Department of Child and Adolescent Psychiatry, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Department of Psychiatry, Haukeland University Hospital, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway.,NORMENT Center for the Study of Mental Disorders, University of Oslo, Oslo, Norway
| | - Sanne Koops
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Neuroimaging Center, PO Box 196, 9700 AD, Groningen, The Netherlands
| | - René C W Mandl
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Neuroimaging Center, PO Box 196, 9700 AD, Groningen, The Netherlands.,Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| |
Collapse
|
38
|
Cognitive performance in early, treatment-resistant psychosis patients: Could cognitive control play a role in persistent symptoms? Psychiatry Res 2021; 295:113607. [PMID: 33285345 DOI: 10.1016/j.psychres.2020.113607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022]
Abstract
Approximately one third of psychosis patients fail to respond to conventional antipsychotic medication, which exerts its effect via striatal dopamine receptor antagonism. The present study aimed to investigate impaired cognitive control as a potential contributor to persistent positive symptoms in treatment resistant (TR) patients. 52 medicated First Episode Psychosis (FEP) patients (17 TR and 35 non-TR (NTR)) took part in a longitudinal study in which they performed a series of cognitive tasks and a clinical assessment at two timepoints, 12 months apart. Cognitive performance at baseline was compared to that of 39 healthy controls (HC). Across both timepoints, TR patients were significantly more impaired than NTR patients in a task of cognitive control, while performance on tasks of phonological and semantic fluency, working memory and general intelligence did not differ between patient groups. No significant associations were found between cognitive performance and psychotic symptomatology, and no significant performance changes were observed from the first to second timepoint in any of the cognitive tasks within patient groups. The results suggest that compared with NTR patients, TR patients have an exacerbated deficit specific to cognitive control, which is established early in psychotic illness and stabilises in the years following a first episode.
Collapse
|
39
|
Xu Q, Zhang Q, Yang F, Weng Y, Xie X, Hao J, Qi R, Gumenyuk V, Stufflebeam SM, Bernhardt BC, Lu G, Zhang Z. Cortico-striato-thalamo-cerebellar networks of structural covariance underlying different epilepsy syndromes associated with generalized tonic-clonic seizures. Hum Brain Mapp 2020; 42:1102-1115. [PMID: 33372704 PMCID: PMC7856655 DOI: 10.1002/hbm.25279] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/16/2020] [Accepted: 10/31/2020] [Indexed: 01/05/2023] Open
Abstract
Generalized tonic-clonic seizures (GTCS) are the severest and most remarkable clinical expressions of human epilepsy. Cortical, subcortical, and cerebellar structures, organized with different network patterns, underlying the pathophysiological substrates of genetic associated epilepsy with GTCS (GE-GTCS) and focal epilepsy associated with focal to bilateral tonic-clonic seizure (FE-FBTS). Structural covariance analysis can delineate the features of epilepsy network related with long-term effects from seizure. Morphometric MRI data of 111 patients with GE-GTCS, 111 patients with FE-FBTS and 111 healthy controls were studied. Cortico-striato-thalao-cerebellar networks of structural covariance within the gray matter were constructed using a Winner-take-all strategy with five cortical parcellations. Comparisons of structural covariance networks were conducted using permutation tests, and module effects of disease duration on networks were conducted using GLM model. Both patient groups showed increased connectivity of structural covariance relative to controls, mainly within the striatum and thalamus, and mostly correlated with the frontal, motor, and somatosensory cortices. Connectivity changes increased as a function of epilepsy durations. FE-FBTS showed more intensive and extensive gray matter changes with volumetric loss and connectivity increment than GE-GTCS. Our findings implicated cortico-striato-thalamo-cerebellar network changes at a large temporal scale in GTCS, with FE-FBTS showing more severe network disruption. The study contributed novel imaging evidence for understanding the different epilepsy syndromes associated with generalized seizures.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China.,College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qirui Zhang
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China
| | - Fang Yang
- Department of Neurology, Jinling Hospital, Medical school of Nanjing University, Nanjing, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China.,Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Xinyu Xie
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China
| | - Jingru Hao
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China
| | - Valentina Gumenyuk
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China.,College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical school of Nanjing University, Nanjing, China.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
40
|
Shao R, Liu HL, Huang CM, Chen YL, Gao M, Lee SH, Lin C, Lee TMC. Loneliness and depression dissociated on parietal-centered networks in cognitive and resting states. Psychol Med 2020; 50:2691-2701. [PMID: 31615593 DOI: 10.1017/s0033291719002782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Perceived loneliness, an increasingly prevalent social issue, is closely associated with major depressive disorder (MDD). However, the neural mechanisms previously implicated in key cognitive and affective processes in loneliness and MDD still remain unclear. Such understanding is critical for delineating the psychobiological basis of the relationship between loneliness and MDD. METHODS We isolated the unique and interactive cognitive and neural substrates of loneliness and MDD among 27 MDD patients (mean age = 51.85 years, 20 females), and 25 matched healthy controls (HCs; mean age = 48.72 years, 19 females). We assessed participants' behavioral performance and neural regional and network functions on a Stroop color-word task, and their resting-state neural connectivity. RESULTS Behaviorally, we found greater incongruence-related accuracy cost in MDD patients, but reduced incongruence effect on reaction time in lonelier individuals. When performing the Stroop task, loneliness positively predicted prefrontal-anterior cingulate-parietal connectivity across all participants, whereas MDD patients showed a decrease in connectivity compared to controls. Furthermore, loneliness negatively predicted parietal and cerebellar activities in MDD patients, but positively predicted the same activities in HCs. During resting state, MDD patients showed reduced parietal-anterior cingulate connectivity, which again positively correlated with loneliness in this group. CONCLUSIONS We speculate the distinct neurocognitive profile of loneliness might indicate increase in both bottom-up attention and top-down executive control functions. However, the upregulated cognitive control processes in lonely individuals may eventually become exhausted, which may in turn predispose to MDD onset.
Collapse
Affiliation(s)
- Robin Shao
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Laboratory of Neuropsychology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ho-Ling Liu
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chih-Mao Huang
- College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yao-Liang Chen
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Mengxia Gao
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Laboratory of Neuropsychology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Shwu-Hua Lee
- Department of Psychiatry, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chemin Lin
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung City, Taiwan
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Laboratory of Neuropsychology, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| |
Collapse
|
41
|
Soldevila-Matías P, Albajes-Eizagirre A, Radua J, García-Martí G, Rubio JM, Tordesillas-Gutierrez D, Fuentes-Durá I, Solanes A, Fortea L, Oliver D, Sanjuán J. Precuneus and insular hypoactivation during cognitive processing in first-episode psychosis: Systematic review and meta-analysis of fMRI studies. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2020; 15:S1888-9891(20)30100-2. [PMID: 32988773 DOI: 10.1016/j.rpsm.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The neural correlates of the cognitive dysfunction in first-episode psychosis (FEP) are still unclear. The present review and meta-analysis provide an update of the location of the abnormalities in the fMRI-measured brain response to cognitive processes in individuals with FEP. METHODS Systematic review and voxel-based meta-analysis of cross-sectional fMRI studies comparing neural responses to cognitive tasks between individuals with FEP and healthy controls (HC) according to PRISMA guidelines. RESULTS Twenty-six studies were included, comprising 598 individuals with FEP and 567 HC. Individual studies reported statistically significant hypoactivation in the dorsolateral prefrontal cortex (6 studies), frontal lobe (8 studies), cingulate (6 studies) and insula (5 studies). The meta-analysis showed statistically significant hypoactivation in the left anterior insula, precuneus and bilateral striatum. CONCLUSIONS While the studies tend to highlight frontal hypoactivation during cognitive tasks in FEP, our meta-analytic results show that the left precuneus and insula primarily display aberrant activation in FEP that may be associated with salience attribution to external stimuli and related to deficits in perception and regulation.
Collapse
Affiliation(s)
- Pau Soldevila-Matías
- Research Institute of the Hospital Clínic Universitari of Valencia (INCLIVA), Valencia, Spain; Department of Basic Psychology, Faculty of Psychology, University of Valencia, Valencia, Spain
| | - Anton Albajes-Eizagirre
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain; Center for Networking Biomedical Research in Mental Health (CIBERSAM), Spain
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain; Center for Networking Biomedical Research in Mental Health (CIBERSAM), Spain; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Gracián García-Martí
- Center for Networking Biomedical Research in Mental Health (CIBERSAM), Spain; Biomedical Engineering Unit/Radiology Department, Quirónsalud Hospital, Spain
| | - José M Rubio
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, USA; The Feinstein Institute, Northwell Health Hospital, New York, USA
| | - Diana Tordesillas-Gutierrez
- Center for Networking Biomedical Research in Mental Health (CIBERSAM), Spain; University Hospital Marqués de Valdecilla (IDIVAL), Department of Psychiatry, School of Medicine, University of Cantabria, Spain; Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain
| | - Inmaculada Fuentes-Durá
- Center for Networking Biomedical Research in Mental Health (CIBERSAM), Spain; Department of Personality, Assessment and Psychological Treatment, Faculty of Psychology, University of Valencia, Valencia, Spain
| | - Aleix Solanes
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for Networking Biomedical Research in Mental Health (CIBERSAM), Spain
| | - Lydia Fortea
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for Networking Biomedical Research in Mental Health (CIBERSAM), Spain
| | - Dominic Oliver
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; OASIS Service, South London and the Maudsley NHS Foundation Trust, London, UK
| | - Julio Sanjuán
- Research Institute of the Hospital Clínic Universitari of Valencia (INCLIVA), Valencia, Spain; Center for Networking Biomedical Research in Mental Health (CIBERSAM), Spain; Department of Psychiatric, University of Valencia, School of Medicine, Valencia, Spain
| |
Collapse
|
42
|
Dynamic Reconfiguration of Functional Topology in Human Brain Networks: From Resting to Task States. Neural Plast 2020; 2020:8837615. [PMID: 32963519 PMCID: PMC7495231 DOI: 10.1155/2020/8837615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 11/24/2022] Open
Abstract
Task demands evoke an intrinsic functional network and flexibly engage multiple distributed networks. However, it is unclear how functional topologies dynamically reconfigure during task performance. Here, we selected the resting- and task-state (emotion and working-memory) functional connectivity data of 81 health subjects from the high-quality HCP data. We used the network-based statistic (NBS) toolbox and the Brain Connectivity Toolbox (BCT) to compute the topological features of functional networks for the resting and task states. Graph-theoretic analysis indicated that under high threshold, a small number of long-distance connections dominated functional networks of emotion and working memory that exhibit distinct long connectivity patterns. Correspondently, task-relevant functional nodes shifted their roles from within-module to between-module: the number of connector hubs (mainly in emotional networks) and kinless hubs (mainly in working-memory networks) increased while provincial hubs disappeared. Moreover, the global properties of assortativity, global efficiency, and transitivity decreased, suggesting that task demands break the intrinsic balance between local and global couplings among brain regions and cause functional networks which tend to be more separated than the resting state. These results characterize dynamic reconfiguration of large-scale distributed networks from resting state to task state and provide evidence for the understanding of the organization principle behind the functional architecture of task-state networks.
Collapse
|
43
|
Smucny J, Lesh TA, Zarubin VC, Niendam TA, Ragland JD, Tully LM, Carter CS. One-Year Stability of Frontoparietal Cognitive Control Network Connectivity in Recent Onset Schizophrenia: A Task-Related 3T fMRI Study. Schizophr Bull 2020; 46:1249-1258. [PMID: 31903495 PMCID: PMC7505169 DOI: 10.1093/schbul/sbz122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Kraepelinian theory posits that schizophrenia (SZ) is a degenerative disorder that worsens throughout the lifespan. Behavioral studies of cognition have since challenged that viewpoint, particularly in the early phases of illness. Nonetheless, the extent to which cognition remains functionally stable during the early course of illness is unclear, particularly with regard to task-associated connectivity in cognition-related brain networks. In this study, we examined the 1-year stability of the frontoparietal control network during the AX-Continuous Performance Task (AX-CPT) from a new baseline sample of 153 participants scanned at 3T, of which 29 recent onset individuals with SZ and 42 healthy control (HC) participants had follow-up data available for analysis. Among individuals that had both baseline and follow-up data, reduced functional connectivity in SZ was observed between the dorsolateral prefrontal cortex (DLPFC) and superior parietal cortex (SPC) during the high control (B cue) condition. Furthermore, this deficit was stable over time, as no significant time × diagnosis interaction or effects of time were observed and intraclass correlation coefficients were greater than 0.6 in HCs and SZ. Previous 1.5T findings showing stable deficits with no evidence of degeneration in performance or DLPFC activation in an independent SZ sample were replicated. Overall, these results suggest that the neuronal circuitry supporting cognitive control is stably impaired during the early course of illness in SZ across multiple levels of analysis with no evidence of functional decline.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, CA
| | - Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, CA
| | - Vanessa C Zarubin
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, CA
| | - Tara A Niendam
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, CA
| | - J Daniel Ragland
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, CA
| | - Laura M Tully
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, CA
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, CA
| |
Collapse
|
44
|
Yang J, Ouyang X, Tao H, Pu W, Fan Z, Zeng C, Huang X, Chen X, Liu J, Liu Z, Palaniyappan L. Connectomic signatures of working memory deficits in depression, mania, and euthymic states of bipolar disorder. J Affect Disord 2020; 274:190-198. [PMID: 32469803 DOI: 10.1016/j.jad.2020.05.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Working memory (WM) deficit is a feature persistently reported across mania, depression, and euthymic periods of bipolar disorder (BD). WM capacity relates to distributed brain regions that are systemically organized at the connectome level. It is not clear whether the same disruption of this network-level organization underlies the WM impairment seen in different phases of BD. METHODS We used graph theory to examine the topology of the functional connectome in different granularity in 143 subjects (72 with BD [32 depression; 15 mania; 25 euthymic] and 71 healthy controls) during a n-back task. Linear regression analysis was used to test associations of altered graph properties, clinical symptoms, and WM accuracy in patients. RESULTS Altered topological properties characterised by an increase in small-worldness of the whole-brain connectome, were specific for bipolar depressed, but not in manic and euthymic states. Depressed subjects showed a shift in the distribution of the number of connections per brain region (degree) within the connectome during WM task. Increased small-worldness related to worse WM accuracy in patients with more severe depression, anxiety and illness burden. LIMITATIONS We used only 2-back load, limiting our ability to study the parametric effects of task demand. CONCLUSIONS We demonstrate a putative state-dependent mechanistic link between connectome topology, hub re-distribution and impaired n-back performance in bipolar disorder. The aberrant task-dependent modulation of the connectome relates to worse WM performance especially when anxiety and depression are prominent in BD.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China.
| | - Xuan Ouyang
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Haojuan Tao
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Weidan Pu
- Medical Psychological Center, the Second Xiangya Hospital, Central South University, Changsha, PR China; Medical Psychological Institute of Central South University, Changsha, PR China
| | - Zebin Fan
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Can Zeng
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Xiaojun Huang
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Xudong Chen
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Jun Liu
- Department of Radiology, the Second Xiangya hospital, Central South University, Changsha, PR China.
| | - Zhening Liu
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China.
| | - Lena Palaniyappan
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China; Department of Psychiatry, University of Western Ontario, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
45
|
Grent-‘t-Jong T, Gajwani R, Gross J, Gumley AI, Krishnadas R, Lawrie SM, Schwannauer M, Schultze-Lutter F, Uhlhaas PJ. Association of Magnetoencephalographically Measured High-Frequency Oscillations in Visual Cortex With Circuit Dysfunctions in Local and Large-scale Networks During Emerging Psychosis. JAMA Psychiatry 2020; 77:852-862. [PMID: 32211834 PMCID: PMC7097849 DOI: 10.1001/jamapsychiatry.2020.0284] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Psychotic disorders are characterized by impairments in neural oscillations, but the nature of the deficit, the trajectory across illness stages, and functional relevance remain unclear. OBJECTIVES To examine whether changes in spectral power, phase locking, and functional connectivity in visual cortex are present during emerging psychosis and whether these abnormalities are associated with clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS In this cross-sectional study, participants meeting clinical high-risk criteria for psychosis, participants with first-episode psychosis, participants with affective disorders and substance abuse, and a group of control participants were recruited. Participants underwent measurements with magnetoencephalography and magnetic resonance imaging. Data analysis was carried out between 2018 and 2019. MAIN OUTCOMES AND MEASURES Magnetoencephalographical activity was examined in the 1- to 90-Hz frequency range in combination with source reconstruction during a visual grating task. Event-related fields, power modulation, intertrial phase consistency, and connectivity measures in visual and frontal cortices were associated with neuropsychological scores, psychosocial functioning, and clinical symptoms as well as persistence of subthreshold psychotic symptoms at 12 months. RESULTS The study participants included those meeting clinical high-risk criteria for psychosis (n = 119; mean [SD] age, 22 [4.4] years; 32 men), 26 patients with first-episode psychosis (mean [SD] age, 24 [4.2] years; 16 men), 38 participants with affective disorders and substance abuse (mean [SD] age, 23 [4.7] years; 11 men), and 49 control participants (mean age [SD], 23 [3.6] years; 16 men). Clinical high-risk participants and patients with first-episode psychosis were characterized by reduced phase consistency of β/γ-band oscillations in visual cortex (d = 0.63/d = 0.93). Moreover, the first-episode psychosis group was also characterized by reduced occipital γ-band power (d = 1.14) and altered visual cortex connectivity (d = 0.74-0.84). Impaired fronto-occipital connectivity was present in both clinical high-risk participants (d = 0.54) and patients with first-episode psychosis (d = 0.84). Importantly, reductions in intertrial phase coherence predicted persistence of subthreshold psychosis in clinical high-risk participants (receiver operating characteristic area under curve = 0.728; 95% CI, 0.612-0.841; P = .001). CONCLUSIONS AND RELEVANCE High-frequency oscillations are impaired in the visual cortex during emerging psychosis and may be linked to behavioral and clinical impairments. Impaired phase consistency of γ-band oscillations was also associated with the persistence of subthreshold psychosis, suggesting that magnetoencephalographical measured neural oscillations could constitute a biomarker for clinical staging of emerging psychosis.
Collapse
Affiliation(s)
- Tineke Grent-‘t-Jong
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland,Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Ruchika Gajwani
- Mental Health and Wellbeing, Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland,Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Andrew I. Gumley
- Mental Health and Wellbeing, Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland
| | - Rajeev Krishnadas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland
| | - Stephen M. Lawrie
- Department of Psychiatry, University of Edinburgh, Edinburgh, Scotland
| | | | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, üsseldorf, Bergische Landstrasse 2, 40629 Düsseldorf, Germany
| | - Peter J. Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland,Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
46
|
Yang J, Pu W, Wu G, Chen E, Lee E, Liu Z, Palaniyappan L. Connectomic Underpinnings of Working Memory Deficits in Schizophrenia: Evidence From a replication fMRI study. Schizophr Bull 2020; 46:916-926. [PMID: 32016430 PMCID: PMC7345823 DOI: 10.1093/schbul/sbz137] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Working memory (WM) deficit is a key feature of schizophrenia that relates to a generalized neural inefficiency of extensive brain areas. To date, it remains unknown how these distributed regions are systemically organized at the connectome level and how the disruption of such organization brings about the WM impairment seen in schizophrenia. METHODS We used graph theory to examine the neural efficiency of the functional connectome in different granularity in 155 patients with schizophrenia and 96 healthy controls during a WM task. These analyses were repeated in another independent dataset (81 patients and 54 controls). Linear regression analysis was used to test associations of altered graph properties, clinical symptoms, and WM accuracy in patients. A machine-learning approach was adopted to study the ability of multivariate connectome features from one dataset to discriminate patients from controls in the second dataset. RESULTS Small-worldness of the whole-brain connectome was significantly increased in schizophrenia during the WM task; this increase is related to better (though subpar) WM accuracy in patients with more severe negative symptom burden. There was a shift in the degree distribution to a more homogeneous form in patients. The machine-learning approach classified a new set of patients from controls with 84.3% true-positivity rate for schizophrenia and 71.6% overall accuracy. CONCLUSIONS We demonstrate a putative mechanistic link between connectome topology, hub redistribution, and impaired n-back performance in schizophrenia. The task-dependent modulation of the connectome relates to, but remains inefficient in, improving the performance above par in the presence of severe negative symptoms.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Weidan Pu
- Medical Psychological Center, the Second Xiangya Hospital, Central South University, Changsha, P.R. China
- Medical Psychological Institute of Central South University, Changsha, P.R. China
| | - Guowei Wu
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Eric Chen
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Edwin Lee
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhening Liu
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Lena Palaniyappan
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
47
|
Gudmundsson L, Vohryzek J, Fornari E, Clarke S, Hagmann P, Crottaz-Herbette S. A brief exposure to rightward prismatic adaptation changes resting-state network characteristics of the ventral attentional system. PLoS One 2020; 15:e0234382. [PMID: 32584824 PMCID: PMC7316264 DOI: 10.1371/journal.pone.0234382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 05/26/2020] [Indexed: 12/02/2022] Open
Abstract
A brief session of rightward prismatic adaptation (R-PA) has been shown to alleviate neglect symptoms in patients with right hemispheric damage, very likely by switching hemispheric dominance of the ventral attentional network (VAN) from the right to the left and by changing task-related activity within the dorsal attentional network (DAN). We have investigated this very rapid change in functional organisation with a network approach by comparing resting-state connectivity before and after a brief exposure i) to R-PA (14 normal subjects; experimental condition) or ii) to plain glasses (12 normal subjects; control condition). A whole brain analysis (comprising 129 regions of interest) highlighted R-PA-induced changes within a bilateral, fronto-temporal network, which consisted of 13 nodes and 11 edges; all edges involved one of 4 frontal nodes, which were part of VAN. The analysis of network characteristics within VAN and DAN revealed a R-PA-induced decrease in connectivity strength between nodes and a decrease in local efficiency within VAN but not within DAN. These results indicate that the resting-state connectivity configuration of VAN is modulated by R-PA, possibly by decreasing its modularity.
Collapse
Affiliation(s)
- Louis Gudmundsson
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland
| | - Jakub Vohryzek
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry, Hedonia Research Group, University of Oxford, Oxford, United Kingdom
| | - Eleonora Fornari
- CIBM (Centre d'Imagerie Biomédicale), Dept. of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland
| | - Stephanie Clarke
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland
- Signal Processing Lab 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sonia Crottaz-Herbette
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
48
|
Nestor LJ, Suckling J, Ersche KD, Murphy A, McGonigle J, Orban C, Paterson LM, Reed L, Taylor E, Flechais R, Smith D, Bullmore ET, Elliott R, Deakin B, Rabiner I, Hughes AL, Sahakian BJ, Robbins TW, Nutt DJ. Disturbances across whole brain networks during reward anticipation in an abstinent addiction population. NEUROIMAGE-CLINICAL 2020; 27:102297. [PMID: 32505119 PMCID: PMC7270610 DOI: 10.1016/j.nicl.2020.102297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022]
Abstract
Analytical methods can capture key features of whole brain networks in addiction. We compared reward network connectivity in addiction (ADD) and control (CON) groups. The ADD group showed disruptions in global network connectivity. Global network measures may be more sensitive than traditional voxel-wise analyses.
The prevalent spatial distribution of abnormalities reported in cognitive fMRI studies in addiction suggests there are extensive disruptions across whole brain networks. Studies using resting state have reported disruptions in network connectivity in addiction, but these studies have not revealed characteristics of network functioning during critical psychological processes that are disrupted in addiction populations. Analytic methods that can capture key features of whole brain networks during psychological processes may be more sensitive in revealing additional and widespread neural disturbances in addiction, that are the provisions for relapse risk, and targets for medication development. The current study compared a substance addiction (ADD; n = 83) group in extended abstinence with a control (CON; n = 68) group on functional MRI (voxel-wise activation) and global network (connectivity) measures related to reward anticipation on a monetary incentive delay task. In the absence of group differences on MID performance, the ADD group showed reduced activation predominantly across temporal and visual regions, but not across the striatum. The ADD group also showed disruptions in global network connectivity (lower clustering coefficient and higher characteristic path length), and significantly less connectivity across a sub-network comprising frontal, temporal, limbic and striatal nodes. These results show that an addiction group in extended abstinence exhibit localised disruptions in brain activation, but more extensive disturbances in functional connectivity across whole brain networks. We propose that measures of global network functioning may be more sensitive in highlighting latent and more widespread neural disruptions during critical psychological processes in addiction and other psychiatric disorders.
Collapse
Affiliation(s)
- Liam J Nestor
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom; Department of Psychiatry, University of Cambridge, United Kingdom
| | - John Suckling
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - Anna Murphy
- Neuroscience and Psychiatry Unit, University of Manchester, United Kingdom
| | - John McGonigle
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | - Csaba Orban
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | - Louise M Paterson
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | - Laurence Reed
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | - Eleanor Taylor
- Neuroscience and Psychiatry Unit, University of Manchester, United Kingdom
| | - Remy Flechais
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | - Dana Smith
- Department of Psychiatry, University of Cambridge, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | | | - Rebecca Elliott
- Neuroscience and Psychiatry Unit, University of Manchester, United Kingdom
| | - Bill Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, United Kingdom
| | - Ilan Rabiner
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anne-Lingford Hughes
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | | | - Trevor W Robbins
- Department of Psychiatry, University of Cambridge, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - David J Nutt
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | | |
Collapse
|
49
|
Dysfunctional connectivity in posterior brain regions involved in cognitive control in schizophrenia: A preliminary fMRI study. J Clin Neurosci 2020; 78:317-322. [PMID: 32448728 DOI: 10.1016/j.jocn.2020.04.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/15/2020] [Indexed: 11/21/2022]
Abstract
Cognitive control, the ability to use goal-directed information to guide behaviour, is impaired in schizophrenia, and mainly related to dysfunctions within the fronto-posterior brain network. However, cognitive control is a broad cognitive function encompassing distinct sub-processes that, until now, studies have failed to separate and relate to specific brain regions. The goal of this preliminary fMRI study is to investigate the functional specialization of posterior brain regions, and their functional interaction with lateral prefrontal cortex (LPFC) regions, in schizophrenia. Fourteen healthy participants and 15 matched schizophrenic patients participated in this fMRI study. We used a task paradigm that differentiates two cognitive control sub-processes according to the temporal framing of information, namely the control of immediate context (present cues) vs. temporal episode (past instructions). We found that areas activated during contextual and episodic controls were in dorsal posterior regions and that activations did not significantly differ between schizophrenic patients and healthy participants. However, while processing contextual signals, patients with schizophrenia failed to show decreased connectivity between caudal LPFC and areas located in ventral posterior regions. The absence of group difference in the functional specialization of posterior regions is difficult to interpret due to our small sample size. One interpretation for our connectivity results is that patients present an inefficient extinction of posterior regions involved in attention shifting by prefrontal areas involved in the top-down control of contextual signals. Further studies with larger sample sizes will be needed to ascertain those observations.
Collapse
|
50
|
Di X, Biswal BB. Toward Task Connectomics: Examining Whole-Brain Task Modulated Connectivity in Different Task Domains. Cereb Cortex 2020; 29:1572-1583. [PMID: 29931116 DOI: 10.1093/cercor/bhy055] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/16/2018] [Indexed: 11/12/2022] Open
Abstract
Human brain anatomical and resting-state functional connectivity have been comprehensively portrayed using MRI, which are termed anatomical and functional connectomes. A systematic examination of tasks modulated whole brain functional connectivity, which we term as task connectome, is still lacking. We analyzed 6 block-designed and 1 event-related designed functional MRI data, and examined whole-brain task modulated connectivity in various task domains, including emotion, reward, language, relation, social cognition, working memory, and inhibition. By using psychophysiological interaction between pairs of regions from the whole brain, we identified statistically significant task modulated connectivity in 4 tasks between their experimental and respective control conditions. Task modulated connectivity was found not only between regions that were activated during the task but also regions that were not activated or deactivated, suggesting a broader involvement of brain regions in a task than indicated by simple regional activations. Decreased functional connectivity was observed in all the 4 tasks and sometimes reduced connectivity was even between regions that were both activated during the task. This suggests that brain regions that are activated together do not necessarily work together. The current study demonstrates the comprehensive task connectomes of 4 tasks, and suggested complex relationships between regional activations and connectivity changes.
Collapse
Affiliation(s)
- Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|