1
|
Duffy BC, King KM, Nepal B, Nonnemacher MR, Kortagere S. Acute Administration of HIV-1 Tat Protein Drives Glutamatergic Alterations in a Rodent Model of HIV-Associated Neurocognitive Disorders. Mol Neurobiol 2024; 61:8467-8480. [PMID: 38514527 DOI: 10.1007/s12035-024-04113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
HIV-1-associated neurocognitive disorders (HAND) are a major comorbidity of HIV-1 infection, marked by impairment of executive function varying in severity. HAND affects nearly half of people living with HIV (PLWH), with mild forms predominating since the use of anti-retroviral therapies (ART). The HIV-1 transactivator of transcription (Tat) protein is found in the cerebrospinal fluid of patients adherent to ART, and its administration or expression in animals causes cognitive symptoms. Studies of Tat interaction with the N-methyl-D-aspartate receptor (NMDAR) suggest that glutamate toxicity contributes to Tat-induced impairments. To identify changes in regional glutamatergic circuitry underlying cognitive impairment, we injected recombinant Tat86 or saline to medial prefrontal cortex (mPFC) of male Sprague-Dawley rats. Rats were assessed with behavioral tasks that involve intact functioning of mPFC including the novel object recognition (NOR), spatial object recognition (SOR), and temporal order (TO) tasks at 1 and 2 postoperative weeks. Following testing, mPFC tissue was collected and analyzed by RT-PCR. Results showed Tat86 in mPFC-induced impairment in SOR, and upregulation of Grin1 and Grin2a transcripts. To further understand the mechanism of Tat toxicity, we assessed the effects of full-length Tat101 on gene expression in mPFC by RNA sequencing. The results of RNAseq suggest that glutamatergic effects of Tat86 are maintained with Tat101, as Grin2a was upregulated in Tat101-injected tissue, among other differentially expressed genes. Spatial learning and memory impairment and Grin2a upregulation suggest that exposure to Tat protein drives adaptation in mPFC, altering the function of circuitry supporting spatial learning and memory.
Collapse
Affiliation(s)
- Brenna C Duffy
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kirsten M King
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Ewens AN, Pilski A, Hastings SD, Krook-Magnuson C, Graves SM, Krook-Magnuson E, Thayer SA. Levetiracetam Prevents Neurophysiological Changes and Preserves Cognitive Function in the Human Immunodeficiency Virus (HIV)-1 Transactivator of Transcription Transgenic Mouse Model of HIV-Associated Neurocognitive Disorder. J Pharmacol Exp Ther 2024; 391:104-118. [PMID: 39060163 PMCID: PMC11413936 DOI: 10.1124/jpet.124.002272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) affects nearly half of the 39 million people living with HIV. HAND symptoms range from subclinical cognitive impairment to dementia; the mechanisms that underlie HAND remain unclear and there is no treatment. The HIV protein transactivator of transcription (TAT) is thought to contribute to HAND because it persists in the central nervous system and elicits neurotoxicity in animal models. Network hyperexcitability is associated with accelerated cognitive decline in neurodegenerative disorders. Here we show that the antiepileptic drug levetiracetam (LEV) attenuated aberrant excitatory synaptic transmission, protected synaptic plasticity, reduced seizure susceptibility, and preserved cognition in inducible TAT (iTAT) transgenic male mice. iTAT mice had an increased frequency of spontaneous excitatory postsynaptic currents in hippocampal slice recordings and impaired long-term potentiation, a form of synaptic plasticity that underlies learning and memory. Two-week administration of LEV by osmotic minipump prevented both impairments. Kainic acid administered to iTAT mice induced a higher maximum behavioral seizure score, longer seizure duration, and shorter latency to first seizure, consistent with a lower seizure threshold. LEV treatment prevented these in vivo signs of hyperexcitability. Lastly, in the Barnes maze, iTAT mice required more time to reach the goal, committed more errors, and received lower cognitive scores relative to iTAT mice treated with LEV. Thus, TAT expression drives functional deficits, suggesting a causative role in HAND. As LEV not only prevented aberrant synaptic activity in iTAT mice but also prevented cognitive dysfunction, it may provide a promising pharmacological approach to the treatment of HAND. SIGNIFICANCE STATEMENT: Approximately half of people living with human immunodeficiency virus (HIV) also suffer from HIV-associated neurocognitive disorder (HAND), for which there is no treatment. The HIV protein transactivator of transcription (TAT) causes toxicity that is thought to contribute to HAND. Here, the antiepileptic drug levetiracetam (LEV) prevented synaptic and cognitive impairments in a TAT-expressing mouse. LEV is widely used to treat seizures and is well-tolerated in humans, including those with HIV. This study supports further investigation of LEV-mediated neuroprotection in HAND.
Collapse
Affiliation(s)
- Ashley N Ewens
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Alexander Pilski
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Shayne D Hastings
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Chris Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Steven M Graves
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Esther Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| |
Collapse
|
3
|
Yadav-Samudrala BJ, Dodson H, Ramineni S, Kim E, Poklis JL, Lu D, Ignatowska-Jankowska BM, Lichtman AH, Fitting S. Cannabinoid receptor 1 positive allosteric modulator ZCZ011 shows differential effects on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. PLoS One 2024; 19:e0305868. [PMID: 38913661 PMCID: PMC11195999 DOI: 10.1371/journal.pone.0305868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
The cannabinoid receptor type 1 (CB1R) is a promising therapeutic target for various neurodegenerative diseases, including HIV-1-associated neurocognitive disorder (HAND). However, the therapeutic potential of CB1R by direct activation is limited due to its psychoactive side effects. Therefore, research has focused on indirectly activating the CB1R by utilizing positive allosteric modulators (PAMs). Studies have shown that CB1R PAMs (ZCZ011 and GAT211) are effective in mouse models of Huntington's disease and neuropathic pain, and hence, we assess the therapeutic potential of ZCZ011 in a well-established mouse model of neuroHIV. The current study investigates the effect of chronic ZCZ011 treatment (14 days) on various behavioral paradigms and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Chronic ZCZ011 treatment (10 mg/kg) did not alter body mass, locomotor activity, or anxiety-like behavior regardless of sex or genotype. However, differential effects were noted in hot plate latency, motor coordination, and recognition memory in female mice only, with ZCZ011 treatment increasing hot plate latency and improving motor coordination and recognition memory. Only minor effects or no alterations were seen in the endocannabinoid system and related lipids except in the cerebellum, where the effect of ZCZ011 was more pronounced in female mice. Moreover, AEA and PEA levels in the cerebellum were positively correlated with improved motor coordination in female mice. In summary, these findings indicate that chronic ZCZ011 treatment has differential effects on antinociception, motor coordination, and memory, based on sex and HIV-1 Tat expression, making CB1R PAMs potential treatment options for HAND without the psychoactive side effects.
Collapse
Affiliation(s)
- Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hailey Dodson
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shreya Ramineni
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth Kim
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Dai Lu
- Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas, United States of America
| | | | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
4
|
League AF, Yadav-Samudrala BJ, Kolagani R, Cline CA, Jacobs IR, Manke J, Niphakis MJ, Cravatt BF, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. A helping HAND: therapeutic potential of MAGL inhibition against HIV-1-associated neuroinflammation. Front Immunol 2024; 15:1374301. [PMID: 38835765 PMCID: PMC11148243 DOI: 10.3389/fimmu.2024.1374301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Background Human immunodeficiency virus (HIV) affects nearly 40 million people globally, with roughly 80% of all people living with HIV receiving antiretroviral therapy. Antiretroviral treatment suppresses viral load in peripheral tissues but does not effectively penetrate the blood-brain barrier. Thus, viral reservoirs persist in the central nervous system and continue to produce low levels of inflammatory factors and early viral proteins, including the transactivator of transcription (Tat). HIV Tat is known to contribute to chronic neuroinflammation and synaptodendritic damage, which is associated with the development of cognitive, motor, and/or mood problems, collectively known as HIV-associated neurocognitive disorders (HAND). Cannabinoid anti-inflammatory effects are well documented, but therapeutic utility of cannabis remains limited due to its psychotropic effects, including alterations within brain regions encoding reward processing and motivation, such as the nucleus accumbens. Alternatively, inhibiting monoacylglycerol lipase (MAGL) has demonstrated therapeutic potential through interactions with the endocannabinoid system. Methods The present study utilized a reward-related operant behavioral task to quantify motivated behavior in female Tat transgenic mice treated with vehicle or MAGL inhibitor MJN110 (1 mg/kg). Brain tissue was collected to assess dendritic injury and neuroinflammatory profiles, including dendritic microtubule-associated protein (MAP2ab) intensity, microglia density, microglia morphology, astrocyte density, astrocytic interleukin-1ß (IL-1ß) colocalization, and various lipid mediators. Results No significant behavioral differences were observed; however, MJN110 protected against Tat-induced dendritic injury by significantly upregulating MAP2ab intensity in the nucleus accumbens and in the infralimbic cortex of Tat(+) mice. No or only minor effects were noted for Iba-1+ microglia density and/or microglia morphology. Further, Tat increased GFAP+ astrocyte density in the infralimbic cortex and GFAP+ astrocytic IL-1ß colocalization in the nucleus accumbens, with MJN110 significantly reducing these measures in Tat(+) subjects. Lastly, selected HETE-related inflammatory lipid mediators in the striatum were downregulated by chronic MJN110 treatment. Conclusions These findings demonstrate anti-inflammatory and neuroprotective properties of MJN110 without cannabimimetic behavioral effects and suggest a promising alternative to cannabis for managing neuroinflammation.
Collapse
Affiliation(s)
- Alexis F. League
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ramya Kolagani
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Calista A. Cline
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ian R. Jacobs
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Micah J. Niphakis
- Department of Chemistry, Scripps Research, La Jolla, CA, United States
| | | | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Xie Q, Namba MD, Buck LA, Park K, Jackson JG, Barker JM. Effects of Antiretroviral Treatment on Central and Peripheral Immune Response in Mice with EcoHIV Infection. Cells 2024; 13:882. [PMID: 38786105 PMCID: PMC11120433 DOI: 10.3390/cells13100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
HIV infection is an ongoing global health issue, despite increased access to antiretroviral therapy (ART). People living with HIV (PLWH) who are virally suppressed through ART still experience negative health outcomes, including neurocognitive impairment. It is increasingly evident that ART may act independently or in combination with HIV infection to alter the immune state, though this is difficult to disentangle in the clinical population. Thus, these experiments used multiplexed chemokine/cytokine arrays to assess peripheral (plasma) and brain (nucleus accumbens; NAc) expression of immune targets in the presence and absence of ART treatment in the EcoHIV mouse model. The findings identify the effects of EcoHIV infection and of treatment with bictegravir (B), emtricitabine (F), and tenofovir alafenamide (TAF) on the expression of numerous immune targets. In the NAc, this included EcoHIV-induced increases in IL-1α and IL-13 expression and B/F/TAF-induced reductions in KC/CXCL1. In the periphery, EcoHIV suppressed IL-6 and LIF expression, while B/F/TAF reduced IL-12p40 expression. In the absence of ART, IBA-1 expression was negatively correlated with CX3CL1 expression in the NAc of EcoHIV-infected mice. These findings identify distinct effects of ART and EcoHIV infection on peripheral and central immune factors and emphasize the need to consider ART effects on neural and immune outcomes.
Collapse
Affiliation(s)
- Qiaowei Xie
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Q.X.); (M.D.N.); (L.A.B.); (J.G.J.)
- Graduate Program in Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Mark D. Namba
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Q.X.); (M.D.N.); (L.A.B.); (J.G.J.)
| | - Lauren A. Buck
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Q.X.); (M.D.N.); (L.A.B.); (J.G.J.)
| | - Kyewon Park
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Joshua G. Jackson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Q.X.); (M.D.N.); (L.A.B.); (J.G.J.)
| | - Jacqueline M. Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Q.X.); (M.D.N.); (L.A.B.); (J.G.J.)
| |
Collapse
|
6
|
Xie Q, Namba MD, Buck LA, Park K, Jackson JG, Barker JM. Effects of antiretroviral treatment on central and peripheral immune response in mice with EcoHIV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589109. [PMID: 38645059 PMCID: PMC11030421 DOI: 10.1101/2024.04.11.589109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
HIV infection is an ongoing global health issue despite increased access to antiretroviral therapy (ART). People living with HIV (PLWH) who are virally suppressed through ART still experience negative health outcomes, including neurocognitive impairment. It is increasingly evident that ART may act independently or in combination with HIV infection to alter immune state, though this is difficult to disentangle in the clinical population. Thus, these experiments used multiplexed chemokine/cytokine arrays to assess peripheral (plasma) and brain (nucleus accumbens; NAc) expression of immune targets in the presence and absence of ART treatment in the EcoHIV mouse model. The findings identify effects of EcoHIV infection and of treatment with bictegravir (B), emtricitabine (F) and tenofovir alafenamide (TAF) on expression of numerous immune targets. In the NAc, this included EcoHIV-induced increases in IL-1α and IL-13 expression and B/F/TAF-induced reductions in KC/CXCL1. In the periphery, EcoHIV suppressed IL-6 and LIF expression, while B/F/TAF reduced IL-12p40 expression. In absence of ART, IBA-1 expression was negatively correlated with CX3CL1 expression in the NAc of EcoHIV-infected mice. These findings identify distinct effects of ART and EcoHIV infection on peripheral and central immune factors and emphasize the need to consider ART effects on neural and immune outcomes.
Collapse
|
7
|
Chemparathy DT, Ray S, Ochs C, Ferguson N, Gawande DY, Dravid SM, Callen S, Sil S, Buch S. Neuropathogenic role of astrocyte-derived extracellular vesicles in HIV-associated neurocognitive disorders. J Extracell Vesicles 2024; 13:e12439. [PMID: 38647111 PMCID: PMC11034007 DOI: 10.1002/jev2.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Our previous findings demonstrated that astrocytic HIF-1α plays a major role in HIV-1 Tat-mediated amyloidosis which can lead to Alzheimer's-like pathology-a comorbidity of HIV-Associated Neurocognitive Disorders (HAND). These amyloids can be shuttled in extracellular vesicles, and we sought to assess whether HIV-1 Tat stimulated astrocyte-derived EVs (ADEVs) containing the toxic amyloids could result in neuronal injury in vitro and in vivo. We thus hypothesized that blocking HIF-1α could likely mitigate HIV-1 Tat-ADEV-mediated neuronal injury. Rat hippocampal neurons when exposed to HIV-1 Tat-ADEVs carrying the toxic amyloids exhibited amyloid accumulation and synaptodendritic injury, leading to functional loss as evidenced by alterations in miniature excitatory post synaptic currents. The silencing of astrocytic HIF-1α not only reduced the biogenesis of ADEVs, as well as amyloid cargos, but also ameliorated neuronal synaptodegeneration. Next, we determined the effect of HIV-1 Tat-ADEVs carrying amyloids in the hippocampus of naive mice brains. Naive mice receiving the HIV-1 Tat-ADEVs, exhibited behavioural changes, and Alzheimer's 's-like pathology accompanied by synaptodegeneration. This impairment(s) was not observed in mice injected with HIF-1α silenced ADEVs. This is the first report demonstrating the role of amyloid-carrying ADEVs in mediating synaptodegeneration leading to behavioural changes associated with HAND and highlights the protective role of HIF-1α.
Collapse
Affiliation(s)
- Divya T. Chemparathy
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sudipta Ray
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Chase Ochs
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Natasha Ferguson
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Dinesh Y. Gawande
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Shashank M. Dravid
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Shannon Callen
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Susmita Sil
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Shilpa Buch
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
8
|
Yadav-Samudrala BJ, Gorman BL, Barmada KM, Ravula HP, Huguely CJ, Wallace ED, Peace MR, Poklis JL, Jiang W, Fitting S. Effects of acute cannabidiol on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Front Neurosci 2024; 18:1358555. [PMID: 38505774 PMCID: PMC10949733 DOI: 10.3389/fnins.2024.1358555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Background Some evidence suggests that cannabidiol (CBD) has potential to help alleviate HIV symptoms due to its antioxidant and anti-inflammatory properties. Here we examined acute CBD effects on various behaviors and the endocannabinoid system in HIV Tat transgenic mice. Methods Tat transgenic mice (female/male) were injected with CBD (3, 10, 30 mg/kg) and assessed for antinociception, activity, coordination, anxiety-like behavior, and recognition memory. Brains were taken to quantify endocannabinoids, cannabinoid receptors, and cannabinoid catabolic enzymes. Additionally, CBD and metabolite 7-hydroxy-CBD were quantified in the plasma and cortex. Results Tat decreased supraspinal-related nociception and locomotion. CBD and sex had little to no effects on any of the behavioral measures. For the endocannabinoid system male sex was associated with elevated concentration of the proinflammatory metabolite arachidonic acid in various CNS regions, including the cerebellum that also showed higher FAAH expression levels for Tat(+) males. GPR55 expression levels in the striatum and cerebellum were higher for females compared to males. CBD metabolism was altered by sex and Tat expression. Conclusion Findings indicate that acute CBD effects are not altered by HIV Tat, and acute CBD has no to minimal effects on behavior and the endocannabinoid system.
Collapse
Affiliation(s)
- Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin L. Gorman
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Karenna M. Barmada
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Havilah P. Ravula
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Caitlin J. Huguely
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - E. Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michelle R. Peace
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
9
|
Rademeyer KM, R Nass S, Jones AM, Ohene-Nyako M, Hauser KF, McRae M. Fentanyl dysregulates neuroinflammation and disrupts blood-brain barrier integrity in HIV-1 Tat transgenic mice. J Neurovirol 2024; 30:1-21. [PMID: 38280928 PMCID: PMC11232468 DOI: 10.1007/s13365-023-01186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/29/2023] [Accepted: 11/16/2023] [Indexed: 01/29/2024]
Abstract
Opioid overdose deaths have dramatically increased by 781% from 1999 to 2021. In the setting of HIV, opioid drug abuse exacerbates neurotoxic effects of HIV in the brain, as opioids enhance viral replication, promote neuronal dysfunction and injury, and dysregulate an already compromised inflammatory response. Despite the rise in fentanyl abuse and the close association between opioid abuse and HIV infection, the interactive comorbidity between fentanyl abuse and HIV has yet to be examined in vivo. The HIV-1 Tat-transgenic mouse model was used to understand the interactive effects between fentanyl and HIV. Tat is an essential protein produced during HIV that drives the transcription of new virions and exerts neurotoxic effects within the brain. The Tat-transgenic mouse model uses a glial fibrillary acidic protein (GFAP)-driven tetracycline promoter which limits Tat production to the brain and this model is well used for examining mechanisms related to neuroHIV. After 7 days of fentanyl exposure, brains were harvested. Tight junction proteins, the vascular cell adhesion molecule, and platelet-derived growth factor receptor-β were measured to examine the integrity of the blood brain barrier. The immune response was assessed using a mouse-specific multiplex chemokine assay. For the first time in vivo, we demonstrate that fentanyl by itself can severely disrupt the blood-brain barrier and dysregulate the immune response. In addition, we reveal associations between inflammatory markers and tight junction proteins at the blood-brain barrier.
Collapse
Affiliation(s)
- Kara M Rademeyer
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, 23298, U.S.A
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, U.S.A
| | - Austin M Jones
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, 23298, U.S.A
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, U.S.A
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, U.S.A
| | - MaryPeace McRae
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22908, U.S.A..
| |
Collapse
|
10
|
Ladagu AD, Olopade FE, Adejare A, Olopade JO. GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases. Pharmaceuticals (Basel) 2023; 16:1535. [PMID: 38004401 PMCID: PMC10674917 DOI: 10.3390/ph16111535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity. The presence of GluN2A and GluN2B subunits is particularly important for cognitive processes and has been strongly implicated in neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Understanding the roles of GluN2A and GluN2B NMDARs in neuropathologies provides valuable insights into the underlying causes and complexities of major nervous system disorders. This knowledge is vital for the development of selective antagonists targeting GluN2A and GluN2B subunits using pharmacological and molecular methods. Such antagonists represent a promising class of NMDA receptor inhibitors that have the potential to be developed into neuroprotective drugs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| | - Funmilayo Eniola Olopade
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| |
Collapse
|
11
|
Pla-Tenorio J, Roig AM, García-Cesaní PA, Santiago LA, Sepulveda-Orengo MT, Noel RJ. Astrocytes: Role in pathogenesis and effect of commonly misused drugs in the HIV infected brain. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100108. [PMID: 38020814 PMCID: PMC10663134 DOI: 10.1016/j.crneur.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 06/05/2023] [Accepted: 08/18/2023] [Indexed: 12/01/2023] Open
Abstract
The roles of astrocytes as reservoirs and producers of a subset of viral proteins in the HIV infected brain have been studied extensively as a key to understanding HIV-associated neurocognitive disorders (HAND). However, their comprehensive role in the context of intersecting substance use and neurocircuitry of the reward pathway and HAND has yet to be fully explained. Use of methamphetamines, cocaine, or opioids in the context of HIV infection have been shown to lead to a faster progression of HAND. Glutamatergic, dopaminergic, and GABAergic systems are implicated in the development of HAND-induced cognitive impairments. A thorough review of scientific literature exploring the variety of mechanisms in which these drugs exert their effects on the HIV brain and astrocytes has revealed marked areas of convergence in overexcitation leading to increased drug-seeking behavior, inflammation, apoptosis, and irreversible neurotoxicity. The present review investigates astrocytes, the neural pathways, and mechanisms of drug disruption that ultimately play a larger holistic role in terms of HIV progression and drug use. There are opportunities for future research, therapeutic intervention, and preventive strategies to diminish HAND in the subset population of patients with HIV and substance use disorder.
Collapse
Affiliation(s)
- Jessalyn Pla-Tenorio
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Angela M. Roig
- Seattle Children's Hospital, MS OC.7.830, 4800 Sand Point Way NE, Seattle, WA, 98105-0371, United States
| | - Paulina A. García-Cesaní
- Bella Vista Hospital, Family Medicine Residency, Carr. 349 Km 2.7, Cerro Las Mesas, Mayaguez, PR, 00681, Puerto Rico
| | - Luis A. Santiago
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Marian T. Sepulveda-Orengo
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Richard J. Noel
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| |
Collapse
|
12
|
Keledjian K, Makar T, Zhang C, Zhang J, Shim B, Davis H, Bryant J, Gerzanich V, Simard JM, Zhao RY. Correlation of HIV-Induced Neuroinflammation and Synaptopathy with Impairment of Learning and Memory in Mice with HAND. J Clin Med 2023; 12:5169. [PMID: 37629211 PMCID: PMC10455390 DOI: 10.3390/jcm12165169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Over 38 million people worldwide are living with HIV/AIDS, and more than half of them are affected by HIV-associated neurocognitive disorders (HAND). Such disorders are characterized by chronic neuroinflammation, neurotoxicity, and central nervous system deterioration, which lead to short- or long-term memory loss, cognitive impairment, and motor skill deficits that may show gender disparities. However, the underlying mechanisms remain unclear. Our previous study suggested that HIV-1 infection and viral protein R (Vpr) upregulate the SUR1-TRPM4 channel associated with neuroinflammation, which may contribute to HAND. The present study aimed to explore this relationship in a mouse model of HAND. This study employed the HIV transgenic Tg26 mouse model, comparing Tg26 mice with wildtype mice in various cognitive behavioral and memory tests, including locomotor activity tests, recognition memory tests, and spatial learning and memory tests. The study found that Tg26 mice exhibited impaired cognitive skills and reduced learning abilities compared to wildtype mice, particularly in spatial memory. Interestingly, male Tg26 mice displayed significant differences in spatial memory losses (p < 0.001), while no significant differences were identified in female mice. Consistent with our early results, SUR1-TRPM4 channels were upregulated in Tg26 mice along with glial fibrillary acidic protein (GFAP) and aquaporin 4 (AQP4), consistent with reactive astrocytosis and neuroinflammation. Corresponding reductions in neurosynaptic responses, as indicated by downregulation of Synapsin-1 (SYN1) and Synaptophysin (SYP), suggested synaptopathy as a possible mechanism underlying cognitive and motor skill deficits. In conclusion, our study suggests a possible relationship between SUR1-TRPM4-mediated neuroinflammation and synaptopathy with impairments of learning and memory in mice with HAND. These findings could help to develop new therapeutic strategies for individuals living with HAND.
Collapse
Affiliation(s)
- Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.K.); (T.M.); (B.S.); (V.G.)
| | - Tapas Makar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.K.); (T.M.); (B.S.); (V.G.)
| | - Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (C.Z.); (J.Z.)
| | - Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (C.Z.); (J.Z.)
| | - Bosung Shim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.K.); (T.M.); (B.S.); (V.G.)
| | - Harry Davis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (H.D.); (J.B.)
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (H.D.); (J.B.)
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.K.); (T.M.); (B.S.); (V.G.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.K.); (T.M.); (B.S.); (V.G.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (C.Z.); (J.Z.)
- Surgical Care Clinical Center, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (C.Z.); (J.Z.)
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (H.D.); (J.B.)
- Department of Microbiology-Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Rodriguez MT, McLaurin KA, Shtutman M, Kubinak JL, Mactutus CF, Booze RM. Therapeutically targeting the consequences of HIV-1-associated gastrointestinal dysbiosis: Implications for neurocognitive and affective alterations. Pharmacol Biochem Behav 2023; 229:173592. [PMID: 37390973 PMCID: PMC10494709 DOI: 10.1016/j.pbb.2023.173592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Approximately 50 % of the individuals living with human immunodeficiency virus type 1 (HIV-1) are plagued by debilitating neurocognitive impairments (NCI) and/or affective alterations. Sizeable alterations in the composition of the gut microbiome, or gastrointestinal dysbiosis, may underlie, at least in part, the NCI, apathy, and/or depression observed in this population. Herein, two interrelated aims will be critically addressed, including: 1) the evidence for, and functional implications of, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals; and 2) the potential for therapeutically targeting the consequences of this dysbiosis for the treatment of HIV-1-associated NCI and affective alterations. First, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals is characterized by decreased alpha (α) diversity, a decreased relative abundance of bacterial species belonging to the Bacteroidetes phylum, and geographic-specific alterations in Bacillota (formerly Firmicutes) spp. Fundamentally, changes in the relative abundance of Bacteroidetes and Bacillota spp. may underlie, at least in part, the deficits in γ-aminobutyric acid and serotonin neurotransmission, as well as prominent synaptodendritic dysfunction, observed in this population. Second, there is compelling evidence for the therapeutic utility of targeting synaptodendritic dysfunction as a method to enhance neurocognitive function and improve motivational dysregulation in HIV-1. Further research is needed to determine whether the therapeutics enhancing synaptic efficacy exert their effects by altering the gut microbiome. Taken together, understanding gastrointestinal microbiome dysbiosis resulting from chronic HIV-1 viral protein exposure may afford insight into the mechanisms underlying HIV-1-associated neurocognitive and/or affective alterations; mechanisms which can be subsequently targeted via novel therapeutics.
Collapse
Affiliation(s)
- Mason T Rodriguez
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Michael Shtutman
- Drug Discovery and Biomedical Sciences, College of Pharmacy, 715 Sumter Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Jason L Kubinak
- Pathology, Microbiology & Immunology, School of Medicine Columbia, 6311 Garners Ferry Road, Building 2, Columbia, SC 29209, United States of America
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America.
| |
Collapse
|
14
|
Li H, McLaurin KA, Mactutus CF, Booze RM. Microglia proliferation underlies synaptic dysfunction in the prefrontal cortex: implications for the pathogenesis of HIV-1-associated neurocognitive and affective alterations. J Neurovirol 2023; 29:460-471. [PMID: 37222970 PMCID: PMC10629500 DOI: 10.1007/s13365-023-01147-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/25/2023]
Abstract
Microglia, which are productively infected by HIV-1, are critical for brain development and maturation, as well as synaptic plasticity. The pathophysiology of HIV-infected microglia and their role in the pathogenesis of HIV-1-associated neurocognitive and affective alterations, however, remains understudied. Three complementary aims were undertaken to critically address this knowledge gap. First, the expression of HIV-1 mRNA in the dorsolateral prefrontal cortex of postmortem HIV-1 seropositive individuals with HAND was investigated. Utilization of immunostaining and/or RNAscope multiplex fluorescent assays revealed prominent HIV-1 mRNA in microglia of postmortem HIV-1 seropositive individuals with HAND. Second, measures of microglia proliferation and neuronal damage were evaluated in chimeric HIV (EcoHIV) rats. Eight weeks after EcoHIV inoculation, enhanced microglial proliferation was observed in the medial prefrontal cortex (mPFC) of EcoHIV rats, evidenced by an increased number of cells co-localized with both Iba1 + and Ki67 + relative to control animals. Neuronal damage in EcoHIV infected rats was evidenced by pronounced decreases in both synaptophysin and postsynaptic density protein 95 (PSD-95), markers of presynaptic and postsynaptic damage, respectively. Third, regression analyses were conducted to evaluate whether microglia proliferation mechanistically underlies neuronal damage in EcoHIV and control animals. Indeed, microglia proliferation accounted for 42-68.6% of the variance in synaptic dysfunction. Collectively, microglia proliferation induced by chronic HIV-1 viral protein exposure may underlie the profound synaptodendritic alterations in HIV-1. Understanding how microglia are involved in the pathogenesis of HAND and HIV-1-associated affective disorders affords a key target for the development of novel therapeutics.
Collapse
Affiliation(s)
- Hailong Li
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Barnwell College, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Barnwell College, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Barnwell College, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Barnwell College, 1512 Pendleton Street, Columbia, SC, 29208, USA.
| |
Collapse
|
15
|
Lark ARS, Silva LK, Nass SR, Marone MG, Ohene-Nyako M, Ihrig TM, Marks WD, Yarotskyy V, Rory McQuiston A, Knapp PE, Hauser KF. Progressive Degeneration and Adaptive Excitability in Dopamine D1 and D2 Receptor-Expressing Striatal Neurons Exposed to HIV-1 Tat and Morphine. Cell Mol Neurobiol 2023; 43:1105-1127. [PMID: 35695980 PMCID: PMC9976699 DOI: 10.1007/s10571-022-01232-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
The striatum is especially vulnerable to HIV-1 infection, with medium spiny neurons (MSNs) exhibiting marked synaptodendritic damage that can be exacerbated by opioid use disorder. Despite known structural defects in MSNs co-exposed to HIV-1 Tat and opioids, the pathophysiological sequelae of sustained HIV-1 exposure and acute comorbid effects of opioids on dopamine D1 and D2 receptor-expressing (D1 and D2) MSNs are unknown. To address this question, Drd1-tdTomato- or Drd2-eGFP-expressing reporter and conditional HIV-1 Tat transgenic mice were interbred. MSNs in ex vivo slices from male mice were assessed by whole-cell patch-clamp electrophysiology and filled with biocytin to explore the functional and structural effects of progressive Tat and acute morphine exposure. Although the excitability of both D1 and D2 MSNs increased following 48 h of Tat exposure, D1 MSN firing rates decreased below control (Tat-) levels following 2 weeks and 1 month of Tat exposure but returned to control levels after 2 months. D2 neurons continued to display Tat-dependent increases in excitability at 2 weeks, but also returned to control levels following 1 and 2 months of Tat induction. Acute morphine exposure increased D1 MSN excitability irrespective of the duration of Tat exposure, while D2 MSNs were variably affected. That D1 and D2 MSN excitability would return to control levels was unexpected since both subpopulations displayed significant synaptodendritic degeneration and pathologic phospho-tau-Thr205 accumulation following 2 months of Tat induction. Thus, despite frank morphologic damage, D1 and D2 MSNs uniquely adapt to sustained Tat and acute morphine insults.
Collapse
Affiliation(s)
- Arianna R S Lark
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Lindsay K Silva
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- PPD®, Part of Thermo Fisher Scientific, Richmond, VA, 23230-3323, USA
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael G Marone
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Therese M Ihrig
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - William D Marks
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Psychiatry, Southwestern Medical Center, University of Texas, Dallas, TX, 75235, USA
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
16
|
Datta G, Miller NM, Chen X. 17⍺-Estradiol Protects against HIV-1 Tat-Induced Endolysosome Dysfunction and Dendritic Impairments in Neurons. Cells 2023; 12:813. [PMID: 36899948 PMCID: PMC10000619 DOI: 10.3390/cells12050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
HIV-1 Tat continues to play an important role in the development of HIV-associated neurocognitive disorders (HAND), which persist in 15-55% of people living with HIV even with virological control. In the brain, Tat is present on neurons, where Tat exerts direct neuronal damaging effects by, at least in part, disrupting endolysosome functions, a pathological feature present in HAND. In this study, we determined the protective effects of 17α-estradiol (17αE2), the predominant form of estrogen in the brain, against Tat-induced endolysosome dysfunction and dendritic impairment in primary cultured hippocampal neurons. We demonstrated that pre-treatment with 17αE2 protected against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Estrogen receptor alpha (ERα) knockdown impairs the ability of 17αE2 to protect against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Furthermore, over-expressing an ERα mutant that fails to localize on endolysosomes impairs 17αE2's protective effects against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Our findings demonstrate that 17αE2 protects against Tat-induced neuronal injury via a novel ERα-mediated and endolysosome-dependent pathway, and such a finding might lead to the development of novel adjunct therapeutics against HAND.
Collapse
Affiliation(s)
| | | | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
17
|
Nass SR, Hahn YK, Ohene-Nyako M, McLane VD, Damaj MI, Thacker LR, Knapp PE, Hauser KF. Depressive-like Behavior Is Accompanied by Prefrontal Cortical Innate Immune Fatigue and Dendritic Spine Losses after HIV-1 Tat and Morphine Exposure. Viruses 2023; 15:v15030590. [PMID: 36992299 PMCID: PMC10052300 DOI: 10.3390/v15030590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Opioid use disorder (OUD) and HIV are comorbid epidemics that can increase depression. HIV and the viral protein Tat can directly induce neuronal injury within reward and emotionality brain circuitry, including the prefrontal cortex (PFC). Such damage involves both excitotoxic mechanisms and more indirect pathways through neuroinflammation, both of which can be worsened by opioid co-exposure. To assess whether excitotoxicity and/or neuroinflammation might drive depressive behaviors in persons infected with HIV (PWH) and those who use opioids, male mice were exposed to HIV-1 Tat for eight weeks, given escalating doses of morphine during the last two weeks, and assessed for depressive-like behavior. Tat expression decreased sucrose consumption and adaptability, whereas morphine administration increased chow consumption and exacerbated Tat-induced decreases in nesting and burrowing—activities associated with well-being. Across all treatment groups, depressive-like behavior correlated with increased proinflammatory cytokines in the PFC. Nevertheless, supporting the theory that innate immune responses adapt to chronic Tat exposure, most proinflammatory cytokines were unaffected by Tat or morphine. Further, Tat increased PFC levels of the anti-inflammatory cytokine IL-10, which were exacerbated by morphine administration. Tat, but not morphine, decreased dendritic spine density on layer V pyramidal neurons in the anterior cingulate. Together, our findings suggest that HIV-1 Tat and morphine differentially induce depressive-like behaviors associated with increased neuroinflammation, synaptic losses, and immune fatigue within the PFC.
Collapse
Affiliation(s)
- Sara R. Nass
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Yun K. Hahn
- Department of Anatomy and Neurobiology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Virginia D. McLane
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Leroy R. Thacker
- Department of Biostatistics, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of Anatomy and Neurobiology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
- Institute for Drug and Alcohol Studies, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0059, USA
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of Anatomy and Neurobiology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
- Institute for Drug and Alcohol Studies, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0059, USA
- Correspondence: ; Tel.: +1-804-628-7579; Fax: +1-804-828-0676
| |
Collapse
|
18
|
Li H, McLaurin KA, Mactutus CF, Booze RM. Microglia Proliferation Underlies Synaptic Dysfunction in the Prefrontal Cortex: Implications for the Pathogenesis of HIV-1-Associated Neurocognitive and Affective Alterations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524942. [PMID: 36711456 PMCID: PMC9882316 DOI: 10.1101/2023.01.20.524942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microglia, which are productively infected by HIV-1, are critical for brain development and maturation, as well as synaptic plasticity. The pathophysiology of HIV-infected microglia and their role in the pathogenesis of HIV-1-associated neurocognitive and affective alterations, however, remains understudied. Three complementary aims were undertaken to critically address this knowledge gap. First, the predominant cell type expressing HIV-1 mRNA in the dorsolateral prefrontal cortex of postmortem HIV-1 seropositive individuals with HAND was investigated. Utilization of a combined RNAscope multiplex fluorescent and immunostaining assay revealed prominent HIV-1 mRNA in microglia of postmortem HIV-1 seropositive individuals with HAND. Second, measures of microglia proliferation and neuronal damage were evaluated in chimeric HIV (EcoHIV) rats. Eight weeks after EcoHIV innoculation, enhanced microglial proliferation was observed in the medial prefrontal cortex (mPFC) of EcoHIV rats, evidenced by an increased number of cells co-localized with both Iba1+ and Ki67+ relative to control animals. Neuronal damage in EcoHIV infected rats was evidenced by pronounced decreases in both synaptophysin and post synaptic density protein 95 (PSD-95), markers of pre-synaptic and post-synaptic damage, respectively. Third, regression analyses were conducted to evaluate whether microglia proliferation mechanistically underlies neuronal damage in EcoHIV and control animals. Indeed, microglia proliferation accounts for 42-68.6% of the variance in synaptic dysfunction. Collectively, microglia proliferation induced by chronic HIV-1 viral protein exposure may underlie the profound synaptodendritic alterations in HIV-1. Understanding how microglia are involved in the pathogenesis of HAND and HIV-1-associated affective disorders affords a key target for the development of novel therapeutics.
Collapse
|
19
|
Zhu J, Quizon PM, Wang Y, Adeniran CA, Strauss MJ, Jiménez-Torres AC, Patel P, Cirino TJ, Eans SO, Hammond HR, Deliscar LS, O'Hara P, Saini SK, Ofori E, Vekariya RH, Zhang S, Moukha-Chafiq O, Nguyen TH, Ananthan S, Augelli-Szafran CE, Zhan CG, McLaughlin JP. SRI-32743, a novel allosteric modulator, attenuates HIV-1 Tat protein-induced inhibition of the dopamine transporter and alleviates the potentiation of cocaine reward in HIV-1 Tat transgenic mice. Neuropharmacology 2022; 220:109239. [PMID: 36126727 DOI: 10.1016/j.neuropharm.2022.109239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022]
Abstract
Cocaine abuse increases the incidence of HIV-1-associated neurocognitive disorders. We have demonstrated that HIV-1 transactivator of transcription (Tat) allosterically modulates dopamine (DA) reuptake through the human DA transporter (hDAT), potentially contributing to Tat-induced cognitive impairment and potentiation of cocaine conditioned place preference (CPP). This study determined the effects of a novel allosteric modulator of DAT, SRI-32743, on the interactions of HIV-1 Tat, DA, cocaine, and [3H]WIN35,428 with hDAT in vitro. SRI-32743 (50 nM) attenuated Tat-induced inhibition of [3H]DA uptake and decreased the cocaine-mediated dissociation of [3H]WIN35,428 binding in CHO cells expressing hDAT, suggesting a SRI-32743-mediated allosteric modulation of the Tat-DAT interaction. In further in vivo studies utilizing doxycycline-inducible Tat transgenic (iTat-tg) mice, 14 days of Tat expression significantly reduced the recognition index by 31.7% in the final phase of novel object recognition (NOR) and potentiated cocaine-CPP 2.7-fold compared to responses of vehicle-treated control iTat-tg mice. The Tat-induced NOR deficits and potentiation of cocaine-CPP were not observed in saline-treated iTat-tg or doxycycline-treated G-tg (Tat-null) mice. Systemic administration (i.p.) of SRI-32743 prior to behavioral testing ameliorated Tat-induced impairment of NOR (at a dose of 10 mg/kg) and the Tat-induced potentiation of cocaine-CPP (at doses of 1 or 10 mg/kg). These findings demonstrate that Tat and cocaine interactions with DAT may be regulated by compounds interacting at the DAT allosteric modulatory sites, suggesting a potential therapeutic intervention for HIV-infected patients with concurrent cocaine abuse.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| | - Pamela M Quizon
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Yingying Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Charles A Adeniran
- Molecular Modeling and Biopharmaceutical Center, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Matthew J Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ana C Jiménez-Torres
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Palak Patel
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Thomas J Cirino
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Shainnel O Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Haylee R Hammond
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Laure S Deliscar
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Priscilla O'Hara
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Surendra K Saini
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Edward Ofori
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Rakesh H Vekariya
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Sixue Zhang
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Omar Moukha-Chafiq
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Theresa H Nguyen
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Subramaniam Ananthan
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | | | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
20
|
McLaurin KA, Cranston MN, Li H, Mactutus CF, Harrod SB, Booze RM. Synaptic dysfunction is associated with alterations in the initiation of goal-directed behaviors: Implications for HIV-1-associated apathy. Exp Neurol 2022; 357:114174. [PMID: 35863502 PMCID: PMC9990912 DOI: 10.1016/j.expneurol.2022.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023]
Abstract
Individuals living with human immunodeficiency virus type 1 (HIV-1) exhibit an increased prevalence of neuropsychiatric comorbities (e.g., apathy) relative to their seronegative counterparts. Given the profound functional consequences associated with apathy, characterizing the multidimensional neuropsychiatric syndrome, and associated neural mechanisms, following chronic HIV-1 viral protein exposure remains a critical need. HIV-1-associated apathy was examined by quantifying goal-directed behaviors, indexed using voluntary wheel running, during the diurnal and nocturnal cycle. Apathetic behaviors in the HIV-1 transgenic (Tg) rat were characterized by a profound decrease in the number of running bouts during both the diurnal and nocturnal cycle, supporting a prominent deficit in the self-initiation of spontaneous behaviors. Additionally, HIV-1 Tg animals exhibited a decreased reinforcing efficacy of voluntary wheel running during the nocturnal cycle. Following the completion of voluntary wheel running, synaptic dysfunction in medium spiny neurons (MSNs) of the nucleus accumbens core (NAcc) was examined as a potential neural mechanism underlying HIV-1-associated apathy. HIV-1 Tg animals displayed prominent synaptic dysfunction in MSNs of the NAcc, characterized by enhanced dendritic branching complexity and a population shift towards an immature dendritic spine phenotype relative to control animals. Synaptic dysfunction, which accounted for 42.0% to 68.5% of the variance in the number of running bouts, was strongly associated with the self-initiation of spontaneous behaviors. Establishment of the relationship between synaptic dysfunction and apathy affords a key target for the development of novel therapeutics and cure strategies for affective alterations associated with HIV-1.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America
| | - Michael N Cranston
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America
| | - Hailong Li
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America
| | - Steven B Harrod
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America.
| |
Collapse
|
21
|
Yim A, Smith C, Brown AM. Osteopontin/secreted phosphoprotein-1 harnesses glial-, immune-, and neuronal cell ligand-receptor interactions to sense and regulate acute and chronic neuroinflammation. Immunol Rev 2022; 311:224-233. [PMID: 35451082 PMCID: PMC9790650 DOI: 10.1111/imr.13081] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/31/2022]
Abstract
Osteopontin (OPN) also known by its official gene designation secreted phosphoprotein-1 (SPP1) is a fascinating, multifunctional protein expressed in a number of cell types that functions not only in intercellular communication, but also in the extracellular matrix (ECM). OPN/SPP1 possesses cytokine, chemokine, and signal transduction functions by virtue of modular structural motifs that provide interaction surfaces for integrins and CD44-variant receptors. In humans, there are three experimentally verified splice variants of OPN/SPP1 and CD44's ten exons are also alternatively spiced in a cell/tissue-specific manner, although very little is known about how this is regulated in the central nervous system (CNS). Post-translational modifications of phosphorylation, glycosylation, and localized cleavage by specific proteases in the cells and tissues where OPN/SPP1 functions, provides additional layers of specificity. However, the former make elucidating the exact molecular mechanisms of OPN/SPP1 function more complex. Flexibility in OPN/SPP1 structure and its engagement with integrins having the ability to transmit signals in inside-out and outside-in direction, is likely why OPN/SPP1 can serve as an early detector of inflammation and ongoing tissue damage in response to cancer, stroke, traumatic brain injury, pathogenic infection, and neurodegeneration, processes that impair tissue homeostasis. This review will focus on what is currently known about OPN/SPP1 function in the brain.
Collapse
Affiliation(s)
- Ashley Yim
- NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Christian Smith
- NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Amanda M. Brown
- NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
22
|
Strauss MJ, Porter KD, Quizon PM, Davis SE, Lin S, Yuan Y, Martinez-Muniz GA, Sun WL, Zhan CG, Zhu J. Mutations of tyrosine 467 in the human norepinephrine transporter attenuate HIV-1 Tat-induced inhibition of dopamine transport while retaining physiological function. PLoS One 2022; 17:e0275182. [PMID: 36170295 PMCID: PMC9518868 DOI: 10.1371/journal.pone.0275182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Dysregulation of dopaminergic transmission induced by the HIV-1 transactivator of transcription (Tat) has been implicated as a central factor in the development of HIV-1 associated neurocognitive disorders (HAND). We have demonstrated that the tyrosine470 residue of the human dopamine transporter (hDAT) plays a critical role in Tat-hDAT interaction. Based on the computational modeling predictions, the present study sought to examine the mutational effects of the tyrosine467 residue of the human norepinephrine transporter (hNET), a corresponding residue of the hDAT tyrosine470, on Tat-induced inhibition of reuptake of dopamine through the hNET. Mutations of the hNET tyrosine467 to a histidine (Y467H) or a phenylalanine (Y467F) displayed similar kinetic properties of reuptake of [3H]dopamine and [3H]norepinephrine in PC12 cells expressing wild-type hNET and its mutants. Compared to wild-type hNET, neither of Y467H or Y467F altered Bmax and Kd values of [3H]WIN35,428 binding, whereas Y467H but not Y467F decreased the Bmax of [3H]nisoxetine binding without changes in Kd. Y467H also increased the affinity of nisoxetine for inhibiting [3H]dopamine uptake relative to wild-type hNET. Recombinant Tat1-86 (140 nM) induced a significant reduction of [3H]dopamine uptake in wild-type hNET, which was attenuated in both Y467H and Y467F. Compared to wild-type hNET, neither Y467H or Y467F altered [3H]dopamine efflux in CHO cells expressing WT hNET and mutants, whereas Y467F but not Y467H decreased [3H]MPP+ efflux. These results demonstrate tyrosine467 as a functional recognition residue in the hNET for Tat-induced inhibition of dopamine transport and provide a novel insight into the molecular basis for developing selective compounds that target Tat-NET interactions in the context of HAND.
Collapse
Affiliation(s)
- Matthew J. Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Katherine D. Porter
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Pamela M. Quizon
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Sarah E. Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Steven Lin
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Yaxia Yuan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, Lexington, KY, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
| | - Gustavo A. Martinez-Muniz
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Wei-Lun Sun
- Department of Psychological Science, University of North Georgia, Dahlonega, GA, United States of America
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, Lexington, KY, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
23
|
Leibrand CR, Paris JJ, Jones AM, Ohene-Nyako M, Rademeyer KM, Nass SR, Kim WK, Knapp PE, Hauser KF, McRae M. Independent actions by HIV-1 Tat and morphine to increase recruitment of monocyte-derived macrophages into the brain in a region-specific manner. Neurosci Lett 2022; 788:136852. [PMID: 36028004 PMCID: PMC9845733 DOI: 10.1016/j.neulet.2022.136852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 01/21/2023]
Abstract
Despite advances in the treatment of human immunodeficiency virus (HIV), approximately one-half of people infected with HIV (PWH) experience neurocognitive impairment. Opioid use disorder (OUD) can exacerbate the cognitive and pathological changes seen in PWH. HIV increases inflammation and immune cell trafficking into the brain; however, less is known about how opioid use disorder affects the recruitment of immune cells. Accordingly, we examined the temporal consequences of HIV-1 Tat and/or morphine on the recruitment of endocytic cells (predominantly perivascular macrophages and microglia) in the dorsal striatum and hippocampus by infusing multi-colored, fluorescently labeled dextrans before and after exposure. To address this question, transgenic mice that conditionally expressed HIV-1 Tat (Tat+), or their control counterparts (Tat-), received three sequential intracerebroventricular (i.c.v.) infusions of Cascade Blue-, Alexa Fluor 488-, and Alexa Fluor 594-labeled dextrans, respectively infused 1 day before, 1-day after, or 13-days after morphine and/or Tat exposure. At the end of the study, the number of cells labeled with each fluorescent dextran were counted. The data demonstrated a significantly higher influx of newly-labeled cells into the perivascular space than into the parenchyma. In the striatum, Tat or morphine exposure increased the number of endocytic cells in the perivascular space, while only morphine increased the recruitment of endocytic cells into the parenchyma. In the hippocampus, morphine (but not Tat) increased the influx of dextran-labeled cells into the perivascular space, but there were too few labeled cells within the hippocampal parenchyma to analyze. Collectively, these data suggest that HIV-1 Tat and morphine act independently to increase the recruitment of endocytic cells into the brain in a region-specific manner.
Collapse
Affiliation(s)
- Crystal R Leibrand
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| | - Austin M Jones
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Kara M Rademeyer
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, United States
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
24
|
McLane VD, Lark ARS, Nass SR, Knapp PE, Hauser KF. HIV-1 Tat reduces apical dendritic spine density throughout the trisynaptic pathway in the hippocampus of male transgenic mice. Neurosci Lett 2022; 782:136688. [PMID: 35595189 DOI: 10.1016/j.neulet.2022.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/01/2022]
Abstract
Nearly one-third of persons infected with HIV-1 (PWH) develop HIV-associated neurocognitive disorders (HAND), which can be exacerbated by exposure to opioids. The impact of opioids on HIV-induced alterations in neuronal plasticity is less well understood. Both morphine exposure and HIV have been shown to disrupt synaptic growth and stability in the hippocampus suggesting a potential site of convergence for their deleterious effects. In the present study, we examined the density of dendritic spines in CA1 and CA3 pyramidal neurons, and granule neurons within the dentate gyrus representing the hippocampal trisynaptic pathway after short-term exposure to the HIV transactivator of transcription (Tat) protein and morphine. We exposed inducible male, HIV-1 Tat transgenic mice to escalating doses of morphine (10-40 mg/kg, b.i.d.) and examined synaptodendritic structure in Golgi-impregnated hippocampal neurons. HIV-1 Tat, but not morphine, systematically reduced the density of apical, but not basilar, dendrites of CA1 and CA3 pyramidal neurons, and granule neuronal apical dendrites, suggesting the coordinated loss of specific synaptic interconnections throughout the hippocampal trisynaptic pathway.
Collapse
Affiliation(s)
- Virginia D McLane
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Arianna R S Lark
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Sara R Nass
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA.
| | - Kurt F Hauser
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
25
|
Intraneuronal β-Amyloid Accumulation: Aging HIV-1 Human and HIV-1 Transgenic Rat Brain. Viruses 2022; 14:v14061268. [PMID: 35746739 PMCID: PMC9230035 DOI: 10.3390/v14061268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
The prevalence of HIV-1 associated neurocognitive disorders (HAND) is significantly greater in older, relative to younger, HIV-1 seropositive individuals; the neural pathogenesis of HAND in older HIV-1 seropositive individuals, however, remains elusive. To address this knowledge gap, abnormal protein aggregates (i.e., β-amyloid) were investigated in the brains of aging (>12 months of age) HIV-1 transgenic (Tg) rats. In aging HIV-1 Tg rats, double immunohistochemistry staining revealed abnormal intraneuronal β-amyloid accumulation in the prefrontal cortex (PFC) and hippocampus, relative to F344/N control rats. Notably, in HIV-1 Tg animals, increased β-amyloid accumulation occurred in the absence of any genotypic changes in amyloid precursor protein (APP). Furthermore, no clear amyloid plaque deposition was observed in HIV-1 Tg animals. Critically, β-amyloid was co-localized with neurons in the cortex and hippocampus, supporting a potential mechanism underlying synaptic dysfunction in the HIV-1 Tg rat. Consistent with these neuropathological findings, HIV-1 Tg rats exhibited prominent alterations in the progression of temporal processing relative to control animals; temporal processing relies, at least in part, on the integrity of the PFC and hippocampus. In addition, in post-mortem HIV-1 seropositive individuals with HAND, intraneuronal β-amyloid accumulation was observed in the dorsolateral PFC and hippocampal dentate gyrus. Consistent with observations in the HIV-1 Tg rat, no amyloid plaques were found in these post-mortem HIV-1 seropositive individuals with HAND. Collectively, intraneuronal β-amyloid aggregation observed in the PFC and hippocampus of HIV-1 Tg rats supports a potential factor underlying HIV-1 associated synaptodendritic damage. Further, the HIV-1 Tg rat provides a biological system to model HAND in older HIV-1 seropositive individuals.
Collapse
|
26
|
Halcrow PW, Lakpa KL, Khan N, Afghah Z, Miller N, Datta G, Chen X, Geiger JD. HIV-1 gp120-Induced Endolysosome de-Acidification Leads to Efflux of Endolysosome Iron, and Increases in Mitochondrial Iron and Reactive Oxygen Species. J Neuroimmune Pharmacol 2022; 17:181-194. [PMID: 33834418 PMCID: PMC8497638 DOI: 10.1007/s11481-021-09995-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
The HIV-1 coat protein gp120 continues to be implicated in the pathogenesis of HIV-1 associated neurocognitive disorder (HAND); a condition known to affect ~50% of people living with HIV-1 (PLWH). Autopsy brain tissues of HAND individuals display morphological changes to mitochondria and endolysosomes, and HIV-1 gp120 causes mitochondrial dysfunction including increased levels of reactive oxygen species (ROS) and de-acidification of endolysosomes. Ferrous iron is linked directly to ROS production, ferrous iron is contained in and released from endolysosomes, and PLWH have elevated iron and ROS levels. Based on those findings, we tested the hypothesis that HIV-1 gp120-induced endolysosome de-acidification and subsequent iron efflux from endolysosomes is responsible for increased levels of ROS. In U87MG glioblastoma cells, HIV-1 gp120 de-acidified endolysosomes, reduced endolysosome iron levels, increased levels of cytosolic and mitochondrial iron, and increased levels of cytosolic and mitochondrial ROS. These effects were all attenuated significantly by the endolysosome-specific iron chelator deferoxamine, by inhibitors of endolysosome-resident two-pore channels and divalent metal transporter-1 (DMT-1), and by inhibitors of mitochondria-resident DMT-1 and mitochondrial permeability transition pores. These results suggest that oxidative stress commonly observed with HIV-1 gp120 is downstream of its ability to de-acidify endolysosomes, to increase the release of iron from endolysosomes, and to increase the uptake of iron into mitochondria. Thus, endolysosomes might represent early and upstream targets for therapeutic strategies against HAND.
Collapse
Affiliation(s)
| | | | - Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Nicole Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Jonathan D. Geiger
- Address correspondence to: Jonathan D. Geiger, Ph.D., Chester Fritz Distinguished Professor, Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Room #110, Grand Forks, North Dakota 58203, (701) 777-2183 (P), (701) 777-0387 (F),
| |
Collapse
|
27
|
Nass SR, Ohene-Nyako M, Hahn YK, Knapp PE, Hauser KF. Neurodegeneration Within the Amygdala Is Differentially Induced by Opioid and HIV-1 Tat Exposure. Front Neurosci 2022; 16:804774. [PMID: 35600626 PMCID: PMC9115100 DOI: 10.3389/fnins.2022.804774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Opioid use disorder (OUD) is a critical problem that contributes to the spread of HIV and may intrinsically worsen neuroHIV. Despite the advent of combined antiretroviral therapies (cART), about half of persons infected with HIV (PWH) experience cognitive and emotional deficits that can be exacerbated by opioid abuse. HIV-1 Tat is expressed in the central nervous system (CNS) of PWH on cART and is thought to contribute to neuroHIV. The amygdala regulates emotion and memories associated with fear and stress and is important in addiction behavior. Notwithstanding its importance in emotional saliency, the effects of HIV and opioids in the amygdala are underexplored. To assess Tat- and morphine-induced neuropathology within the amygdala, male Tat transgenic mice were exposed to Tat for 8 weeks and administered saline and/or escalating doses of morphine twice daily (s.c.) during the last 2 weeks of Tat exposure. Eight weeks of Tat exposure decreased the acoustic startle response and the dendritic spine density in the basolateral amygdala, but not the central nucleus of the amygdala. In contrast, repeated exposure to morphine alone, but not Tat, increased the acoustic startle response and whole amygdalar levels of amyloid-β (Aβ) monomers and oligomers and tau phosphorylation at Ser396, but not neurofilament light chain levels. Co-exposure to Tat and morphine decreased habituation and prepulse inhibition to the acoustic startle response and potentiated the morphine-induced increase in Aβ monomers. Together, our findings indicate that sustained Tat and morphine exposure differentially promote synaptodendritic degeneration within the amygdala and alter sensorimotor processing.
Collapse
Affiliation(s)
- Sara R. Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Yun K. Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Kurt F. Hauser,
| |
Collapse
|
28
|
Clathrin-nanoparticles deliver BDNF to hippocampus and enhance neurogenesis, synaptogenesis and cognition in HIV/neuroAIDS mouse model. Commun Biol 2022; 5:236. [PMID: 35301411 PMCID: PMC8931075 DOI: 10.1038/s42003-022-03177-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
Brain derived neurotrophic factor (BDNF) promotes the growth, differentiation, maintenance and survival of neurons. These attributes make BDNF a potentially powerful therapeutic agent. However, its charge, instability in blood, and poor blood brain barrier (BBB) penetrability have impeded its development. Here, we show that engineered clathrin triskelia (CT) conjugated to BDNF (BDNF-CT) and delivered intranasally increased hippocampal BDNF concentrations 400-fold above that achieved previously with intranasal BDNF alone. We also show that BDNF-CT targeted Tropomyosin receptor kinase B (TrkB) and increased TrkB expression and downstream signaling in iTat mouse brains. Mice were induced to conditionally express neurotoxic HIV Transactivator-of-Transcription (Tat) protein that decreases BDNF. Down-regulation of BDNF is correlated with increased severity of HIV/neuroAIDS. BDNF-CT enhanced neurorestorative effects in the hippocampus including newborn cell proliferation and survival, granule cell neurogenesis, synaptogenesis and increased dendritic integrity. BDNF-CT exerted cognitive-enhancing effects by reducing Tat-induced learning and memory deficits. These results show that CT bionanoparticles efficiently deliver BDNF to the brain, making them potentially powerful tools in regenerative medicine.
Collapse
|
29
|
Xu C, Yadav-Samudrala BJ, Xu C, Nath B, Mistry T, Jiang W, Niphakis MJ, Cravatt BF, Mukhopadhyay S, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. Inhibitory Neurotransmission Is Sex-Dependently Affected by Tat Expression in Transgenic Mice and Suppressed by the Fatty Acid Amide Hydrolase Enzyme Inhibitor PF3845 via Cannabinoid Type-1 Receptor Mechanisms. Cells 2022; 11:857. [PMID: 35269478 PMCID: PMC8909692 DOI: 10.3390/cells11050857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
(1) Background. The endocannabinoid (eCB) system, which regulates physiological and cognitive processes, presents a promising therapeutic target for treating HIV-associated neurocognitive disorders (HAND). Here we examine whether upregulating eCB tone has potential protective effects against HIV-1 Tat (a key HIV transactivator of transcription) protein-induced alterations in synaptic activity. (2) Methods. Whole-cell patch-clamp recordings were performed to assess inhibitory GABAergic neurotransmission in prefrontal cortex slices of Tat transgenic male and female mice, in the presence and absence of the fatty acid amide hydrolase (FAAH) enzyme inhibitor PF3845. Western blot and mass spectrometry analyses assessed alterations of cannabinoid receptor and enzyme protein expression as well as endogenous ligands, respectively, to determine the impact of Tat exposure on the eCB system. (3) Results. GABAergic activity was significantly altered upon Tat exposure based on sex, whereas the effectiveness of PF3845 to suppress GABAergic activity in Tat transgenic mice was not altered by Tat or sex and involved CB1R-related mechanisms that depended on calcium signaling. Additionally, our data indicated sex-dependent changes for AEA and related non-eCB lipids based on Tat induction. (4) Conclusion. Results highlight sex- and/or Tat-dependent alterations of GABAergic activity and eCB signaling in the prefrontal cortex of Tat transgenic mice and further increase our understanding about the role of FAAH inhibition in neuroHIV.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| | - Barkha J. Yadav-Samudrala
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| | - Callie Xu
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| | - Bhupendra Nath
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (B.N.); (T.M.); (S.M.)
| | - Twisha Mistry
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (B.N.); (T.M.); (S.M.)
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Micah J. Niphakis
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037, USA; (M.J.N.); (B.F.C.)
| | - Benjamin F. Cravatt
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037, USA; (M.J.N.); (B.F.C.)
| | - Somnath Mukhopadhyay
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (B.N.); (T.M.); (S.M.)
| | - Aron H. Lichtman
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| |
Collapse
|
30
|
Kannan M, Singh S, Chemparathy DT, Oladapo AA, Gawande DY, Dravid SM, Buch S, Sil S. HIV-1 Tat induced microglial EVs leads to neuronal synaptodendritic injury: microglia-neuron cross-talk in NeuroHIV. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:133-149. [PMID: 36812097 PMCID: PMC9937449 DOI: 10.20517/evcna.2022.14] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aim Activation of microglial NLRP3 inflammasome is an essential contributor to neuroinflammation underlying HIV-associated neurological disorders (HAND). Under pathological conditions, microglia-derived-EVs (MDEVs) can affect neuronal functions by delivering neurotoxic mediators to recipient cells. However, the role of microglial NLRP3 in mediating neuronal synaptodendritic injury has remained unexplored to date. In the present study, we sought to assess the regulatory role of HIV-1 Tat induced microglial NLRP3 in neuronal synaptodendritic injury. We hypothesized that HIV-1 Tat mediated microglia EVs carrying significant levels of NLRP3 contribute to the synaptodendritic injury, thereby affecting the maturation of neurons. Methods To understand the cross-talk between microglia and neuron, we isolated EVs from BV2 and human primary microglia (HPM) cells with or without NLRP3 depletion using siNLRP3 RNA. EVs were isolated by differential centrifugation, characterized by ZetaView nanoparticle tracking analysis, electron microscopy, and western blot analysis for exosome markers. Purified EVs were exposed to primary rat neurons isolated from E18 rats. Along with green fluorescent protein (GFP) plasmid transfection, immunocytochemistry was performed to visualize neuronal synaptodendritic injury. Western blotting was employed to measure siRNA transfection efficiency and the extent of neuronal synaptodegeneration. Images were captured in confocal microscopy, and subsequently, Sholl analysis was performed for analyzing dendritic spines using neuronal reconstruction software Neurolucida 360. Electrophysiology was performed on hippocampal neurons for functional assessment. Results Our findings demonstrated that HIV-1 Tat induced expression of microglial NLRP3 and IL1β, and further that these were packaged in microglial exosomes (MDEV) and were also taken up by the neurons. Exposure of rat primary neurons to microglial Tat-MDEVs resulted in downregulation of synaptic proteins- PSD95, synaptophysin, excitatory vGLUT1, as well as upregulation of inhibitory proteins- Gephyrin, GAD65, thereby implicating impaired neuronal transmissibility. Our findings also showed that Tat-MDEVs not only caused loss of dendritic spines but also affected numbers of spine sub-types- mushroom and stubby. Synaptodendritic injury further affected functional impairment as evidenced by the decrease in miniature excitatory postsynaptic currents (mEPSCs). To assess the regulatory role of NLRP3 in this process, neurons were also exposed to Tat-MDEVs from NLRP3 silenced microglia. Tat-MDEVs from NLRP3 silenced microglia exerted a protective role on neuronal synaptic proteins, spine density as well as mEPSCs. Conclusion In summary, our study underscores the role of microglial NLRP3 as an important contributor to Tat-MDEV mediated synaptodendritic injury. While the role of NLRP3 in inflammation is well-described, its role in EV-mediated neuronal damage is an interesting finding, implicating it as a target for therapeutics in HAND.
Collapse
Affiliation(s)
- Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Divya T. Chemparathy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Abiola A. Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dinesh Y. Gawande
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| | - Shashank M. Dravid
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
31
|
Longitudinal trajectories of brain volume in combined antiretroviral therapy treated and untreated simian immunodeficiency virus-infected rhesus macaques. AIDS 2021; 35:2433-2443. [PMID: 34870927 PMCID: PMC8631166 DOI: 10.1097/qad.0000000000003055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We used simian immunodeficiency virus (SIV)-infected nonhuman primates to investigate longitudinal changes of brain volume caused by SIV and the effect of combined antiretroviral therapy (cART). In addition, the relation between viral load, immune status, and brain volume were explored. DESIGN A longitudinal study of two healthy controls, five SIVmac239-infected macaques received cART (SIV+cART+) at 40 days postinnoculation, and five SIVmac239-infected macaques received no therapy (SIV+cART-). METHODS Structural T1-weighted MRI, blood and cerebrospinal fluid testing were acquired at multiple time points for 48 weeks postinfection (wpi). Brain volume was estimated using region of interest (ROI)-based analysis. Volume differences were compared among three groups. Linear regression models tested the associations between brain volumes and biomarkers (viral load, CD4+ T-cell count, CD4+/CD8+ ratio). RESULTS In our model, brain volume alteration in SIV-infected macaques can be detected at 12 wpi in several brain regions. As the infection progresses, the SIV+cART- macaques displayed generalized gray matter atrophy at the endpoint. Though initiate cART right after acute infection, SIV+cART+ macaques still displayed brain atrophy but showed signs of reversibility. Plasma viral load is mainly associated with subcortical nucleus volume whereas CD4+ T-cell count and CD4+/CD8+ ratio in plasma were associated with widespread cortical volume. CONCLUSION The SIVmac239-infected Chinese origin macaque is a valid model for neuroHIV. Brain atrophy caused by SIV infection can be relieved, even reversed, by cART. Our model also provides new insights into understanding the pathogenesis of brain injury in people with HIV (PWH).
Collapse
|
32
|
McLaurin KA, Li H, Booze RM, Mactutus CF. Neurodevelopmental Processes in the Prefrontal Cortex Derailed by Chronic HIV-1 Viral Protein Exposure. Cells 2021; 10:3037. [PMID: 34831259 PMCID: PMC8616332 DOI: 10.3390/cells10113037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
Due to the widespread access to, and implementation of, combination antiretroviral therapy, individuals perinatally infected with human immunodeficiency virus type 1 (HIV-1) are living into adolescence and adulthood. Perinatally infected adolescents living with HIV-1 (pALHIV) are plagued by progressive, chronic neurocognitive impairments; the pathophysiological mechanisms underlying these deficits, however, remain understudied. A longitudinal experimental design from postnatal day (PD) 30 to PD 180 was utilized to establish the development of pyramidal neurons, and associated dendritic spines, from layers II-III of the medial prefrontal cortex (mPFC) in HIV-1 transgenic (Tg) and control animals. Three putative neuroinflammatory markers (i.e., IL-1β, IL-6, and TNF-α) were evaluated early in development (i.e., PD 30) as a potential mechanism underlying synaptic dysfunction in the mPFC. Constitutive expression of HIV-1 viral proteins induced prominent neurodevelopmental alterations and progressive synaptodendritic dysfunction, independent of biological sex, in pyramidal neurons from layers II-III of the mPFC. From a neurodevelopmental perspective, HIV-1 Tg rats exhibited prominent deficits in dendritic and synaptic pruning. With regards to progressive synaptodendritic dysfunction, HIV-1 Tg animals exhibited an age-related population shift towards dendritic spines with decreased volume, increased backbone length, and decreased head diameter; parameters associated with a more immature dendritic spine phenotype. There was no compelling evidence for neuroinflammation in the mPFC during early development. Collectively, progressive neuronal and dendritic spine dysmorphology herald synaptodendritic dysfunction as a key neural mechanism underlying chronic neurocognitive impairments in pALHIV.
Collapse
Affiliation(s)
| | | | | | - Charles F. Mactutus
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA; (K.A.M.); (H.L.); (R.M.B.)
| |
Collapse
|
33
|
HIV-Proteins-Associated CNS Neurotoxicity, Their Mediators, and Alternative Treatments. Cell Mol Neurobiol 2021; 42:2553-2569. [PMID: 34562223 DOI: 10.1007/s10571-021-01151-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023]
Abstract
Human immunodeficiency virus (HIV)-infected people's livelihoods are gradually being prolonged with the use of combined antiretroviral therapy (ART). Conversely, despite viral suppression by ART, the symptoms of HIV-associated neurocognitive disorder (HAND) endure. HAND persists because ART cannot really permanently confiscate the virus from the body. HAND encompasses a variety of conditions based on clinical presentation and severity level, comprising asymptomatic neurocognitive impairment, moderate neurocognitive disorder, and HIV-associated dementia. During the early stages of HIV infection, inflammation compromises the blood-brain barrier, allowing toxic virus, infected monocytes, macrophages, T-lymphocytes, and cellular products from the bloodstream to enter the brain and eventually the entire central nervous system. Since there are no resident T-lymphocytes in the brain, the virus will live for decades in macrophages and astrocytes, establishing a reservoir of infection. The HIV proteins then inflame neurons both directly and indirectly. The purpose of this review is to provide a synopsis of the effects of these proteins on the central nervous system and conceptualize avenues to be considered in mitigating HAND. We used bioinformatics repositories extensively to simulate the transcription factors that bind to the promoter of the HIV-1 protein and possibly could be used as a target to circumvent HIV-associated neurocognitive disorders. In the same vein, a protein-protein interaction complex was also deduced from a Search Tool for the Retrieval of Interacting Genes. In conclusion, this provides an alternative strategy that could be used to avert HAND.
Collapse
|
34
|
League AF, Gorman BL, Hermes DJ, Johnson CT, Jacobs IR, Yadav-Samudrala BJ, Poklis JL, Niphakis MJ, Cravatt BF, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. Monoacylglycerol Lipase Inhibitor MJN110 Reduces Neuronal Hyperexcitability, Restores Dendritic Arborization Complexity, and Regulates Reward-Related Behavior in Presence of HIV-1 Tat. Front Neurol 2021; 12:651272. [PMID: 34484091 PMCID: PMC8415271 DOI: 10.3389/fneur.2021.651272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
While current therapeutic strategies for people living with human immunodeficiency virus type 1 (HIV-1) suppress virus replication peripherally, viral proteins such as transactivator of transcription (Tat) enter the central nervous system early upon infection and contribute to chronic inflammatory conditions even alongside antiretroviral treatment. As demand grows for supplemental strategies to combat virus-associated pathology presenting frequently as HIV-associated neurocognitive disorders (HAND), the present study aimed to characterize the potential utility of inhibiting monoacylglycerol lipase (MAGL) activity to increase inhibitory activity at cannabinoid receptor-type 1 receptors through upregulation of 2-arachidonoylglycerol (2-AG) and downregulation of its degradation into proinflammatory metabolite arachidonic acid (AA). The MAGL inhibitor MJN110 significantly reduced intracellular calcium and increased dendritic branching complexity in Tat-treated primary frontal cortex neuron cultures. Chronic MJN110 administration in vivo increased 2-AG levels in the prefrontal cortex (PFC) and striatum across Tat(+) and Tat(–) groups and restored PFC N-arachidonoylethanolamine (AEA) levels in Tat(+) subjects. While Tat expression significantly increased rate of reward-related behavioral task acquisition in a novel discriminative stimulus learning and cognitive flexibility assay, MJN110 altered reversal acquisition specifically in Tat(+) mice to rates indistinguishable from Tat(–) controls. Collectively, our results suggest a neuroprotective role of MAGL inhibition in reducing neuronal hyperexcitability, restoring dendritic arborization complexity, and mitigating neurocognitive alterations driven by viral proteins associated with latent HIV-1 infection.
Collapse
Affiliation(s)
- Alexis F League
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin L Gorman
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Douglas J Hermes
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Clare T Johnson
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Ian R Jacobs
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Barkha J Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Micah J Niphakis
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, United States
| | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, United States
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
35
|
Sil S, Periyasamy P, Thangaraj A, Niu F, Chemparathy DT, Buch S. Advances in the Experimental Models of HIV-Associated Neurological Disorders. Curr HIV/AIDS Rep 2021; 18:459-474. [PMID: 34427869 DOI: 10.1007/s11904-021-00570-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Involvement of the central nervous system (CNS) in HIV-1 infection is commonly associated with neurological disorders and cognitive impairment, commonly referred to as HIV-associated neurocognitive disorders (HAND). Severe and progressive neurocognitive impairment is rarely observed in the post-cART era; however, asymptomatic and mild neurocognitive disorders still exist, despite viral suppression. Additionally, comorbid conditions can also contribute to the pathogenesis of HAND. RECENT FINDINGS In this review, we summarize the characterization of HAND, factors contributing, and the functional impairments in both preclinical and clinical models. Specifically, we also discuss recent advances in the animal models of HAND and in in vitro cultures and the potential role of drugs of abuse in this model system of HAND. Potential peripheral biomarkers associated with HAND are also discussed. Overall, this review identifies some of the recent advances in the field of HAND in cell culture studies, animal models, clinical findings, and the limitations of each model system, which can play a key role in developing novel therapeutics in the field.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Divya T Chemparathy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| |
Collapse
|
36
|
Nass SR, Lark ARS, Hahn YK, McLane VD, Ihrig TM, Contois L, Napier TC, Knapp PE, Hauser KF. HIV-1 Tat and morphine decrease murine inter-male social interactions and associated oxytocin levels in the prefrontal cortex, amygdala, and hypothalamic paraventricular nucleus. Horm Behav 2021; 133:105008. [PMID: 34171549 PMCID: PMC8277758 DOI: 10.1016/j.yhbeh.2021.105008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/11/2021] [Accepted: 05/22/2021] [Indexed: 12/15/2022]
Abstract
Many persons infected with HIV-1 (PWH) and opioid-dependent individuals experience deficits in sociability that interfere with daily living. Sociability is regulated by the prefrontal cortico-hippocampal-amygdalar circuit. Within this circuit HIV-1 trans-activator of transcription (HIV-1 Tat) and opioids can increase dendritic pathology and alter neuronal firing. Changes in sociability are also associated with dysregulation of hypothalamic neuropeptides such as oxytocin or corticotropin releasing factor (CRF) in the prefrontal cortico-hippocampal-amygdalar circuit. Accordingly, we hypothesized that the interaction of HIV-1 Tat and morphine would impair inter-male social interactions and disrupt oxytocin and CRF within the PFC and associated circuitry. Male mice were exposed to HIV-1 Tat for 8 weeks and administered saline or escalating doses of morphine twice daily (s.c.) during the last 2 weeks of HIV-1 Tat exposure. Tat attenuated aggressive interactions with an unknown intruder, whereas morphine decreased both non-aggressive and aggressive social interactions in the resident-intruder test. However, there was no effect of Tat or morphine on non-reciprocal interactions in the social interaction and novelty tests. Tat, but not morphine, decreased oxytocin levels in the PFC and amygdala, whereas both Tat and morphine decreased the percentage of oxytocin-immunoreactive neurons in the hypothalamic paraventricular nucleus (PVN). In Tat(+) or morphine-exposed mice, regional levels of CRF and oxytocin correlated with alterations in behavior in the social interaction and novelty tests. Overall, decreased expression of oxytocin in the prefrontal cortico-hippocampal-amygdalar circuit is associated with morphine- and HIV-Tat-induced deficits in social behavior.
Collapse
Affiliation(s)
- Sara R Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA
| | - Arianna R S Lark
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA
| | - Yun K Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0709, USA
| | - Virginia D McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA
| | - Therese M Ihrig
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA
| | - Liangru Contois
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA
| | - T Celeste Napier
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612-2847, USA; Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612-3818, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA; Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0709, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0059, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA; Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0709, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0059, USA.
| |
Collapse
|
37
|
Marks WD, Paris JJ, Barbour AJ, Moon J, Carpenter VJ, McLane VD, Lark ARS, Nass SR, Zhang J, Yarotskyy V, McQuiston AR, Knapp PE, Hauser KF. HIV-1 Tat and Morphine Differentially Disrupt Pyramidal Cell Structure and Function and Spatial Learning in Hippocampal Area CA1: Continuous versus Interrupted Morphine Exposure. eNeuro 2021; 8:ENEURO.0547-20.2021. [PMID: 33782102 PMCID: PMC8146490 DOI: 10.1523/eneuro.0547-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
About half the people infected with human immunodeficiency virus (HIV) have neurocognitive deficits that often include memory impairment and hippocampal deficits, which can be exacerbated by opioid abuse. To explore the effects of opioids and HIV on hippocampal CA1 pyramidal neuron structure and function, we induced HIV-1 transactivator of transcription (Tat) expression in transgenic mice for 14 d and co-administered time-release morphine or vehicle subcutaneous implants during the final 5 d (days 9-14) to establish steady-state morphine levels. Morphine was withheld from some ex vivo slices during recordings to begin to assess the initial pharmacokinetic consequences of opioid withdrawal. Tat expression reduced hippocampal CA1 pyramidal neuronal excitability at lower stimulating currents. Pyramidal cell firing rates were unaffected by continuous morphine exposure. Behaviorally, exposure to Tat or high dosages of morphine impaired spatial memory Exposure to Tat and steady-state levels of morphine appeared to have largely independent effects on pyramidal neuron structure and function, a response that is distinct from other vulnerable brain regions such as the striatum. By contrast, acutely withholding morphine (from morphine-tolerant ex vivo slices) revealed unique and selective neuroadaptive shifts in CA1 pyramidal neuronal excitability and dendritic plasticity, including some interactions with Tat. Collectively, the results show that opioid-HIV interactions in hippocampal area CA1 are more nuanced than previously assumed, and appear to vary depending on the outcome assessed and on the pharmacokinetics of morphine exposure.
Collapse
Affiliation(s)
- William D Marks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Jason J Paris
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848
| | - Aaron J Barbour
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
| | - Jean Moon
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Valerie J Carpenter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Virginia D McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Arianna R S Lark
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Sara R Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Jingli Zhang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298-0709
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298-0709
| |
Collapse
|
38
|
In vivo proton magnetic resonance spectroscopy detection of metabolite abnormalities in aged Tat-transgenic mouse brain. GeroScience 2021; 43:1851-1862. [PMID: 33818687 DOI: 10.1007/s11357-021-00354-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022] Open
Abstract
Most individuals living with HIV in the USA are over 45 years old and are vulnerable to the combined effects of HIV and aging. Antiretroviral therapies reduce HIV morbidity and mortality but do not prevent HIV trans-activator of transcription (Tat) protein expression or development of HIV-associated neurocognitive disorder (HAND), which may be caused by Tat. Tat-transgenic (Tat-tg) mice are used to study Tat's effects, typically after transgene induction with doxycycline. However, uninduced Tat-tg mice experience transgene leak and model aspects of HAND when aged, including neuroinflammation. We used in vivo 9.4-tesla proton magnetic resonance spectroscopy to compare neurochemistry in aged versus young female and male uninduced Tat-tg mice. Aged Tat-tg mice demonstrated measurable tat mRNA brain expression and had lower medial prefrontal cortex (MPFC) GABA, glutamate, and taurine levels and lower striatal GABA and taurine levels. Females had lower MPFC glutathione and taurine and lower striatal taurine levels. Brain testosterone levels were negatively correlated with age in aged males but not females. Aged mice had cortical abnormalities not previously reported in aged wild-type mice including lower MPFC GABA and taurine levels. As glutathione and taurine levels reflect inflammation and oxidative stress, our data suggest that Tat may exacerbate these processes in aged Tat-tg mice. However, additional studies in controls not expressing Tat are needed to confirm this point and to deconvolve individual effects of age and Tat expression. Sex steroid hormone supplements, which counter climacteric effects, increase taurine levels, and reduce inflammation and oxidative stress, could attenuate some of the brain abnormalities we identified in aged Tat-tg mice.
Collapse
|
39
|
Irollo E, Luchetta J, Ho C, Nash B, Meucci O. Mechanisms of neuronal dysfunction in HIV-associated neurocognitive disorders. Cell Mol Life Sci 2021; 78:4283-4303. [PMID: 33585975 PMCID: PMC8164580 DOI: 10.1007/s00018-021-03785-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) is characterized by cognitive and behavioral deficits in people living with HIV. HAND is still common in patients that take antiretroviral therapies, although they tend to present with less severe symptoms. The continued prevalence of HAND in treated patients is a major therapeutic challenge, as even minor cognitive impairment decreases patient’s quality of life. Therefore, modern HAND research aims to broaden our understanding of the mechanisms that drive cognitive impairment in people with HIV and identify promising molecular pathways and targets that could be exploited therapeutically. Recent studies suggest that HAND in treated patients is at least partially induced by subtle synaptodendritic damage and disruption of neuronal networks in brain areas that mediate learning, memory, and executive functions. Although the causes of subtle neuronal dysfunction are varied, reversing synaptodendritic damage in animal models restores cognitive function and thus highlights a promising therapeutic approach. In this review, we examine evidence of synaptodendritic damage and disrupted neuronal connectivity in HAND from clinical neuroimaging and neuropathology studies and discuss studies in HAND models that define structural and functional impairment of neurotransmission. Then, we report molecular pathways, mechanisms, and comorbidities involved in this neuronal dysfunction, discuss new approaches to reverse neuronal damage, and highlight current gaps in knowledge. Continued research on the manifestation and mechanisms of synaptic injury and network dysfunction in HAND patients and experimental models will be critical if we are to develop safe and effective therapies that reverse subtle neuropathology and cognitive impairment.
Collapse
Affiliation(s)
- Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Jared Luchetta
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Chunta Ho
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA. .,Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA. .,Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
40
|
Qrareya AN, Mahdi F, Kaufman MJ, Ashpole NM, Paris JJ. HIV-1 Tat promotes age-related cognitive, anxiety-like, and antinociceptive impairments in female mice that are moderated by aging and endocrine status. GeroScience 2021; 43:309-327. [PMID: 32940828 PMCID: PMC8050151 DOI: 10.1007/s11357-020-00268-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
Hypogonadism is a common comorbidity associated with HIV-1 that is more prevalent among infected individuals over the age of 45. The underlying mechanisms are unknown, but both combined antiretroviral therapeutics and HIV-1 proteins, such as trans-activator of transcription protein (Tat), dysregulate steroid-synthetic mechanisms including lipid storage/synthesis and mitochondrial function. Thus, Tat expression may accelerate age-related comorbidities partly by impairing endocrine function. Few studies exist of Tat-mediated behavioral deficits in aged animals and effects of endocrine status have not been investigated. Accordingly, we tested whether conditional Tat expression in aged (~ 1.5 years old), female, Tat-transgenic [Tat(+)] mice increases anxiety-like behavior, impairs cognition, and augments mechanical allodynia, when compared to age-matched controls that do not express Tat protein [Tat(-)]. We further tested whether aged mice that maintained their endocrine status (pre-estropausal) were more resilient to Tat/age-related comorbidities than peri- or post-estropausal mice. Tat and endocrine aging status exerted separate and interacting effects that influenced anxiety-like and cognitive behaviors. Peri- and post-estropausal mice exhibited greater anxiety-like behavior in the elevated plus-maze and impaired learning in the radial arm water maze compared to pre-estropausal mice. Irrespective of estropause status, Tat(+) mice demonstrated impaired learning, reduced grip strength, and mechanical allodynia compared to Tat(-) mice. Tat exposure reduced circulating estradiol in post-estropausal mice and increased the estradiol-to-testosterone ratio in pre-estropausal mice. Changes in circulating estradiol, testosterone, and progesterone correlated with grip strength. Thus, endocrine status is an important factor in age-related anxiety, cognition, neuromuscular function, and allodynia that can be accelerated by HIV-1 Tat protein.
Collapse
Affiliation(s)
- Alaa N Qrareya
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, 315 Faser Hall, P.O. Box 1848, University, MS, 38677-1848, USA
| | - Fakhri Mahdi
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, 315 Faser Hall, P.O. Box 1848, University, MS, 38677-1848, USA
| | - Marc J Kaufman
- Department of Psychiatry, McLean Imaging Center, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Nicole M Ashpole
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, 315 Faser Hall, P.O. Box 1848, University, MS, 38677-1848, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, 38677, USA
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, 315 Faser Hall, P.O. Box 1848, University, MS, 38677-1848, USA.
- Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
41
|
Barbour AJ, Nass SR, Hahn YK, Hauser KF, Knapp PE. Restoration of KCC2 Membrane Localization in Striatal Dopamine D2 Receptor-Expressing Medium Spiny Neurons Rescues Locomotor Deficits in HIV Tat-Transgenic Mice. ASN Neuro 2021; 13:17590914211022089. [PMID: 34445881 PMCID: PMC8404672 DOI: 10.1177/17590914211022089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
People infected with HIV (PWH) are highly susceptible to striatal and hippocampal damage. Motor and memory impairments are common among these patients, likely as behavioral manifestations of damage to these brain regions. GABAergic dysfunction from HIV infection and viral proteins such as transactivator of transcription (Tat) have been well documented. We recently demonstrated that the neuron specific Cl- extruder, K+ Cl- cotransporter 2 (KCC2), is diminished after exposure to HIV proteins, including Tat, resulting in disrupted GABAAR-mediated hyperpolarization and inhibition. Here, we utilized doxycycline (DOX)-inducible, GFAP-driven HIV-1 Tat transgenic mice to further explore this phenomenon. After two weeks of Tat expression, we found no changes in hippocampal KCC2 levels, but a significant decrease in the striatum that was associated with hyperlocomotion in the open field assay. We were able to restore KCC2 activity and baseline locomotion with the KCC2 enhancer, CLP290. Additionally, we found that CLP290, whose mechanism of action has yet to be described, acts to restore phosphorylation of serine 940 resulting in increased KCC2 membrane localization. We also examined neuronal subpopulation contributions to the noted effects and found significant differences. Dopamine D2 receptor-expressing medium spiny neurons (MSNs) were selectively vulnerable to Tat-induced KCC2 loss, with no changes observed in dopamine D1 receptor-expressing MSNs. These results suggest that disinhibition/diminished hyperpolarization of dopamine D2 receptor-expressing MSNs can manifest as increased locomotion in this context. They further suggest that KCC2 activity might be a therapeutic target to alleviate motor disturbances related to HIV.
Collapse
Affiliation(s)
- Aaron J. Barbour
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
| | - Sara R. Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
| | - Yun K. Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
| | - Kurt F. Hauser
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
| | - Pamela E. Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
| |
Collapse
|
42
|
Joshi CR, Stacy S, Sumien N, Ghorpade A, Borgmann K. Astrocyte HIV-1 Tat Differentially Modulates Behavior and Brain MMP/TIMP Balance During Short and Prolonged Induction in Transgenic Mice. Front Neurol 2020; 11:593188. [PMID: 33384653 PMCID: PMC7769877 DOI: 10.3389/fneur.2020.593188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Despite effective antiretroviral therapy (ART), mild forms of HIV-associated neurocognitive disorders (HAND) continue to afflict approximately half of all people living with HIV (PLWH). As PLWH age, HIV-associated inflammation perturbs the balance between brain matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs), likely contributing to neuropathogenesis. The MMP/TIMP balance is associated with cognition, learning, and memory, with TIMPs eliciting neuroprotective effects. Dysregulation of the MMP/TIMP balance was evident in the brains of PLWH where levels of TIMP-1, the inducible family member, were significantly lower than non-infected controls, and MMPs were elevated. Here, we evaluated the MMP/TIMP levels in the doxycycline (DOX)-induced glial fibrillary acidic protein promoter-driven HIV-1 transactivator of transcription (Tat) transgenic mouse model. The HIV-1 protein Tat is constitutively expressed by most infected cells, even during ART suppression of viral replication. Many studies have demonstrated indirect and direct mechanisms of short-term Tat-associated neurodegeneration, including gliosis, blood-brain barrier disruption, elevated inflammatory mediators and neurotoxicity. However, the effects of acute vs. prolonged exposure on Tat-induced dysregulation remain to be seen. This is especially relevant for TIMP-1 as expression was previously shown to be differentially regulated in human astrocytes during acute vs. chronic inflammation. In this context, acute Tat expression was induced with DOX intraperitoneal injections over 3 weeks, while DOX-containing diet was used to achieve long-term Tat expression over 6 months. First, a series of behavior tests evaluating arousal, ambulation, anxiety, and cognition was performed to examine impairments analogous to those observed in HAND. Next, gene expression of components of the MMP/TIMP axis and known HAND-relevant inflammatory mediators were assessed. Altered anxiety-like, motor and/or cognitive behaviors were observed in Tat-induced (iTat) mice. Gene expression of MMPs and TIMPs was altered depending on the duration of Tat expression, which was independent of the HIV-associated neuroinflammation typically implicated in MMP/TIMP regulation. Collectively, we infer that HIV-1 Tat-mediated dysregulation of MMP/TIMP axis and behavioral changes are dependent on duration of exposure. Further, prolonged Tat expression demonstrates a phenotype comparable to asymptomatic to mild HAND manifestation in patients.
Collapse
Affiliation(s)
- Chaitanya R Joshi
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Satomi Stacy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Anuja Ghorpade
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
43
|
Marino J, Maubert ME, Mele AR, Spector C, Wigdahl B, Nonnemacher MR. Functional impact of HIV-1 Tat on cells of the CNS and its role in HAND. Cell Mol Life Sci 2020; 77:5079-5099. [PMID: 32577796 PMCID: PMC7674201 DOI: 10.1007/s00018-020-03561-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/08/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat) is a potent mediator involved in the development of HIV-1-associated neurocognitive disorders (HAND). Tat is expressed even in the presence of antiretroviral therapy (ART) and is able to enter the central nervous system (CNS) through a variety of ways, where Tat can interact with microglia, astrocytes, brain microvascular endothelial cells, and neurons. The presence of low concentrations of extracellular Tat alone has been shown to lead to dysregulated gene expression, chronic cell activation, inflammation, neurotoxicity, and structural damage in the brain. The reported effects of Tat are dependent in part on the specific HIV-1 subtype and amino acid length of Tat used. HIV-1 subtype B Tat is the most common subtype in North American and therefore, most studies have been focused on subtype B Tat; however, studies have shown many genetic, biologic, and pathologic differences between HIV subtype B and subtype C Tat. This review will focus primarily on subtype B Tat where the full-length protein is 101 amino acids, but will also consider variants of Tat, such as Tat 72 and Tat 86, that have been reported to exhibit a number of distinctive activities with respect to mediating CNS damage and neurotoxicity.
Collapse
Affiliation(s)
- Jamie Marino
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Monique E Maubert
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Cassandra Spector
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Morphine and HIV-1 Tat interact to cause region-specific hyperphosphorylation of tau in transgenic mice. Neurosci Lett 2020; 741:135502. [PMID: 33202259 DOI: 10.1016/j.neulet.2020.135502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
Opiate abuse is prevalent among HIV-infected individuals and may exacerbate HIV-associated age-related neurocognitive disorders. However, the extent to which HIV and opiates converge to accelerate pathological traits indicative of brain aging remains unknown. The pathological phospho-isotypes of tau (pSer396, pSer404, pThr205, pSer202, and pThr181) and the tau kinases GSK3β and CDK5/p35 were explored in the striatum, hippocampus, and prefrontal cortex of inducible male and female HIV-1 Tat-transgenic mice, with some receiving escalating doses of morphine for 2 weeks. In the striatum of male mice, pSer396 was increased by co-exposure to morphine and Tat as compared to all other groups. Striatal pSer404 and pThr205 were increased by Tat alone, while pSer202 and pThr181 were unchanged. A comparison between Tat-transgenic female and male mice revealed disparate outcomes for pThr205. No other sex-related changes to tau phosphorylation were observed. In the hippocampus, Tat increased pSer396, while other phosphorylation sites were unchanged and pSer202 was not detected. In the prefrontal cortex, morphine increased pSer396 levels, which were unaffected by Tat, while other phosphorylation sites were unaffected. Assessment of tau kinases revealed no changes to striatal GSK3β (phosphorylated or total) or the total CDK5 levels. Striatal levels of phosphorylated CDK5 and p35, the activator of CDK5, were increased by Tat and with morphine co-exposure, respectively. P35 levels positively correlated with those of pSer396 with Tat and morphine co-exposure. The results reveal region-specific hyperphosphorylation of tau induced by exposure to morphine, Tat, and unique morphine and Tat interactions.
Collapse
|
45
|
Moidunny S, Benneyworth MA, Titus DJ, Beurel E, Kolli U, Meints J, Jalodia R, Ramakrishnan S, Atkins CM, Roy S. Glycogen synthase kinase-3 inhibition rescues sex-dependent contextual fear memory deficit in human immunodeficiency virus-1 transgenic mice. Br J Pharmacol 2020; 177:5658-5676. [PMID: 33080056 DOI: 10.1111/bph.15288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE A significant number of HIV-1 patients on antiretroviral therapy develop HIV-associated neurocognitive disorders (HAND). Evidence indicate that biological sex may regulate HAND pathogenesis, but the mechanisms remain unknown. We investigated synaptic mechanisms associated with sex differences in HAND, using the HIV-1-transgenic 26 (Tg26) mouse model. EXPERIMENTAL APPROACH Contextual- and cue-dependent memories of male and female Tg26 mice and littermate wild type mice were assessed in a fear conditioning paradigm. Hippocampal electrophysiology, immunohistochemistry, western blot, qRT-PCR and ELISA techniques were used to investigate cellular, synaptic and molecular impairments. KEY RESULTS Cue-dependent memory was unaltered in male and female Tg26 mice, when compared to wild type mice. Male, but not female, Tg26 mice showed deficits in contextual fear memory. Consistently, only male Tg26 mice showed depressed hippocampal basal synaptic transmission and impaired LTP induction in area CA1. These deficits in male Tg26 mice were independent of hippocampal neuronal loss and microglial activation but were associated with increased HIV-1 long terminal repeat mRNA expression, reduced hippocampal synapsin-1 protein, reduced BDNF mRNA and protein, reduced AMPA glutamate receptor (GluA1) phosphorylation levels and increased glycogen synthase kinase 3 (GSK3) activity. Importantly, selective GSK3 inhibition using 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione increased levels of synapsin-1, BDNF and phosphorylated-GluA1 proteins, restored hippocampal basal synaptic transmission and LTP, and improved contextual fear memory in male Tg26 mice. CONCLUSION AND IMPLICATIONS Sex-dependent impairments in contextual fear memory and synaptic plasticity in Tg26 mice are associated with increased GSK3 activity. This implicates GSK3 inhibition as a potential therapeutic strategy to improve cognition in HIV-1 patients.
Collapse
Affiliation(s)
- Shamsudheen Moidunny
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - David J Titus
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Udhghatri Kolli
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joyce Meints
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Richa Jalodia
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sundaram Ramakrishnan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
46
|
Barbour AJ, Hauser KF, McQuiston AR, Knapp PE. HIV and opiates dysregulate K +- Cl - cotransporter 2 (KCC2) to cause GABAergic dysfunction in primary human neurons and Tat-transgenic mice. Neurobiol Dis 2020; 141:104878. [PMID: 32344154 PMCID: PMC7685173 DOI: 10.1016/j.nbd.2020.104878] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Approximately half of people infected with HIV (PWH) exhibit HIV-associated neuropathology (neuroHIV), even when receiving combined antiretroviral therapy. Opiate use is widespread in PWH and exacerbates neuroHIV. While neurons themselves are not infected, they incur sublethal damage and GABAergic disruption is selectively vulnerable to viral and inflammatory factors released by infected/affected glia. Here, we demonstrate diminished K+-Cl- cotransporter 2 (KCC2) levels in primary human neurons after exposure to HIV-1 or HIV-1 proteins ± morphine. Resulting disruption of GABAAR-mediated hyperpolarization/inhibition was shown using genetically-encoded voltage (Archon1) and calcium (GCaMP6f) indicators. The HIV proteins Tat (acting through NMDA receptors) and R5-gp120 (acting via CCR5) but not X4-tropic gp120 (acting via CXCR4), and morphine (acting through μ-opioid receptors) all induced KCC2 loss. We demonstrate that modifying KCC2 levels or function, or antagonizing NMDAR, CCR5 or MOR rescues KCC2 and GABAAR-mediated hyperpolarization/inhibition in HIV, Tat, or gp120 ± morphine-exposed neurons. Using an inducible, Tat-transgenic mouse neuroHIV model, we found that chronic exposure to Tat also reduces KCC2. Our results identify KCC2 as a novel therapeutic target for ameliorating the pathobiology of neuroHIV, including PWH exposed to opiates.
Collapse
Affiliation(s)
- Aaron J Barbour
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Kurt F Hauser
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - A Rory McQuiston
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Pamela E Knapp
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
47
|
HIV Infection and Neurocognitive Disorders in the Context of Chronic Drug Abuse: Evidence for Divergent Findings Dependent upon Prior Drug History. J Neuroimmune Pharmacol 2020; 15:715-728. [PMID: 32533296 DOI: 10.1007/s11481-020-09928-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
The fronto-striatal circuitry, involving the nucleus accumbens, ventral tegmental area, and prefrontal cortex, mediates goal-directed behavior and is targeted by both drugs of abuse and HIV-1 infection. Acutely, both drugs and HIV-1 provoke increased dopamine activity within the circuit. However, chronic exposure to drugs or HIV-1 leads to dysregulation of the dopamine system as a result of fronto-striatal adaptations to oppose the effects of repeated instances of transiently increased dopamine. Specifically, chronic drug use leads to reduced dopaminergic tone, upregulation of dopamine transporters, and altered circuit connectivity, sending users into an allosteric state in which goal-directed behaviors are dysregulated (i.e., addiction). Similarly, chronic exposure to HIV-1, even with combination antiretroviral therapy (cART), dysregulates dopamine and dopamine transporter function and alters connectivity of the fronto-striatal circuit, contributing to apathy and clinical symptoms of HIV-1 associated neurocognitive disorders (HAND). Thus, in a drug user also exposed to HIV-1, dysregulation of the fronto-striatal dopamine circuit advances at an exacerbated rate and appears to be driven by mechanisms unique from those seen with chronic drug use or HIV-1 exposure alone. We posit that the effects of drug use and HIV-1 infection on microglia interact to drive the progression of motivational dysfunction at an accelerated rate. The current review will therefore explore how the fronto-striatal circuit adapts to drug use (using cocaine as an example), HIV-1 infection, and both together; emphasizing proper methods and providing future directions to develop treatments for pathologies disrupting goal-directed behaviors and improve clinical outcomes for affected patients. Graphical Abstract Drug use and HIV-1 in the fronto-striatal circuit. Drugs of abuse and HIV-1 infection both target the fronto-striatal circuit which mediates goal-directed behavior. Acutely, drugs and HIV-1 increase dopamine activity; in contrast chronic exposure produces circuit adaptions leading to dysregulation, addiction and/or apathy. Comorbid drug use and HIV-1 infection may interact with microglia to exacerbate motivational dysregulation.
Collapse
|
48
|
Osteopontin and Integrin Mediated Modulation of Post-Synapses in HIV Envelope Glycoprotein Exposed Hippocampal Neurons. Brain Sci 2020; 10:brainsci10060346. [PMID: 32512754 PMCID: PMC7349055 DOI: 10.3390/brainsci10060346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 01/13/2023] Open
Abstract
The advent of Human Immunodeficiency Virus (HIV) antiretrovirals have reduced the severity of HIV related neurological comorbidities but they nevertheless remain prevalent. Synaptic degeneration due to the action of several viral factors released from infected brain myeloid and glia cells and inflammatory cytokines has been attributed to the manifestation of a range of cognitive and behavioral deficits. The contributions of specific pro-inflammatory factors and their interplay with viral factors in the setting of treatment and persistence are incompletely understood. Exposure of neurons to chemokine receptor-4(CXCR4)-tropic HIV-1 envelope glycoprotein (Env) can lead to post-synaptic degradation of dendritic spines. The contribution of members of the extracellular matrix (ECM) and specifically, of perineuronal nets (PNN) toward synaptic degeneration, is not fully known, even though these structures are found to be disrupted in post-mortem HIV-infected brains. Osteopontin (Opn, gene name SPP1), a cytokine-like protein, is found in abundance in the HIV-infected brain. In this study, we investigated the role of Opn and its ECM integrin receptors, β1- and β3 integrin in modifying neuronal synaptic sculpting. We found that in hippocampal neurons incubated with HIV-1 Env protein and recombinant Opn, post-synaptic-95 (PSD-95) puncta were significantly increased and distributed to dendritic spines when compared to Env-only treated neurons. This effect was mediated through β3 integrin, as silencing of this receptor abrogated the increase in post-synaptic spines. Silencing of β1 integrin, however, did not block the increase of post-synaptic spines in hippocampal cultures treated with Opn. However, a decrease in the PNN to βIII-tubulin ratio was found, indicating an increased capacity to support spine growth. From these results, we conclude that one of the mechanisms by which Opn counters the damaging impact of the HIV Env protein on hippocampal post-synaptic plasticity is through complex interactions between Opn and components of the ECM which activate downstream protective signaling pathways that help maintain the potential for effective post-synaptic plasticity.
Collapse
|
49
|
Nass SR, Hahn YK, McLane VD, Varshneya NB, Damaj MI, Knapp PE, Hauser KF. Chronic HIV-1 Tat exposure alters anterior cingulate cortico-basal ganglia-thalamocortical synaptic circuitry, associated behavioral control, and immune regulation in male mice. Brain Behav Immun Health 2020; 5:100077. [PMID: 33083793 PMCID: PMC7571616 DOI: 10.1016/j.bbih.2020.100077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/25/2020] [Indexed: 12/28/2022] Open
Abstract
HIV-1 selectively disrupts neuronal integrity within specific brain regions, reflecting differences in viral tropism and/or the regional differences in the vulnerability of distinct neuronal subpopulations within the CNS. Deficits in prefrontal cortex (PFC)-mediated executive function and the resultant loss of behavioral control are a particularly debilitating consequence of neuroHIV. To explore how HIV-1 disrupts executive function, we investigated the effects of 48 h, 2 and/or 8 weeks of HIV-1 Tat exposure on behavioral control, synaptic connectivity, and neuroimmune function in the anterior cingulate cortex (ACC) and associated cortico-basal ganglia (BG)-thalamocortical circuitry in adult, Tat transgenic male mice. HIV-1 Tat exposure increased novelty-exploration in response to novel food, flavor, and environmental stimuli, suggesting that Tat triggers increased novelty-exploration in situations of competing motivation (e.g., drive to feed or explore vs. fear of novel, brightly lit open areas). Furthermore, Tat induced adaptability in response to an environmental stressor and pre-attentive filtering deficits. The behavioral insufficiencies coincided with decreases in the inhibitory pre- and post-synaptic proteins, synaptotagmin 2 and gephyrin, respectively, in the ACC, and alterations in specific pro- and anti-inflammatory cytokines out of 23 assayed. The interaction of Tat exposure and the resultant time-dependent, selective alterations in CCL4, CXCL1, IL-12p40, and IL-17A levels in the PFC predicted significant decreases in adaptability. Tat decreased dendritic spine density and cortical VGLUT1 inputs, while increasing IL-1β, IL-6, CCL5, and CCL11 in the striatum. Alternatively, IL-1α, CCL5, and IL-13 were decreased in the mediodorsal thalamus despite the absence of synaptic changes. Thus, HIV-1 Tat appears to uniquely and systematically disrupt immune regulation and the inhibitory and excitatory synaptic balance throughout the ACC-BG-thalamocortical circuitry resulting in a loss of behavioral control.
Collapse
Affiliation(s)
- Sara R. Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
| | - Yun K. Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980709, Richmond, VA, 23298-0709, USA
| | - Virginia D. McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
| | - Neil B. Varshneya
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980709, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980059, Richmond, VA, 23298-0059, USA
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980709, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980059, Richmond, VA, 23298-0059, USA
| |
Collapse
|
50
|
Chen K, Phan T, Lin A, Sardo L, Mele AR, Nonnemacher MR, Klase Z. Morphine exposure exacerbates HIV-1 Tat driven changes to neuroinflammatory factors in cultured astrocytes. PLoS One 2020; 15:e0230563. [PMID: 32210470 PMCID: PMC7094849 DOI: 10.1371/journal.pone.0230563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Despite antiretroviral therapy human immunodeficiency virus type-1 (HIV-1) infection results in neuroinflammation of the central nervous system that can cause HIV-associated neurocognitive disorders (HAND). The molecular mechanisms involved in the development of HAND are unclear, however, they are likely due to both direct and indirect consequences of HIV-1 infection and inflammation of the central nervous system. Additionally, opioid abuse in infected individuals has the potential to exacerbate HIV-comorbidities, such as HAND. Although restricted for productive HIV replication, astrocytes (comprising 40-70% of all brain cells) likely play a significant role in neuropathogenesis in infected individuals due to the production and response of viral proteins. The HIV-1 protein Tat is critical for viral transcription, causes neuroinflammation, and can be secreted from infected cells to affect uninfected bystander cells. The Wnt/β-catenin signaling cascade plays an integral role in restricting HIV-1 infection in part by negatively regulating HIV-1 Tat function. Conversely, Tat can overcome this negative regulation and inhibit β-catenin signaling by sequestering the critical transcription factor TCF-4 from binding to β-catenin. Here, we aimed to explore how opiate exposure affects Tat-mediated suppression of β-catenin in astrocytes and the downstream modulation of neuroinflammatory genes. We observed that morphine can potentiate Tat suppression of β-catenin activity in human astrocytes. In contrast, Tat mutants deficient in secretion, and lacking neurotoxic effects, do not affect β-catenin activity in the presence or absence of morphine. Finally, morphine treatment of astrocytes was sufficient to reduce the expression of genes involved in neuroinflammation. Examining the molecular mechanisms of how HIV-1 infection and opiate exposure exacerbate neuroinflammation may help us inform or predict disease progression prior to HAND development.
Collapse
Affiliation(s)
- Kenneth Chen
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Thienlong Phan
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Angel Lin
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Luca Sardo
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
- Current institution – Department of Infectious Diseases and Vaccines, MRL, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Anthony R. Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Zachary Klase
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|