1
|
Jang S, Choi B, Lim C, Kim M, Lee JE, Lee H, Baek E, Cho KS. Neuronal fatty acid-binding protein enhances autophagy and suppresses amyloid-β pathology in a Drosophila model of Alzheimer's disease. PLoS Genet 2024; 20:e1011475. [PMID: 39561115 PMCID: PMC11575808 DOI: 10.1371/journal.pgen.1011475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
Fatty acid-binding proteins (FABPs) are small cytoplasmic proteins involved in intracellular lipid transport and bind free fatty acids, cholesterol, and retinoids. FABP3, the major neuronal FABP in the adult brain, is upregulated in the CSF of patients with Alzheimer's disease (AD). However, the precise role of neuronal FABPs in AD pathogenesis remains unclear. This study investigates the contribution of fabp, the Drosophila homolog of FABP3 and FABP7, to amyloid β (Aβ) pathology using a Drosophila model. Neuronal knockdown of fabp shortened the lifespan of flies and increased age-related protein aggregates in the brain. In an AD model, fabp knockdown in neurons increased Aβ accumulation and Aβ-induced neurodegeneration, whereas fabp overexpression ameliorated Aβ pathology. Notably, fabp overexpression stimulated autophagy, which was inhibited by the knockdown of Eip75B, the Drosophila homolog of the peroxisome proliferator-activated receptor (PPAR). The PPAR activator rosiglitazone restored autophagy impaired by fabp knockdown and reduced fabp knockdown-induced increased Aβ aggregation and cell death. Furthermore, knockdown of either fabp or Eip75B in the wing imaginal disc or adult fly brain reduced the expression of Atg6 and Atg8a. Additionally, treatment of the fabp knockdown AD model flies with polyunsaturated fatty acids, such as docosahexaenoic acid or linoleic acid, partially alleviated cell death in the developing eye, restored impaired autophagy flux, reduced Aβ aggregation, and attenuated Aβ-induced cell death. Our results suggest that Drosophila fabp plays an important role in maintaining protein homeostasis during aging and protects neurons from Aβ-induced cell death by enhancing autophagy through the PPAR pathway. These findings highlight the potential importance of neuronal FABP function in AD pathogenesis.
Collapse
Affiliation(s)
- Seokhui Jang
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Byoungyun Choi
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Chaejin Lim
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Minkyoung Kim
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Ji-Eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hyungi Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Eunji Baek
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
- Korea Hemp Institute, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Cerasuolo M, Di Meo I, Auriemma MC, Paolisso G, Papa M, Rizzo MR. Exploring the Dynamic Changes of Brain Lipids, Lipid Rafts, and Lipid Droplets in Aging and Alzheimer's Disease. Biomolecules 2024; 14:1362. [PMID: 39595539 PMCID: PMC11591903 DOI: 10.3390/biom14111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Aging induces complex changes in the lipid profiles across different areas of the brain. These changes can affect the function of brain cells and may contribute to neurodegenerative diseases such as Alzheimer's disease. Research shows that while the overall lipid profile in the human brain remains quite steady throughout adulthood, specific changes occur with age, especially after the age of 50. These changes include a slow decline in total lipid content and shifts in the composition of fatty acids, particularly in glycerophospholipids and cholesterol levels, which can vary depending on the brain region. Lipid rafts play a crucial role in maintaining membrane integrity and facilitating cellular signaling. In the context of Alzheimer's disease, changes in the composition of lipid rafts have been associated with the development of the disease. For example, alterations in lipid raft composition can lead to increased accumulation of amyloid β (Aβ) peptides, contributing to neurotoxic effects. Lipid droplets store neutral lipids and are key for cellular energy metabolism. As organisms age, the dynamics of lipid droplets in the brain change, with evidence suggesting a decline in metabolic activity over time. This reduced activity may lead to an imbalance in lipid synthesis and mobilization, contributing to neurodegenerative processes. In model organisms like Drosophila, studies have shown that lipid metabolism in the brain can be influenced by diet and insulin signaling pathways, crucial for maintaining metabolic balance. The interplay between lipid metabolism, oxidative stress, and inflammation is critical in the context of aging and Alzheimer's disease. Lipid peroxidation, a consequence of oxidative stress, can lead to the formation of reactive aldehydes that further damage neurons. Inflammatory processes can also disrupt lipid metabolism, contributing to the pathology of AD. Consequently, the accumulation of oxidized lipids can affect lipid raft integrity, influencing signaling pathways involved in neuronal survival and function.
Collapse
Affiliation(s)
- Michele Cerasuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| | - Irene Di Meo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| | - Maria Chiara Auriemma
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| |
Collapse
|
3
|
Galvin JE, Kleiman MJ, Estes PW, Harris HM, Fung E. Cognivue Clarity characterizes mild cognitive impairment and Alzheimer's disease in biomarker confirmed cohorts in the Bio-Hermes Study. Sci Rep 2024; 14:24519. [PMID: 39424626 PMCID: PMC11489461 DOI: 10.1038/s41598-024-75304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
The Bio-Hermes Study was a cross-sectional observational study designed to develop a database of blood-based and digital biomarkers to improve detection of Alzheimer's disease (AD) and mild cognitive impairment (MCI). We examined the ability of Cognivue Clarity to (a) detect MCI and AD in clinical diagnostics groups, (b) determine the presence of amyloid, and (c) distinguish between biomarker-confirmed groups. Bio-Hermes enrolled 887 participants who completed both Cognivue Clarity and amyloid PET scans (388 Cognitively Normal, 282 MCI, 217 Probable AD). Cognivue Clarity differentiated between Cognitively Normal, MCI, and probable AD in clinical cohorts, amyloid positive from amyloid negative individuals, and True Controls from MCI due to AD and AD in biomarker-confirmed cohorts (all p < 0.001) with large effect sizes. Cognivue Clarity correlated with amyloid PET and plasma amyloid and pTau (all p < 0.001). In biomarker confirmed groups, Cognivue Clarity had a positive likelihood ratio of 2.17, a negative likelihood ratio of 0.29, and a diagnostic odds ratio of 7.48. Cognivue Clarity detected cognitive impairment and differentiated between both clinically and biomarker defined MCI and AD groups. The use of Cognivue Clarity could assist with identification of MCI-AD or AD for inclusion into current treatment protocols or for enriching recruitment into clinical trials. Trial registration ClinicalTrials.gov (NCT04733989).
Collapse
Affiliation(s)
- James E Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, 7700 W Camino Real, Suite 200, Boca Raton, FL, 33433, USA.
- Cognivue, Inc, 7911 Rae Blvd, Victor, NY, 14564, USA.
| | - Michael J Kleiman
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, 7700 W Camino Real, Suite 200, Boca Raton, FL, 33433, USA
| | - Paul W Estes
- Cognivue, Inc, 7911 Rae Blvd, Victor, NY, 14564, USA
| | | | - Ernest Fung
- Cognivue, Inc, 7911 Rae Blvd, Victor, NY, 14564, USA
| |
Collapse
|
4
|
Jonaitis EM, MacLeod K, Lamoureux J, Jeffers B, Studer RL, Middleton J, Wilson RE, Chin NA, Okonkwo OC, Bendlin BB, Asthana S, Carlsson CM, Gallagher CL, Hermann B, McEvoy S, Kollmorgen G, Zetterberg H, Concha-Marambio L, Johnson SC, Lebovitz RM, Langhough RE. Misfolded alpha synuclein co-occurrence with Alzheimer's disease proteinopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.11.24315349. [PMID: 39417113 PMCID: PMC11483004 DOI: 10.1101/2024.10.11.24315349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Multi-etiology dementia necessitates in-vivo markers of copathologies including misfolded α -synuclein (syn). We measured misfolded syn aggregates (syn-seeds) via qualitative seed amplifcation assays (synSAA) and examined relationships with markers of Alzheimer's disease (AD). METHODS Cerebrospinal fluid (CSF) was obtained from 420 participants in two Wisconsin AD risk cohorts (35% male; 91% cognitively unimpaired; mean (SD) age, 65.42 (7.78) years; education, 16.17 (2.23) years). synSAA results were compared to phosphorylated tau (T), beta amyloid (A), and clinical outcomes. Longitudinal cognition was modeled with mixed effects. RESULTS Syn positivity (synSAA+) co-occurred with T (in synSAA+ vs synSAA-, 36% vs 20% T+; p=0.011) and with cognitive impairment (10% vs 7% MCI; 10% vs 0% dementia; p=0.00050). synSAA+ participants' cognitive performance declined ∼40% faster than synSAA-for Digit Symbol, but not other tests. DISCUSSION Findings support prevalent syn copathology in a mostly-unimpaired AD risk cohort. Future work will explore relationships with disease progression.
Collapse
|
5
|
Van Hulle C, Ince S, Okonkwo OC, Bendlin BB, Johnson SC, Carlsson CM, Asthana S, Love S, Blennow K, Zetterberg H, Scott Miners J. Elevated CSF angiopoietin-2 correlates with blood-brain barrier leakiness and markers of neuronal injury in early Alzheimer's disease. Transl Psychiatry 2024; 14:3. [PMID: 38182581 PMCID: PMC10770135 DOI: 10.1038/s41398-023-02706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/12/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Breakdown of the neurovascular unit is associated with blood-brain barrier (BBB) leakiness contributing to cognitive decline and disease pathology in the early stages of Alzheimer's disease (AD). Vascular stability depends on angiopoietin-1 (ANGPT-1) signalling, antagonised by angiopoietin-2 (ANGPT-2) expressed upon endothelial injury. We examined the relationship between CSF ANGPT-2 and CSF markers of BBB leakiness and core AD biomarkers across three independent cohorts: (i) 31 AD patients and 33 healthy controls grouped according to their biomarker profile (i.e., AD cases t-tau > 400 pg/mL, p-tau > 60 pg/mL and Aβ42 < 550 pg/mL); (ii) 121 participants in the Wisconsin Registry for Alzheimer's Prevention or Wisconsin Alzheimer's Disease Research study (84 participants cognitively unimpaired (CU) enriched for a parental history of AD, 20 participants with mild cognitive impairment (MCI), and 17 with AD); (iii) a neurologically normal cohort aged 23-78 years with paired CSF and serum samples. CSF ANGPT-2, sPDGFRβ, albumin and fibrinogen levels were measured by sandwich ELISA. In cohort (i), CSF ANGPT-2 was elevated in AD and correlated with CSF t-tau and p-tau181 but not Aβ42. ANGPT-2 also correlated positively with CSF sPDGFRβ and fibrinogen - markers of pericyte injury and BBB leakiness. In cohort (ii), CSF ANGPT-2 was highest in MCI and correlated with CSF albumin in the CU and MCI cohorts but not in AD. CSF ANGPT-2 also correlated with CSF t-tau and p-tau and with markers of neuronal injury (neurogranin and α-synuclein) and neuroinflammation (GFAP and YKL-40). In cohort (iii), CSF ANGPT-2 correlated strongly with the CSF/serum albumin ratio. Serum ANGPT-2 showed non-significant positive associations with CSF ANGPT-2 and the CSF/serum albumin ratio. Together, these data indicate that CSF and possibly serum ANGPT-2 is associated with BBB leakiness in early AD and is closely related to tau pathology and neuronal injury. The utility of serum ANGPT-2 as a biomarker of BBB damage in AD requires further study.
Collapse
Affiliation(s)
- Carol Van Hulle
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, University of Wisconsin-Madison, Madison, WI, USA
| | - Selvi Ince
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ozioma C Okonkwo
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Cynthia M Carlsson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Seth Love
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - J Scott Miners
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
6
|
Trombetta BA, Wu C, Kuo E, de Geus MB, Dodge HH, Carlyle BC, Kivisäkk P, Arnold SE. Cerebrospinal fluid biomarker profiling of diverse pathophysiological domains in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12440. [PMID: 38356471 PMCID: PMC10865489 DOI: 10.1002/trc2.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 02/16/2024]
Abstract
INTRODUCTION While Alzheimer's disease (AD) is defined by amyloid-β plaques and tau tangles in the brain, it is evident that many other pathophysiological processes such as inflammation, neurovascular dysfunction, oxidative stress, and metabolic derangements also contribute to the disease process and that varying contributions of these pathways may reflect the heterogeneity of AD. Here, we used a previously validated panel of cerebrospinal fluid (CSF) biomarkers to explore the degree to which different pathophysiological domains are dysregulated in AD and how they relate to each other. METHODS Twenty-five CSF biomarkers were analyzed in individuals with a clinical diagnosis of AD verified by positive CSF AD biomarkers (AD, n = 54) and cognitively unimpaired controls negative for CSF AD biomarkers (CU-N, n = 26) using commercial single- and multi-plex immunoassays. RESULTS We noted that while AD was associated with increased levels of only three biomarkers (MMP-10, FABP3, and 8OHdG) on a group level, half of all AD participants had increased levels of biomarkers belonging to at least two pathophysiological domains reflecting the diversity in AD. LASSO modeling showed that a panel of FABP3, 24OHC, MMP-10, MMP-2, and 8OHdG constituted the most relevant and minimally correlated set of variables differentiating AD from CU-N. Interestingly, factor analysis showed that two markers of metabolism and oxidative stress (24OHC and 8OHdG) contributed independent information separate from MMP-10 and FABP3 suggestive of two independent pathophysiological pathways in AD, one reflecting neurodegeneration and vascular pathology, and the other associated with metabolism and oxidative stress. DISCUSSION Better understanding of the heterogeneity among individuals with AD and the different contributions of pathophysiological processes besides amyloid-β and tau will be crucial for optimizing personalized treatment strategies. Highlights A panel of 25 highly validated biomarker assays were measured in CSF.MMP10, FABP3, and 8OHdG were increased in AD in univariate analysis.Many individuals with AD had increased levels of more than one biomarker.Markers of metabolism and oxidative stress contributed to an AD multianalyte profile.Assessing multiple biomarker domains is important to understand disease heterogeneity.
Collapse
Affiliation(s)
- Bianca A. Trombetta
- Department of Neurology, Alzheimer's Clinical and Translational Research UnitMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Chao‐Yi Wu
- Department of Neurology, Alzheimer's Clinical and Translational Research UnitMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Evan Kuo
- Department of Neurology, Alzheimer's Clinical and Translational Research UnitMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Matthijs B. de Geus
- Department of Neurology, Alzheimer's Clinical and Translational Research UnitMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Cell & Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Hiroko H. Dodge
- Department of Neurology, Alzheimer's Clinical and Translational Research UnitMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Becky C. Carlyle
- Department of Neurology, Alzheimer's Clinical and Translational Research UnitMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Pia Kivisäkk
- Department of Neurology, Alzheimer's Clinical and Translational Research UnitMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Steven E. Arnold
- Department of Neurology, Alzheimer's Clinical and Translational Research UnitMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
7
|
Deming Y, Vasiljevic E, Morrow A, Miao J, Van Hulle C, Jonaitis E, Ma Y, Whitenack V, Kollmorgen G, Wild N, Suridjan I, Shaw LM, Asthana S, Carlsson CM, Johnson SC, Zetterberg H, Blennow K, Bendlin BB, Lu Q, Engelman CD. Neuropathology-based APOE genetic risk score better quantifies Alzheimer's risk. Alzheimers Dement 2023; 19:3406-3416. [PMID: 36795776 PMCID: PMC10427737 DOI: 10.1002/alz.12990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/17/2023]
Abstract
INTRODUCTION Apolipoprotein E (APOE) ε4-carrier status or ε4 allele count are included in analyses to account for the APOE genetic effect on Alzheimer's disease (AD); however, this does not account for protective effects of APOE ε2 or heterogeneous effect of ε2, ε3, and ε4 haplotypes. METHODS We leveraged results from an autopsy-confirmed AD study to generate a weighted risk score for APOE (APOE-npscore). We regressed cerebrospinal fluid (CSF) amyloid and tau biomarkers on APOE variables from the Wisconsin Registry for Alzheimer's Prevention (WRAP), Wisconsin Alzheimer's Disease Research Center (WADRC), and Alzheimer's Disease Neuroimaging Initiative (ADNI). RESULTS The APOE-npscore explained more variance and provided a better model fit for all three CSF measures than APOE ε4-carrier status and ε4 allele count. These findings were replicated in ADNI and observed in subsets of cognitively unimpaired (CU) participants. DISCUSSION The APOE-npscore reflects the genetic effect on neuropathology and provides an improved method to account for APOE in AD-related analyses.
Collapse
Affiliation(s)
- Yuetiva Deming
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eva Vasiljevic
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Autumn Morrow
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jiacheng Miao
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Carol Van Hulle
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erin Jonaitis
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yue Ma
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vanessa Whitenack
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanjay Asthana
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Geriatric Research Education and Clinical Center, Madison, Wisconsin, USA
| | - Cynthia M Carlsson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Geriatric Research Education and Clinical Center, Madison, Wisconsin, USA
| | - Sterling C Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Geriatric Research Education and Clinical Center, Madison, Wisconsin, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Barbara B Bendlin
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Qiongshi Lu
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Hu WT, Nayyar A, Kaluzova M. Charting the Next Road Map for CSF Biomarkers in Alzheimer's Disease and Related Dementias. Neurotherapeutics 2023; 20:955-974. [PMID: 37378862 PMCID: PMC10457281 DOI: 10.1007/s13311-023-01370-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 06/29/2023] Open
Abstract
Clinical prediction of underlying pathologic substrates in people with Alzheimer's disease (AD) dementia or related dementia syndromes (ADRD) has limited accuracy. Etiologic biomarkers - including cerebrospinal fluid (CSF) levels of AD proteins and cerebral amyloid PET imaging - have greatly modernized disease-modifying clinical trials in AD, but their integration into medical practice has been slow. Beyond core CSF AD biomarkers (including beta-amyloid 1-42, total tau, and tau phosphorylated at threonine 181), novel biomarkers have been interrogated in single- and multi-centered studies with uneven rigor. Here, we review early expectations for ideal AD/ADRD biomarkers, assess these goals' future applicability, and propose study designs and performance thresholds for meeting these ideals with a focus on CSF biomarkers. We further propose three new characteristics: equity (oversampling of diverse populations in the design and testing of biomarkers), access (reasonable availability to 80% of people at risk for disease, along with pre- and post-biomarker processes), and reliability (thorough evaluation of pre-analytical and analytical factors influencing measurements and performance). Finally, we urge biomarker scientists to balance the desire and evidence for a biomarker to reflect its namesake function, indulge data- as well as theory-driven associations, re-visit the subset of rigorously measured CSF biomarkers in large datasets (such as Alzheimer's disease neuroimaging initiative), and resist the temptation to favor ease over fail-safe in the development phase. This shift from discovery to application, and from suspended disbelief to cogent ingenuity, should allow the AD/ADRD biomarker field to live up to its billing during the next phase of neurodegenerative disease research.
Collapse
Affiliation(s)
- William T Hu
- Department of Neurology, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, 125 Paterson Street, Suite 6200, New Brunswick, NJ, 08901, USA.
- Center for Innovation in Health and Aging Research, Institute for Health, Health Care Policy, and Aging Research, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| | - Ashima Nayyar
- Department of Neurology, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, 125 Paterson Street, Suite 6200, New Brunswick, NJ, 08901, USA
| | - Milota Kaluzova
- Department of Neurology, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, 125 Paterson Street, Suite 6200, New Brunswick, NJ, 08901, USA
| |
Collapse
|
9
|
Alalwany RH, Hawtrey T, Morgan K, Morris JC, Donaldson LF, Bates DO. Vascular endothelial growth factor isoforms differentially protect neurons against neurotoxic events associated with Alzheimer's disease. Front Mol Neurosci 2023; 16:1181626. [PMID: 37456522 PMCID: PMC10349181 DOI: 10.3389/fnmol.2023.1181626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/16/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, the chronic and progressive deterioration of memory and cognitive abilities. AD can be pathologically characterised by neuritic plaques and neurofibrillary tangles, formed by the aberrant aggregation of β-amyloid and tau proteins, respectively. We tested the hypothesis that VEGF isoforms VEGF-A165a and VEGF-A165b, produced by differential splice site selection in exon 8, could differentially protect neurons from neurotoxicities induced by β-amyloid and tau proteins, and that controlling expression of splicing factor kinase activity could have protective effects on AD-related neurotoxicity in vitro. Using oxidative stress, β-amyloid, and tau hyperphosphorylation models, we investigated the effect of VEGF-A splicing isoforms, previously established to be neurotrophic agents, as well as small molecule kinase inhibitors, which selectively inhibit SRPK1, the major regulator of VEGF splicing. While both VEGF-A165a and VEGF-A165b isoforms were protective against AD-related neurotoxicity, measured by increased metabolic activity and neurite outgrowth, VEGF-A165a was able to enhance neurite outgrowth but VEGF-A165b did not. In contrast, VEGF-A165b was more effective than VEGF-A165a in preventing neurite "dieback" in a tau hyperphosphorylation model. SRPK1 inhibition was found to significantly protect against neurite "dieback" through shifting AS of VEGFA towards the VEGF-A165b isoform. These results indicate that controlling the activities of the two different isoforms could have therapeutic potential in Alzheimer's disease, but their effect may depend on the predominant mechanism of the neurotoxicity-tau or β-amyloid.
Collapse
Affiliation(s)
- Roaa H. Alalwany
- Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Tom Hawtrey
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Kevin Morgan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jonathan C. Morris
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Lucy F. Donaldson
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David O. Bates
- Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Molloy C, Choy EH, Arechavala RJ, Buennagel D, Nolty A, Spezzaferri MR, Sin C, Rising S, Yu J, Al-Ezzi A, Kleinman MT, Kloner RA, Arakaki X. Resting heart rate (variability) and cognition relationships reveal cognitively healthy individuals with pathological amyloid/tau ratio. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1168847. [PMID: 37587981 PMCID: PMC10428767 DOI: 10.3389/fepid.2023.1168847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Introduction Resting heart rate (HR) and heart rate variability (HRV) have been linked with cognition in the general population and in older individuals. The knowledge of this aspect of heart-brain relationship is relatively absent in older individuals with early Alzheimer's disease (AD) pathology. This study explores relationships of the HR, HRV, and cognition in cognitively healthy individuals with pathological amyloid/tau ratio (CH-PATs) in cerebral spinal fluid (CSF) compared to those with normal ratio (CH-NATs). Methods We examined therelationshipsbetween1) resting HR and Mini-Mental State Examination (MMSE); 2) resting HR and brain processing during Stroop interference; and 3) resting vagally mediated HRV (vmHRV) and task switching performance. Results Our studies showed that compared to CH-NATs, those CH-PATs with higher resting HR presented with lower MMSE, and less brain activation during interference processing. In addition, resting vmHRV was significantly correlated with task switching accuracy in CH-NATs, but not in CH-PATs. Discussion Thesethreedifferenttestsindicatedysfunctionalheart-brainconnections in CH-PATs, suggesting a potential cardio-cerebral dysfunctional integration.
Collapse
Affiliation(s)
- Cathleen Molloy
- Cognition and Brain Integration Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Elizabeth H. Choy
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - Rebecca J. Arechavala
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - David Buennagel
- Clinical Neuroscience Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Anne Nolty
- Graduate School of Psychology & Marriage and Family Therapy, Fuller Theological Seminary, Pasadena, CA, United States
| | - Mitchell R. Spezzaferri
- Graduate School of Psychology & Marriage and Family Therapy, Fuller Theological Seminary, Pasadena, CA, United States
| | - Caleb Sin
- Graduate School of Psychology & Marriage and Family Therapy, Fuller Theological Seminary, Pasadena, CA, United States
| | - Shant Rising
- Graduate School of Psychology & Marriage and Family Therapy, Fuller Theological Seminary, Pasadena, CA, United States
| | - Jeremy Yu
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, United States
| | - Abdulhakim Al-Ezzi
- Cognition and Brain Integration Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Michael T. Kleinman
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - Robert A. Kloner
- Clinical Neuroscience Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
- Cardiovascular Research, Huntington Medical Research Institutes, Pasadena, CA, United States
- Cardiovascular Division, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA, United States
| | - Xianghong Arakaki
- Cognition and Brain Integration Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| |
Collapse
|
11
|
Papaliagkas V, Kalinderi K, Vareltzis P, Moraitou D, Papamitsou T, Chatzidimitriou M. CSF Biomarkers in the Early Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24108976. [PMID: 37240322 DOI: 10.3390/ijms24108976] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a rapidly growing disease that affects millions of people worldwide, therefore there is an urgent need for its early diagnosis and treatment. A huge amount of research studies are performed on possible accurate and reliable diagnostic biomarkers of AD. Due to its direct contact with extracellular space of the brain, cerebrospinal fluid (CSF) is the most useful biological fluid reflecting molecular events in the brain. Proteins and molecules that reflect the pathogenesis of the disease, e.g., neurodegeneration, accumulation of Abeta, hyperphosphorylation of tau protein and apoptosis may be used as biomarkers. The aim of the current manuscript is to present the most commonly used CSF biomarkers for AD as well as novel biomarkers. Three CSF biomarkers, namely total tau, phospho-tau and Abeta42, are believed to have the highest diagnostic accuracy for early AD diagnosis and the ability to predict AD development in mild cognitive impairment (MCI) patients. Moreover, other biomarkers such as soluble amyloid precursor protein (APP), apoptotic proteins, secretases and inflammatory and oxidation markers are believed to have increased future prospects.
Collapse
Affiliation(s)
- Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Alexandrion University Campus, 57400 Sindos, Greece
| | - Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Patroklos Vareltzis
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Moraitou
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodora Papamitsou
- Histology and Embryology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Chatzidimitriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Alexandrion University Campus, 57400 Sindos, Greece
| |
Collapse
|
12
|
Fowler CJ, Stoops E, Rainey‐Smith SR, Vanmechelen E, Vanbrabant J, Dewit N, Mauroo K, Maruff P, Rowe CC, Fripp J, Li Q, Bourgeat P, Collins SJ, Martins RN, Masters CL, Doecke JD. Plasma p-tau181/Aβ 1-42 ratio predicts Aβ-PET status and correlates with CSF-p-tau181/Aβ 1-42 and future cognitive decline. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12375. [PMID: 36447478 PMCID: PMC9695763 DOI: 10.1002/dad2.12375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022]
Abstract
Background In Alzheimer's disease (AD), plasma amyloid beta (Aβ)1-42 and phosphorylated tau (p-tau) predict high amyloid status from Aβ positron emission tomography (PET); however, the extent to which combination of these plasma assays can predict remains unknown. Methods Prototype Simoa assays were used to measure plasma samples from participants who were either cognitively normal (CN) or had mild cognitive impairment (MCI)/AD in the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. Results The p-tau181/Aβ1-42 ratio showed the best prediction of Aβ-PET across all participants (area under the curve [AUC] = 0.905, 95% confidence interval [CI]: 0.86-0.95) and in CN (AUC = 0.873; 0.80-0.94), and symptomatic (AUC = 0.908; 0.82-1.00) adults. Plasma p-tau181/Aβ1-42 ratio correlated with cerebrospinal fluid (CSF) p-tau181 (Elecsys, Spearman's ρ = 0.74, P < 0.0001) and predicted abnormal CSF Aβ (AUC = 0.816; 0.74-0.89). The p-tau181/Aβ1-42 ratio also predicted future rates of cognitive decline assessed by AIBL Preclinical Alzheimer Cognitive Composite or Clinical Dementia Rating Sum of Boxes (P < 0.0001). Discussion Plasma p-tau181/Aβ1-42 ratio predicted both Aβ-PET status and cognitive decline, demonstrating potential as both a diagnostic aid and as a screening and prognostic assay for preclinical AD trials.
Collapse
Affiliation(s)
| | | | - Stephanie R. Rainey‐Smith
- School of Medical and Health SciencesCentre of Excellence for Alzheimer's Disease Research & CareEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | | | | | | | | | | | - Christopher C. Rowe
- The Florey Institute of Neuroscience and Mental HealthMelbourneVictoriaAustralia
- Austin Health, Molecular Imaging Researchand The Florey Department of NeuroscienceUniversity of MelbourneMelbourneVictoriaAustralia
| | - Jurgen Fripp
- Australian E‐Health Research CentreCSIROHerstonQueenslandAustralia
| | - Qiao‐Xin Li
- The Florey Institute of Neuroscience and Mental HealthMelbourneVictoriaAustralia
| | | | - Steven J. Collins
- Department of Medicine (RMH)The University of MelbourneMelbourneVictoriaAustralia
| | - Ralph N. Martins
- School of Medical and Health SciencesCentre of Excellence for Alzheimer's Disease Research & CareEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental HealthMelbourneVictoriaAustralia
| | - James D. Doecke
- Australian E‐Health Research CentreCSIROHerstonQueenslandAustralia
| |
Collapse
|
13
|
Li M, Ma Y, Fu Y, Liu J, Hu H, Zhao Y, Huang L, Tan L. Association between air pollution and
CSF sTREM2
in cognitively normal older adults: The
CABLE
study. Ann Clin Transl Neurol 2022; 9:1752-1763. [PMID: 36317226 PMCID: PMC9639632 DOI: 10.1002/acn3.51671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022] Open
Abstract
Objectives Ambient air pollution aggravates the process of Alzheimer's disease (AD) pathology. Currently, the exact inflammatory mechanisms underlying these links from clinical research remain largely unclear. Methods This study included 1,131 cognitively intact individuals from the Chinese Alzheimer's Biomarker and LifestylE database with data provided on cerebrospinal fluid (CSF) AD biomarkers (amyloid beta‐peptide 42 [Aβ42], total tau [t‐tau], and phosphorylated tau [p‐tau]), neuroinflammatory (CSF sTREM2), and systemic inflammatory markers (high sensitivity C‐reactive protein and peripheral immune cells). The 2‐year averaged levels of ambient fine particulate matter with diameter <2.5 μm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) were estimated at each participant's residence. Multiple‐adjusted models were approached to detect associations of air pollution with inflammatory markers and AD‐related proteins. Results Ambient 2‐year averaged exposure of PM2.5 was associated with changes of neuroinflammatory markers, that is, CSF sTREM2 (β = −0.116, p = 0.0002). Similar results were found for O3 exposure among the elderly (β = −0.111, p = 0.0280) or urban population (β = −0.090, p = 0.0144). No significant evidence supported NO2 related to CSF sTREM2. For potentially causal associations with accumulated AD pathologies, the total effects of PM2.5 on CSF amyloid‐related protein (CSF Aβ42 and p‐tau/Aβ42) were partly mediated by CSF sTREM2, with proportions of 14.22% and 47.15%, respectively. Additional analyses found inverse associations between peripheral inflammatory markers with PM2.5 and NO2, but a positive correlation with O3. Interpretation These findings demonstrated a strong link between PM2.5 exposure and microglial dysfunction. Furthermore, CSF sTREM2 as a key mediator modulated the influences of PM2.5 exposure on AD amyloid pathologies.
Collapse
Affiliation(s)
- Meng Li
- Department of Neurology Qingdao Municipal Hospital, Qingdao University Qingdao China
| | - Ya‐Hui Ma
- Department of Neurology Qingdao Municipal Hospital, Qingdao University Qingdao China
| | - Yan Fu
- Department of Neurology Qingdao Municipal Hospital, Qingdao University Qingdao China
| | - Jia‐Yao Liu
- Department of Neurology Qingdao Municipal Hospital, Qingdao University Qingdao China
| | - He‐Ying Hu
- Department of Neurology Qingdao Municipal Hospital, Qingdao University Qingdao China
| | - Yong‐Li Zhao
- Department of Neurology Qingdao Municipal Hospital, Qingdao University Qingdao China
| | - Liang‐Yu Huang
- Department of Neurology Qingdao Municipal Hospital, Qingdao University Qingdao China
| | - Lan Tan
- Department of Neurology Qingdao Municipal Hospital, Qingdao University Qingdao China
| |
Collapse
|
14
|
Prieto S, Moody JN, Valerio KE, Hayes JP. Posttraumatic stress disorder symptom severity is associated with reduced Montreal Cognitive Assessment scores in a sample of Vietnam War Veterans. J Trauma Stress 2022; 35:1282-1290. [PMID: 35338795 PMCID: PMC9846858 DOI: 10.1002/jts.22830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/06/2022] [Accepted: 02/10/2022] [Indexed: 01/21/2023]
Abstract
The goal of the present study was to examine associations between posttraumatic stress disorder (PTSD) symptom severity, the number of stressors experienced, and cognitive outcomes in a sample of U.S. Vietnam War Veterans (N = 274). Adults between 60 and 85 years of age completed a Vietnam Veterans Alzheimer's Disease Neuroimaging Initiative Project visit. A modified version of the Life Stressor Checklist-Revised (LSC-R) was used to assess the number of stressful experiences participants experienced, current PTSD severity scores were measured via the Clinician-Administered PTSD Scale for DSM-IV (CAPS-IV), and cognition was assessed using the Montreal Cognitive Assessment (MoCA). Linear regressions were conducted to examine the effect of CAPS-IV and LSC-R scores on cognitive performance. Higher CAPS-IV scores were associated with worse cognitive outcomes on the MoCA, ΔF(1, 264) = 12.686, p < .001, R2 = .142. In contrast, the number of reported stressful experiences was not associated with cognitive outcomes. After accounting for multiple comparisons, findings indicated that CAPS-IV severity scores were significantly associated with the MoCA memory index. In a sample of older Veterans, PTSD symptom severity, but not the number of reported stressors, was associated with poorer performance on a well-established cognitive function screening tool. Analyses of specific MoCA domains indicated that memory may be driving this association. These findings suggest that highly arousing stressors characteristic of PTSD, rather than stressful experiences more broadly, contribute to this association. Future work can use these findings to explore whether treating PTSD symptoms may help maintain cognitive function during the aging process.
Collapse
Affiliation(s)
- Sarah Prieto
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States
| | - Jena N. Moody
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States
| | - Kate E. Valerio
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States
| | - Jasmeet P. Hayes
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States,Chronic Brain Injury Initiative, The Ohio State University, Columbus, Ohio, United States
| | | |
Collapse
|
15
|
Ma YH, Chen HS, Liu C, Feng QS, Feng L, Zhang YR, Hu H, Dong Q, Tan L, Kan HD, Zhang C, Suckling J, Zeng Y, Chen RJ, Yu JT. Association of Long-term Exposure to Ambient Air Pollution With Cognitive Decline and Alzheimer's Disease-Related Amyloidosis. Biol Psychiatry 2022; 93:780-789. [PMID: 35953319 DOI: 10.1016/j.biopsych.2022.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Air pollution induces neurotoxic reactions and may exert adverse effects on cognitive health. We aimed to investigate whether air pollutants accelerate cognitive decline and affect neurobiological signatures of Alzheimer's disease (AD). METHODS We used a population-based cohort from the Chinese Longitudinal Healthy Longevity Survey with 31,573 participants and a 10-year follow-up (5878 cognitively unimpaired individuals in Chinese Longitudinal Healthy Longevity Survey followed for 5.95 ± 2.87 years), and biomarker-based data from the Chinese Alzheimer's Biomarker and Lifestyle study including 1131 participants who underwent cerebrospinal fluid measurements of AD-related amyloid-β (Aβ) and tau proteins. Cognitive impairment was determined by education-corrected performance on the China-Modified Mini-Mental State Examination. Annual exposures to fine particulate matter (PM2.5), ground-level ozone (O3), and nitrogen dioxide (NO2) were estimated at areas of residence. Exposures were aggregated as 2-year averages preceding enrollments using Cox proportional hazards or linear models. RESULTS Long-term exposure to PM2.5 (per 20 μg/m3) increased the risk of cognitive impairment (hazard ratio, 1.100; 95% CI: 1.026-1.180), and similar associations were observed from separate cross-sectional analyses. Exposures to O3 and NO2 yielded elevated risk but with nonsignificant estimates. Individuals exposed to high PM2.5 manifested increased amyloid burdens as reflected by cerebrospinal fluid-AD biomarkers. Moreover, PM2.5 exposure-associated decline in global cognition was partly explained by amyloid pathology as measured by cerebrospinal fluid-Aβ42/Aβ40, P-tau/Aβ42, and T-tau/Aβ42, with mediation proportions ranging from 16.95% to 21.64%. CONCLUSIONS Long-term exposure to PM2.5 contributed to the development of cognitive decline, which may be partly explained by brain amyloid accumulation indicative of increased AD risk.
Collapse
Affiliation(s)
- Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China; Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hua-Shuai Chen
- School of Business, Xiangtan University, Xiangtan, Hunan, China
| | - Cong Liu
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Qiu-Shi Feng
- Department of Sociology, National University of Singapore, Singapore
| | - Lei Feng
- Department of Psychological Medicine and Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore
| | - Ya-Ru Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hai-Dong Kan
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Diseases, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Yi Zeng
- Center for the Study of Aging and Human Development, Medical School of Duke University, Center for Healthy Aging and Development Studies, National School of Development, Raissun Institute for Advanced Studies, Peking University, Beijing, China
| | - Ren-Jie Chen
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Cheng Y, Jian JM, He CY, Ren JR, Xu MY, Jin WS, Tan CR, Zeng GH, Shen YY, Chen DW, Li HY, Yi X, Zhang Y, Zeng F, Wang YJ. The Correlations of Plasma Liver-Type Fatty Acid-Binding Protein with Amyloid-β and Tau Levels in Patients with Alzheimer’s Disease. J Alzheimers Dis 2022; 88:375-383. [PMID: 35599489 DOI: 10.3233/jad-220126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The dysregulation of lipid metabolism plays an important role in the pathogenesis of Alzheimer’s disease (AD). Liver-type fatty acid-binding protein (L-FABP, also known as FABP1) is critical for fatty acid transport and may be involved in AD. Objective: To investigate whether the FABP1 level is altered in patients with AD, and its associations with levels of amyloid-β (Aβ) and tau in the plasma and cerebrospinal fluid (CSF). Methods: A cross-sectional study was conducted in a Chinese cohort consisting of 39 cognitively normal controls and 47 patients with AD. The levels of FABP1 in plasma, and Aβ and tau in CSF, were measured by enzyme-linked immunosorbent assay (ELISA). A single-molecule array (SIMOA) was used to detect plasma Aβ levels. Results: The level of plasma FABP1 was significantly elevated in the AD group (p = 0.0109). Further analysis showed a positive correlation of FABP1 with CSF total tau (t-tau) and phosphorylated tau (p-tau) levels. Besides, plasma FABP1/Aβ 42 (AUC = 0.6794, p = 0.0071) and FABP1/t-tau (AUC = 0.7168, p = 0.0011) showed fair diagnostic efficacy for AD. When combined with other common AD biomarkers including plasma Aβ 42, Aβ 40, and t-tau, both FABP1/Aβ 42 and FABP1/t-tau showed better diagnostic efficacy than using these biomarkers alone. Among all AUC analyses, the combination of plasma FABP1/t-tau and Aβ 42 had the highest diagnostic value (AUC = 0.8075, p < 0.0001). Conclusion: These findings indicate that FABP1 may play a role in AD pathogenesis and be worthy of further investigation in the future.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jie-Ming Jian
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Chen-Yang He
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jun-Rong Ren
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Man-Yu Xu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Wang-Sheng Jin
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Cheng-Rong Tan
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Gui-Hua Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Ying-Ying Shen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Dong-Wan Chen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Hui-Yun Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xu Yi
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yuan Zhang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Fan Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
sTREM2 mediates the associations of minimal depressive symptoms with amyloid pathology in prodromal Alzheimer's disease: The CABLE study. Transl Psychiatry 2022; 12:140. [PMID: 35379792 PMCID: PMC8980028 DOI: 10.1038/s41398-022-01910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/15/2022] Open
Abstract
The effects of microglial activation on the associations between depression and Alzheimer's disease (AD) are still unclear. TREM2 gene plays a pivotal role in microglial activation, has been identified as a risk factor for AD. In this work, we aimed to assess the interrelationships of soluble TREM2 (sTREM2) level in cerebrospinal fluid (CSF), minimal depressive symptoms (MDSs), and CSF amyloid markers. The linear regression analyses were conducted on 796 cognitively unimpaired participants from the CABLE (Chinese Alzheimer's Biomarker and LifestylE) study. Causal mediation analyses with 10,000 bootstrapped iterations were used to test the mediation effects. In addition, similar statistical analyses were performed in subgroups stratified by sex, age, and APOE ε4 carrier status. In total subjects, MDSs were associated with lower CSF sTREM2 levels (p < 0.0001), lower CSF amyloid markers (p < 0.0001), and poorer cognitive performance (MMSE, p = 0.0014). The influence of MDSs on CSF amyloid markers was partially mediated by CSF sTREM2 (proportion from 2.91 to 32.58%, p < 0.0001). And we found that the sTREM2-amyloid pathway partially mediated the effects of MDSs on cognition. Of note, exploratory subgroup analyses showed that the above influences of CSF sTREM2 were pronounced in the APOE ε4 (-) group. These results suggest that early depression is associated with amyloid pathology, which might be partly mediated by microglial activation, especially in the absence of APOE ε4.
Collapse
|
18
|
Arakaki X, Hung SM, Rochart R, Fonteh AN, Harrington MG. Alpha desynchronization during Stroop test unmasks cognitively healthy individuals with abnormal CSF Amyloid/Tau. Neurobiol Aging 2022; 112:87-101. [PMID: 35066324 PMCID: PMC8976735 DOI: 10.1016/j.neurobiolaging.2021.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 01/15/2023]
Abstract
Synaptic dysfunctions precede cognitive decline in Alzheimer's disease by decades, affect executive functions, and can be detected by quantitative electroencephalography (qEEG). We used quantitative electroencephalography combined with Stroop testing to identify changes of inhibitory controls in cognitively healthy individuals with an abnormal versus normal ratio of cerebrospinal fluid (CSF) amyloid/total-tau. We studied two groups of participants (60-94 years) with either normal (CH-NAT or controls, n = 20) or abnormal (CH-PAT, n = 21) CSF amyloid/tau ratio. We compared: alpha event-related desynchronization (ERD), alpha spectral entropy (SE), and their relationships with estimated cognitive reserve. CH-PATs had more negative occipital alpha ERD, and higher frontal and occipital alpha SE during low load congruent trials, indicating hyperactivity. CH-PATs demonstrated fewer frontal SE changes with higher load, incongruent Stroop testing. Correlations of alpha ERD with estimated cognitive reserve were significant in CH-PATs but not in CH-NATs. These results suggested compensatory hyperactivity in CH-PATs compared to CH-NATs. We did not find differences in alpha ERD comparisons with individual CSF amyloid(A), p-tau(T), total-tau(N) biomarkers.
Collapse
|
19
|
Ferguson SA, Panos JJ, Sloper D, Varma V, Sarkar S. Alzheimer's disease: a step closer to understanding type 3 diabetes in African Americans. Metab Brain Dis 2021; 36:1803-1816. [PMID: 34021875 DOI: 10.1007/s11011-021-00754-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the fourth leading cause of death in the United States and the most common cause of adult-onset dementia. Recent results suggest an increased prevalence and severity in African Americans compared to Caucasians. Our understanding of the potential mechanism(s) underlying this ethnicity difference is limited. We previously described ethnicity-related differences in levels of neurodegenerative proteins and cytokines/chemokines in the BA21 region of African Americans and Caucasians with AD. Here, similar multiplex assays were used to examine those endpoints in patient postmortem cerebrospinal fluid (CSF). Additionally, we measured levels of C-peptide, ghrelin, gastric inhibitory polypeptide (GIP), glucagon-like peptide-1 (GLP-1), glucagon, insulin, leptin, PAI-1, resistin, and visfatin using a human diabetes 10-plex assay. The cytokine and chemokine assays revealed that levels of 26 chemokines or cytokines differed significantly with ethnicity, and three of those were significantly associated with gender. The neurodegenerative disease panel indicated that levels of soluble RAGE were significantly elevated in African Americans compared to Caucasians. All measures in the diabetes disease panel assay were significantly elevated in African Americans: ghrelin, GIP, GLP-1, glucagon, insulin, and visfatin. Through peripheral sample analysis, these results provide further evidence that ethnicity is critically involved in the manifestation of AD.
Collapse
Affiliation(s)
- Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - John J Panos
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Daniel Sloper
- Division of Systems Biology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Vijayalakshmi Varma
- Division of Systems Biology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
20
|
Ma YH, Wu JH, Xu W, Shen XN, Wang HF, Hou XH, Cao XP, Bi YL, Dong Q, Feng L, Tan L, Yu JT. Associations of Green Tea Consumption and Cerebrospinal Fluid Biomarkers of Alzheimer's Disease Pathology in Cognitively Intact Older Adults: The CABLE Study. J Alzheimers Dis 2021; 77:411-421. [PMID: 32804140 DOI: 10.3233/jad-200410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Green tea has been widely recognized in ameliorating cognitive impairment and Alzheimer's disease (AD), especially the progression of cognitive dysfunction. But the underlying mechanism is still unclear. OBJECTIVE This study was designed to determine the role of green tea consumption in the association with cerebrospinal fluid (CSF) biomarkers of AD pathology and to ascertain whether specific population backgrounds showed the differences toward these relationships. METHODS Multivariate linear models analyzed the available data on CSF biomarkers and frequency of green tea consumption of 722 cognitively intact participants from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) database, and we additionally detected the interaction effects of tea consumption with APOEɛ4 status and gender using a two-way analysis of covariance. RESULTS Frequent green tea consumption was associated with a decreased level of CSF total-tau protein (t-tau) (p = 0.041) but not with the levels of CSF amyloid-β 42 (Aβ42) and CSF phosphorylated tau. The more pronounced associations of green tea consumption with CSF t-tau (p = 0.007) and CSF t-tau/Aβ42 (p = 0.039) were observed in individuals aged 65 years or younger. Additionally, males with frequent green tea consumption had a significantly low level of CSF t-tau/Aβ42 and a modest trend toward decreased CSF t-tau. There were no interaction effects of green tea consumption with APOEɛ4 and gender. CONCLUSION Collectively, our findings consolidated the favorable effects of green tea on the mitigation of AD risk. The constituents of green tea may improve abnormal tau metabolism and are promising targets in interventions and drug therapies.
Collapse
Affiliation(s)
- Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jia-Huan Wu
- Department of Neurology, Dalian Medical University, Dalian, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Li LL, Ma YH, Bi YL, Sun FR, Hu H, Hou XH, Xu W, Shen XN, Dong Q, Tan L, Yang JL, Yu JT. Serum Uric Acid May Aggravate Alzheimer's Disease Risk by Affecting Amyloidosis in Cognitively Intact Older Adults: The CABLE Study. J Alzheimers Dis 2021; 81:389-401. [PMID: 33814427 DOI: 10.3233/jad-201192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Serum uric acid (SUA) affects the reaction of oxidative stress and free radicals in the neurodegenerative processes. However, whether SUA impacts Alzheimer's disease (AD) pathology remains unclear. OBJECTIVE We aimed to explore whether high SUA levels can aggravate the neurobiological changes of AD in preclinical AD. METHODS We analyzed cognitively intact participants (n = 839, age 62.16 years) who received SUA and cerebrospinal fluid (CSF) biomarkers (amyloid-β [Aβ], total tau [t-Tau], and phosphorylated tau [p-Tau]) measurements from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) database using multivariable-adjusted linear models. RESULTS Levels of SUA in the preclinical AD elevated compared with the healthy controls (p = 0.007) and subjects with amyloid pathology had higher concentration of SUA than controls (p = 0.017). Roughly, equivalent levels of SUA displayed among cognitively intact individuals with or without tau pathology and neurodegeneration. CSF Aβ1 - 42 (p = 0.019) and Aβ1 - 42/Aβ1 - 40 (p = 0.027) were decreased and CSF p-Tau/Aβ1 - 42 (p = 0.009) and t-Tau/Aβ1 - 42 (p = 0.043) were increased with the highest (> 75th percentile) SUA when compared to lowest SUA, implying a high burden of cerebral amyloidosis in individuals with high SUA. Sensitivity analyses using the usual threshold to define hyperuricemia and precluding drug effects yielded robust associations. Nevertheless, the quadratic model did not show any U-shaped relationships between them. CONCLUSION SUA may aggravate brain amyloid deposition in preclinical AD, which corroborated the detrimental role of SUA.
Collapse
Affiliation(s)
- Lin-Lin Li
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Fu-Rong Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China.,Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jiu-Long Yang
- Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Ma YH, Wang YY, Tan L, Xu W, Shen XN, Wang HF, Hou XH, Cao XP, Bi YL, Dong Q, Yang JL, Yu JT. Social Networks and Cerebrospinal Fluid Biomarkers of Alzheimer's Disease Pathology in Cognitively Intact Older Adults: The CABLE Study. J Alzheimers Dis 2021; 81:263-272. [PMID: 33749650 DOI: 10.3233/jad-201426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although social networks are deemed as moderators of incident Alzheimer's disease (AD), few data are available on the mechanism relevant to AD pathology. OBJECTIVE We aimed to investigate whether social networks affect metabolism of cerebrospinal fluid (CSF) AD biomarkers during early stage and identify modification effects of genetic factor and subjective cognitive decline (SCD). METHODS We studied participants from the Chinese Alzheimer's disease Biomarker and Lifestyle (CABLE) database who received cognition assessments and CSF amyloid-β (Aβ1-42 and Aβ1-40) and tau proteins (total-tau [T-tau] and phosphorylated-tau [P-tau]) measurements. The social networks were measured using self-reported questionnaires about social ties. Linear regression models were used. RESULTS Data were analyzed from 886 cognitively intact individuals aged 61.91 years (SD = 10.51), including 295 preclinical AD participants and 591 healthy controls. Social networks were mostly associated with CSF indicators of AD multi-pathologies (low P-tau/Aβ1-42 and T-tau/Aβ1-42 and high Aβ1-42/Aβ1-40). Significant differences of genetic and cognitive status were observed for CSF indicators, in which associations of social network scores with CSF P-tau and indicators of multi-pathologies appeared stronger in APOE 4 carriers (versus non-carriers) and participants with SCD (versus controls), respectively. Alternatively, more pronounced associations for CSF T-tau (β= -0.005, p < 0.001), Aβ1-42/Aβ1-40 (β= 0.481, p = 0.001), and T-tau/Aβ1-42 (β= -0.047, p < 0.001) were noted in preclinical AD stage than controls. CONCLUSION These findings consolidated strong links between social networks and AD risks. Social networks as a modifiable lifestyle probably affected metabolisms of multiple AD pathologies, especially among at-risk populations.
Collapse
Affiliation(s)
- Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Yu Wang
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiu-Long Yang
- Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Xu W, Feng W, Shen XN, Bi YL, Ma YH, Li JQ, Dong Q, Tan L, Yu JT. Amyloid Pathologies Modulate the Associations of Minimal Depressive Symptoms With Cognitive Impairments in Older Adults Without Dementia. Biol Psychiatry 2021; 89:766-775. [PMID: 32980133 DOI: 10.1016/j.biopsych.2020.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The relationship between depression and Alzheimer's disease (AD) is complex and still not well understood. We aimed to examine the roles of the AD core pathologies in modulating the associations of minimal depressive symptoms (MDSs) with cognitive impairments. METHODS A total of 721 participants who had measures of cognition, depressive symptoms, and cerebrospinal fluid AD biomarkers were included from the CABLE (Chinese Alzheimer's Biomarker and LifestylE) study. Causal mediation analyses with 10,000 bootstrapped iterations were conducted to explore the mediation effects of AD pathologies on cognition. The ADNI (Alzheimer's Disease Neuroimaging Initiative) was used 1) to replicate the mediation effects and 2) to examine the longitudinal relationships of MDSs with amyloid pathology and incident AD risk. RESULTS In CABLE, MDSs were associated with poorer global cognition (p = .006) and higher amyloid burden as indicated by cerebrospinal fluid amyloid markers (p < .0001). The influence of MDSs on cognition was partially mediated by amyloid pathology (a maximum of 85%). The mediation effects were replicated in 725 elderly persons without dementia (age, mean ± SD = 73.5 ± 6.9 years; 301 female subjects [42%]) in ADNI, such that the mediation percentage varied from 10% to 30% for general cognition, memory, and executive functions. Longitudinal analyses revealed a bidirectional relationship between MDSs and amyloid pathology (p = .01). MDSs were associated with 83% increased risk of developing AD dementia (hazard ratio = 1.83, p < .01). CONCLUSIONS Overall, amyloid pathology might partially mediate and magnify the influences of MDSs on cognitive impairments and AD risk.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Feng
- Department of Psychological Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jie-Qiong Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | | | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, Brown J, Anderson-Jackson L, Williams L, Latore L, Thompson R, Alexander-Lindo R. Cerebrospinal Fluid Biomarkers of Alzheimer's Disease: Current Evidence and Future Perspectives. Brain Sci 2021; 11:215. [PMID: 33578866 PMCID: PMC7916561 DOI: 10.3390/brainsci11020215] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer's disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer's disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer's disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer's disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.
Collapse
Affiliation(s)
- Donovan A. McGrowder
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Fabian Miller
- Department of Physical Education, Faculty of Education, The Mico University College, 1A Marescaux Road, Kingston 5, Jamaica;
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Kurt Vaz
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Cameil Wilson-Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Melisa Anderson-Cross
- School of Allied Health and Wellness, College of Health Sciences, University of Technology, Kingston 7, Jamaica;
| | - Jabari Brown
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lennox Anderson-Jackson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lowen Williams
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Lyndon Latore
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Rory Thompson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Ruby Alexander-Lindo
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| |
Collapse
|
25
|
Farias FHG, Benitez BA, Cruchaga C. Quantitative endophenotypes as an alternative approach to understanding genetic risk in neurodegenerative diseases. Neurobiol Dis 2021; 151:105247. [PMID: 33429041 DOI: 10.1016/j.nbd.2020.105247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 01/02/2023] Open
Abstract
Endophenotypes, as measurable intermediate features of human diseases, reflect underlying molecular mechanisms. The use of quantitative endophenotypes in genetic studies has improved our understanding of pathophysiological changes associated with diseases. The main advantage of the quantitative endophenotypes approach to study human diseases over a classic case-control study design is the inferred biological context that can enable the development of effective disease-modifying treatments. Here, we summarize recent progress on biomarkers for neurodegenerative diseases, including cerebrospinal fluid and blood-based, neuroimaging, neuropathological, and clinical studies. This review focuses on how endophenotypic studies have successfully linked genetic modifiers to disease risk, disease onset, or progression rate and provided biological context to genes identified in genome-wide association studies. Finally, we review critical methodological considerations for implementing this approach and future directions.
Collapse
Affiliation(s)
- Fabiana H G Farias
- Department of Psychiatry, Washington University, St. Louis, MO 63110, United States of America; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, United States of America
| | - Bruno A Benitez
- Department of Psychiatry, Washington University, St. Louis, MO 63110, United States of America; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, United States of America
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO 63110, United States of America; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, United States of America; Hope Center for Neurologic Diseases, Washington University, St. Louis, MO 63110, United States of America; The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, 63110, United States of America; Department of Genetics, Washington University School of Medicine, St Louis, MO, 63110, United States of America.
| |
Collapse
|
26
|
Xu W, Tan CC, Cao XP, Tan L. Association of Alzheimer's disease risk variants on the PICALM gene with PICALM expression, core biomarkers, and feature neurodegeneration. Aging (Albany NY) 2020; 12:21202-21219. [PMID: 33170153 PMCID: PMC7695360 DOI: 10.18632/aging.103814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
It is still unclear how PICALM mutations influence the risk of Alzheimer's disease (AD). We tested the association of AD risk variants on the PICALM gene with PICALM expression and AD feature endophenotypes. Bioinformatic methods were used to annotate the functionalities and to select the tag single nucleotide polymorphisms (SNPs). Multiple regressions were used to examine the cross-sectional and longitudinal influences of tag SNPs on cerebrospinal fluid (CSF) AD biomarkers and neurodegenerations. A total of 59 SNPs, among which 75% were reported in Caucasians, were associated with AD risk. Of these, 73% were linked to PICALM expression in the whole blood (p < 0.0001) and/or brain regions (p < 0.05). Eleven SNPs were selected as tag SNPs in Caucasians. rs510566 (T allele) was associated with decreased CSF ptau and ptau/abeta42 ratio. The G allele of rs1237999 and rs510566 was linked with greater reserve capacities of the hippocampus, parahippocampus, middle temporal lobe, posterior cingulate, and precuneus. The longitudinal analyses revealed four loci that could predict dynamic changes of CSF ptau and ptau/abeta42 ratio (rs10501610, p = 0.0001) or AD feature neurodegeneration (rs3851179, rs592297, and rs7480193, p < 0.005). Overall, the genetic, bioinformatic, and association studies tagged four SNPs (rs3851179, rs7480193, rs510566, and rs1237999) as the most prominent PICALM loci contributing to AD in Caucasians.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | | |
Collapse
|
27
|
Brosseron F, Kleemann K, Kolbe CC, Santarelli F, Castro-Gomez S, Tacik P, Latz E, Jessen F, Heneka MT. Interrelations of Alzheimer´s disease candidate biomarkers neurogranin, fatty acid-binding protein 3 and ferritin to neurodegeneration and neuroinflammation. J Neurochem 2020; 157:2210-2224. [PMID: 32894885 DOI: 10.1111/jnc.15175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023]
Abstract
There is growing evidence that promising biomarkers of inflammation in Alzheimer´s disease (AD) and other neurodegenerative diseases correlate strongest to levels of tau or neurofilament, indicating an inflammatory response to neuronal damage or death. To test this hypothesis, we investigated three AD candidate markers (ferritin, fatty acid binding protein 3 (FABP-3), and neurogranin) in interrelation to established AD and inflammatory protein markers. We further aimed to determine if such interrelations would be evident in pathological subjects only or also under non-pathological circumstances. Cerebrospinal fluid levels of the three proteins were quantified in samples from the University Clinic of Bonn (UKB) Department of Neurodegenerative Diseases & Geriatric Psychiatry, Germany. Data were analyzed based on clinical or biomarker-defined stratification of subjects with adjustment for covariates age, sex, and APOE status. Levels of ferritin, FABP-3 and neurogranin were elevated in subjects with pathological levels of t-tau independent of beta-amyloid status. The three markers correlated with each other, tau isoforms, age, and those inflammatory markers previously described as related to neurodegeneration, predominantly sTREM2, macrophage migration inhibitory factor, soluble vascular endothelial growth factor receptor, soluble vascular cell adhesion molecule 1 (sVCAM-1), and C1q. These interrelations existed in subjects with pathological and sub-pathological tau levels, in particular for FABP-3 and neurogranin. Relations to ferritin were independent of absolute levels of tau, too, but showed differing trajectories between pathological and non-pathological subjects. A specific set of inflammatory markers is highly related to markers of neuronal damage such as tau, neurogranin, or FABP-3. These proteins could be used as readouts of the inflammatory response during the neurodegeneration phase of AD.
Collapse
Affiliation(s)
- Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | | | | | - Francesco Santarelli
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Sergio Castro-Gomez
- Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Pawel Tacik
- Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Eicke Latz
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Innate Immune, University of Bonn Medical Center, Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
28
|
Holbrook AJ, Tustison NJ, Marquez F, Roberts J, Yassa MA, Gillen DL. Anterolateral entorhinal cortex thickness as a new biomarker for early detection of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12068. [PMID: 32875052 PMCID: PMC7447874 DOI: 10.1002/dad2.12068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Loss of entorhinal cortex (EC) layer II neurons represents the earliest Alzheimer's disease (AD) lesion in the brain. Research suggests differing functional roles between two EC subregions, the anterolateral EC (aLEC) and the posteromedial EC (pMEC). METHODS We use joint label fusion to obtain aLEC and pMEC cortical thickness measurements from serial magnetic resonance imaging scans of 775 ADNI-1 participants (219 healthy; 380 mild cognitive impairment; 176 AD) and use linear mixed-effects models to analyze longitudinal associations among cortical thickness, disease status, and cognitive measures. RESULTS Group status is reliably predicted by aLEC thickness, which also exhibits greater associations with cognitive outcomes than does pMEC thickness. Change in aLEC thickness is also associated with cerebrospinal fluid amyloid and tau levels. DISCUSSION Thinning of aLEC is a sensitive structural biomarker that changes over short durations in the course of AD and tracks disease severity-it is a strong candidate biomarker for detection of early AD.
Collapse
Affiliation(s)
- Andrew J. Holbrook
- Department of BiostatisticsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Nicholas J. Tustison
- Department of Radiology and Medical ImagingUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of California, IrvineIrvineCaliforniaUSA
| | - Freddie Marquez
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of California, IrvineIrvineCaliforniaUSA
| | - Jared Roberts
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of California, IrvineIrvineCaliforniaUSA
| | - Michael A. Yassa
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of California, IrvineIrvineCaliforniaUSA
| | - Daniel L. Gillen
- Department of StatisticsUniversity of CaliforniaIrvineCaliforniaUSA
| | | |
Collapse
|
29
|
Xu W, Tan L, Su BJ, Yu H, Bi YL, Yue XF, Dong Q, Yu JT. Sleep characteristics and cerebrospinal fluid biomarkers of Alzheimer's disease pathology in cognitively intact older adults: The CABLE study. Alzheimers Dement 2020; 16:1146-1152. [PMID: 32657026 DOI: 10.1002/alz.12117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/05/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION This study tested the self-reported sleep characteristics associated with cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers in cognitively intact older adults. METHODS The linear and non-linear regression analyses were conducted in 736 cognitively normal participants (mean [standard deviation; SD] age, 62.3 [10.5] years, range 40 to 88 years, 59% female) who had measurements of cerebrospinal fluid (CSF) amyloid beta (Aβ) and tTau proteins and sleep characteristics, after adjusting for age, gender, education, apolipoprotein E gene (APOE) ε4 status, and general cognition. RESULTS Greater daytime sleepiness was associated with higher CSF indicators of amyloid deposition in female patients. No significant associations were revealed for CSF tTau proteins after Bonferroni correction. A U-shaped relationship was revealed for nocturnal sleep habits, such that those with insufficient or excessive nocturnal sleep duration had greater CSF biomarkers of amyloid deposition (the reflection range: bedtime: around 10:00 p.m. and sleep duration: 6.0 to 6.5 hours). DISCUSSION These findings consolidated the close relationship between sleep and AD.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bing-Jie Su
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Huan Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-Fang Yue
- Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Adenosine and Metabotropic Glutamate Receptors Are Present in Blood Serum and Exosomes from SAMP8 Mice: Modulation by Aging and Resveratrol. Cells 2020; 9:cells9071628. [PMID: 32645849 PMCID: PMC7407497 DOI: 10.3390/cells9071628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
Adenosine (ARs) and metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors (GPCRs) that are modulated in the brain of SAMP8 mice, an animal model of Alzheimer's disease (AD). In the present work, it is shown the presence of ARs and mGluRs in blood serum and derived exosomes from SAMP8 mice as well as its possible modulation by aging and resveratrol (RSV) consumption. In blood serum, adenosine A1 and A2A receptors remained unaltered from 5 to 7 months of age. However, an age-related decrease in adenosine level was observed, while 5'-Nucleotidase activity was not modulated. Regarding the glutamatergic system, it was observed a decrease in mGluR5 density and glutamate levels in older mice. In addition, dietary RSV supplementation caused an age-dependent modulation in both adenosinergic and glutamatergic systems. These GPCRs were also found in blood serum-derived exosomes, which might suggest that these receptors could be released into circulation via exosomes. Interestingly, changes elicited by age and RSV supplementation on mGluR5 density, and adenosine and glutamate levels were similar to that detected in whole-brain. Therefore, we might suggest that the quantification of these receptors, and their corresponding endogenous ligands, in blood serum could have predictive value for early diagnosis in combination with other distinctive hallmarks of AD.
Collapse
|
31
|
Biomarker profiling beyond amyloid and tau: cerebrospinal fluid markers, hippocampal atrophy, and memory change in cognitively unimpaired older adults. Neurobiol Aging 2020; 93:1-15. [PMID: 32438258 DOI: 10.1016/j.neurobiolaging.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 01/25/2023]
Abstract
Brain changes occurring in aging can be indexed by biomarkers. We used cluster analysis to identify subgroups of cognitively unimpaired individuals (n = 99, 64-93 years) with different profiles of the cerebrospinal fluid biomarkers beta amyloid 1-42 (Aβ42), phosphorylated tau (P-tau), total tau, chitinase-3-like protein 1 (YKL-40), fatty acid binding protein 3 (FABP3), and neurofilament light (NFL). Hippocampal volume and memory were assessed across multiple follow-up examinations covering up to 6.8 years. Clustering revealed one group (39%) with more pathological concentrations of all biomarkers, which could further be divided into one group (20%) characterized by tauopathy and high FABP3 and one (19%) by brain β-amyloidosis, high NFL, and slightly higher YKL-40. The clustering approach clearly outperformed classification based on Aβ42 and P-tau alone in prediction of memory decline, with the individuals with most tauopathy and FABP3 showing more memory decline, but not more hippocampal volume change. The results demonstrate that older adults can be classified based on biomarkers beyond amyloid and tau, with improved prediction of memory decline.
Collapse
|
32
|
Faura J, Bustamante A, Penalba A, Giralt D, Simats A, Martínez-Sáez E, Alcolea D, Fortea J, Lleó A, Teunissen CE, van der Flier WM, Ibañez L, Harari O, Cruchaga C, Hernández-Guillamón M, Delgado P, Montaner J. CCL23: A Chemokine Associated with Progression from Mild Cognitive Impairment to Alzheimer's Disease. J Alzheimers Dis 2020; 73:1585-1595. [PMID: 31958084 PMCID: PMC8010612 DOI: 10.3233/jad-190753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CCL23 is a chemokine implicated in inflammation and host defense responses. It has been recently associated with acquired brain damage and stroke outcomes. In this study, we reported the role of CCL23 in Alzheimer's disease (AD). We evaluated the levels of CCL23 in 659 individuals: cognitively normal, mild cognitive impaired (MCI), and AD patients. Two cross-sectional (study 1, n = 53; study 2, n = 200) and two longitudinal (study 3, n = 74; study 4, n = 332) studies were analyzed separately. CCL23 levels in the blood and/or cerebrospinal fluid (CSF) of each study were measured by immunoassays. Globally, our results suggest a predictive role of CCL23 protein levels both in the plasma in study 3 (hazard ratio (HR) = 2.5 (confidence interval (CI) 95% : 1.2-5.3), p = 0.02) and in the CSF in study 4 (HR = 3.05 (CI 95% : 1.02-5), p = 0.04) in cases of MCI that progress to AD. Moreover, we observed that the APOEɛ4 allele was associated with higher levels of CCL23 in study 2 (470.33 pg/mL (interquartile range (IQR): 303.33-597.76) versus 377.94 pg/mL (IQR: 267.16-529.19), p = 0.01) (APOE genotypes were available in studies 2 and 4). Together, these findings support the role of CCL23 in neuroinflammation in the early stages of AD, suggesting that CCL23 might be a candidate blood biomarker for MCI to AD progression.
Collapse
Affiliation(s)
- Júlia Faura
- Neurovascular Research Laboratory. Vall d’Hebron Institut de Recerca (VHIR) – Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory. Vall d’Hebron Institut de Recerca (VHIR) – Universitat Autònoma de Barcelona, Barcelona, Spain
- Neurology Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Anna Penalba
- Neurovascular Research Laboratory. Vall d’Hebron Institut de Recerca (VHIR) – Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dolors Giralt
- Neurovascular Research Laboratory. Vall d’Hebron Institut de Recerca (VHIR) – Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Simats
- Neurovascular Research Laboratory. Vall d’Hebron Institut de Recerca (VHIR) – Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martínez-Sáez
- Neuropathology Unit, Department of Pathology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Charlotte E. Teunissen
- Department of Clinical Chemistry, Neurochemistry Laboratory and Biobank, VU University Medical Center, Amsterdam, The Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007MB, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Laura Ibañez
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders. Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO 63110, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders. Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders. Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO 63110, USA
| | - Mar Hernández-Guillamón
- Neurovascular Research Laboratory. Vall d’Hebron Institut de Recerca (VHIR) – Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory. Vall d’Hebron Institut de Recerca (VHIR) – Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory. Vall d’Hebron Institut de Recerca (VHIR) – Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Ferguson SA, Varma V, Sloper D, Panos JJ, Sarkar S. Increased inflammation in BA21 brain tissue from African Americans with Alzheimer's disease. Metab Brain Dis 2020; 35:121-133. [PMID: 31823110 DOI: 10.1007/s11011-019-00512-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Chronic neuroinflammation is strongly associated with AD and altered peripheral and central levels of chemokines and cytokines have been frequently described in those with AD. Given the increasing evidence of ethnicity-related differences in AD, it was of interest to determine if those altered chemokine and cytokine levels are ethnicity-related. Because African Americans exhibit a higher incidence of AD and increased symptom severity, we explored chemokine and cytokine concentrations in post-mortem brain tissue from the BA21 region of African Americans and Caucasians with AD using multiplex assays. IL-1β, MIG, TRAIL, and FADD levels were significantly increased in African Americans while levels of IL-3 and IL-8 were significantly decreased. Those effects did not interact with gender; however, overall levels of CCL25, CCL26 and CX3CL1 were significantly decreased in women. The NLRP3 inflammasome is thought to be critically involved in AD. Increased activation of this inflammasome in African Americans is consistent with the current results.
Collapse
Affiliation(s)
- Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| | - Vijayalakshmi Varma
- Division of Systems Biology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Daniel Sloper
- Division of Systems Biology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - John J Panos
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| |
Collapse
|
34
|
Li Z, Farias FHG, Dube U, Del-Aguila JL, Mihindukulasuriya KA, Fernandez MV, Ibanez L, Budde JP, Wang F, Lake AM, Deming Y, Perez J, Yang C, Bahena JA, Qin W, Bradley JL, Davenport R, Bergmann K, Morris JC, Perrin RJ, Benitez BA, Dougherty JD, Harari O, Cruchaga C. The TMEM106B FTLD-protective variant, rs1990621, is also associated with increased neuronal proportion. Acta Neuropathol 2020; 139:45-61. [PMID: 31456032 PMCID: PMC6942643 DOI: 10.1007/s00401-019-02066-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Abstract
Apart from amyloid β deposition and tau neurofibrillary tangles, Alzheimer's disease (AD) is a neurodegenerative disorder characterized by neuronal loss and astrocytosis in the cerebral cortex. The goal of this study is to investigate genetic factors associated with the neuronal proportion in health and disease. To identify cell-autonomous genetic variants associated with neuronal proportion in cortical tissues, we inferred cellular population structure from bulk RNA-Seq derived from 1536 individuals. We identified the variant rs1990621 located in the TMEM106B gene region as significantly associated with neuronal proportion (p value = 6.40 × 10-07) and replicated this finding in an independent dataset (p value = 7.41 × 10-04) surpassing the genome-wide threshold in the meta-analysis (p value = 9.42 × 10-09). This variant is in high LD with the TMEM106B non-synonymous variant p.T185S (rs3173615; r2 = 0.98) which was previously identified as a protective variant for frontotemporal lobar degeneration (FTLD). We stratified the samples by disease status, and discovered that this variant modulates neuronal proportion not only in AD cases, but also several neurodegenerative diseases and in elderly cognitively healthy controls. Furthermore, we did not find a significant association in younger controls or schizophrenia patients, suggesting that this variant might increase neuronal survival or confer resilience to the neurodegenerative process. The single variant and gene-based analyses also identified an overall genetic association between neuronal proportion, AD and FTLD risk. These results suggest that common pathways are implicated in these neurodegenerative diseases, that implicate neuronal survival. In summary, we identified a protective variant in the TMEM106B gene that may have a neuronal protection effect against general aging, independent of disease status, which could help elucidate the relationship between aging and neuronal survival in the presence or absence of neurodegenerative disorders. Our findings suggest that TMEM106B could be a potential target for neuronal protection therapies to ameliorate cognitive and functional deficits.
Collapse
Affiliation(s)
- Zeran Li
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Fabiana H G Farias
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Umber Dube
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Jorge L Del-Aguila
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathie A Mihindukulasuriya
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura Ibanez
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - John P Budde
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Fengxian Wang
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Allison M Lake
- Vanderbilt University Medical Scientist Training Program, Nashville, TN, USA
| | - Yuetiva Deming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - James Perez
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Chengran Yang
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Jorge A Bahena
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Wei Qin
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Joseph L Bradley
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard Davenport
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristy Bergmann
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard J Perrin
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruno A Benitez
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph D Dougherty
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
| | - Oscar Harari
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA.
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
35
|
Olive C, Ibanez L, Farias FHG, Wang F, Budde JP, Norton JB, Gentsch J, Morris JC, Li Z, Dube U, Del-Aguila J, Bergmann K, Bradley J, Benitez BA, Harari O, Fagan A, Ances B, Cruchaga C, Fernandez MV. Examination of the Effect of Rare Variants in TREM2, ABI3, and PLCG2 in LOAD Through Multiple Phenotypes. J Alzheimers Dis 2020; 77:1469-1482. [PMID: 32894242 PMCID: PMC7927150 DOI: 10.3233/jad-200019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Rare variants in PLCG2 (p.P522R), ABI3 (p.S209F), and TREM2 (p.R47H, p.R62H) have been associated with late onset Alzheimer's disease (LOAD) risk in Caucasians. After the initial report, several studies have found positive results in cohorts of different ethnic background and with different phenotype. OBJECTIVE In this study, we aim to evaluate the association of rare coding variants in PLCG2, ABI3, and TREM2 with LOAD risk and their effect at different time points of the disease. METHODS We used a European American cohort to assess the association of the variants prior onset (using CSF Aβ42, tau, and pTau levels, and amyloid imaging as endophenotypes) and after onset (measured as rate of memory decline). RESULTS We confirm the association with LOAD risk of TREM2 p.R47H, p.R62H and ABI3 p.S209F variants, and the protective effect of PLCG2 p.P522R. In addition, ABI3 and TREM2 gene-sets showed significant association with LOAD risk. TREM2 p.R47H and PLCG2 p.P522R variants were also statistically associated with increase of amyloid imaging and AD progression, respectively. We did not observe any association of ABI3 p.S209F with any of the other AD endophenotypes. CONCLUSION The results of this study highlight the importance of including biomarkers and alternative phenotypes to better understand the role of novel candidate genes with the disease.
Collapse
Affiliation(s)
- Claudia Olive
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura Ibanez
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Fabiana H. Geraldo Farias
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Fengxian Wang
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - John P. Budde
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Joanne B. Norton
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jen Gentsch
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John C. Morris
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Zeran Li
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Umber Dube
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Jorge Del-Aguila
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristy Bergmann
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Bradley
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruno A. Benitez
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Oscar Harari
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Beau Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Victoria Fernandez
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
36
|
Macrophage Migration Inhibitory Factor Alters Functional Properties of CA1 Hippocampal Neurons in Mouse Brain Slices. Int J Mol Sci 2019; 21:ijms21010276. [PMID: 31906137 PMCID: PMC6981710 DOI: 10.3390/ijms21010276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is implicated in a host of neurological insults, such as traumatic brain injury (TBI), ischemic stroke, Alzheimer's disease, Parkinson's disease, and epilepsy. The immune response to central nervous system (CNS) injury involves sequelae including the release of numerous cytokines and chemokines. Macrophage migration inhibitory factor (MIF), is one such cytokine that is elevated following CNS injury, and is associated with the prognosis of TBI, and ischemic stroke. MIF has been identified in astrocytes and neurons, and some of the trophic actions of MIF have been related to its direct and indirect actions on astrocytes. However, the potential modulation of CNS neuronal function by MIF has not yet been explored. This study tests the hypothesis that MIF can directly influence hippocampal neuronal function. MIF was microinjected into the hippocampus and the genetically encoded calcium indicator, GCaMP6f, was used to measure Ca2+ events in acute adult mouse brain hippocampal slices. Results demonstrated that a single injection of 200 ng MIF into the hippocampus significantly increased baseline calcium signals in CA1 pyramidal neuron somata, and altered calcium responses to N-methyl-d-aspartate (NMDA) + D-serine in pyramidal cell apical dendrites located in the stratum radiatum. These data are the first to show direct effects of MIF on hippocampal neurons and on NMDA receptor function. Considering that MIF is elevated after brain insults such as TBI, the data suggest that, in addition to the previously described role of MIF in astrocyte reactivity, elevated MIF can have significant effects on neuronal function in the hippocampus.
Collapse
|
37
|
Kehoe PG, Al Mulhim N, Zetterberg H, Blennow K, Miners JS. Cerebrospinal Fluid Changes in the Renin-Angiotensin System in Alzheimer’s Disease. J Alzheimers Dis 2019; 72:525-535. [DOI: 10.3233/jad-190721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Patrick G. Kehoe
- Dementia Research Group, Clinical Neuroscience, Southmead Hospital, University of Bristol, Bristol, UK
| | - Noura Al Mulhim
- Dementia Research Group, Clinical Neuroscience, Southmead Hospital, University of Bristol, Bristol, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - James S. Miners
- Dementia Research Group, Clinical Neuroscience, Southmead Hospital, University of Bristol, Bristol, UK
| |
Collapse
|
38
|
Mesa-Herrera F, Taoro-González L, Valdés-Baizabal C, Diaz M, Marín R. Lipid and Lipid Raft Alteration in Aging and Neurodegenerative Diseases: A Window for the Development of New Biomarkers. Int J Mol Sci 2019; 20:E3810. [PMID: 31382686 PMCID: PMC6696273 DOI: 10.3390/ijms20153810] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Lipids in the brain are major components playing structural functions as well as physiological roles in nerve cells, such as neural communication, neurogenesis, synaptic transmission, signal transduction, membrane compartmentalization, and regulation of gene expression. Determination of brain lipid composition may provide not only essential information about normal brain functioning, but also about changes with aging and diseases. Indeed, deregulations of specific lipid classes and lipid homeostasis have been demonstrated in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, recent studies have shown that membrane microdomains, named lipid rafts, may change their composition in correlation with neuronal impairment. Lipid rafts are key factors for signaling processes for cellular responses. Lipid alteration in these signaling platforms may correlate with abnormal protein distribution and aggregation, toxic cell signaling, and other neuropathological events related with these diseases. This review highlights the manner lipid changes in lipid rafts may participate in the modulation of neuropathological events related to AD and PD. Understanding and characterizing these changes may contribute to the development of novel and specific diagnostic and prognostic biomarkers in routinely clinical practice.
Collapse
Affiliation(s)
- Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology
| | - Lucas Taoro-González
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Catalina Valdés-Baizabal
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Mario Diaz
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology
- Associate Research Unit ULL-CSIC "Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases", University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Raquel Marín
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain.
- Associate Research Unit ULL-CSIC "Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases", University of La Laguna, Sta. Cruz de Tenerife 38200, Spain.
| |
Collapse
|
39
|
Xu W, Zhang C, Li JQ, Tan CC, Cao XP, Tan L, Yu JT. Age-related hearing loss accelerates cerebrospinal fluid tau levels and brain atrophy: a longitudinal study. Aging (Albany NY) 2019; 11:3156-3169. [PMID: 31118310 PMCID: PMC6555452 DOI: 10.18632/aging.101971] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/12/2019] [Indexed: 12/14/2022]
Abstract
Age-related hearing loss (ARHL) has been considered as a promising modifiable risk factor for cognitive impairment and dementia. Nonetheless, it is still unclear whether age-related hearing loss associates with neurodegenerative biomarkers of Alzheimer's disease (AD). Participants with ARHL were selected from the established Alzheimer's Disease Neuroimaging Initiative (ADNI) database. In multivariable models, the cross-sectional and longitudinal associations of ARHL with CSF β-amyloid (Aβ) and tau measurements, brain Aβ load, and cortical structural measures were explored. ARHL was associated with higher CSF levels of tau (p < 0.001) or ptau181 (p < 0.05) at baseline as well as faster elevation rates of these two types of biomarkers (p < 0.05). Although the baseline volume/thickness of hippocampus (p < 0.05) and entorhinal cortex (p < 0.0005) were higher in individuals with ARHL, these two regions (p < 0.01 for hippocampus, p < 0.05 for entorhinal cortex) displayed significantly accelerated atrophy in individuals with ARHL. No association of ARHL with CSF or brain Aβ levels was found. Subgroup analyses indicated that the above effects of ARHL were more significant in non-demented stage. Age-related hearing loss was associated with elevated cerebrospinal fluid tau levels and atrophy of entorhinal cortex.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Can Zhang
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jie-Qiong Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Alzheimer’s Disease Neuroimaging Initiative6
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
| |
Collapse
|
40
|
Cheng A, Shinoda Y, Yamamoto T, Miyachi H, Fukunaga K. Development of FABP3 ligands that inhibit arachidonic acid-induced α-synuclein oligomerization. Brain Res 2018; 1707:190-197. [PMID: 30496735 DOI: 10.1016/j.brainres.2018.11.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
Abstract
In Parkinson's disease (PD), α-synuclein (αSyn) accumulation and inclusion triggers dopamine neuronal death and synapse dysfunction in vivo. We previously reported that fatty acid-binding protein 3 (FABP3) is highly expressed in the brain and accelerates αSyn oligomerization when cells are exposed to 1-Methyl-1,2,3,6-tetrahydropiridine (MPTP). Here, we demonstrate that αSyn oligomerization was markedly enhanced by co-overexpressing FABP3 in neuro-2A cells when cells were treated with arachidonic acid (AA). We developed FABP3 ligands, which bind to the fatty acid binding domain of FABP3, using an 8-Anilinonaphthalene-1-sulfonic acid (ANS) assay with a recombinant FABP3 protein. The prototype for the FABP4 ligand, BMS309403, has no affinity for FABP3. We developed more FABP3-specific ligands derived from the chemical structure of BMS309403. Like AA, ligands 1, 7, and 8 had a relatively high affinity for FAPB3 in the ANS assay. Then, we evaluated the inhibition of αSyn oligomerization in neuro-2A cells co-overexpressing FABP3 and αSyn. Importantly, AA treatments markedly enhanced αSyn oligomerization in the co-expressing cells. Ligands 1, 7, and 8 significantly reduced AA-induced αSyn oligomerization in neuro-2A cells. Taken together, our results indicate that FABP3 ligands that target FABP3 may be used as potential therapeutics that inhibit αSyn aggregation in vivo.
Collapse
Affiliation(s)
- An Cheng
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tetsunori Yamamoto
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroyuki Miyachi
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
41
|
Sepe FN, Chiasserini D, Parnetti L. Role of FABP3 as biomarker in Alzheimer's disease and synucleinopathies. FUTURE NEUROLOGY 2018. [DOI: 10.2217/fnl-2018-0003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipids are fundamental components of brain cells as they are involved in several essential processes like remodeling of plasma membrane, synaptic function and receptor–ligand interactions. Systemic and brain alterations in lipid metabolism have been linked to the pathogenesis of neurodegenerative disorders like dementia and parkinsonisms. Intracellular transport of lipids is regulated by fatty acid-binding proteins. Recently, a member of this family, the fatty acid-binding protein 3 has been proposed as a potential biomarker across a range of neurodegenerative diseases, including Alzheimer's disease and dementia with Lewy bodies. In this special report, we describe recent progresses in characterizing the role of fatty acid-binding protein 3 in neurodegeneration and its putative role as biomarker measurable in biological fluids.
Collapse
Affiliation(s)
- Federica Nicoletta Sepe
- Center for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Davide Chiasserini
- Stoller Biomarker Discovery Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Lucilla Parnetti
- Center for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
42
|
Gangishetti U, Christina Howell J, Perrin RJ, Louneva N, Watts KD, Kollhoff A, Grossman M, Wolk DA, Shaw LM, Morris JC, Trojanowski JQ, Fagan AM, Arnold SE, Hu WT. Non-beta-amyloid/tau cerebrospinal fluid markers inform staging and progression in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2018; 10:98. [PMID: 30253800 PMCID: PMC6156847 DOI: 10.1186/s13195-018-0426-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/03/2018] [Indexed: 11/21/2022]
Abstract
Background Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by neuropathologic changes involving beta-amyloid (Aβ), tau, neuronal loss, and other associated biological events. While levels of cerebrospinal fluid (CSF) Aβ and tau peptides have enhanced the antemortem detection of AD-specific changes, these two markers poorly reflect the severity of cognitive and functional deficits in people with altered Aβ and tau levels. While multiple previous studies identified non-Aβ, non-tau proteins as candidate neurodegenerative markers to inform the A/T/N biomarker scheme of AD, few have advanced beyond association with clinical AD diagnosis. Here we analyzed nine promising neurodegenerative markers in a three-centered cohort using independent assays to identify candidates most likely to complement Aβ and tau in the A/T/N framework. Methods CSF samples from 125 subjects recruited at the three centers were exchanged such that each of the nine previously identified biomarkers can be measured at one of the three centers. Subjects were classified according to cognitive status and CSF AD biomarker profiles as having normal cognition and normal CSF (n = 31), normal cognition and CSF consistent with AD (n = 13), mild cognitive impairment and normal CSF (n = 13), mild cognitive impairment with CSF consistent with AD (n = 23), AD dementia (n = 32; CSF consistent with AD), and other non-AD dementia (n = 13; CSF not consistent with AD). Results Three biomarkers were identified to differ among the AD stages, including neurofilament light chain (NfL; p < 0.001), fatty acid binding protein 3 (Fabp3; p < 0.001), and interleukin (IL)-10 (p = 0.033). Increased NfL levels were most strongly associated with the dementia stage of AD, but increased Fabp3 levels were more sensitive to milder AD stages and correlated with both CSF tau markers. IL-10 levels did not correlate with tau biomarkers, but were associated with rates of longitudinal cognitive decline in mild cognitive impairment due to AD (p = 0.006). Prefreezing centrifugation did not influence measured CSF biomarker levels. Conclusion CSF proteins associated with AD clinical stages and progression can complement Aβ and tau markers to inform neurodegeneration. A validated panel inclusive of multiple biomarker features (etiology, stage, progression) can improve AD phenotyping along the A/T/N framework.
Collapse
Affiliation(s)
- Umesh Gangishetti
- Department of Neurology, Emory University, 615 Michael Street, 505F, Atlanta, GA, 30322, USA
| | - J Christina Howell
- Department of Neurology, Emory University, 615 Michael Street, 505F, Atlanta, GA, 30322, USA.,Department of Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Richard J Perrin
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Pathology, Washington University, St. Louis, MO, USA
| | - Natalia Louneva
- Department of Pathology, Washington University, St. Louis, MO, USA
| | - Kelly D Watts
- Department of Neurology, Emory University, 615 Michael Street, 505F, Atlanta, GA, 30322, USA
| | - Alexander Kollhoff
- Department of Neurology, Emory University, 615 Michael Street, 505F, Atlanta, GA, 30322, USA
| | - Murray Grossman
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA.,Penn FTD Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John C Morris
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Neurology, Washington University, St. Louis, MO, USA
| | - John Q Trojanowski
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne M Fagan
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Neurology, Washington University, St. Louis, MO, USA
| | - Steven E Arnold
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA.,Present Address: Massachusetts General Hospital, Boston, MA, USA
| | - William T Hu
- Department of Neurology, Emory University, 615 Michael Street, 505F, Atlanta, GA, 30322, USA. .,Department of Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
43
|
Doecke JD, Rembach A, Villemagne VL, Varghese S, Rainey-Smith S, Sarros S, Evered LA, Fowler CJ, Pertile KK, Rumble RL, Trounson B, Taddei K, Laws SM, Macaulay SL, Bush AI, Ellis KA, Martins R, Ames D, Silbert B, Vanderstichele H, Masters CL, Darby DG, Li QX, Collins S. Concordance Between Cerebrospinal Fluid Biomarkers with Alzheimer's Disease Pathology Between Three Independent Assay Platforms. J Alzheimers Dis 2018; 61:169-183. [PMID: 29171991 DOI: 10.3233/jad-170128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND To enhance the accuracy of clinical diagnosis for Alzheimer's disease (AD), pre-mortem biomarkers have become increasingly important for diagnosis and for participant recruitment in disease-specific treatment trials. Cerebrospinal fluid (CSF) biomarkers provide a low-cost alternative to positron emission tomography (PET) imaging for in vivo quantification of different AD pathological hallmarks in the brains of affected subjects; however, consensus around the best platform, most informative biomarker and correlations across different methodologies are controversial. OBJECTIVE Assessing levels of Aβ-amyloid and tau species determined using three different versions of immunoassays, the current study explored the ability of CSF biomarkers to predict PET Aβ-amyloid (32 Aβ-amyloid-and 45 Aβ-amyloid+), as well as concordance between CSF biomarker levels and PET Aβ-amyloid imaging. METHODS Prediction and concordance analyses were performed using a sub-cohort of 77 individuals (48 healthy controls, 15 with mild cognitive impairment, and 14 with AD) from the Australian Imaging Biomarker and Lifestyle study of aging. RESULTS Across all three platforms, the T-tau/Aβ42 ratio biomarker had modestly higher correlation with SUVR/BeCKeT (ρ= 0.69-0.8) as compared with Aβ42 alone (ρ= 0.66-0.75). Differences in CSF biomarker levels between the PET Aβ-amyloid-and Aβ-amyloid+ groups were strongest for the Aβ42/Aβ40 and T-tau/Aβ42 ratios (p < 0.0001); however, comparison of predictive models for PET Aβ-amyloid showed no difference between Aβ42 alone and the T-tau/Aβ42 ratio. CONCLUSION This study confirms strong concordance between CSF biomarkers and PET Aβ-amyloid status is independent of immunoassay platform, supporting their utility as biomarkers in clinical practice for the diagnosis of AD and for participant enrichment in clinical trials.
Collapse
Affiliation(s)
- James D Doecke
- CSIRO Health and Biosecurity/Australian e-Health Research Centre, Brisbane, QLD, Australia.,Cooperative Research Centre for Mental Health, Parkville, VIC, Australia
| | - Alan Rembach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Victor L Villemagne
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - Shiji Varghese
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,National Dementia Diagnostics Laboratory, The University of Melbourne, VIC, Australia
| | - Stephanie Rainey-Smith
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, WA, Australia
| | - Shannon Sarros
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,National Dementia Diagnostics Laboratory, The University of Melbourne, VIC, Australia
| | - Lisbeth A Evered
- Department of Anaesthesia and Perioperative Pain Medicine, Centre for Anaesthesia and Cognitive Function, St Vincent's Hospital, Melbourne, Australia
| | - Christopher J Fowler
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Kelly K Pertile
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Rebecca L Rumble
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Brett Trounson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Kevin Taddei
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, WA, Australia
| | - Simon M Laws
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, WA, Australia
| | - S Lance Macaulay
- CSIRO Health and Biosecurity/Australian e-Health Research Centre, Brisbane, QLD, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Kathryn A Ellis
- Academic Unit for Psychiatry of Old Age, The University of Melbourne, Melbourne, Australia
| | - Ralph Martins
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, WA, Australia
| | - David Ames
- Academic Unit for Psychiatry of Old Age, The University of Melbourne, Melbourne, Australia
| | - Brendan Silbert
- Department of Anaesthesia and Perioperative Pain Medicine, Centre for Anaesthesia and Cognitive Function, St Vincent's Hospital, Melbourne, Australia
| | | | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,National Dementia Diagnostics Laboratory, The University of Melbourne, VIC, Australia
| | - David G Darby
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Qiao-Xin Li
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,National Dementia Diagnostics Laboratory, The University of Melbourne, VIC, Australia
| | - Steven Collins
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, Australia.,National Dementia Diagnostics Laboratory, The University of Melbourne, VIC, Australia
| | | |
Collapse
|
44
|
Chapman CD, Schiöth HB, Grillo CA, Benedict C. Intranasal insulin in Alzheimer's disease: Food for thought. Neuropharmacology 2018; 136:196-201. [PMID: 29180222 PMCID: PMC10523803 DOI: 10.1016/j.neuropharm.2017.11.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/26/2022]
Abstract
Accumulating evidence suggests that disrupted brain insulin signaling promotes the development and progression of Alzheimer's disease (AD), driving clinicians to target this circuitry. While both traditional and more modern antidiabetics show promise in combating insulin resistance, intranasal insulin appears to be the most efficient method of boosting brain insulin. Furthermore, intranasal delivery elegantly avoids adverse effects from peripheral insulin administration. However, there remain significant open questions regarding intranasal insulin's efficacy, safety, and potential as an adjunct or mono-therapy. Thus, this review aims to critically evaluate the present evidence and future potential of intranasal insulin as a meaningful treatment for AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Colin D Chapman
- Department of Neuroscience, Uppsala University, SE-751 24 Uppsala, Sweden.
| | - Helgi B Schiöth
- Department of Neuroscience, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Claudia A Grillo
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina - School of Medicine, Columbia, SC 29209, USA
| | - Christian Benedict
- Department of Neuroscience, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
45
|
Duarte A, Santos M, Oliveira C, Moreira P. Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology 2018; 136:223-242. [PMID: 29471055 DOI: 10.1016/j.neuropharm.2018.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
|
46
|
Deming Y, Li Z, Benitez BA, Cruchaga C. Triggering receptor expressed on myeloid cells 2 (TREM2): a potential therapeutic target for Alzheimer disease? Expert Opin Ther Targets 2018; 22:587-598. [PMID: 29889572 DOI: 10.1080/14728222.2018.1486823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
INTRODUCTION There are currently no effective therapeutics for Alzheimer disease (AD). Clinical trials targeting amyloid beta thus far have shown very little benefit and only in the earliest stages of disease. These limitations have driven research to identify alternative therapeutic targets, one of the most promising is the triggering receptor expressed on myeloid cells 2 (TREM2). Areas covered: Here, we review the literature to-date and discuss the potentials and pitfalls for targeting TREM2 as a potential therapeutic for AD. We focus on research in animal and cell models for AD and central nervous system injury models which may help in understanding the role of TREM2 in disease. Expert opinion: Studies suggest TREM2 plays a key role in AD pathology; however, results have been conflicting about whether TREM2 is beneficial or harmful. More research is necessary before designing TREM2-targeting therapies. Successful therapeutics will most likely be administered early in disease.
Collapse
Affiliation(s)
- Yuetiva Deming
- a Department of Psychiatry , Washington University School of Medicine , St Louis , MO , USA
| | - Zeran Li
- a Department of Psychiatry , Washington University School of Medicine , St Louis , MO , USA
| | - Bruno A Benitez
- b Department of Medicine , Washington University School of Medicine , St Louis , MO , USA
| | - Carlos Cruchaga
- a Department of Psychiatry , Washington University School of Medicine , St Louis , MO , USA.,c Department of Developmental Biology , Washington University School of Medicine , St Louis , MO , USA.,d Knight Alzheimer's Disease Research Center , Washington University School of Medicine , St Louis , MO , USA.,e Hope Center for Neurological Disorders , Washington University School of Medicine , St Louis , MO , USA
| |
Collapse
|
47
|
Longitudinal structural cerebral changes related to core CSF biomarkers in preclinical Alzheimer's disease: A study of two independent datasets. NEUROIMAGE-CLINICAL 2018; 19:190-201. [PMID: 30023169 PMCID: PMC6050455 DOI: 10.1016/j.nicl.2018.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/08/2018] [Accepted: 04/14/2018] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is characterized by an accumulation of β-amyloid (Aβ42) accompanied by brain atrophy and cognitive decline. Several recent studies have shown that Aβ42 accumulation is associated with gray matter (GM) changes prior to the development of cognitive impairment, in the so-called preclinical stage of the AD (pre-AD). It also has been proved that the GM atrophy profile is not linear, both in normal ageing but, especially, on AD. However, several other factors may influence this association and may have an impact on the generalization of results from different samples. In this work, we estimate differences in rates of GM volume change in cognitively healthy elders in association with baseline core cerebrospinal fluid (CSF) AD biomarkers, and assess to what these differences are sample dependent. We report the dependence of atrophy rates, measured in a two-year interval, on Aβ42, computed both over continuous and categorical values of Aβ42, at voxel-level (p < 0.001; k < 100) and corrected for sex, age and education. Analyses were performed jointly and separately, on two samples. The first sample was formed of 31 individuals (22 Ctrl and 9 pre-AD), aged 60–80 and recruited at the Hospital Clinic of Barcelona. The second sample was a replica of the first one with subjects selected from the ADNI dataset. We also investigated the dependence of the GM atrophy rate on the basal levels of continuous p-tau and on the p-tau/Aβ42 ratio. Correlation analyses on the whole sample showed a dependence of GM atrophy rates on Aβ42 in medial and orbital frontal, precuneus, cingulate, medial temporal regions and cerebellum. Correlations with p-tau were located in the left hippocampus, parahippocampus and striatal nuclei whereas correlation with p-tau/Aβ42 was mainly found in ventral and medial temporal areas. Regarding analyses performed separately, we found a substantial discrepancy of results between samples, illustrating the complexities of comparing two independent datasets even when using the same inclusion criteria. Such discrepancies may lead to significant differences in the sample size needed to detect a particular reduction on cerebral atrophy rates in prevention trials. Higher cognitive reserve and more advanced pathological progression in the ADNI sample could partially account for the observed discrepancies. Taken together, our findings in these two samples highlight the importance of comparing and merging independent datasets to draw more robust and generalizable conclusions on the structural changes in the preclinical stages of AD. GM atrophy rates depends differently on values of CSF Aβ42 than on CSF p-tau in the preclinical stage of AD. Discrepant results were obtained. Although nominally equivalent, samples might reflect different time-windows in the AD continuum. It is necessary a further effort to standardize CSF-biomarkers measures and thresholds to make different samples to be directly comparable.
Collapse
Key Words
- AD, Alzheimer's disease
- ADNI, Alzheimer's Disease Neuroimaging Initiative
- Alzheimer's disease
- Aβ42, amyloid beta
- CDR, Clinical Dementia Rating
- CSF biomarkers
- CSF, Cerebro-Spinal Fluid
- Ctrl, control
- DI, divergences of the longitudinal deformations
- ELISA, Enzyme-Linked ImmunoSorbent Assay
- FWE, Family Wise Error
- GM, gray matter
- HCB, Hospital Clinic Barcelona
- L, left
- Longitudinal VBM
- MMSE, Mini Mental State examination
- PLR, pairwise longitudinal registration
- Preclinical Alzheimer's disease
- R, right
- ROI, region of interest
- TIV, total intracranial volume
- VBM, voxel-based morphometry
- WM, white matter
- p-tau, phosphorylated tau
- preAD, preclinical Alzheimer's disease
- t-tau, total tau
Collapse
|
48
|
Lawrence E, Vegvari C, Ower A, Hadjichrysanthou C, De Wolf F, Anderson RM. A Systematic Review of Longitudinal Studies Which Measure Alzheimer's Disease Biomarkers. J Alzheimers Dis 2018; 59:1359-1379. [PMID: 28759968 PMCID: PMC5611893 DOI: 10.3233/jad-170261] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer’s disease (AD) is a progressive and fatal neurodegenerative disease, with no effective treatment or cure. A gold standard therapy would be treatment to slow or halt disease progression; however, knowledge of causation in the early stages of AD is very limited. In order to determine effective endpoints for possible therapies, a number of quantitative surrogate markers of disease progression have been suggested, including biochemical and imaging biomarkers. The dynamics of these various surrogate markers over time, particularly in relation to disease development, are, however, not well characterized. We reviewed the literature for studies that measured cerebrospinal fluid or plasma amyloid-β and tau, or took magnetic resonance image or fluorodeoxyglucose/Pittsburgh compound B-positron electron tomography scans, in longitudinal cohort studies. We summarized the properties of the major cohort studies in various countries, commonly used diagnosis methods and study designs. We have concluded that additional studies with repeat measures over time in a representative population cohort are needed to address the gap in knowledge of AD progression. Based on our analysis, we suggest directions in which research could move in order to advance our understanding of this complex disease, including repeat biomarker measurements, standardization and increased sample sizes.
Collapse
Affiliation(s)
- Emma Lawrence
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Carolin Vegvari
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Alison Ower
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | | | - Frank De Wolf
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK.,Janssen Prevention Center, Leiden, The Netherlands
| | - Roy M Anderson
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
49
|
Brosseron F, Traschütz A, Widmann CN, Kummer MP, Tacik P, Santarelli F, Jessen F, Heneka MT. Characterization and clinical use of inflammatory cerebrospinal fluid protein markers in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2018; 10:25. [PMID: 29482610 PMCID: PMC5828084 DOI: 10.1186/s13195-018-0353-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/05/2018] [Indexed: 12/29/2022]
Abstract
Background Neuroinflammation has gained increasing attention as a potential contributing factor in Alzheimer’s disease (AD) pathology. A clinical cerebrospinal fluid biomarker capable of monitoring this process during the course of the disease has yet to emerge, chiefly owing to contradictory research findings. In this study, we sought to clarify the utility of inflammatory biomarkers in diagnostic procedures of AD in three steps: (1) to screen for proteins that are robustly detectable in cerebrospinal fluid; (2) based on this analysis, to explore any associations between the analytically robust markers and salient pathological features of AD; and (3) to determine the discriminative power of these markers in the clinical diagnosis of AD. Methods From a total of 46 proteins, 15 that were robustly detectable in cerebrospinal fluid were identified. A subsequent analysis of these markers in a cohort of 399 patients (nondemented subjects, patients with mild cognitive impairment [MCI], and patients with AD, supplemented by smaller cohorts of other diseases) was conducted. Fluid biomarker data were related to AD pathology and neuropsychological markers and adjusted for confounders such as age, sex, apolipoprotein E genotype, and biobank storage time. Results Cerebrospinal fluid levels of C-reactive protein and soluble TREM2 differed between nondemented subjects, patients with MCI, or patients with AD and were associated with amyloid and tau pathology. Several markers were associated with tau pathology only or with other neurodegenerative diseases. Correlations between neuropsychological performance and inflammatory markers were weak, but they were most prominent in AD and for the most challenging cognitive tests. All investigated covariates had significant influence, with varying effects across the markers. Still, none of the markers achieved discriminative power of more than 70% to distinguish between patient groups defined by clinical or neuropathological categories. Conclusions Basic analytical considerations proved indispensable for this type of study because only one-third of the tested markers were robustly detectable in cerebrospinal fluid. Detectable inflammatory protein markers were associated in multiple ways with AD pathology. Yet, even significantly associated markers were not powerful enough in terms of effect strength, sensitivity, and specificity, and hence they were not suited for direct use in clinical diagnostic practice. Targets other than those most commonly considered in this field of research might provide results with better clinical applicability. Electronic supplementary material The online version of this article (10.1186/s13195-018-0353-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Andreas Traschütz
- Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Catherine N Widmann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Markus P Kummer
- Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Pawel Tacik
- Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | | | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924, Cologne, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. .,Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany.
| |
Collapse
|
50
|
Craft S, Claxton A, Baker LD, Hanson AJ, Cholerton B, Trittschuh EH, Dahl D, Caulder E, Neth B, Montine TJ, Jung Y, Maldjian J, Whitlow C, Friedman S. Effects of Regular and Long-Acting Insulin on Cognition and Alzheimer's Disease Biomarkers: A Pilot Clinical Trial. J Alzheimers Dis 2018; 57:1325-1334. [PMID: 28372335 PMCID: PMC5409050 DOI: 10.3233/jad-161256] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Long acting insulin detemir administered intranasally for three weeks enhanced memory for adults with Alzheimer’s disease dementia (AD) or amnestic mild cognitive impairment (MCI). The investigation of longer-term administration is necessary to determine whether benefits persist, whether they are similar to benefits provided by regular insulin, and whether either form of insulin therapy affects AD biomarkers. Objective: The present study aimed to determine whether four months of treatment with intranasal insulin detemir or regular insulin improves cognition, daily functioning, and AD biomarkers for adults with MCI or AD. Methods: This randomized, double-blind, placebo-controlled trial included an intent-to-treat sample consisting of 36 adults diagnosed with MCI or mild to moderate AD. Participants received placebo (n = 12), 40 IU of insulin detemir (n = 12), or 40 IU of regular insulin (n = 12) daily for four months, administered with a nasal delivery device. A cognitive battery was administered at baseline and after two and four months of treatment. MRI was administered for all participants and lumbar puncture for a subset (n = 20) at baseline and four months. The primary outcome was change from baseline to four months on a memory composite (sum of Z scores for delayed list and story recall). Secondary outcomes included: global cognition (Alzheimer’s Disease Assessment Scale-Cognition), daily functioning (Dementia Severity Rating Scale), MRI volume changes in AD-related regions of interest, and cerebrospinal fluid AD markers. Results: The regular insulin treated group had better memory after two and four months compared with placebo (p < 0.03). No significant effects were observed for the detemir-assigned group compared with the placebo group, or for daily functioning for either group. Regular insulin treatment was associated with preserved volume on MRI. Regular insulin treatment was also associated with reduction in the tau-P181/Aβ42 ratio. Conclusion: Future research is warranted to examine the mechanistic basis of treatment differences, and to further assess the efficacy and safety of intranasal insulin.
Collapse
Affiliation(s)
- Suzanne Craft
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Laura D Baker
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Angela J Hanson
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Emily H Trittschuh
- Department of Psychiatry & Behavioral Science, University of Washington School of Medicine, Seattle, WA, USA.,Geriatric Research, Education, & Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Deborah Dahl
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Erin Caulder
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Bryan Neth
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Youngkyoo Jung
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joseph Maldjian
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|