1
|
Nestor LJ, Ersche KD. Gut Hormones: Possible Mediators of Addictive Disorders? Eur Addict Res 2024:1-8. [PMID: 39389039 DOI: 10.1159/000540743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Alcohol and drug dependence are major health and economic burdens to society. One of the major challenges to reducing this burden will be to develop more effective and better tolerated medications that target alternative mechanisms in the brain. While the dopamine system has been well characterized for mediating the reward value of drugs, there is evidence that the endocrine system also conveys signals to the same neural systems using gut hormones. SUMMARY These gut hormones, produced in the stomach and intestine and that regulate food intake, have also been shown to control the use of other substances, such as alcohol and drugs of abuse. Examples of such hormones are ghrelin and glucagon-like peptide-1, which exert their effects on dopamine transmission in parts of the brain known to be involved in some of the core features of addiction, such as reward sensitivity. KEY MESSAGES This raises the possibility that gut hormone systems may play a pivotal role in addictive disorders. This review will briefly outline emerging evidence that the ghrelin and glucagon-like peptide-1 hormones are contrasting mediators of alcohol and drug use and may present a promising alternative target for treatment intervention in addictive disorders.
Collapse
Affiliation(s)
- Liam J Nestor
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
2
|
Richardson RS, Gomez JL, Vendruscolo LF, Leggio L, Ryabinin AE. Centrally administered growth hormone secretagogue receptor antagonist DLys decreases alcohol intake and preference in male mice. Neuroreport 2024; 35:909-914. [PMID: 39166385 PMCID: PMC11501076 DOI: 10.1097/wnr.0000000000002078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Alcohol use disorder (AUD) is a highly prevalent public health problem. The ghrelin system has been identified as a potential target for therapeutic intervention for AUD. Previous work showed that systemic administration of the growth hormone secretagogue receptor (GHSR) antagonist DLys reduced alcohol intake and preference in male mice. Yet, it is unclear whether central or peripheral GHSRs mediated these effects. We hypothesized that alcohol consumption is driven by central GHSRs and addressed this hypothesis by testing the effects of central administration of DLys. Male C57BL/6J mice consumed alcohol in a two-bottle choice procedure (10% ethanol versus water). DLys (2 nmol) was administered intracerebroventricularly for 7 days to examine alcohol intake and preference. DLys decreased alcohol intake and preference but had no effect on food intake. The effects on alcohol intake and preference persisted after several administrations, indicating lack of tolerance to DLys' effects. These results suggest that central administration of DLys is sufficient to reduce alcohol drinking and that DLys remains effective after several administrations when given intracerebroventricularly. Moreover, this work suggests that the effects of intracerebroventricularly administered DLys are specific to alcohol and do not generalize to other calorie-driven behaviors.
Collapse
Affiliation(s)
- Rani S. Richardson
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- University of North Carolina School of Medicine MD/PhD Program, University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Juan L. Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Leandro F. Vendruscolo
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Yang Y, Tong M, de la Monte SM. Early-Stage Moderate Alcohol Feeding Dysregulates Insulin-Related Metabolic Hormone Expression in the Brain: Potential Links to Neurodegeneration Including Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:1211-1228. [PMID: 39247872 PMCID: PMC11380283 DOI: 10.3233/adr-240026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Background Alzheimer's disease (AD), one of the most prevalent causes of dementia, is mainly sporadic in occurrence but driven by aging and other cofactors. Studies suggest that excessive alcohol consumption may increase AD risk. Objective Our study examined the degree to which short-term moderate ethanol exposure leads to molecular pathological changes of AD-type neurodegeneration. Methods Long Evans male and female rats were fed for 2 weeks with isocaloric liquid diets containing 24% or 0% caloric ethanol (n = 8/group). The frontal lobes were used to measure immunoreactivity to AD biomarkers, insulin-related endocrine metabolic molecules, and proinflammatory cytokines/chemokines by duplex or multiplex enzyme-linked immunosorbent assays (ELISAs). Results Ethanol significantly increased frontal lobe levels of phospho-tau, but reduced Aβ, ghrelin, glucagon, leptin, PAI, IL-2, and IFN-γ. Conclusions Short-term effects of chronic ethanol feeding produced neuroendocrine molecular pathologic changes reflective of metabolic dysregulation, together with abnormalities that likely contribute to impairments in neuroplasticity. The findings suggest that chronic alcohol consumption rapidly establishes a platform for impairments in energy metabolism that occur in both the early stages of AD and alcohol-related brain degeneration.
Collapse
Affiliation(s)
- Yiwen Yang
- Molecular Pharmacology, Physiology and Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne M de la Monte
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Lifespan Academic Institutions, the Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Neurology and Neurosurgery, Rhode Island Hospital, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
4
|
Richardson RS, Kryszak LA, Vendruscolo JCM, Koob GF, Vendruscolo LF, Leggio L. GHSR blockade, but not reduction of peripherally circulating ghrelin via β 1-adrenergic receptor antagonism, decreases binge-like alcohol drinking in mice. Mol Psychiatry 2024:10.1038/s41380-024-02713-3. [PMID: 39232198 DOI: 10.1038/s41380-024-02713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Alcohol use disorder (AUD) and binge drinking are highly prevalent public health issues. The stomach-derived peptide ghrelin, and its receptor, the growth hormone secretagogue receptor (GHSR), both of which are expressed in the brain and periphery, are implicated in alcohol-related outcomes. We previously found that systemic and central administration of GHSR antagonists reduced binge-like alcohol drinking, whereas a ghrelin vaccine did not. Thus, we hypothesized that central GHSR drives binge-like alcohol drinking independently of peripheral ghrelin. To investigate this hypothesis, we antagonized β1-adrenergic receptors (β1ARs), which are required for peripheral ghrelin release, and combined them with GHSR blockers. We found that both systemic β1AR antagonism with atenolol (peripherally restricted) and metoprolol (brain permeable) robustly decreased plasma ghrelin levels. Also, ICV administration of atenolol had no effect on peripheral endogenous ghrelin levels. However, only metoprolol, but not atenolol, decreased binge-like alcohol drinking. The β1AR antagonism also did not prevent the effects of the GHSR blockers JMV2959 and PF-5190457 in decreasing binge-like alcohol drinking. These results suggest that the GHSR rather than peripheral endogenous ghrelin is involved in binge-like alcohol drinking. Thus, GHSRs and β1ARs represent possible targets for therapeutic intervention for AUD, including the potential combination of drugs that target these two systems.
Collapse
Affiliation(s)
- Rani S Richardson
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- University of North Carolina School of Medicine MD/PhD Program, University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Lindsay A Kryszak
- National Institute on Drug Abuse Intramural Research Program Translational Analytical Core, National Institutes of Health, Baltimore, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA.
- National Institute on Drug Abuse Intramural Research Program Translational Analytical Core, National Institutes of Health, Baltimore, MD, USA.
- Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
- Medication Development Program, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
5
|
Karaivazoglou K, Aggeletopoulou I, Triantos C. The Contribution of the Brain-Gut Axis to the Human Reward System. Biomedicines 2024; 12:1861. [PMID: 39200325 PMCID: PMC11351993 DOI: 10.3390/biomedicines12081861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The human reward network consists of interconnected brain regions that process stimuli associated with satisfaction and modulate pleasure-seeking behaviors. Impairments in reward processing have been implicated in several medical and psychiatric conditions, and there is a growing interest in disentangling the underlying pathophysiological mechanisms. The brain-gut axis plays a regulatory role in several higher-order neurophysiological pathways, including reward processing. In this context, the aim of the current review was to critically appraise research findings on the contribution of the brain-gut axis to the human reward system. Enteric neuropeptides, which are implicated in the regulation of hunger and satiety, such as ghrelin, PYY3-36, and glucagon-like peptide 1 (GLP-1), have been associated with the processing of food-related, alcohol-related, and other non-food-related rewards, maintaining a delicate balance between the body's homeostatic and hedonic needs. Furthermore, intestinal microbiota and their metabolites have been linked to differences in the architecture and activation of brain reward areas in obese patients and patients with attention deficit and hyperactivity disorder. Likewise, bariatric surgery reduces hedonic eating by altering the composition of gut microbiota. Although existing findings need further corroboration, they provide valuable information on the pathophysiology of reward-processing impairments and delineate a novel framework for potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| |
Collapse
|
6
|
Witley S, Edvardsson CE, Aranäs C, Tufvesson-Alm M, Stalberga D, Green H, Vestlund J, Jerlhag E. Des-acyl ghrelin reduces alcohol intake and alcohol-induced reward in rodents. Transl Psychiatry 2024; 14:277. [PMID: 38965230 PMCID: PMC11224403 DOI: 10.1038/s41398-024-02996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
The mechanisms contributing to alcohol use disorder (AUD) are complex and the orexigenic peptide ghrelin, which enhances alcohol reward, is implied as a crucial modulator. The major proportion of circulating ghrelin is however the non-octanoylated form of ghrelin, des-acyl ghrelin (DAG), whose role in reward processes is unknown. As recent studies show that DAG decreases food intake, we hypothesize that DAG attenuates alcohol-related responses in animal models. Acute and repeated DAG treatment dose-dependently decreased alcohol drinking in male and female rats. In these alcohol-consuming male rats, repeated DAG treatment causes higher levels of dopamine metabolites in the ventral tegmental area, an area central to reward processing. The role of DAG in reward processing is further supported as DAG prevents alcohol-induced locomotor stimulation, reward in the conditioned place preference paradigm, and dopamine release in the nucleus accumbens in male rodents. On the contrary, DAG does not alter the memory of alcohol reward or affect neurotransmission in the hippocampus, an area central to memory. Further, circulating DAG levels are positively correlated with alcohol drinking in female but not male rats. Studies were conducted in attempts to identify tentative targets of DAG, which currently are unknown. Data from these recombinant cell system revealed that DAG does not bind to either of the monoamine transporters, 5HT2A, CB1, or µ-opioid receptors. Collectively, our data show that DAG attenuates alcohol-related responses in rodents, an effect opposite to that of ghrelin, and contributes towards a deeper insight into behaviors regulated by the ghrelinergic signaling pathway.
Collapse
Affiliation(s)
- Sarah Witley
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christian E Edvardsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cajsa Aranäs
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Darta Stalberga
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Henrik Green
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Jesper Vestlund
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Heilig M, Witkiewitz K, Ray LA, Leggio L. Novel medications for problematic alcohol use. J Clin Invest 2024; 134:e172889. [PMID: 38828724 PMCID: PMC11142745 DOI: 10.1172/jci172889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Alcohol-related harm, a major cause of disease burden globally, affects people along a spectrum of use. When a harmful pattern of drinking is present in the absence of significant behavioral pathology, low-intensity brief interventions that provide information about health consequences of continued use provide large health benefits. At the other end of the spectrum, profound behavioral pathology, including continued use despite knowledge of potentially fatal consequences, warrants a medical diagnosis, and treatment is strongly indicated. Available behavioral and pharmacological treatments are supported by scientific evidence but are vastly underutilized. Discovery of additional medications, with a favorable balance of efficacy versus safety and tolerability can improve clinical uptake of treatment, allow personalized treatment, and improve outcomes. Here, we delineate the clinical conditions when pharmacotherapy should be considered in relation to the main diagnostic systems in use and discuss clinical endpoints that represent meaningful clinical benefits. We then review specific developments in three categories of targets that show promise for expanding the treatment toolkit. GPCRs remain the largest category of successful drug targets across contemporary medicine, and several GPCR targets are currently pursued for alcohol-related indications. Endocrine systems are another established category, and several promising targets have emerged for alcohol indications. Finally, immune modulators have revolutionized treatment of multiple medical conditions, and they may also hold potential to produce benefits in patients with alcohol problems.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, Linköping University, and Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| | - Katie Witkiewitz
- Department of Psychology and Center on Alcohol, Substance Use and Addictions, University of New Mexico, Albuquerque, New Mexico, USA
| | - Lara A. Ray
- Department of Psychology, UCLA, Los Angeles, California, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
| |
Collapse
|
8
|
Mahalingam S, Bellamkonda R, Kharbanda KK, Arumugam MK, Kumar V, Casey CA, Leggio L, Rasineni K. Role of ghrelin hormone in the development of alcohol-associated liver disease. Biomed Pharmacother 2024; 174:116595. [PMID: 38640709 PMCID: PMC11161137 DOI: 10.1016/j.biopha.2024.116595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Fatty liver is the earliest response of the liver to excessive alcohol consumption. Previously we identified that chronic alcohol administration increases levels of stomach-derived hormone, ghrelin, which by reducing circulating insulin levels, ultimately contributes to the development of alcohol-associated liver disease (ALD). In addition, ghrelin directly promotes fat accumulation in hepatocytes by enhancing de novo lipogenesis. Other than promoting ALD, ghrelin is known to increase alcohol craving and intake. In this study, we used a ghrelin receptor (GHSR) knockout (KO) rat model to characterize the specific contribution of ghrelin in the development of ALD with emphasis on energy homeostasis. Male Wistar wild type (WT) and GHSR-KO rats were pair-fed the Lieber-DeCarli control or ethanol diet for 6 weeks. At the end of the feeding period, glucose tolerance test was conducted, and tissue samples were collected. We observed reduced alcohol intake by GHSR-KOs compared to a previous study where WT rats were fed ethanol diet ad libitum. Further, when the WTs were pair-fed to GHSR-KOs, the KO rats exhibited resistance to develop ALD through improving insulin secretion/sensitivity to reduce adipose lipolysis and hepatic fatty acid uptake/synthesis and increase fatty acid oxidation. Furthermore, proteomic data revealed that ethanol-fed KO exhibit less alcohol-induced mitochondrial dysfunction and oxidative stress than WT rats. Proteomic data also confirmed that the ethanol-fed KOs are insulin sensitive and are resistant to hepatic steatosis development compared to WT rats. Together, these data confirm that inhibiting ghrelin action prevent alcohol-induced liver and adipose dysfunction independent of reducing alcohol intake.
Collapse
Affiliation(s)
- Sundararajan Mahalingam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ramesh Bellamkonda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vikas Kumar
- Mass Spectrometry and Proteomic Core Facility, University of Nebraska Medical Center, Omaha, NE, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Carol A Casey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, Baltimore, MD, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
9
|
Pietrzak M, Yngve A, Hamilton JP, Asratian A, Gauffin E, Löfberg A, Gustavson S, Persson E, Capusan AJ, Leggio L, Perini I, Tinghög G, Heilig M, Boehme R. Ghrelin decreases sensitivity to negative feedback and increases prediction-error related caudate activity in humans, a randomized controlled trial. Neuropsychopharmacology 2024; 49:1042-1049. [PMID: 38409282 PMCID: PMC11039644 DOI: 10.1038/s41386-024-01821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/28/2024]
Abstract
The stomach-derived hormone ghrelin plays not only a role in feeding, starvation, and survival, but it has been suggested to also be involved in the stress response, in neuropsychiatric conditions, and in alcohol and drug use disorders. Mechanisms related to reward processing might mediate ghrelin's broader effects on complex behaviors, as indicated by animal studies and mostly correlative human studies. Here, using a within-subject double-blind placebo-controlled design with intravenous ghrelin infusion in healthy volunteers (n = 30), we tested whether ghrelin alters sensitivity to reward and punishment in a reward learning task. Parameters were derived from a computational model of participants' task behavior. The reversal learning task with monetary rewards was performed during functional brain imaging to investigate ghrelin effects on brain signals related to reward prediction errors. Compared to placebo, ghrelin decreased punishment sensitivity (t = -2.448, p = 0.021), while reward sensitivity was unaltered (t = 0.8, p = 0.43). We furthermore found increased prediction-error related activity in the dorsal striatum during ghrelin administration (region of interest analysis: t-values ≥ 4.21, p-values ≤ 0.044). Our results support a role for ghrelin in reward processing that extends beyond food-related rewards. Reduced sensitivity to negative outcomes and increased processing of prediction errors may be beneficial for food foraging when hungry but could also relate to increased risk taking and impulsivity in the broader context of addictive behaviors.
Collapse
Affiliation(s)
- Michal Pietrzak
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
| | - Adam Yngve
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
| | - J Paul Hamilton
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
- Department of Medical and Biological Psychology, University of Bergen, Bergen, 5007, Norway
| | - Anna Asratian
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
| | - Emelie Gauffin
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
| | - Andreas Löfberg
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
| | - Sarah Gustavson
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
| | - Emil Persson
- Division of Economics, Department of Management and Engineering, Linköping University, Linköping, 58183, Sweden
| | - Andrea J Capusan
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, 58183, Sweden
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Irene Perini
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
| | - Gustav Tinghög
- Division of Economics, Department of Management and Engineering, Linköping University, Linköping, 58183, Sweden
- National Center for Health Care Priority Setting, Department of Health Medicine and Caring Sciences, Linköping University, 58183, Linköping, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
| | - Rebecca Boehme
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden.
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden.
| |
Collapse
|
10
|
Söderpalm B, Ericson M. Alcohol and the dopamine system. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 175:21-73. [PMID: 38555117 DOI: 10.1016/bs.irn.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The mesolimbic dopamine pathway plays a major role in drug reinforcement and is likely involved also in the development of drug addiction. Ethanol, like most addictive drugs, acutely activates the mesolimbic dopamine system and releases dopamine, and ethanol-associated stimuli also appear to trigger dopamine release. In addition, chronic exposure to ethanol reduces the baseline function of the mesolimbic dopamine system. The molecular mechanisms underlying ethanol´s interaction with this system remain, however, to be unveiled. Here research on the actions of ethanol in the mesolimbic dopamine system, focusing on the involvement of cystein-loop ligand-gated ion channels, opiate receptors, gastric peptides and acetaldehyde is briefly reviewed. In summary, a great complexity as regards ethanol´s mechanism(s) of action along the mesolimbic dopamine system has been revealed. Consequently, several new targets and possibilities for pharmacotherapies for alcohol use disorder have emerged.
Collapse
Affiliation(s)
- Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Addiction and Dependency, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
White B, Sirohi S. A Complex Interplay between Nutrition and Alcohol use Disorder: Implications for Breaking the Vicious Cycle. Curr Pharm Des 2024; 30:1822-1837. [PMID: 38797900 DOI: 10.2174/0113816128292367240510111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Approximately 16.5% of the United States population met the diagnostic criteria for substance use disorder (SUD) in 2021, including 29.5 million individuals with alcohol use disorder (AUD). Individuals with AUD are at increased risk for malnutrition, and impairments in nutritional status in chronic alcohol users can be detrimental to physical and emotional well-being. Furthermore, these nutritional deficiencies could contribute to the never-ending cycle of alcoholism and related pathologies, thereby jeopardizing the prospects of recovery and treatment outcomes. Improving nutritional status in AUD patients may not only compensate for general malnutrition but could also reduce adverse symptoms during recovery, thereby promoting abstinence and successful treatment of AUD. In this review, we briefly summarize alterations in the nutritional status of people with addictive disorders, in addition to the underlying neurobiological mechanisms and clinical implications regarding the role of nutritional intervention in recovery from alcohol use disorder.
Collapse
Affiliation(s)
- Brooke White
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Sunil Sirohi
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|
12
|
Pince CL, Whiting KE, Wang T, Lékó AH, Farinelli LA, Cooper D, Farokhnia M, Vendruscolo LF, Leggio L. Role of aldosterone and mineralocorticoid receptor (MR) in addiction: A scoping review. Neurosci Biobehav Rev 2023; 154:105427. [PMID: 37858908 PMCID: PMC10865927 DOI: 10.1016/j.neubiorev.2023.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Preclinical and human studies suggest a role of aldosterone and mineralocorticoid receptor (MR) in addiction. This scoping review aimed to summarize (1) the relationship between alcohol and other substance use disorders (ASUDs) and dysfunctions of the aldosterone and MR, and (2) how pharmacological manipulations of MR may affect ASUD-related outcomes. Our search in four databases (MEDLINE, Embase, Web of Science, and Cochrane Library) indicated that most studies focused on the relationship between aldosterone, MR, and alcohol (n = 30), with the rest focused on opioids (n = 5), nicotine (n = 9), and other addictive substances (n = 9). Despite some inconsistencies, the overall results suggest peripheral and central dysregulations of aldosterone and MR in several species and that these dysregulations depended on the pattern of drug exposure and genetic factors. We conclude that MR antagonism may be a promising target in ASUD, yet future studies are warranted.
Collapse
Affiliation(s)
- Claire L Pince
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Kimberly E Whiting
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Tammy Wang
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - András H Lékó
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa A Farinelli
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Diane Cooper
- Office of Research Services, Division of Library Services, National Institutes of Health, Building 10, Bethesda, MD 20892, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Leandro F Vendruscolo
- Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA.
| |
Collapse
|
13
|
Richardson RS, Sulima A, Rice KC, Kucharczk JA, Janda KD, Nisbett KE, Koob GF, Vendruscolo LF, Leggio L. Pharmacological GHSR (ghrelin receptor) blockade reduces alcohol binge-like drinking in male and female mice. Neuropharmacology 2023; 238:109643. [PMID: 37369277 PMCID: PMC10513123 DOI: 10.1016/j.neuropharm.2023.109643] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Ghrelin is a peptide that is produced by endocrine cells that are primarily localized in the stomach. Ghrelin receptors (GHSR) are expressed in the brain and periphery. Preclinical and clinical studies support a role for ghrelin in alcohol drinking and seeking. The GHSR has been suggested to be a potential pharmacotherapeutic target for alcohol use disorder (AUD). However, the role of the ghrelin system and its potential modulation by biological sex on binge-like drinking has not been comprehensively investigated. The present study tested six GHSR antagonists in an alcohol binge-like drinking procedure in male and female mice. Systemic administration of the GHSR antagonists JMV2959, PF-5190457, PF-6870961, and HM-04 reduced alcohol intake in both male and female mice. YIL-781 decreased intake in males, and LEAP2 (likely peripherally restricted) did not reduce intake in mice of either sex. We also administered LEAP2 and JMV2959 intracerebroventricularly to investigate whether the effects of GHSR blockade on alcohol intake are mediated by central receptors. The central administration of LEAP2 and JMV2959 decreased alcohol intake, particularly in high-drinking animals. Finally, in a preliminary experiment, an anti-ghrelin vaccine was examined for its potential effect on binge-like drinking and had no effect. In all experiments, there was a lack of meaningful sex differences. These findings suggest that central GHSR mediates binge-like alcohol intake. These data reveal novel pharmacological compounds with translational potential in the treatment of AUD and provide further evidence of the GHSR as a potential treatment target for AUD.
Collapse
Affiliation(s)
- Rani S Richardson
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; University of North Carolina School of Medicine MD/PhD Program, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Agnieszka Sulima
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Kenner C Rice
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Jed A Kucharczk
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, WIRM Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Khalin E Nisbett
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Graduate Program in Neuroscience, Graduate College, University of Illinois Chicago, Chicago, IL, USA
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
14
|
Merritt CR, Garcia EJ, Brehm VD, Fox RG, Moeller FG, Anastasio NC, Cunningham KA. Ghrelin receptor antagonist JMV2959 blunts cocaine and oxycodone drug-seeking, but not self-administration, in male rats. Front Pharmacol 2023; 14:1268366. [PMID: 37795028 PMCID: PMC10545966 DOI: 10.3389/fphar.2023.1268366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
The drug overdose crisis has spawned serious health consequences, including the increased incidence of substance use disorders (SUDs), conditions manifested by escalating medical and psychological impairments. While medication management is a key adjunct in SUD treatment, this crisis has crystallized the need to develop additional therapeutics to facilitate extended recovery from SUDs. The "hunger hormone" ghrelin acts by binding to the growth hormone secretagogue receptor 1α (GHS1αR) to control homeostatic and hedonic aspects of food intake and has been implicated in the mechanisms underlying SUDs. Preclinical studies indicate that GHS1αR antagonists and inverse agonists suppress reward-related signaling associated with cocaine and opioids. In the present study, we found that the GHS1αR antagonist JMV2959 was efficacious to suppress both cue-reinforced cocaine and oxycodone drug-seeking, but not cocaine or oxycodone self-administration in male Sprague-Dawley rats. These data suggest a role of the ghrelin-GHS1αR axis in mediating overlapping reward-related aspects of cocaine and oxycodone and premises the possibility that a GHS1αR antagonist may be a valuable therapeutic strategy for relapse vulnerability in SUDs.
Collapse
Affiliation(s)
- Christina R. Merritt
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Erik J. Garcia
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Victoria D. Brehm
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Robert G. Fox
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - F. Gerard Moeller
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Departments of Psychiatry and Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Noelle C. Anastasio
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Kathryn A. Cunningham
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
15
|
Agtas-Ertan E, Dogan O, Ilhan I. Ghrelin and impulsivity relationship in alcohol-dependent patients and healthy individuals. Alcohol Alcohol 2023; 58:497-504. [PMID: 37154613 DOI: 10.1093/alcalc/agad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/10/2023] Open
Abstract
AIMS Abundant research indicates that ghrelin hormone levels are associated with alcohol use and addiction. One of the mediators of this association may be impulsivity, which is one of the common traits observed in alcohol addiction and some eating disorders. This study evaluated participants with alcohol dependency and healthy volunteers to determine whether trait impulsivity and ghrelin levels are associated. METHODS This study analyzed trait impulsivity scores and fasting serum ghrelin levels of 44 males with alcohol dependency and 48 healthy male participants. The Barratt Impulsiveness Scale and the UPPS Impulsive Behaviour Scale (UPPS) were used to measure trait impulsivity levels. Penn Alcohol Craving Scale and Yale Brown Obsessive Compulsive Drinking Scale for heavy drinking were used to assess craving at the baseline and after the detoxification period. RESULTS Alcohol-dependent patients' fasting ghrelin levels were significantly higher than that of healthy participants. Ghrelin plasma levels were positively correlated with UPPS total impulsivity scores and sensation-seeking among healthy individuals. In alcohol-dependent participants, there was a positive correlation between UPPS urgency scores obtained at the baseline and fasting ghrelin levels before and after the detoxification period. CONCLUSIONS Ghrelin-impulsivity relationship could be observed in certain dimensions of impulsivity in both alcohol-dependent and healthy individuals and even independent of the effect of alcohol. Although the associated impulsivity dimensions differ in different groups, the results are parallel to other studies in terms of demonstrating the relationship between ghrelin and impulsivity.
Collapse
Affiliation(s)
- Ece Agtas-Ertan
- Department of Psychiatry, Yozgat City Hospital, Yozgat 66100, Turkey
| | - Ozlem Dogan
- Department of Biochemistry, Ankara University Cebeci Hospital, Tip Fakultesi Cad., Ankara 06620, Turkey
| | - Inci Ilhan
- Department of Psychiatry, Ankara University Cebeci Hospital, Tip Fakultesi Cad., Ankara 06620, Turkey
| |
Collapse
|
16
|
Olsson Y, Hodzic K, Wass C, Lidö H, Stangl BL, O'Connor S, Plawecki MH, Ramchandani VA, Söderpalm B, Jerlhag E. Free-access intravenous alcohol self-administration in social drinkers and individuals with alcohol use disorder: Evaluation of relationships with phosphatidylethanol and self-reported alcohol consumption. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1453-1466. [PMID: 37331818 DOI: 10.1111/acer.15132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND The free-access (FA) intravenous alcohol self-administration (IV-ASA) paradigm is an experimental approach that can identify modulators of alcohol consumption in humans. Moreover, the outcome measures of IV-ASA paradigms are associated with self-reported alcohol intake using the timeline follow-back method (TLFB). To evaluate how FA IV-ASA reflects drinking in real life, we examined the relationship between an objective marker of recent alcohol intake, phosphatidylethanol in blood (B-PEth), and TLFB and measures obtained during IV-ASA in individuals with alcohol use disorder (AUD) and social drinkers (SD). We also explored the associations between these measures and gut-brain peptides involved in AUD pathophysiology. METHODS Thirty-eight participants completed a laboratory session in which they self-administered alcohol intravenously. The safety limit was 200 mg%, and main outcomes were mean and peak breath alcohol concentrations (BrAC). Blood samples were drawn prior to IV-ASA and subjective alcohol effects were rated during the experiment. RESULTS The study sample comprised 24 SD and 14 participants with DSM-5 mild AUD. Although BrACs were not associated with B-PEth or TLFB in the full sample or AUD subgroup, there was an association with TLFB in SD. In both subgroups, BrACs were associated with alcohol craving but with differential timing. Total ghrelin levels were higher in AUD participants than in SD. CONCLUSIONS No associations between B-PEth levels and achieved BrACs were observed in the mild AUD group, the SD group, or the full sample. The ability for FA IV-ASA to reflect recent drinking was confirmed only for TLFB in SD, whereas there were no associations within the smaller subsample of participants with mild AUD or in the full sample. Further studies that include a larger AUD sample are warranted. The association of BrACs with craving for alcohol suggests that the IV-ASA method may be useful for assessing interventions that target craving. This could be explored by using the FA IV-ASA model to evaluate the effects on craving of approved pharmacotherapies for AUD.
Collapse
Affiliation(s)
- Yasmin Olsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kenan Hodzic
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Caroline Wass
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helga Lidö
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bethany L Stangl
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Sean O'Connor
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Martin H Plawecki
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Vijay A Ramchandani
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Haass-Koffler CL, Magill M, Cannella N, Brown JC, Aoun EG, Cioe PA, Sinha R, Swift RM, Ciccocioppo R, Leggio L. Mifepristone as a pharmacological intervention for stress-induced alcohol craving: A human laboratory study. Addict Biol 2023; 28:e13288. [PMID: 37369125 PMCID: PMC10313137 DOI: 10.1111/adb.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/29/2023]
Abstract
Preclinical and clinical work suggests that mifepristone may be a viable treatment for alcohol use disorder (AUD). This was a Phase 1/2, outpatient, cross-over, randomized, double-blind, placebo-controlled trial with non-treatment-seeking individuals with AUD (N = 32). We assessed safety, alcohol craving and consumption, after 1-week mifepristone 600 mg/day administration, in a human laboratory study comprised of a single oral yohimbine administration (32.4 mg), a cue-reactivity procedure and alcohol self-administration. Safety was monitored by adverse events and hemodynamic parameters, alcohol craving by alcohol craving questionnaire and cue-induced saliva output. During the alcohol self-administration, we assessed alcohol pharmacokinetics, subjective effects and consumption. Outcomes were assessed using Generalized Estimating Equations and mediation analysis. Mild-moderate adverse events were reported in both conditions. There was no statistically significant difference between mifepristone and placebo in alcohol pharmacokinetics and subjective effects. Furthermore, blood pressure increased only in the placebo condition after the stress-induced laboratory procedures. Mifepristone, compared to placebo, significantly reduced alcohol craving and increased cortisol levels. Mifepristone-induced cortisol increase was not a mediator of alcohol craving. Mifepristone, compared to placebo, did not reduce alcohol consumption in the laboratory or in a naturalistic setting. This study successfully translated a developed preclinical procedure to a human laboratory study, confirming the safety of mifepristone in people with AUD and providing evidence to its role in reducing alcohol craving under stress procedures. The lack of effects on alcohol drinking may be related to the selection of non-treatment seekers and suggests future treatment-oriented trials should investigate mifepristone in people with AUD.
Collapse
Affiliation(s)
- Carolina L. Haass-Koffler
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Providence RI, Brown University
| | - Molly Magill
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
| | | | - Joshua C. Brown
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Elie G. Aoun
- Division of Law, Ethics and Psychiatry, Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Patricia A. Cioe
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
| | - Rajita Sinha
- Yale Stress Center, Department of Psychiatry, Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT
| | - Robert M. Swift
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Providence Veterans Affairs Medical Center, Providence, RI, USA
| | | | - Lorenzo Leggio
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, NIDA IRP and NIAAA DICBR, Baltimore and Bethesda, MD, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Division of Addiction Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
18
|
Zhou Y, Stubbs RJ, Finlayson G. A neurocognitive perspective on the relationship between exercise and reward: Implications for weight management and drug addiction. Appetite 2023; 182:106446. [PMID: 36592797 DOI: 10.1016/j.appet.2022.106446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/24/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
The impact of exercise on food reward is increasingly being discussed as an interplay between executive function (EF), homeostasis and mechanisms promoting or undermining intentional behaviour change. Integrating current knowledge of neurocognitive processes encompassing cognitive and affective networks within an energy balance framework will provide a more comprehensive account. Reward circuitry affected by recreational drugs and food overlap. Therefore the underlying processes explaining changes in drug-taking behaviour may offer new insights into how exercise affects the reward value of recreational drugs and food. EF is important for successful self-regulation, and training EF may boost inhibitory control in relation to food- and drug-related reward. Preclinical and clinical observations suggest that reward-seeking can transfer within and between categories of reward. This may have clinical implications beyond exercise improving metabolic health in people with obesity to understanding therapeutic responses to exercise in people with neurocognitive deficits in non-food reward-based decision making such as drug dependence.
Collapse
Affiliation(s)
- Yu Zhou
- Appetite Control & Energy Balance Research Group, School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom; School of Psychology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - R James Stubbs
- Appetite Control & Energy Balance Research Group, School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Graham Finlayson
- Appetite Control & Energy Balance Research Group, School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
19
|
Ralevski E, Horvath TL, Shanabrough M, Newcomb J, Pisani E, Petrakis I. Ghrelin Predicts Stimulant and Sedative Effects of Alcohol in Heavy Drinkers. Alcohol Alcohol 2023; 58:100-106. [PMID: 36382470 PMCID: PMC9830489 DOI: 10.1093/alcalc/agac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
AIM The aim of this study was to examine the relationship between ghrelin levels and the subjective effects of alcohol in heavy drinkers, and to compare them to healthy controls. METHODS Ghrelin levels were collected as part of two laboratory studies. Both groups received either IV infusion of saline or high dose of alcohol (100 mg%). In the study of heavy drinkers, ghrelin was gathered on all subjects, but data was analyzed only for participants who received placebo (N=12). Healthy controls (N=20) came from another study that collected data on family history. Ghrelin levels and measures of alcohol effects (BAES, VAS, NDS, YCS [see manuscript for details]) were collected at 4 timepoints: baseline, before infusion, during infusion and after infusion. RESULTS IV alcohol significantly reduced ghrelin levels and higher fasting ghrelin levels were associated with more intense subjective alcohol effects. There were no differences in fasting ghrelin levels or subjective effects between heavy drinkers and controls. However, while both groups showed similar decline in ghrelin levels following alcohol infusion, on the placebo day, ghrelin levels in the healthy subjects increased significantly and exponentially over time while for the heavy drinkers ghrelin levels remained flat. CONCLUSIONS Our findings support the role of ghrelin in reward mechanisms for alcohol. Contrary to others, we found no differences in fasting ghrelin levels or subjective experiences of alcohol between heavy drinkers and healthy controls. However, the group differences on the IV placebo day may be a possible indication of ghrelin abnormalities in heavy drinkers.
Collapse
Affiliation(s)
- Elizabeth Ralevski
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Veteran Affairs, VA Connecticut Healthcare System, West Haven, CT, USA
- Mental Illness Research and Clinical Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Tamas L Horvath
- Program of Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven 06520, CT, USA
- Department of Obstetrics/Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven 06520, CT, USA
| | - Marya Shanabrough
- Program of Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven 06520, CT, USA
| | - Jenelle Newcomb
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Veteran Affairs, VA Connecticut Healthcare System, West Haven, CT, USA
- Mental Illness Research and Clinical Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Emily Pisani
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Veteran Affairs, VA Connecticut Healthcare System, West Haven, CT, USA
- Mental Illness Research and Clinical Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Ismene Petrakis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Veteran Affairs, VA Connecticut Healthcare System, West Haven, CT, USA
- Mental Illness Research and Clinical Center, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
20
|
Haass-Koffler CL, Magill M, Cannella N, Brown JC, Aoun EG, Cioe PA, Sinha R, Swift RM, Ciccocioppo R, Leggio L. Mifepristone as a pharmacological intervention for stress-Induced alcohol craving: a translational crossover randomized trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.02.23284122. [PMID: 36711869 PMCID: PMC9882427 DOI: 10.1101/2023.01.02.23284122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Preclinical and clinical work suggests that mifepristone (glucocorticoid receptor antagonist), may be a viable treatment for alcohol use disorder (AUD). The aim of this work was to translate our preclinical mifepristone study using yohimbine (α2 receptor antagonist) stress-induced reinstatement of alcohol-seeking to a clinical setting. This was a Phase 1/2, outpatient, cross-over, randomized, double-blind, placebo-controlled trial with non-treatment-seeking individuals with AUD ( N =32). We investigated the safety, alcohol craving and consumption after oral administration of mifepristone (600mg daily for a week) in a human laboratory study comprised of administration of yohimbine in a cue-reactivity procedure and alcohol self-administration. Outcomes were assessed using Generalized Estimating Equations and mediation and moderation analyses assessed mechanisms of action and precision medicine targets. We did not observe serious adverse events related to the study drugs or study procedure and mild to moderate non-serious adverse events were reported by both study conditions. Also, there was no statistically-significant difference between the mifepristone and placebo in the hemodynamic response, alcohol subjective effects and pharmacokinetics parameters. Mifepristone significantly reduced alcohol craving and increased cortisol levels. Mifepristone-induced cortisol increase was not a mediator of alcohol craving. Moderation analysis with family history density of AUD (FHDA) and mifepristone, suggested that reduced craving was present in individuals with low , but not high FHDA. Mifepristone, compared to placebo, did not reduce alcohol consumption in the laboratory or in a naturalistic setting. This study successfully translated a preclinical paradigm to a human laboratory study confirming safety, tolerability and efficacy of mifepristone in an alcohol paradigm. Mediation analysis showed that the effect of mifepristone on craving was not related to mifepristone-induced increases in cortisol and moderation of FHDA suggested the importance of evaluating AUD endophenotypes for pharmacotherapies. Clinical trial registration Clinicaltrials.gov ; NCT02243709. IND/FDA 121984, mifepristone and yohimbine (Holder: Haass-Koffler).
Collapse
|
21
|
Jerlhag E. Animal studies reveal that the ghrelin pathway regulates alcohol-mediated responses. Front Psychiatry 2023; 14:1050973. [PMID: 36970276 PMCID: PMC10030715 DOI: 10.3389/fpsyt.2023.1050973] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Alcohol use disorder (AUD) is often described as repeated phases of binge drinking, compulsive alcohol-taking, craving for alcohol during withdrawal, and drinking with an aim to a reduce the negative consequences. Although multifaceted, alcohol-induced reward is one aspect influencing the former three of these. The neurobiological mechanisms regulating AUD processes are complex and one of these systems is the gut-brain peptide ghrelin. The vast physiological properties of ghrelin are mediated via growth hormone secretagogue receptor (GHSR, ghrelin receptor). Ghrelin is well known for its ability to control feeding, hunger, and metabolism. Moreover, ghrelin signaling appears central for alcohol-mediated responses; findings reviewed herein. In male rodents GHSR antagonism reduces alcohol consumption, prevents relapse drinking, and attenuates the motivation to consume alcohol. On the other hand, ghrelin increases the consumption of alcohol. This ghrelin-alcohol interaction is also verified to some extent in humans with high alcohol consumption. In addition, either pharmacological or genetic suppression of GHSR decreases several alcohol-related effects (behavioral or neurochemical). Indeed, this suppression blocks the alcohol-induced hyperlocomotion and dopamine release in nucleus accumbens as well as ablates the alcohol reward in the conditioned place preference model. Although not fully elucidated, this interaction appears to involve areas central for reward, such as the ventral tegmental area (VTA) and brain nodes targeted by VTA projections. As reviewed briefly, the ghrelin pathway does not only modulate alcohol-mediated effects, it regulates reward-related behaviors induced by addictive drugs. Although personality traits like impulsivity and risk-taking behaviors are common in patients with AUD, the role of the ghrelin pathway thereof is unknown and remains to be studied. In summary, the ghrelin pathway regulates addiction processes like AUD and therefore the possibility that GHSR antagonism reduces alcohol or drug-taking should be explored in randomized clinical trials.
Collapse
|
22
|
Ray LA, Nieto SJ, Grodin EN. Translational models of addiction phenotypes to advance addiction pharmacotherapy. Ann N Y Acad Sci 2023; 1519:118-128. [PMID: 36385614 PMCID: PMC10823887 DOI: 10.1111/nyas.14929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alcohol and substance use disorders are heterogeneous conditions with limited effective treatment options. While there have been prior attempts to classify addiction subtypes, they have not been translated into clinical practice. In an effort to better understand heterogeneity in psychiatric disorders, the National Institute for Mental Health Research Domain Criteria (RDoC) has challenged scientists to think beyond diagnostic symptoms and to consider the underlying features of psychopathology from a neuroscience-based framework. The field of addiction has grappled with this approach by considering several key constructs with the potential to capture RDoC domains. This critical review will focus on the efforts to apply translational models of addiction phenomenology in human clinical samples, including their relative strengths and weaknesses. Opportunities for forward and reverse translation are also discussed. Deep behavioral phenotyping using neuroscience-informed batteries shows promise for a better understanding of the clinical neuroscience of addiction and advancing precision medicine for alcohol and substance use disorders.
Collapse
Affiliation(s)
- Lara A. Ray
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
- Shirley & Stefan Hatos Center for Neuropharmacology, University of California at Los Angeles, Los Angeles, CA, USA
- Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA
| | - Steven J. Nieto
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Erica N. Grodin
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
23
|
Kharbanda KK, Farokhnia M, Deschaine SL, Bhargava R, Rodriguez-Flores M, Casey CA, Goldstone AP, Jerlhag E, Leggio L, Rasineni K. Role of the ghrelin system in alcohol use disorder and alcohol-associated liver disease: A narrative review. Alcohol Clin Exp Res 2022; 46:2149-2159. [PMID: 36316764 PMCID: PMC9772086 DOI: 10.1111/acer.14967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Unhealthy alcohol consumption is a global health problem. Adverse individual, public health, and socioeconomic consequences are attributable to harmful alcohol use. Epidemiological studies have shown that alcohol use disorder (AUD) and alcohol-associated liver disease (ALD) are the top two pathologies among alcohol-related diseases. Consistent with the major role that the liver plays in alcohol metabolism, uncontrolled drinking may cause significant damage to the liver. This damage is initiated by excessive fat accumulation in the liver, which can further progress to advanced liver disease. The only effective therapeutic strategies currently available for ALD are alcohol abstinence or liver transplantation. Any molecule with dual-pronged effects at the central and peripheral organs controlling addictive behaviors and associated metabolic pathways are a potentially important therapeutic target for treating AUD and ALD. Ghrelin, a hormone primarily derived from the stomach, has such properties, and regulates both behavioral and metabolic functions. In this review, we highlight recent advances in understanding the peripheral and central functions of the ghrelin system and its role in AUD and ALD pathogenesis. We first discuss the correlation between blood ghrelin concentrations and alcohol use or abstinence. Next, we discuss the role of ghrelin in alcohol-seeking behaviors and finally its role in the development of fatty liver by metabolic regulations and organ crosstalk. We propose that a better understanding of the ghrelin system could open an innovative avenue for improved treatments for AUD and associated medical consequences, including ALD.
Collapse
Affiliation(s)
- Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sara L. Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Raghav Bhargava
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Marcela Rodriguez-Flores
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Carol A. Casey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anthony P. Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, Rhode Island, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
24
|
Wetzel L, Pourbaix M, Riegler A, Pfeifer AM, Reinhard I, Hoffmann S, Vollstädt-Klein S, Kiefer F, Sommer W, Bumb JM, Bach P, Koopmann A. G-CuP: the effect of a forced oral glucose intake on alcohol craving and mesolimbic cue reactivity in alcohol dependence-study protocol of a randomized, double-blind, placebo-controlled crossover study. Trials 2022; 23:693. [PMID: 35986409 PMCID: PMC9389768 DOI: 10.1186/s13063-022-06626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple studies indicate that a lower plasma level of the acetylated form of the appetite-regulating hormone ghrelin and higher plasma levels of insulin lead to a reduction in subjective alcohol craving and a reduced mesolimbic cue reactivity in functional magnetic resonance imaging (fMRI) when being exposed to alcohol-associated stimuli. The ghrelin level can physiologically be reduced by the induction of stomach distension and the ingestion of glucose or lipids. METHODS A total of 108 alcohol-dependent patients aged between 18 and 65 years are examined in the randomized, double-blind, placebo-controlled crossover study. After collecting demographic and psychometric data, participants take part in an alcohol exposure session. Afterwards, the participants go through the intervention condition (oral glucose intake) and the control condition (placebo intake) in a randomized order on two examination days. Blood samples are taken repeatedly (every 10 min) during the study course on both measuring days to determine changes in acetylated and total ghrelin and insulin plasma levels. In parallel, subjective alcohol craving after the glucose or placebo intake as the primary outcome is assessed using the Alcohol Urge Questionnaire (AUQ) and a visual analog scale (VAS). To examine the mesolimbic cue reactivity as the secondary outcome, a fMRI measurement is conducted while being exposed to alcohol-related stimuli. Appropriate statistical analysis will be used for the evaluation of the outcomes. DISCUSSION If successful, the results of this study could offer alcohol-dependent patients a new potential option for acute short-term reduction of alcohol craving and thus prevent relapses and prolong periods of abstinence in the long term. TRIAL REGISTRATION German Clinical Trials Register DRKS00022419 (UTN: U1111-1278-9428). Retrospectively registered on September 15, 2020.
Collapse
Affiliation(s)
- Lea Wetzel
- Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim/ Heidelberg University, Mannheim, Germany.
| | - Madeleine Pourbaix
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim/ Heidelberg University, Mannheim, Germany
| | - Alisa Riegler
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim/ Heidelberg University, Mannheim, Germany
- Feuerlein Centre on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Anna-Maria Pfeifer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim/ Heidelberg University, Mannheim, Germany
| | - Iris Reinhard
- Department of Biostatistics, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Sabine Hoffmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim/ Heidelberg University, Mannheim, Germany
- Department of Biostatistics, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim/ Heidelberg University, Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim/ Heidelberg University, Mannheim, Germany
- Feuerlein Centre on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Jan Malte Bumb
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim/ Heidelberg University, Mannheim, Germany
| | - Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim/ Heidelberg University, Mannheim, Germany
- Feuerlein Centre on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Anne Koopmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim/ Heidelberg University, Mannheim, Germany
- Feuerlein Centre on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Orellana E, Horvath N, Farokhnia M, Leggio L, Hajnal A. Changes in Plasma Ghrelin Levels Following Surgical and Non-Surgical Weight-Loss in Female Rats Predict Alcohol Use. Brain Res Bull 2022; 188:179-186. [PMID: 35901985 DOI: 10.1016/j.brainresbull.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/02/2022]
Abstract
The weight-loss surgery Roux-en Y gastric bypass (RYGB) is a relatively effective, long-term treatment option for patients with morbid obesity. However, accumulating clinical evidence suggests that patients receiving RYGB may be at increased risk of developing alcohol use disorder. This observation has been repeatedly supported by preclinical studies showing rodents increase intake of ethanol (EtOH) after RYGB, and has been further confirmed by human studies. A promising alternative to RYGB is sleeve gastrectomy (SG), which has resulted in decreased EtOH consumption in some rodent studies. The exact mechanism underlying the differential alcohol outcomes after RYGB versus SG has yet to be elucidated. However, the gut hormone ghrelin has emerged as a potential candidate from previous preclinical studies specific to RYGB surgeries and due to its action to stimulate food and alcohol intake and cravings. To directly assess changes in plasma ghrelin levels following weigh loss surgeries in the context of alcohol intake, 24 female rats were separated into three surgical groups receiving RYGB, SG, or Sham surgery followed by caloric restriction to produce adiposity matched controls (Sham-AM). Blood was drawn for fasted and fed plasma ghrelin (acyl and des-acyl) assays at multiple time points: while on a normal diet (ND), after 5-week exposure to a high fat diet (HFD), following surgery, and after a series of two-bottle alcohol choice test with increasing concentrations (2%, 4%, 6%, 8%) of EtOH. Consistent with previous observations, RYGB rats drank more EtOH than SG rats across all concentrations. As expected, fasted ghrelin levels were blunted after HFD feeding, compared to normal diet baseline. After RYGB, fasted ghrelin levels returned to higher levels while remained blunted after SG and Sham-AM. Fed acyl ghrelin levels were significantly increased to above "normal" levels after RYGB, but remain low after SG and Sham-AM. Given that post-RYGB acyl ghrelin levels are raised to a fasted state regardless of actual prandial status, we conclude that RYGB may results in a hormonal state reminiscence of a fasted state with the inability of feeding to inhibit ghrelin production, an effect which could potentially contribute to increased EtOH intake following the surgery. In contrast, following SG, ghrelin levels in rats remain consistent with the fed state regardless of prandial status, potentially explaining lower alcohol intake and lower risk of developing AUD.
Collapse
Affiliation(s)
- Elise Orellana
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences.
| | - Nelli Horvath
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
| | - Andras Hajnal
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| |
Collapse
|
26
|
Involvement of the ghrelin system in the maintenance and reinstatement of cocaine-motivated behaviors: a role of adrenergic action at peripheral β1 receptors. Neuropsychopharmacology 2022; 47:1449-1460. [PMID: 34923576 PMCID: PMC9206024 DOI: 10.1038/s41386-021-01249-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 12/30/2022]
Abstract
Cocaine addiction is a significant medical and public concern. Despite decades of research effort, development of pharmacotherapy for cocaine use disorder remains largely unsuccessful. This may be partially due to insufficient understanding of the complex biological mechanisms involved in the pathophysiology of this disorder. In the present study, we show that: (1) elevation of ghrelin by cocaine plays a critical role in maintenance of cocaine self-administration and cocaine-seeking motivated by cocaine-conditioned stimuli; (2) acquisition of cocaine-taking behavior is associated with the acquisition of stimulatory effects of cocaine by cocaine-conditioned stimuli on ghrelin secretion, and with an upregulation of ghrelin receptor mRNA levels in the ventral tegmental area (VTA); (3) blockade of ghrelin signaling by pretreatment with JMV2959, a selective ghrelin receptor antagonist, dose-dependently inhibits reinstatement of cocaine-seeking triggered by either cocaine or yohimbine in behaviorally extinguished animals with a history of cocaine self-administration; (4) JMV2959 pretreatment also inhibits brain stimulation reward (BSR) and cocaine-potentiated BSR maintained by optogenetic stimulation of VTA dopamine neurons in DAT-Cre mice; (5) blockade of peripheral adrenergic β1 receptors by atenolol potently attenuates the elevation in circulating ghrelin induced by cocaine and inhibits cocaine self-administration and cocaine reinstatement triggered by cocaine. These findings demonstrate that the endogenous ghrelin system plays an important role in cocaine-related addictive behaviors and suggest that manipulating and targeting this system may be viable for mitigating cocaine use disorder.
Collapse
|
27
|
Potretzke S, Lemieux A, Nakajima M, al'Absi M. Circulating ghrelin changes as a biomarker of the stress response and craving in abstinent smokers. Pharmacol Biochem Behav 2022; 218:173423. [PMID: 35750154 DOI: 10.1016/j.pbb.2022.173423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RATIONALE There has been growing interest in the role of ghrelin in stress and addiction. Ghrelin regulates central reward mechanisms by mediating the mesolimbic dopaminergic system. Stress also induces neurophysiological activations related to drug reward. However, the extent to which psychosocial stress is associated with changes in ghrelin levels has not been tested in individuals with nicotine dependency undergoing withdrawal, a condition known to induce stress-like symptoms. OBJECTIVES We investigated the association of stress-induced ghrelin, craving, and smoking lapse. METHODS Thirty-six smokers attended a laboratory session that included acute stress tasks during the initial phase of quitting. Self-report measures and biochemical samples were collected for the assessment of smoking status. Blood samples for the measurement of ghrelin and self-report measures of craving were collected multiple times throughout the session RESULTS: Multivariate analysis of variance controlling for gender found a significant main effect of sampling time and lapse group (p < 0.05). Ghrelin levels significantly increased over the pre-stress and post-stress periods (ps < 0.001), suggesting a delayed stress response. Those who lapsed during the study had higher ghrelin levels than those who were able to successfully abstain. A ghrelin stress response was calculated and a significant association was found between this response and craving, which changed across time points (ps < 0.008). CONCLUSIONS The results of this study demonstrate that ghrelin is sensitive to acute manipulation of stress and that there is potential usefulness for ghrelin as a marker of stress, craving, and smoking lapse.
Collapse
Affiliation(s)
- Sheena Potretzke
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 9997239, USA
| | - Andrine Lemieux
- University of Minnesota School of Medicine, 1035 University Drive, Duluth, MN 55812-2487, USA
| | - Motohiro Nakajima
- University of Minnesota School of Medicine, 1035 University Drive, Duluth, MN 55812-2487, USA
| | - Mustafa al'Absi
- University of Minnesota School of Medicine, 1035 University Drive, Duluth, MN 55812-2487, USA.
| |
Collapse
|
28
|
Involvement of the ghrelin system in the maintenance of oxycodone self-administration: converging evidence from endocrine, pharmacologic and transgenic approaches. Mol Psychiatry 2022; 27:2171-2181. [PMID: 35064236 PMCID: PMC9133122 DOI: 10.1038/s41380-022-01438-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
Abstract
Ghrelin, an orexigenic hormone, has emerged as a critical biological substrate implicated in drug reward. However, the response of the ghrelin system to opioid-motivated behaviors and the role of ghrelin in oxycodone self-administration remain to be studied. Here, we investigated the reciprocal interactions between the endogenous ghrelin system and oxycodone self-administration behaviors in rats and the role of the ghrelin system in brain stimulation reward (BSR) driven by optogenetic stimulation of midbrain reward circuits in mice. Oxycodone self-administration significantly elevated plasma ghrelin, des-acyl ghrelin and growth hormone and showed no effect on plasma LEAP2, a newly identified endogenous ghrelin receptor (GHS-R1a) antagonist. Oxycodone self-administration produced significant decreases in plasma gastric inhibitory polypeptide and insulin. Acquisition of oxycodone self-administration significantly upregulated GHS-R1a mRNA levels in dopamine neurons in the ventral tegmental area (VTA), a brain region critical in drug reward. Pretreatment with JMV2959, a selective GHS-R1a antagonist, dose-dependently reduced oxycodone self-administration and decreased the breakpoint for oxycodone under a progressive ratio reinforcement in Long-Evans rats. The inhibitory effects of JMV2959 on oxycodone self-administration is selectively mediated by GHS-R1a as JMV2959 showed a similar effect in Wistar wildtype but not in GHS-R knockout rats. JMV2959 pretreatment significantly inhibited BSR driven by selective stimulation of VTA dopamine neurons, but not by stimulation of striatal GABA neurons projecting to the VTA in mice. These findings suggest that elevation of ghrelin signaling by oxycodone or oxycodone-associated stimuli is a causal process by which oxycodone motivates oxycodone drug-taking and targeting the ghrelin system may be a viable treatment approach for opioid use disorders.
Collapse
|
29
|
Keller BN, Hajnal A, Browning KN, Arnold AC, Silberman Y. Involvement of the Dorsal Vagal Complex in Alcohol-Related Behaviors. Front Behav Neurosci 2022; 16:801825. [PMID: 35330845 PMCID: PMC8940294 DOI: 10.3389/fnbeh.2022.801825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
The neurobiological mechanisms that regulate the development and maintenance of alcohol use disorder (AUD) are complex and involve a wide variety of within and between systems neuroadaptations. While classic reward, preoccupation, and withdrawal neurocircuits have been heavily studied in terms of AUD, viable treatment targets from this established literature have not proven clinically effective as of yet. Therefore, examination of additional neurocircuitries not classically studied in the context of AUD may provide novel therapeutic targets. Recent studies demonstrate that various neuropeptides systems are important modulators of alcohol reward, seeking, and intake behaviors. This includes neurocircuitry within the dorsal vagal complex (DVC), which is involved in the control of the autonomic nervous system, control of intake of natural rewards like food, and acts as a relay of interoceptive sensory information via interactions of numerous gut-brain peptides and neurotransmitter systems with DVC projections to central and peripheral targets. DVC neuron subtypes produce a variety of neuropeptides and transmitters and project to target brain regions critical for reward such as the mesolimbic dopamine system as well as other limbic areas important for the negative reinforcing and aversive properties of alcohol withdrawal such as the extended amygdala. This suggests the DVC may play a role in the modulation of various aspects of AUD. This review summarizes the current literature on neurotransmitters and neuropeptides systems in the DVC (e.g., norepinephrine, glucagon-like peptide 1, neurotensin, cholecystokinin, thyrotropin-releasing hormone), and their potential relevance to alcohol-related behaviors in humans and rodent models for AUD research. A better understanding of the role of the DVC in modulating alcohol related behaviors may lead to the elucidation of novel therapeutic targets for drug development in AUD.
Collapse
|
30
|
Gupta S, Mukhopadhyay S, Mitra A. Therapeutic potential of GHSR-1A antagonism in alcohol dependence, a review. Life Sci 2022; 291:120316. [PMID: 35016882 DOI: 10.1016/j.lfs.2022.120316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Growth hormone secretagogue receptor type 1A (GHSR-1A) is a functional receptor of orexigenic peptide ghrelin and is highly expressed in mesolimbic dopaminergic systems that regulate incentive value of artificial reward in substance abuse. Interestingly, GHSR-1A has also shown ligand-independent constitutive activity. Alcohol use disorder (AUD) is one of the growing concerns worldwide as it involves complex neuro-psycho-endocrinological interactions. Positive correlation of acylated ghrelin and alcohol-induced human brain response in the right and left ventral striatum are evident. In the last decade, the beneficial effects of ghrelin receptor (GHSR-1A) antagonism to suppress artificial reward circuitries and induce self-control for alcohol consumption have drawn significant attention from researchers. In this updated review, we summarize the available recent preclinical, clinical, and experimental data to discuss functional, molecular actions of central ghrelin-GHSR-1A signaling in different craving levels for alcohol as well as to promote "GHSR-1A antagonism" as one of the potential therapies in early abstinence.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman 713 347, West Bengal, India
| | - Sanchari Mukhopadhyay
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Hombegowda Nagar, Bengaluru 560029, India
| | - Arkadeep Mitra
- Department of Zoology, City College, 102/1, Raja Rammohan Sarani, Kolkata 700 009, West Bengal, India.
| |
Collapse
|
31
|
Abstract
Alcohol use disorder (AUD) is a highly prevalent but severely under-treated disorder, with only three widely-approved pharmacotherapies. Given that AUD is a very heterogeneous disorder, it is unlikely that one single medication will be effective for all individuals with an AUD. As such, there is a need to develop new, more effective, and diverse pharmacological treatment options for AUD with the hopes of increasing utilization and improving care. In this qualitative literature review, we discuss the efficacy, mechanism of action, and tolerability of approved, repurposed, and novel pharmacotherapies for the treatment of AUD with a clinical perspective. Pharmacotherapies discussed include: disulfiram, acamprosate, naltrexone, nalmefene, topiramate, gabapentin, varenicline, baclofen, sodium oxybate, aripiprazole, ondansetron, mifepristone, ibudilast, suvorexant, prazosin, doxazosin, N-acetylcysteine, GET73, ASP8062, ABT-436, PF-5190457, and cannabidiol. Overall, many repurposed and novel agents discussed in this review demonstrate clinical effectiveness and promise for the future of AUD treatment. Importantly, these medications also offer potential improvements towards the advancement of precision medicine and personalized treatment for the heterogeneous AUD population. However, there remains a great need to improve access to treatment, increase the menu of approved pharmacological treatments, and de-stigmatize and increase treatment-seeking for AUD.
Collapse
|
32
|
Tufvesson-Alm M, Shevchouk OT, Jerlhag E. Insight into the role of the gut-brain axis in alcohol-related responses: Emphasis on GLP-1, amylin, and ghrelin. Front Psychiatry 2022; 13:1092828. [PMID: 36699502 PMCID: PMC9868418 DOI: 10.3389/fpsyt.2022.1092828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Alcohol use disorder (AUD) contributes substantially to global morbidity and mortality. Given the heterogenicity of this brain disease, available pharmacological treatments only display efficacy in sub-set of individuals. The need for additional treatment options is thus substantial and is the goal of preclinical studies unraveling neurobiological mechanisms underlying AUD. Although these neurobiological processes are complex and numerous, one system gaining recent attention is the gut-brain axis. Peptides of the gut-brain axis include anorexigenic peptide like glucagon-like peptide-1 (GLP-1) and amylin as well as the orexigenic peptide ghrelin. In animal models, agonists of the GLP-1 or amylin receptor and ghrelin receptor (GHSR) antagonists reduce alcohol drinking, relapse drinking, and alcohol-seeking. Moreover, these three gut-brain peptides modulate alcohol-related responses (behavioral and neurochemical) in rodents, suggesting that the alcohol reduction may involve a suppression of alcohol's rewarding properties. Brain areas participating in the ability of these gut-brain peptides to reduce alcohol-mediated behaviors/neurochemistry involve those important for reward. Human studies support these preclinical studies as polymorphisms of the genes encoding for GLP-1 receptor or the ghrelin pathway are associated with AUD. Moreover, a GLP-1 receptor agonist decreases alcohol drinking in overweight patients with AUD and an inverse GHSR agonist reduces alcohol craving. Although preclinical and clinical studies reveal an interaction between the gut-brain axis and AUD, additional studies should explore this in more detail.
Collapse
Affiliation(s)
- Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olesya T Shevchouk
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
33
|
Deschaine SL, Farokhnia M, Gregory-Flores A, Zallar LJ, You ZB, Sun H, Harvey DM, Marchette RCN, Tunstall BJ, Mani BK, Moose JE, Lee MR, Gardner E, Akhlaghi F, Roberto M, Hougland JL, Zigman JM, Koob GF, Vendruscolo LF, Leggio L. A closer look at alcohol-induced changes in the ghrelin system: novel insights from preclinical and clinical data. Addict Biol 2022; 27:e13033. [PMID: 33908131 PMCID: PMC8548413 DOI: 10.1111/adb.13033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/16/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
Ghrelin is a gastric-derived peptide hormone with demonstrated impact on alcohol intake and craving, but the reverse side of this bidirectional link, that is, the effects of alcohol on the ghrelin system, remains to be fully established. To further characterize this relationship, we examined (1) ghrelin levels via secondary analysis of human laboratory alcohol administration experiments with heavy-drinking participants; (2) expression of ghrelin, ghrelin receptor, and ghrelin-O-acyltransferase (GOAT) genes (GHRL, GHSR, and MBOAT4, respectively) in post-mortem brain tissue from individuals with alcohol use disorder (AUD) versus controls; (3) ghrelin levels in Ghsr knockout and wild-type rats following intraperitoneal (i.p.) alcohol administration; (4) effect of alcohol on ghrelin secretion from gastric mucosa cells ex vivo and GOAT enzymatic activity in vitro; and (5) ghrelin levels in rats following i.p. alcohol administration versus a calorically equivalent non-alcoholic sucrose solution. Acyl- and total-ghrelin levels decreased following acute alcohol administration in humans, but AUD was not associated with changes in central expression of ghrelin system genes in post-mortem tissue. In rats, alcohol decreased acyl-ghrelin, but not des-acyl-ghrelin, in both Ghsr knockout and wild-type rats. No dose-dependent effects of alcohol were observed on acyl-ghrelin secretion from gastric mucosa cells or on GOAT acylation activity. Lastly, alcohol and sucrose produced distinct effects on ghrelin in rats despite equivalent caloric value. Our findings suggest that alcohol acutely decreases peripheral ghrelin concentrations in vivo, but not in proportion to alcohol's caloric value or through direct interaction with ghrelin-secreting gastric mucosal cells, the ghrelin receptor, or the GOAT enzyme.
Collapse
Affiliation(s)
- Sara L. Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adriana Gregory-Flores
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA,Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Lia J. Zallar
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA,Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Zhi-Bing You
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Hui Sun
- Clinical Core Laboratory, Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Deon M. Harvey
- Office of the Scientific Director, National Institute on Drug Abuse, Baltimore, Maryland, USA
| | - Renata C. N. Marchette
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Brendan J. Tunstall
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Bharath K. Mani
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jacob E. Moose
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA,Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - Mary R. Lee
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA
| | - Eliot Gardner
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - James L. Hougland
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA,Department of Chemistry, Syracuse University, Syracuse, New York, USA,BioInspired Syracuse, Syracuse University, Syracuse, New York, USA
| | - Jeffrey M. Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA,Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA,Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - George F. Koob
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Leandro F. Vendruscolo
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island, USA,Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA,Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
34
|
Masule MV, Rathod S, Agrawal Y, Patil CR, Nakhate KT, Ojha S, Goyal SN, Mahajan UB. Ghrelin mediated regulation of neurosynaptic transmitters in depressive disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100113. [PMID: 35782191 PMCID: PMC9240712 DOI: 10.1016/j.crphar.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Ghrelin is a peptide released by the endocrine cells of the stomach and the neurons in the arcuate nucleus of the hypothalamus. It modulates both peripheral and central functions. Although ghrelin has emerged as a potent stimulator of growth hormone release and as an orexigenic neuropeptide, the wealth of literature suggests its involvement in the pathophysiology of affective disorders including depression. Ghrelin exhibits a dual role through the advancement and reduction of depressive behavior with nervousness in the experimental animals. It modulates depression-related signals by forming neuronal networks with various neuropeptides and classical neurotransmitter systems. The present review emphasizes the integration and signaling of ghrelin with other neuromodulatory systems concerning depressive disorders. The role of ghrelin in the regulation of neurosynaptic transmission and depressive illnesses implies that the ghrelin system modulation can yield promising antidepressive therapies. Ghrelin is the orexigenic type of neuropeptide. It binds with the growth hormone secretagogue receptor (GHSR). GHSR is ubiquitously present in the various brain regions. Ghrelin is involved in the regulation of depression-related behavior. The review focuses on the neurotransmission and signaling of ghrelin in neuropsychiatric and depressive disorders.
Collapse
Affiliation(s)
- Milind V. Masule
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sumit Rathod
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Yogeeta Agrawal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Kartik T. Nakhate
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
- Corresponding author.
| | - Umesh B. Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
- Corresponding author.
| |
Collapse
|
35
|
Deschaine SL, Leggio L. From "Hunger Hormone" to "It's Complicated": Ghrelin Beyond Feeding Control. Physiology (Bethesda) 2022; 37:5-15. [PMID: 34964687 PMCID: PMC8742734 DOI: 10.1152/physiol.00024.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Discovered as a peptide involved in releasing growth hormone, ghrelin was initially characterized as the "hunger hormone." However, emerging research indicates that ghrelin appears to play an important part in relaying information regarding nutrient availability and value and adjusting physiological and motivational processes accordingly. These functions make ghrelin an interesting therapeutic candidate for metabolic and neuropsychiatric diseases involving disrupted nutrition that can further potentiate the rewarding effect of maladaptive behaviors.
Collapse
Affiliation(s)
- Sara L. Deschaine
- 1Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore and Bethesda, Maryland
| | - Lorenzo Leggio
- 1Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore and Bethesda, Maryland,2Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland,3Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island,4Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland,5Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
36
|
Goodyear K, Vasaturo-Kolodner TR, Kenna GA, Swift RM, Leggio L, Haass-Koffler CL. Alcohol-related changes in behaviors and characteristics from the baseline to the randomization session for treatment and non-treatment seeking participants with alcohol use disorder. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 47:760-768. [PMID: 34582281 PMCID: PMC8711071 DOI: 10.1080/00952990.2021.1961799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Participants who are enrolled in randomized controlled trials (RCTs) may be more motivated to change their behaviors after being enrolled in a study and that motivation may vary by treatment status. OBJECTIVES The objectives of this secondary analysis were to investigate if changes in alcohol-related behaviors/characteristics from the baseline to the randomization session differed overall and to assess those differences between non-treatment and treatment seeking individuals with alcohol use disorder (AUD). METHODS Our sample included participants from eight RCTs conducted at Brown University (N = 281, 34% female). To assess differences across alcohol-related behaviors/characteristics, we investigated changes in craving (obsessive compulsive drinking scale) and alcohol drinking (percent abstinent days, drinks per week (DPW) and percent heavy drinking days (HDD)) overall and between treatment status. RESULTS Results showed that there were baseline differences, such as increased AUD severity and craving for alcohol in treatment seeking participants (p's < .05) in the overall sample. Next, we showed that craving, DPW and HDD decreased and percent abstinent days increased from baseline to randomization (p's < .05). When controlling for treatment status and sociodemographic characteristics, treatment seeking, compared to non-treatment seeking participants, had a greater reduction in alcohol craving (p < .001) and a greater increase in percentage of drinking days (p < .01). CONCLUSIONS These findings demonstrated that alcohol-related behaviors and characteristics changed after enrollment. Severity, craving and drinking behaviors also differed between treatment-seeking status, which can potentially impact medication development stages for AUD such as clinical trial eligibility, enrollment and study outcomes.
Collapse
Affiliation(s)
- Kimberly Goodyear
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, RI, USA
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research; National Institutes of Health, Baltimore and Bethesda, MD, USA
| | - Talia R. Vasaturo-Kolodner
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
- Department of Neuroscience; Brown University, Providence, RI, USA
| | - George A. Kenna
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, RI, USA
| | - Robert M. Swift
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, RI, USA
- Veterans Affairs Medical Center, Providence, RI, USA
| | - Lorenzo Leggio
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research; National Institutes of Health, Baltimore and Bethesda, MD, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
- Veterans Affairs Medical Center, Providence, RI, USA
| | - Carolina L. Haass-Koffler
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, RI, USA
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research; National Institutes of Health, Baltimore and Bethesda, MD, USA
| |
Collapse
|
37
|
Kärkkäinen O, Farokhnia M, Klåvus A, Auriola S, Lehtonen M, Deschaine SL, Piacentino D, Abshire KM, Jackson SN, Leggio L. Effect of intravenous ghrelin administration, combined with alcohol, on circulating metabolome in heavy drinking individuals with alcohol use disorder. Alcohol Clin Exp Res 2021; 45:2207-2216. [PMID: 34590334 PMCID: PMC8642277 DOI: 10.1111/acer.14719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ghrelin may influence several alcohol-related behaviors in animals and humans by modulating central and/or peripheral biological pathways. The aim of this exploratory analysis was to investigate associations between ghrelin administration and the human circulating metabolome during alcohol exposure in nontreatment seeking, heavy drinking individuals with alcohol use disorder (AUD). METHODS We used serum samples from a randomized, crossover, double-blind, placebo-controlled human laboratory study with intravenous (IV) ghrelin or placebo infusion in two experiments. During each session, participants received a loading dose (3 µg/kg) followed by continuous infusion (16.9 ng/kg/min) of acyl ghrelin or placebo. The first experiment included an IV alcohol self-administration (IV-ASA) session and the second experiment included an IV alcohol clamp (IV-AC) session, both with the counterbalanced infusion of ghrelin or placebo. Serum metabolite profiles were analyzed from repeated blood samples collected during each session. RESULTS In both experiments, ghrelin infusion was associated with an altered serum metabolite profile, including significantly increased levels of cortisol (IV-ASA q-value = 0.0003 and IV-AC q < 0.0001), corticosterone (IV-ASA q = 0.0202 and IV-AC q < 0.0001), and glycochenodeoxycholic acid (IV-ASA q = 0.0375 and IV-AC q = 0.0013). In the IV-ASA experiment, ghrelin infusion increased levels of cortisone (q = 0.0352) and fatty acids 18:1 (q = 0.0406) and 18:3 (q = 0.0320). Moreover, in the IV-AC experiment, ghrelin infusion significantly increased levels of glycocholic acid (q < 0.0001) and phenylalanine (q = 0.0458). CONCLUSION IV ghrelin infusion, combined with IV alcohol administration, was associated with increases in the circulating metabolite levels of corticosteroids and glycine-conjugated bile acids, among other changes. Further research is needed to understand the role that metabolomic changes play in the complex interaction between ghrelin and alcohol.
Collapse
Affiliation(s)
- Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Sara L. Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
| | - Daria Piacentino
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, USA
| | - Kelly M. Abshire
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
| | - Shelley N. Jackson
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, USA
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
38
|
Lefere S, Onghena L, Vanlander A, van Nieuwenhove Y, Devisscher L, Geerts A. Bariatric surgery and the liver-Mechanisms, benefits, and risks. Obes Rev 2021; 22:e13294. [PMID: 34002452 DOI: 10.1111/obr.13294] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022]
Abstract
The prevalence of obesity and metabolic diseases such as type 2 diabetes and nonalcoholic fatty liver disease (NAFLD) has risen dramatically over the past decades. At present, bariatric surgery is the most effective treatment for this global health problem, through effects on food intake, gut hormone secretion, metabolic signaling pathways, and adipose tissue dysfunction. The liver occupies a central role in carbohydrate, protein, and lipid metabolism. Notably, a reduction in hepatic fat content and an improvement in hepatic insulin resistance are among the earliest beneficial effects of bariatric surgery, which has therefore emerged as an attractive treatment option for NAFLD. However, as the scope and popularity of weight loss surgery have expanded, new questions have arisen regarding its safety in patients with liver cirrhosis, the outcome of liver transplantation in patients with a history of bariatric surgery, and over incidental reports of liver failure following surgery. Studies in humans and rodents have also linked bariatric surgery to an increased risk of developing alcohol use disorder, a major risk factor for liver disease. This review integrates data from clinical and translational research to delineate both the beneficial impact of bariatric surgery on the liver and the potential risks involved.
Collapse
Affiliation(s)
- Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium.,Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Louis Onghena
- Department of Gastrointestinal Surgery, Ghent University, Ghent, Belgium.,Department of General and Hepatobiliary Surgery, Liver Transplantation Service, Ghent University, Ghent, Belgium
| | - Aude Vanlander
- Department of General and Hepatobiliary Surgery, Liver Transplantation Service, Ghent University, Ghent, Belgium
| | | | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Anja Geerts
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
A population-based investigation of the association between alcohol intake and serum total ghrelin concentrations among cigarette-smoking, non-alcohol-dependent male individuals. Drug Alcohol Depend 2021; 226:108835. [PMID: 34214881 PMCID: PMC8355123 DOI: 10.1016/j.drugalcdep.2021.108835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Ghrelin plays significant roles in regulating appetite, food intake, and metabolism. Furthermore, the ghrelin system is increasingly being studied in relation to alcohol seeking behaviors. To this end, it is important to understand the possible effects of alcohol intake on the ghrelin system. The aim of the present study was to investigate the association between alcohol drinking and circulating ghrelin levels in a large sample of cigarette-smoking, non-alcohol-dependent male individuals. METHODS We utilized data from two nested case-control studies (study A, n = 807; study B, n = 976) based within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) trial. Data on alcohol consumption (grams of pure alcohol consumed per day) were obtained via a food frequency questionnaire. Blood samples were also collected (after 12 h of fasting), and serum concentrations of total ghrelin were measured by radioimmunoassay. RESULTS Dichotomous comparison between alcohol drinkers (>0 g/day of alcohol intake) and non-drinkers (0 g/day of alcohol intake) found higher total ghrelin levels among individuals who drank alcohol than those who did not, with statistically significant results in study A [F (1, 798) = 4.32, P = 0.03] and less robust results in study B [F (1, 966) = 2.62, P = 0.10], controlling for a list of factors that may influence ghrelin levels and/or differ between drinkers and non-drinkers. Bivariate correlational analysis among drinkers found no association between the quantity of daily alcohol intake and blood total ghrelin concentrations. CONCLUSION These results indicate elevated ghrelin levels among alcohol drinkers and provide additional/relevant information on the complex interaction between alcohol use and the ghrelin system.
Collapse
|
40
|
Orellana ER, Piscura MK, Horvath N, Hajnal A. Differential Response in Ethanol Behaviors of Female Rats Given Various Weight Loss Surgeries. Alcohol Alcohol 2021; 56:599-604. [PMID: 34343232 DOI: 10.1093/alcalc/agab054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
AIMS Currently, the only effective treatment for morbid obesity and its comorbidities is weight loss surgery (WLS). Growing evidence suggests that different types of WLS, such as Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), have differential effects on alcohol consumption in humans and rats. Thus, we aimed to directly compare the effects of these two surgical procedures, for the first time in female rats, and to determine whether presence or absence of the ghrelin-producing stomach tissue has critical influence on postoperative alcohol intake. METHODS We performed two experiments using an identical behavioral protocol, a continuous-access two-bottle choice protocol for various concentrations of ethanol (EtOH). In Experiment 1, 23 high fat diet (HFD) obese, female rats were randomized to three groups: RYGB, SG or sham-operated food-restricted (Sham) controls. In Experiment 2, HFD obese female rats received either sham (n = 11) or a modified RYGB surgery where the remnant stomach was removed (RYGB-X; n = 12). RESULTS SG rats drank significantly less than RYGB for 4, 6 and 8% and significantly less than Sham for 6, 8 and 8% reinstatement. RYGB-X consumed significantly less EtOH than Sham across all concentrations, reaching significance for 6 and 8% reinstatement. CONCLUSION These findings confirm reduced EtOH consumption by female SG rats as opposed to increased intake following RYGB, and provide the first experimental evidence that the remnant stomach in the RYGB procedure is contributory. Future studies in rats and humans are warranted to confirm that ghrelin plays a critical role in susceptibility to AUD development following WLS.
Collapse
Affiliation(s)
- Elise R Orellana
- Georgetown University, School of Medicine, Department of Biochemistry and Molecular & Cellular Biology, 3900 Reservoir Road NW, Washington, DC, 20009
| | - Mary K Piscura
- The Pennsylvania State University, College of Medicine, Department of Neural and Behavioral Sciences, 700 HMC Crescent road, Hershey, PA 17033
| | - Nelli Horvath
- The Pennsylvania State University, College of Medicine, Department of Neural and Behavioral Sciences, 700 HMC Crescent road, Hershey, PA 17033
| | - Andras Hajnal
- The Pennsylvania State University, College of Medicine, Department of Neural and Behavioral Sciences, 700 HMC Crescent road, Hershey, PA 17033
| |
Collapse
|
41
|
Edvardsson CE, Vestlund J, Jerlhag E. A ghrelin receptor antagonist reduces the ability of ghrelin, alcohol or amphetamine to induce a dopamine release in the ventral tegmental area and in nucleus accumbens shell in rats. Eur J Pharmacol 2021; 899:174039. [PMID: 33737011 DOI: 10.1016/j.ejphar.2021.174039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022]
Abstract
The orexigenic peptide ghrelin increases the release of dopamine in the nucleus accumbens (NAc) shell via central ghrelin receptors, especially those located in the ventral tegmental area (VTA). The activity of the VTA dopamine neurons projecting to NAc shell, involves somatodendritic dopamine release within the VTA. However, the effects of ghrelin on the concomitant dopamine release in the VTA and NAc shell is unknown. It is further unknown whether addictive drugs, such as alcohol and amphetamine, enhance the dopamine levels in both these areas via ghrelin receptor dependent mechanisms. Thus, the effects of a ghrelin receptor antagonist, JMV2959, on the ability of i) central ghrelin ii) systemic alcohol or iii) systemic amphetamine to increase the dopamine release in the VTA and in the NAc shell in rats by using in vivo microdialysis was explored. We showed that systemic administration of JMV2959 blocks the ability of central ghrelin to increases dopamine release in the VTA and the NAc shell, and reduces the alcohol- and amphetamine-induced dopamine release in both these areas. Locomotor activity studies was then conducted in an attempt to correlate the ghrelin-induced dopamine release in the VTA to a behavioural outcome. These revealed that local infusion of a dopamine D1 receptor antagonist into the VTA blocks the ability of central ghrelin to cause a locomotor stimulation in mice. Collectively, this study adds to the growing body of evidence indicating that ghrelin signalling modulates the ability of ghrelin, and addictive drugs, to activate the mesoaccumbal dopamine pathway.
Collapse
Affiliation(s)
- Christian E Edvardsson
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jesper Vestlund
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
42
|
Rossi E, Cassioli E, Gironi V, Idrizaj E, Garella R, Squecco R, Baccari MC, Maggi M, Vignozzi L, Comeglio P, Ricca V, Castellini G. Ghrelin as a possible biomarker and maintaining factor in patients with eating disorders reporting childhood traumatic experiences. EUROPEAN EATING DISORDERS REVIEW 2021; 29:588-599. [PMID: 33939220 PMCID: PMC8251850 DOI: 10.1002/erv.2831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The recent conceptualization of ghrelin as a stress hormone suggested that its chronic alterations may have a role in maintaining overeating behaviors in subjects with eating disorders (EDs) reporting childhood traumatic experiences. The aim of this study was to investigate the alterations of ghrelin levels in patients with EDs, their associations with early trauma, binge and emotional eating, and possible moderation/mediation models. METHOD Sixty-four patients with EDs and 42 healthy controls (HCs) had their plasma ghrelin levels measured and completed questionnaires evaluating general and ED-specific psychopathology, emotional eating, and childhood traumatic experiences. RESULTS Participants with anorexia nervosa had higher ghrelin levels than HCs in body mass index (BMI)-adjusted comparisons. Moreover, patients reporting a history of childhood trauma had higher ghrelin levels. Childhood sexual abuse (CSA), BMI, and self-induced vomiting were independent predictors of ghrelin levels. Moderation analyses showed that ghrelin levels were associated with binge and emotional eating only for higher levels of childhood trauma. Elevated ghrelin was a significant mediator for the association of CSA with binge eating. CONCLUSIONS These results support the hypothesis that chronic alterations in ghrelin levels following childhood traumatic experiences could represent a neurobiological maintaining factor of pathological overeating behaviors in EDs.
Collapse
Affiliation(s)
- Eleonora Rossi
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Emanuele Cassioli
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Veronica Gironi
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Eglantina Idrizaj
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Rachele Garella
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Roberta Squecco
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Maria Caterina Baccari
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mario Maggi
- Sexual Medicine and Andrology Unit, Department of Experimental, Clinical, and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Linda Vignozzi
- Sexual Medicine and Andrology Unit, Department of Experimental, Clinical, and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Paolo Comeglio
- Sexual Medicine and Andrology Unit, Department of Experimental, Clinical, and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
43
|
Farokhnia M, Abshire KM, Hammer A, Deschaine SL, Saravanakumar A, Cobbina E, You ZB, Haass-Koffler CL, Lee MR, Akhlaghi F, Leggio L. Neuroendocrine Response to Exogenous Ghrelin Administration, Combined With Alcohol, in Heavy-Drinking Individuals: Findings From a Randomized, Double-Blind, Placebo-Controlled Human Laboratory Study. Int J Neuropsychopharmacol 2021; 24:464-476. [PMID: 33560411 PMCID: PMC8278796 DOI: 10.1093/ijnp/pyab004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Accumulating evidence has established a role for the orexigenic hormone ghrelin in alcohol-seeking behaviors. Accordingly, the ghrelin system may represent a potential pharmacotherapeutic target for alcohol use disorder. Ghrelin modulates several neuroendocrine pathways, such as appetitive, metabolic, and stress-related hormones, which are particularly relevant in the context of alcohol use. The goal of the present study was to provide a comprehensive assessment of neuroendocrine response to exogenous ghrelin administration, combined with alcohol, in heavy-drinking individuals. METHODS This was a randomized, crossover, double-blind, placebo-controlled human laboratory study, which included 2 experimental alcohol administration paradigms: i.v. alcohol self-administration and i.v. alcohol clamp. Each paradigm consisted of 2 counterbalanced sessions of i.v. ghrelin or placebo administration. Repeated blood samples were collected during each session, and peripheral concentrations of the following hormones were measured: leptin, glucagon-like peptide-1, pancreatic polypeptide, gastric inhibitory peptide, insulin, insulin-like growth factor-1, cortisol, prolactin, and aldosterone. RESULTS Despite some statistical differences, findings were consistent across the 2 alcohol administration paradigms: i.v. ghrelin, compared to placebo, increased blood concentrations of glucagon-like peptide-1, pancreatic polypeptide, cortisol, and prolactin, both acutely and during the whole session. Lower levels of leptin and higher levels of aldosterone were also found during the ghrelin vs placebo session. CONCLUSION These findings, gathered from a clinically relevant sample of heavy-drinking individuals with alcohol use disorder, provide a deeper insight into the complex interplay between ghrelin and appetitive, metabolic, and stress-related neuroendocrine pathways in the context of alcohol use.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kelly M Abshire
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Aaron Hammer
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Sara L Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Anitha Saravanakumar
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | | | - Zhi-Bing You
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Carolina L Haass-Koffler
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA,Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, Rhode Island,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island
| | - Mary R Lee
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA,Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA,Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA,Correspondence: Lorenzo Leggio, MD, PhD, NIDA and NIAAA, NIH, Biomedical Research Center, 251 Bayview Boulevard, Suite 200, Room 01A844, Baltimore, MD 21224 ()
| |
Collapse
|
44
|
Orellana ER, Nyland JE, Horvath N, Hajnal A. Vagotomy increases alcohol intake in female rats in diet dependent manner: Implications for increased alcohol use disorder after roux-en-y gastric bypass surgery. Physiol Behav 2021; 235:113309. [PMID: 33412192 DOI: 10.1016/j.physbeh.2021.113309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/18/2020] [Accepted: 12/31/2020] [Indexed: 12/25/2022]
Abstract
A variety of weight loss surgeries have been developed to fight the obesity epidemic, with Roux-en-Y gastric bypass (RYGB) being one of the most effective and popular procedures. However, the underlying mechanisms behind its efficacy are still not well understood. Furthermore, growing clinical evidence suggests that RYGB may result in increased risk for development of alcohol use disorder (AUD). The vagus nerve is a potentially critical contributor to increased risk of AUD following RYGB due to the potential for significant damage to the vagus during surgery, which has been confirmed in rodent studies. Studies aiming at the mechanisms underlying development of alcohol or substance use disorders following the surgery have exclusively used male rats, despite the majority of RYGB patients being female. Thus, the current study had two objectives: 1) to investigate the effect of RYGB on ethanol (EtOH) intake in female rats using a protocol previously established in male rats, and 2) to test the effect of vagal damage and high fat diet (HFD) on EtOH intake in female rats. In the first study, 22 female rats were maintained on HFD for four weeks and then split into two surgical groups, RYGB (n = 10) and Sham (n = 12). All rats then underwent a two-bottle choice test of increasing EtOH concentrations: 2%, 4%, 6%, 8%. Rats were then forced to abstain from EtOH for two weeks, after which access to 8% EtOH was reinstated. The RYGB female rats significantly increased their intake for low concentrations of EtOH (2% and 4%) and during the reinstatement period for 8%. These results mirror those seen in male rats, and thus, confirms RYGB in female rats as an equally viable model to males. In the second study, 40 female rats were separated into four groups: HFD/Sham, HFD/Vagotomy, normal diet (ND)/Sham, and ND/Vagotomy. All rats then were subjected to the same two-bottle choice test protocol as in the previous study. Rats in the vagotomy condition had significantly greater preference for 2% and 4% EtOH compared with Sham-operated controls. EtOH intake, either in ml or adjusted for body weight, was greater in rats maintained on ND compared with rats maintained on HFD. These data suggest that vagal damage may, at least in part, contribute to increased preference for EtOH. Furthermore, this increase in EtOH preference is counter to the blunting effect of HFD. In conclusion, the data presented here suggest a role for vagal damage in risk of AUD after weight loss surgery.
Collapse
Affiliation(s)
- Elise R Orellana
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences, United States.
| | - Jennifer E Nyland
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences, United States
| | - Nelli Horvath
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences, United States
| | - Andras Hajnal
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences, United States
| |
Collapse
|
45
|
Kalafateli AL, Aranäs C, Jerlhag E. Activation of the amylin pathway modulates cocaine-induced activation of the mesolimbic dopamine system in male mice. Horm Behav 2021; 127:104885. [PMID: 33166561 DOI: 10.1016/j.yhbeh.2020.104885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022]
Abstract
Besides food intake reduction, activation of the amylin pathway by salmon calcitonin (sCT), an amylin and calcitonin receptor agonist, inhibits alcohol-mediated behaviors in rodents. This involves brain areas processing reward, i.e. the laterodorsal (LDTg), ventral tegmental area (VTA) and nucleus accumbens (NAc). However, the effects of stimulation of the amylin pathway on behaviors caused by cocaine and the brain areas involved in these processes have not yet been investigated. We therefore explored in male mice, the effects of systemic administration of sCT on cocaine-induced locomotor stimulation, dopamine release in the NAc and cocaine reward, as well as reward-dependent memory of cocaine, in the conditioned place preference (CPP) paradigm. Moreover, the outcome of systemic sCT and cocaine co-administration for five days on locomotor activity was investigated. Lastly, the impact of sCT infusions into the LDTg, VTA, NAc shell or core on cocaine-evoked locomotor stimulation was explored. We found that sCT attenuated cocaine-induced locomotor stimulation and accumbal dopamine release, without altering cocaine's rewarding properties or reward-dependent memory retrieval in the CPP paradigm. Five days of cocaine administration caused locomotor stimulation in mice pre-treated with vehicle, but not with sCT. In mice infused with vehicle into the aforementioned reward-related areas, cocaine caused locomotor stimulation, a response that was not evident following sCT infusions. The current findings suggest a novel role for the amylinergic pathway as regulator of cocaine-evoked activation of the mesolimbic dopamine system, opening the way for the investigation of the amylin signalling in the modulation of other drugs of abuse.
Collapse
Affiliation(s)
- Aimilia Lydia Kalafateli
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cajsa Aranäs
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
46
|
Weng HY, Feldman JL, Leggio L, Napadow V, Park J, Price CJ. Interventions and Manipulations of Interoception. Trends Neurosci 2021; 44:52-62. [PMID: 33378657 PMCID: PMC7805576 DOI: 10.1016/j.tins.2020.09.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/22/2020] [Accepted: 09/27/2020] [Indexed: 12/15/2022]
Abstract
Interoceptive pathways may be manipulated at various levels to develop interventions to improve symptoms in a range of disorders. Primarily through the lens of the respiratory system, we outline various pathways that can be manipulated at neural, behavioral, and psychological levels to change the representation of and attention to interoceptive signals, which can alter interconnected physiological systems and improve functioning and adaptive behavior. Interventions can alter interoception via neuromodulation of the vagus nerve, slow breathing to change respiratory rate and depth, or awareness processes such as mindfulness-based interventions. Aspects of this framework may be applied to other physiological systems and future research may integrate interventions across multiple levels of manipulation or bodily systems.
Collapse
Affiliation(s)
- Helen Y Weng
- Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, Center for Health Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeanie Park
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Research Service Line, Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Cynthia J Price
- School of Nursing, University of Washington, Seattle, WA, USA; Osher Center for Integrative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
47
|
Wittekind DA, Kratzsch J, Mergl R, Enzenbach C, Witte V, Villringer A, Kluge M. Higher fasting ghrelin serum levels in active smokers than in former and never-smokers. World J Biol Psychiatry 2020; 21:748-756. [PMID: 31552785 DOI: 10.1080/15622975.2019.1671610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Ghrelin, an orexigenic peptide hormone, promotes drug reward and is suspected to play a role in nicotine dependence. However, there is little data on whether ghrelin levels are associated with active and/or former smoking. The relationship between ghrelin serum levels and smoking status in a population-based sample of individuals was studied. METHODS Total ghrelin was determined after an overnight fast in 1519 subjects participating in a population-based cohort study ('LIFE-Adult'). Tobacco consumption was assessed using both the questionnaire and interview. Generalised linear models with gamma distribution and log-link function were performed to analyse the association of total serum ghrelin with smoking status and the association between serum ghrelin and the amount of tobacco consumed in active smokers. RESULTS Ghrelin levels were positively associated with active, but not former smoking (OR = 1.095; p = .002). This association was not moderated by sex (interaction of 'active smoking' and sex: p = .346). Ghrelin levels were not associated with the amount of tobacco consumed in active smokers. CONCLUSIONS This study provides evidence that total ghrelin serum levels are positively associated with active smoking. No association was found for former smokers. A unique feature of the study is the large sample size.
Collapse
Affiliation(s)
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Roland Mergl
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany.,Institute of Clinical Psychology and Psychotherapy, Bundeswehr University Munich, Neubiberg, Germany
| | - Cornelia Enzenbach
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Veronika Witte
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Kluge
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
48
|
Cobbina E, Lee MR, Leggio L, Akhlaghi F. A Population Pharmacokinetic Analysis of PF-5190457, a Novel Ghrelin Receptor Inverse Agonist in Healthy Volunteers and in Heavy Alcohol Drinkers. Clin Pharmacokinet 2020; 60:471-484. [PMID: 33155163 DOI: 10.1007/s40262-020-00942-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES The ghrelin receptor (GHS-R1a) is a potential target for alcohol use disorders. PF-5190457 is the first inverse agonist of GHS-R1a to progress to clinical development with potential to treat alcohol use disorder. We present a population pharmacokinetic model for PF-5190457 in non-heavy (alcohol consumption status = 0) and heavy alcohol drinkers (alcohol consumption status = 1), and identify relevant factors that can influence its pharmacokinetics. METHODS Plasma concentration-time data from non-heavy (n = 35) and heavy drinkers (n = 12) were pooled for the population pharmacokinetic model development. The influence of various covariates including alcohol consumption status was evaluated. The accuracy, precision, and robustness of the model were also evaluated using bootstrapping and visual predictive checks. RESULTS A two-compartment model best described the pharmacokinetics of PF-5190457. The apparent volume of distribution of 44.5 L, apparent clearance of 72.0 L/h, apparent peripheral volume of distribution of 271 L, apparent distributional clearance of 28.7 L/h, and first-order absorption rate constant of 0.27/h were accurate and precise. The apparent volume of distribution was 3.8-fold higher (169 L) in heavy drinkers, and correlated with a lower maximum plasma concentration in heavy drinkers compared with non-heavy drinkers at the same dose; and a corresponding reduced incidence of somnolence in heavy drinkers at doses > 50 mg. CONCLUSIONS This work provides an accurate, precise, and robust two-compartment model that describes the pharmacokinetics of PF-5190457 and suggests a possible link of PF-5190457 pharmacokinetics with somnolence. TRIAL REGISTRATION ClinicalTrials.gov identifier numbers NCT01247896 and NCT02039349.
Collapse
Affiliation(s)
- Enoch Cobbina
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Office 495 A, Avedisian Hall, 7 Greenhouse Road, Kingston, RI, 02881, USA
| | - Mary R Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA.,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.,Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Office 495 A, Avedisian Hall, 7 Greenhouse Road, Kingston, RI, 02881, USA.
| |
Collapse
|
49
|
Cornejo MP, Mustafá ER, Barrile F, Cassano D, De Francesco PN, Raingo J, Perello M. THE INTRIGUING LIGAND-DEPENDENT AND LIGAND-INDEPENDENT ACTIONS OF THE GROWTH HORMONE SECRETAGOGUE RECEPTOR ON REWARD-RELATED BEHAVIORS. Neurosci Biobehav Rev 2020; 120:401-416. [PMID: 33157147 DOI: 10.1016/j.neubiorev.2020.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The growth hormone secretagogue receptor (GHSR) is a G-protein-coupled receptor (GPCR) highly expressed in the brain, and also in some peripheral tissues. GHSR activity is evoked by the stomach-derived peptide hormone ghrelin and abrogated by the intestine-derived liver-expressed antimicrobial peptide 2 (LEAP2). In vitro, GHSR displays ligand-independent actions, including a high constitutive activity and an allosteric modulation of other GPCRs. Beyond its neuroendocrine and metabolic effects, cumulative evidence shows that GHSR regulates the activity of the mesocorticolimbic pathway and modulates complex reward-related behaviors towards different stimuli. Here, we review current evidence indicating that ligand-dependent and ligand-independent actions of GHSR enhance reward-related behaviors towards appetitive stimuli and drugs of abuse. We discuss putative neuronal networks and molecular mechanisms that GHSR would engage to modulate such reward-related behaviors. Finally, we briefly discuss imaging studies showing that ghrelin would also regulate reward processing in humans. Overall, we conclude that GHSR is a key regulator of the mesocorticolimbic pathway that influences its activity and, consequently, modulates reward-related behaviors via ligand-dependent and ligand-independent actions.
Collapse
Affiliation(s)
- María P Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
50
|
Haass-Koffler CL, Piacentino D, Li X, Long VM, Lee MR, Swift RM, Kenna GA, Leggio L. Differences in Sociodemographic and Alcohol-Related Clinical Characteristics Between Treatment Seekers and Nontreatment Seekers and Their Role in Predicting Outcomes in the COMBINE Study for Alcohol Use Disorder. Alcohol Clin Exp Res 2020; 44:2097-2108. [PMID: 32997422 PMCID: PMC7722230 DOI: 10.1111/acer.14428] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/29/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND One of the challenges in early-stage clinical research aimed at developing novel treatments for alcohol use disorder (AUD) is that the enrolled participants are heavy drinkers, but do not seek treatment for AUD. AIMS To compare nontreatment seekers with alcohol dependence (AD) from 4 human laboratory studies conducted at Brown University (N = 240; 65.4% male) to treatment seekers with AD from the multisite COMBINE study (N = 1,383; 69.1% male) across sociodemographic and alcohol-related clinical variables and to evaluate whether the variables that significantly differentiate the 2 samples predict the 3 main COMBINE clinical outcomes: time to relapse, percent days abstinent (PDA), and good clinical outcome. METHODS Sample characteristics were assessed by parametric and nonparametric testing. Three regression models measured the association between the differing variables and the 3 main COMBINE clinical outcomes. RESULTS The nontreatment seekers, compared to the treatment seekers, were more ethnically diverse, less educated, single, and working part-time or unemployed (p's < 0.05); they met fewer DSM-IV AD criteria and had significantly lower scores on alcohol-related scales (p's < 0.05); they were less likely to have a father with alcohol problems (p < 0.0001) and had a significantly earlier age of onset and longer duration of AD (p's < 0.05); they also had significantly more total drinks, drinks per drinking day, heavy drinking days (HDD), and lower PDA in the 30 days prior to baseline (p's < 0.0001 to <0.05). Having more HDD in the 30 days prior to baseline predicted all of the 3 COMBINE clinical outcomes. All the other characteristics mentioned above that differed significantly between the 2 groups predicted at least 1 of the 3 COMBINE clinical outcomes, except for level of education, age of onset, and duration of AD. CONCLUSIONS The observed differences between groups should be considered in efforts across participant recruitment at different stages of the development of new treatments for AUD.
Collapse
Affiliation(s)
- Carolina L. Haass-Koffler
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, RI
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD
| | - Daria Piacentino
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD
| | - Xiaobai Li
- Biostatistics and Clinical Epidemiology Services, National Institutes of Health, Bethesda, MD
| | - Victoria M. Long
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI
| | - Mary R. Lee
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD
| | - Robert M. Swift
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, RI
- Veterans Affairs Medical Center, Providence, RI
| | - George A. Kenna
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, RI
| | - Lorenzo Leggio
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| |
Collapse
|