1
|
Valizadeh P, Jannatdoust P, Ghadimi DJ, Tahamtan M, Darmiani K, Shahsavarhaghighi S, Rezaei S, Aarabi MH, Cattarinussi G, Sambataro F, Nosari G, Delvecchio G. The association between C-reactive protein and neuroimaging findings in mood disorders: A review of structural and diffusion MRI studies. J Affect Disord 2025; 381:643-658. [PMID: 40189071 DOI: 10.1016/j.jad.2025.03.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Mood disorders, including major depressive disorder (MDD) and bipolar disorder (BD), often share structural brain alterations, which may be linked to peripheral inflammation. In this regard, C-Reactive Protein (CRP) has been associated with these alterations. This review explores the relationship between CRP levels and neuroimaging findings in mood disorders using structural and diffusion Magnetic Resonance Imaging (MRI). METHODS Following PRISMA guidelines, a systematic search was conducted through Scopus, PubMed, Web of Science, and Embase before September 2024, focusing on studies evaluating associations between CRP levels and structural and/or microstructural brain alterations in mood disorders. RESULTS The present systematic review included 20 studies examining the associations between peripheral CRP levels or DNA methylation-based CRP (DNAm CRP) signatures and structural brain alterations in mood disorders. Findings showed considerable variability; however, consistent patterns emerged, linking higher CRP levels to reduced grey matter volumes and cortical thinning, particularly in the prefrontal cortex (PFC), hippocampus, entorhinal cortex, insula, and caudate. Diffusion-based imaging consistently indicated reduced white matter integrity, with significant effects in key tracts such as the internal capsule, cingulum bundle, and corpus callosum (CC). CONCLUSIONS Overall, these findings suggest that systemic inflammation, reflected by elevated CRP or DNAm CRP, contributes to structural alterations indicative of neurodegeneration and compromised axonal integrity in mood disorders. Discrepancies among studies highlight potential influences of disease severity, treatment history, and distinct inflammatory mediators. Future research employing standardized imaging protocols and longitudinal designs is essential to clarify inflammation's mechanistic roles and identify reliable biomarkers of structural brain alterations in mood disorders.
Collapse
Affiliation(s)
- Parya Valizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Jannatdoust
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Delaram J Ghadimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Tahamtan
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran
| | - Kimia Darmiani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sahar Rezaei
- Department of Radiology, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Giulia Cattarinussi
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Fabio Sambataro
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Guido Nosari
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
2
|
Gao QL, Zha HW, Liu ZJ, Wang MM, Zhang YQ, Bi JR, Wu TY, Liu ZJ, Wu H, Sun D. Hippocampal CA1 neuron, a crucial regulator for chronic stress exacerbating Alzheimer's disease progression. Cell Biosci 2025; 15:73. [PMID: 40448155 DOI: 10.1186/s13578-025-01420-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 05/23/2025] [Indexed: 06/02/2025] Open
Abstract
Chronic stress, a common risk factor for psychiatric disorders, is also implicated in the pathogenesis of Alzheimer's disease (AD). However, its underlying mechanisms remain elusive. Here, we provide evidence for chronic restraint stress (CRS), a widely used stress model in rodents, to regulate AD pathology. CRS not only induces prolonged depressive-like behaviors and cognitive deficits in young adult wild type (WT) mice, but also exacerbates a series of AD-related phenotypes in APP/PS1 mice, including impaired spatial learning and memory, increased β-amyloid plaques, promoted glial cells (astrocyte and microglial cell) activation and decreased dendritic spines in CA1 neurons. Single-nucleus RNA-sequencing analysis in hippocampus shows remarkable transcriptional changes in many cell type(s), and identifies oxidative phosphorylation pathway, a major source for adenosine triphosphate (ATP) production, is significantly downregulated in CA1 neurons by CRS stimuli. Furthermore, dysfunctional mitochondria and reduced ATP levels are also observed in CA1 neurons of CRS exposed WT and APP/PS1 mice. Interestingly, infusion of ATP in CA1 region abolishes the deficits in cognition, dendritic spines and glial activation in CRS exposed APP/PS1 mice. Taken together, these results uncover an unrecognized function of CA1 neurons in regulating CRS induced AD pathologies, and suggest ATP as a promising therapeutic strategy to improve brain health under stress condition.
Collapse
Affiliation(s)
- Qing-Lin Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Hai-Wei Zha
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Zi-Jie Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Miao-Miao Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Yu-Qing Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Jia-Rui Bi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Tian-Yang Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Zhen-Jiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, The Ministry of Education, Jilin University, Changchun, 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, The Ministry of Education, Jilin University, Changchun, 130012, China
| | - Dong Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, The Ministry of Education, Jilin University, Changchun, 130012, China.
| |
Collapse
|
3
|
Rahnemayan S, Fathalizadeh A, Behroozi M, Talebi M, Naseri A, Mehdizadehfar E. FMRI insights into the neural alterations and clinical correlates in multiple sclerosis: A comprehensive overview of systematic reviews and meta-analyses. Brain Res Bull 2025; 223:111278. [PMID: 40015346 DOI: 10.1016/j.brainresbull.2025.111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammatory demyelination in the central nervous system. Functional Magnetic Resonance Imaging (fMRI) has emerged as an effective method for studying MS pathology. This review provides a comprehensive overview of fMRI applications, clarifying alterations in brain activity and identifying relevant biomarkers. METHODS A systematic search of electronic databases and manual reference list checks at March 2024 yielded 470 articles. After duplicate removal, 456 articles underwent screening, 44 were assessed in full, and 12 systematic reviews and meta-analyses met inclusion criteria. Quality assessment was conducted. RESULTS Included studies reported high methodological quality. fMRI revealed decreased functional connectivity within the default mode network, correlating with impaired information processing speed, and increased connectivity in compensatory networks during working memory tasks. Graph theory metrics identified disrupted global efficiency and clustering in functional networks, linked to gray matter atrophy. Neuroplasticity studies demonstrated cortical reorganization after cognitive rehabilitation, particularly in the prefrontal cortex. MS-related fatigue was associated with altered anterior cingulate cortex and thalamic activity, while depression correlated with reduced amygdala-prefrontal connectivity. DISCUSSION fMRI has enhanced understanding of MS, revealing specific neural correlates of cognitive decline, neuroplasticity, fatigue, and depression. However, variability in MS subtypes and non-standardized protocols hinder consistency, while motion artifacts and cerebral blood flow changes complicate interpretation. Standardizing imaging protocols and integrating novel techniques could improve reliability and enable clinical applications to optimize patient monitoring and interventions.
Collapse
Affiliation(s)
- Sama Rahnemayan
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Germany.
| | - Arezoo Fathalizadeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Behroozi
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Germany
| | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Sălcudean A, Bodo CR, Popovici RA, Cozma MM, Păcurar M, Crăciun RE, Crisan AI, Enatescu VR, Marinescu I, Cimpian DM, Nan AG, Sasu AB, Anculia RC, Strete EG. Neuroinflammation-A Crucial Factor in the Pathophysiology of Depression-A Comprehensive Review. Biomolecules 2025; 15:502. [PMID: 40305200 PMCID: PMC12024626 DOI: 10.3390/biom15040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Depression is a multifactorial psychiatric condition with complex pathophysiology, increasingly linked to neuroinflammatory processes. The present review explores the role of neuroinflammation in depression, focusing on glial cell activation, cytokine signaling, blood-brain barrier dysfunction, and disruptions in neurotransmitter systems. The article highlights how inflammatory mediators influence brain regions implicated in mood regulation, such as the hippocampus, amygdala, and prefrontal cortex. The review further discusses the involvement of the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the kynurenine pathway, providing mechanistic insights into how chronic inflammation may underlie emotional and cognitive symptoms of depression. The bidirectional relationship between inflammation and depressive symptoms is emphasized, along with the role of peripheral immune responses and systemic stress. By integrating molecular, cellular, and neuroendocrine perspectives, this review supports the growing field of immunopsychiatry and lays the foundation for novel diagnostic biomarkers and anti-inflammatory treatment approaches in depression. Further research in this field holds promise for developing more effective and personalized interventions for individuals suffering from depression.
Collapse
Affiliation(s)
- Andreea Sălcudean
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania; (A.S.); (M.-M.C.); (D.-M.C.)
| | - Cristina-Raluca Bodo
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania; (A.S.); (M.-M.C.); (D.-M.C.)
| | - Ramona-Amina Popovici
- Department of Management and Communication in Dental Medicine, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Bv., 300070 Timisoara, Romania
| | - Maria-Melania Cozma
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania; (A.S.); (M.-M.C.); (D.-M.C.)
| | - Mariana Păcurar
- Orthodontic Department, Faculty of Dental Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania;
| | | | - Andrada-Ioana Crisan
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| | - Virgil-Radu Enatescu
- Department of Psychiatry, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
| | - Ileana Marinescu
- Discipline of Psychiatry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Dora-Mihaela Cimpian
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania; (A.S.); (M.-M.C.); (D.-M.C.)
| | - Andreea-Georgiana Nan
- First Department of Psychiatry, Clinical County Hospital of Targu Mures, 540142 Târgu Mureș, Romania; (A.-G.N.); (A.-B.S.)
| | - Andreea-Bianca Sasu
- First Department of Psychiatry, Clinical County Hospital of Targu Mures, 540142 Târgu Mureș, Romania; (A.-G.N.); (A.-B.S.)
| | - Ramona-Camelia Anculia
- Discipline of Occupational Medicine, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy of Timisoara, 300041 Timișoara, Romania;
| | - Elena-Gabriela Strete
- Department of Psychiatry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| |
Collapse
|
5
|
Tournier BB, Mansouri Z, Salimi Y, Ceyzériat K, Mathoux G, Richard-Lepouriel H, Zullino D, Bois F, Zaidi H, Garibotto V, Tsartsalis S, Millet P. Radiation dosimetry of the 18 kDa translocator protein ligand [ 18F]PBR111 in humans. Nucl Med Biol 2025; 144-145:109011. [PMID: 40179687 DOI: 10.1016/j.nucmedbio.2025.109011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/12/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE The 18 kDa translocator protein (TSPO) is a mitochondrial protein that becomes overexpressed during neuroinflammatory conditions, such as in Alzheimer's disease or multiple sclerosis. TSPO is of interest because it serves as a marker for microglial and astrocytic activity, measurable via in vivo positron emission tomography (PET) molecular imaging. [18F]PBR111 is a second-generation TSPO PET radioligand with high signal specificity but a sensitivity to TSPO polymorphism, in comparison with first-generation ligands. This study focused on the biodistribution and dosimetry of [18F]PBR111 in healthy humans. METHOD Six volunteers (three males, three females) were administered approximately 200 MBq of [18F]PBR111. Organs such as the lungs and liver showed the highest initial radioactivity level, while the bone marrow and bladder accumulated activity over time, likely reflecting ligand defluorination and elimination. RESULTS Dosimetry findings revealed a total effective dose of 16.17 μSv/MBq, equivalent to 3.04 mSv per examination. Compared to animal models, human dosimetry showed lower radiation exposure, highlighting discrepancies in predictive models. Organ-specific dose comparisons with other TSPO ligands ([18F]PBR06, [18F]FEPPA, [18F]FEDAA1106) revealed similar distribution patterns. This study underscores the clinical viability of [18F]PBR111 for TSPO imaging, providing critical data for optimizing its safe use in research and clinical settings. CONCLUSION The findings support its potential for studying neuroinflammatory and systemic diseases. The trial registration number is NCT06398392.
Collapse
Affiliation(s)
- Benjamin B Tournier
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Zahra Mansouri
- Diagnostic Department, Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland
| | - Yazdan Salimi
- Diagnostic Department, Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Gregory Mathoux
- Diagnostic Department, Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland
| | - Hélène Richard-Lepouriel
- Department of Psychiatry, Mood and Anxiety Disorders Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Daniel Zullino
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; University Hospitals of Geneva, Geneva, Switzerland
| | - Frédéric Bois
- Diagnostic Department, Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland
| | - Habib Zaidi
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diagnostic Department, Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diagnostic Department, Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland
| | - Stergios Tsartsalis
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Psychiatry, Mood and Anxiety Disorders Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Millet
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
6
|
Brody AL, Mischel AK, Sanavi AY, Wong A, Bahn JH, Minassian A, Morgan EE, Rana B, Hoh CK, Vera DR, Kotta KK, Miranda AH, Pocuca N, Walter TJ, Guggino N, Beverly-Aylwin R, Meyer JH, Vasdev N, Young JW. Cigarette smoking is associated with reduced neuroinflammation and better cognitive control in people living with HIV. Neuropsychopharmacology 2025; 50:695-704. [PMID: 39741198 PMCID: PMC11845771 DOI: 10.1038/s41386-024-02035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/02/2025]
Abstract
People living with HIV (HIV+) are roughly twice as likely to smoke cigarettes (Smok+) as the general population. With the advent of effective antiretroviral therapies, it is increasingly important to understand the effects of chronic HIV infection and cigarette smoking on brain function and cognition since HIV+ individuals have heightened neuroinflammation and cognitive deficits even with such therapies. Based on prior studies demonstrating that smoking reduces a marker for neuroinflammation in HIV- individuals, we hypothesized that HIV+/Smok+ individuals would have less neuroinflammation and better cognitive control than HIV+/Smok- individuals. Fifty-nine participants (HIV-/Smok- [n = 16], HIV-/Smok+ [n=14], HIV+/Smok- [n = 18], and HIV+/Smok+ [n = 11]) underwent baseline eligibility tests, positron emission tomography (PET) scanning to determine levels of a marker for neuroinflammation, and assessment of cognitive control with the reverse-translated 5-choice continuous performance test (5C-CPT), with smokers having smoked to satiety prior to testing. For the PET data, a significant effect of smoking status on whole brain (WB) standardized uptake value (SUV) was found between HIV+/Smok+ and HIV+/Smok- participants (due to 18.8% lower WB SUV in the HIV+/Smok+ group). HIV+/Smok- participants exhibited a mean 13.5% higher WB SUV than HIV-/Smok- participants. For the 5C-CPT, HIV+/Smok+ participants performed significantly better than HIV+/Smok- participants (d prime), and HIV+/Smok- participants performed worse than HIV-/Smok- participants. Thus, HIV+/Smok+ individuals demonstrated lower levels of the neuroinflammation marker and better cognitive control than HIV+/Smok- individuals. Given that HIV+ individuals whose HIV is well-controlled can still have chronic neurocognitive complications, study results suggest possible paths for future research into nicotine-related treatments to prevent such complications.
Collapse
Affiliation(s)
- Arthur L Brody
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.
- Department of Research, VA San Diego Healthcare System, San Diego, CA, USA.
- Department of Psychiatry, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Anna K Mischel
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Research, VA San Diego Healthcare System, San Diego, CA, USA
| | - Andre Y Sanavi
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Research, VA San Diego Healthcare System, San Diego, CA, USA
| | - Alvin Wong
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Research, VA San Diego Healthcare System, San Diego, CA, USA
| | - Ji Hye Bahn
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Research, VA San Diego Healthcare System, San Diego, CA, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Research, VA San Diego Healthcare System, San Diego, CA, USA
| | - Erin E Morgan
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Psychiatry, VA San Diego Healthcare System, San Diego, CA, USA
| | - Brinda Rana
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Carl K Hoh
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - David R Vera
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Kishore K Kotta
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Alannah H Miranda
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Nina Pocuca
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Thomas J Walter
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Natalie Guggino
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Research, VA San Diego Healthcare System, San Diego, CA, USA
| | - Renee Beverly-Aylwin
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Research, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jeffrey H Meyer
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Neil Vasdev
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.
- Department of Research, VA San Diego Healthcare System, San Diego, CA, USA.
- Department of Research, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
7
|
Ganesan K, Ghorbanpour S, Kendall W, Broome ST, Gladding JM, Dhungana A, Abiero AR, Mahmoudi M, Castorina A, Kendig MD, Becchi S, Valova V, Cole L, Bradfield LA. Hippocampal neuroinflammation induced by lipopolysaccharide causes sex-specific disruptions in action selection, food approach memories, and neuronal activation. Brain Behav Immun 2025; 124:9-27. [PMID: 39547520 DOI: 10.1016/j.bbi.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Hippocampal neuroinflammation is present in multiple diseases and disorders that impact motivated behaviour in a sex-specific manner, but whether neuroinflammation alone is sufficient to disrupt this behaviour is unknown. We investigated this question here using mice. First, the application of an endotoxin to primary cultures containing only hippocampal neurons did not affect their activation. However, when the same endotoxin was applied to mixed neuronal/glial cultures it did increase neuronal activation, providing initial indications of how it might be able to effect behavioural change. We next showed neuroinflammatory effects on behaviour directly, demonstrating that intra-hippocampal administration of the same endotoxin increased locomotor activity and accelerated goal-directed learning in both male and female mice. In contrast, lipopolysaccharide-induced hippocampal neuroinflammation caused sex-specific disruptions to the acquisition of instrumental actions and to Pavlovian food-approach memories. Finally, we showed that LPS-induced hippocampal neuroinflammation had a sexually dimorphic effect on neuronal activation: increasing it in females and decreasing it in males.
Collapse
Affiliation(s)
- Kiruthika Ganesan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia; School of Psychology, Faculty of Science, University of Sydney, New South Wales 2006, Australia
| | - Sahar Ghorbanpour
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, BOKU University, Vienna, Austria
| | - William Kendall
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Sarah Thomas Broome
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Joanne M Gladding
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Amolika Dhungana
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia
| | - Arvie Rodriguez Abiero
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia; School of Psychology, Faculty of Science, University of Sydney, New South Wales 2006, Australia
| | - Maedeh Mahmoudi
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Alessandro Castorina
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Michael D Kendig
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Serena Becchi
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia; Teva Pharmaceuticals, Sydney, New South Wales 2113, Australia
| | - Veronika Valova
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales 2050, Australia
| | - Louise Cole
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Laura A Bradfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia.
| |
Collapse
|
8
|
McIntosh R. Structural and functional brain correlates of the neutrophil- and monocyte-to-lymphocyte ratio in neuropsychiatric disorders. Brain Behav Immun Health 2025; 43:100940. [PMID: 39877850 PMCID: PMC11773257 DOI: 10.1016/j.bbih.2024.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 11/03/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Skews in the neutrophil-to-lymphocyte ratio (NLR) and monocyte-to-lymphocyte ratio (MLR) increasingly demonstrate prognostic capability in a range of acute and chronic mental health conditions. There has been a recent uptick in structural and functional magnetic responance imaging data corroborating the role of NLR and MLR in a cluster of neuropsychiatric disorders that are characterized by cognitive, affective, and psychomotor dysfunction. Moreover, these deficits are mostly evident in setting of acute and chronic disease comorbidity implicating aging and immunosenescent processes in the manifestation of these geriatric syndromes. The studies reviewed in this special edition implicate neutrophil and monocyte expansion relative to lymphocytopenia in the sequelae of depression, cognitive and functional decline, as well as provide support from a range of neuroimaging techniques that identify brain alteartions concommitant with expansion of the NLR or MLR and the sequelae of depression, dementia, and functional decline.
Collapse
Affiliation(s)
- Roger McIntosh
- Department of Psychology, University of Miami, 5665 Ponce de Leon Blvd, Coral Gables, FL, 33146, USA
- Department of Medicine, University of Miami Miller School of Medicine, 1150 NW 14th Street, Miami, FL, 33136, USA
| |
Collapse
|
9
|
Wu Z, Yin Y, Liu R, Li X, Sun Y, Yau SY, Wu L, Liu Y, Adzic M, Zhang H, Chen G. A refined formula derived from Jiawei-Xiaoyao pill exerts rapid antidepressant-like effects in LPS-induced depression by reducing neuroinflammation and restoring neuroplasticity signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118647. [PMID: 39094756 DOI: 10.1016/j.jep.2024.118647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei-Xiaoyao Pill (JWX), a classic formula in traditional Chinese medicine, is derived from Xiaoyao Pill by adding significant amounts of Gardeniae Fructus (GF) and Moutan Cortex (MC). It is frequently used for the treatment of depression. JWX has been demonstrated to uniquely elicit rapid antidepressant-like effects within the prescribed dosage range. To date, GF has been shown to have rapid antidepressant-like effects, but a much higher dose is required than its proportion in JWX. It is assumed that the synergism of GF with a minimum number of other herbs in JWX serves as a refined formula that exerts these rapid antidepressant-like effects. Identification of a refined formula is important for prioritizing the herbs and ingredients to optimize the quality control of JWX. However, such a refined formula for JWX has not been identified yet. AIM OF THE STUDY Here we aimed to identify a refined formula derived from JWX for optimized rapid antidepressant-like effects. Since the neuroinflammation mechanism involving in depression treatment has not been previously investigated for JWX, we tested the mechanism for both JWX and the refined formula. MATERIALS AND METHODS Individual herbs (MC; ASR, Angelica Sinensis Radix; Bupleuri Radix; Paeonia Radix Alba) that show antidepressant-like responses were mixed with GF at the proportional dosage in JWX to identify the refined formula. Rapid antidepressant-like effects were assessed by using NSF (Novelty Suppressed Feeding Test) and other behavioral tests following a single administration. The identified formula was further tested in a lipopolysaccharide (LPS)-induced depressive model, and the molecular signaling mechanisms were investigated using Western blot analysis, immunofluorescence, and pharmacological inhibition of mTOR signaling. Scopolamine (Scop) was used as a positive control for induction of rapid antidepressant effects. RESULTS A combination of GF, MC and ASR (GMA) at their dosages proportional to JWX induced behavioral signs of rapid antidepressant-like responses in both normal and LPS-treated mice, with the antidepressant-like effects sustained for 5 d. Similar to JWX or Scop, GMA rapidly reduced the neuroinflammation signaling of Iba-1-NF-кB, enhanced neuroplasticity signaling of CaMKII-mTOR-BDNF, and attenuated the upregulated expressions of the NMDAR sub-units GluN1 and GluN2B in the hippocampus of LPS-treated mice. GMA, JWX and Scop rapidly restored the number of BDNF-positive cells reduced by LPS treatment in the CA3 region of the hippocampus. Furthermore, rapamycin, a selective inhibitor of mTOR, blunted the rapid antidepressant-like effects and hippocampal BDNF signaling upregulation by GMA. CONCLUSION GMA may serve as a refined formula from JWX, capable of inducing rapid antidepressant-like effects. In the LPS-induced depression model, the effects of GMA were mediated via rapidly alleviating neuroinflammation and enhancing neuroplasticity.
Collapse
Affiliation(s)
- Zhangjie Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Ying Yin
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Ruiyi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Xianhui Li
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, PR China
| | - Lei Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, PR China
| | - Yan Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China
| | - Miroslav Adzic
- "Vinča Institute" of Nuclear Sciences, Laboratory of Molecular Biology and Endocrinology 090, University of Belgrade, 11001 Belgrade, Serbia
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China.
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai, 519070, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral Homeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, PR China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
10
|
Yin SY, Shao XX, Shen SY, Zhang JR, Shen ZQ, Liang LF, Chen C, Yue N, Fu XJ, Yu J. Key role of PPAR-γ-mediated suppression of the NFκB signaling pathway in rutin's antidepressant effect. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156178. [PMID: 39467428 DOI: 10.1016/j.phymed.2024.156178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Depression is a chronic and recurrent disorder with an unknown etiology. Efficacious antidepressant treatments with minimal side effects are urgently needed. Neuroinflammation may contribute to depression, as anti-inflammatory drugs have been shown to alleviate depressive symptoms in clinical practice. Rutin, a naturally occurring flavonoid derived from plants, is abundant in many antidepressant herbs, including Hemerocallis citrina Baroni. Historical Chinese medical texts, including the renowned Compendium of Materia Medica, document H. citrina Baroni as possessing antidepressant properties. Rutin, one of its primary active constituents, is recognized for its anti-inflammatory effects. Despite this, little is known about its specific target and mechanism. METHODS In the present study, molecular docking, and surface plasmon resonance imaging (SPRi) analysis were used to identify the special targets of rutin. Meanwhile, the potential antidepressant effects were evaluated in the chronic social defeat stress (CSDS) paradigm, an animal model of depression. Then, Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), Co-immunoprecipitation (Co-IP) as well as antagonists of PPAR-γ were utilized to investigate the mechanism underlying the antidepressant effect of rutin. RESULTS Both molecular docking and SPRi analysis showed high docking scores and interactions between rutin and PPAR-γ. In vivo, rutin promoted the nuclear translocation of PPAR-γ in the hippocampus of mice, inhibited NFκB-mediated inflammatory pathways, and subsequently reduced the expression of pro-inflammatory factors (e.g., iNOS, IL-6), aligning with an antidepressant effect. However, this therapeutic effect was attenuated by GW9662, a specific antagonist of PPAR-γ. CONCLUSION As a result of activating PPAR-γ and inhibiting NFκB pathway activation, rutin reduces neuroinflammation and exhibits an antidepressant effect. These findings shed light on the antidepressant mechanism of rutin and could be valuable for the development of new antidepressants.
Collapse
Affiliation(s)
- Shu-Yuan Yin
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin-Xin Shao
- Institute for Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shi-Yu Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jia-Rui Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zu-Qi Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling-Feng Liang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cong Chen
- Institute for Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Na Yue
- Department of Clinical Lab, Institute of Pediatrics of Weifang Medical University, Weifang Maternal and Child Health Hospital, Brunch of Shandong Provincial Clinical Research Center for Children's Health and Disease, Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Weifang, 261061, China.
| | - Xian-Jun Fu
- Institute for Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China.
| |
Collapse
|
11
|
Althammer F, Roy RK, Kirchner MK, Podpecan Y, Helen J, McGrath S, Lira EC, Stern JE. Angiotensin-II drives changes in microglia-vascular interactions in rats with heart failure. Commun Biol 2024; 7:1537. [PMID: 39562706 PMCID: PMC11577102 DOI: 10.1038/s42003-024-07229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Activation of microglia, the resident immune cells of the central nervous system, leading to the subsequent release of pro-inflammatory cytokines, has been linked to cardiac remodeling, autonomic disbalance, and cognitive deficits in heart failure (HF). While previous studies emphasized the role of hippocampal Angiotensin II (AngII) signaling in HF-induced microglial activation, unanswered mechanistic questions persist. Evidence suggests significant interactions between microglia and local microvasculature, potentially affecting blood-brain barrier integrity and cerebral blood flow regulation. Still, whether the microglial-vascular interface is affected in the brain during HF remains unknown. Using a well-established ischemic HF rat model, we demonstrate the increased abundance of vessel-associated microglia (VAM) in HF rat hippocampi, along with an increased expression of AngII AT1a receptors. Acute AngII administration to sham rats induced microglia recruitment to brain capillaries, along with increased expression of TNFα. Conversely, administering an AT1aR blocker to HF rats prevented the recruitment of microglia to blood vessels, normalizing their levels to those in healthy rats. These results highlight the critical importance of a rather understudied phenomenon (i.e., microglia-vascular interactions in the brain) in the context of the pathophysiology of a highly prevalent cardiovascular disease, and unveil novel potential therapeutic avenues aimed at mitigating neuroinflammation in cardiovascular diseases.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Ranjan K Roy
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Matthew K Kirchner
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Yuval Podpecan
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Jemima Helen
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Shaina McGrath
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Elba Campos Lira
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Javier E Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA.
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Helminen J, Jehkonen M. Relationship between neuropsychiatric symptoms and cognition in multiple sclerosis: A systematic review. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-16. [PMID: 39325074 DOI: 10.1080/23279095.2024.2403764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The results of previous research on the relationship between neuropsychiatric symptoms and cognition in multiple sclerosis (MS) have been mixed. The aim of this systematic review was to examine the evidence on the relationship between neuropsychiatric symptoms and different cognitive domains in adult (≥18 years) MS patients. A literature search was conducted in the Ovid Medline, PsycInfo, Scopus, and Web of Science databases. A total of 4,216 nonduplicate records were identified, and after screening, 37 studies met the inclusion criteria and were included in the systematic review. Higher levels of depressive symptoms were related to deficits in processing speed, verbal memory, executive functions, visuospatial functions, and attention in MS patients. Symptoms of anxiety were not consistently related to any of the cognitive functions, but the relationship to deficits in visual memory received a minimal amount of support. Higher levels of apathy were most clearly associated with impairment in executive functions, but the association with deficits in visuospatial functions, visual memory, working memory, and processing speed was also supported. The results indicate that more neuropsychiatric symptoms, especially depressive symptoms and apathy, are associated with cognitive dysfunction in MS patients. These results can be utilized in the clinical examination and treatment planning of MS patients.
Collapse
Affiliation(s)
- Johanna Helminen
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Mervi Jehkonen
- Faculty of Social Sciences, Tampere University, Tampere, Finland
- Tays Research Services, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
13
|
Jellinger KA. Depression and anxiety in multiple sclerosis. Review of a fatal combination. J Neural Transm (Vienna) 2024; 131:847-869. [PMID: 38869643 DOI: 10.1007/s00702-024-02792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
Depression and anxiety are the most frequent neuropsychiatric symptoms of multiple sclerosis (MS), an autoimmune-mediated demyelinating neurodegenerative disease. Their prevalence is 25-65% and 20-54%, respectively, often associated with chronic fatigue and cognitive impairment, but usually not correlated with motor and other deficits, suggesting different pathophysiological mechanisms. Both disorders often arise before MS diagnosis, lead to faster disability and impair the quality of life. Risk factors are (young) age, genetic and family history burden. While no specific neuropathological data for depression (and anxiety) in MS are available, modern neuroimaging studies showed bilateral fronto-temporal, subcortical and limbic atrophies, microstructural white matter lesions and disruption of frontoparietal, limbic and neuroendocrine networks. The pathogenesis of both depression and anxiety in MS is related to shared mechanisms including oxidative stress, mitochondrial dysfunction, neuroinflammation and neuroendocrine mechanisms inducing complex functional and structural brain lesions, but they are also influenced by social and other factors. Unfortunately, MS patients with anxiety, major depression or suicidal thoughts are often underassessed and undertreated. Current treatment, in addition to antidepressant therapy include transcranial magnetic stimulation, cognitive, relaxation, dietary and other healthcare measures that must be individualized. The present state-of- the-art review is based on systematic analysis of PubMed, Google Scholar and Cochrane Library until May 2024, with focus on the prevalence, clinical manifestation, neuroimaging data, immune mechanisms and treatment options. Depression and anxiety in MS, like in many other neuroimmune disorders, are related, among others, to multi-regional patterns of cerebral disturbances and complex pathogenic mechanisms that deserve further elucidation as a basis for early diagnosis and adequate management to improve the quality of life in this disabling disease.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, Vienna, A-1150, Austria.
| |
Collapse
|
14
|
Siegel JS, Subramanian S, Perry D, Kay BP, Gordon EM, Laumann TO, Reneau TR, Metcalf NV, Chacko RV, Gratton C, Horan C, Krimmel SR, Shimony JS, Schweiger JA, Wong DF, Bender DA, Scheidter KM, Whiting FI, Padawer-Curry JA, Shinohara RT, Chen Y, Moser J, Yacoub E, Nelson SM, Vizioli L, Fair DA, Lenze EJ, Carhart-Harris R, Raison CL, Raichle ME, Snyder AZ, Nicol GE, Dosenbach NUF. Psilocybin desynchronizes the human brain. Nature 2024; 632:131-138. [PMID: 39020167 PMCID: PMC11291293 DOI: 10.1038/s41586-024-07624-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/29/2024] [Indexed: 07/19/2024]
Abstract
A single dose of psilocybin, a psychedelic that acutely causes distortions of space-time perception and ego dissolution, produces rapid and persistent therapeutic effects in human clinical trials1-4. In animal models, psilocybin induces neuroplasticity in cortex and hippocampus5-8. It remains unclear how human brain network changes relate to subjective and lasting effects of psychedelics. Here we tracked individual-specific brain changes with longitudinal precision functional mapping (roughly 18 magnetic resonance imaging visits per participant). Healthy adults were tracked before, during and for 3 weeks after high-dose psilocybin (25 mg) and methylphenidate (40 mg), and brought back for an additional psilocybin dose 6-12 months later. Psilocybin massively disrupted functional connectivity (FC) in cortex and subcortex, acutely causing more than threefold greater change than methylphenidate. These FC changes were driven by brain desynchronization across spatial scales (areal, global), which dissolved network distinctions by reducing correlations within and anticorrelations between networks. Psilocybin-driven FC changes were strongest in the default mode network, which is connected to the anterior hippocampus and is thought to create our sense of space, time and self. Individual differences in FC changes were strongly linked to the subjective psychedelic experience. Performing a perceptual task reduced psilocybin-driven FC changes. Psilocybin caused persistent decrease in FC between the anterior hippocampus and default mode network, lasting for weeks. Persistent reduction of hippocampal-default mode network connectivity may represent a neuroanatomical and mechanistic correlate of the proplasticity and therapeutic effects of psychedelics.
Collapse
Affiliation(s)
- Joshua S Siegel
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA.
| | - Subha Subramanian
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Demetrius Perry
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - T Rick Reneau
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Nicholas V Metcalf
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Ravi V Chacko
- Department of Emergency Medicine, Advocate Christ Health Care, Oak Lawn, IL, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | | | - Samuel R Krimmel
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Julie A Schweiger
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Dean F Wong
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - David A Bender
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Kristen M Scheidter
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Forrest I Whiting
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Jonah A Padawer-Curry
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Moser
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Luca Vizioli
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Robin Carhart-Harris
- Department of Neurology, University of California, San Francisco, CA, USA
- Centre for Psychedelic Research, Imperial College London, London, UK
| | - Charles L Raison
- Usona Institute, Fitchburg, WI, USA
- Department of Psychiatry, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Ginger E Nicol
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
15
|
Le Belle JE, Condro M, Cepeda C, Oikonomou KD, Tessema K, Dudley L, Schoenfield J, Kawaguchi R, Geschwind D, Silva AJ, Zhang Z, Shokat K, Harris NG, Kornblum HI. Acute rapamycin treatment reveals novel mechanisms of behavioral, physiological, and functional dysfunction in a maternal inflammation mouse model of autism and sensory over-responsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602602. [PMID: 39026891 PMCID: PMC11257517 DOI: 10.1101/2024.07.08.602602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Maternal inflammatory response (MIR) during early gestation in mice induces a cascade of physiological and behavioral changes that have been associated with autism spectrum disorder (ASD). In a prior study and the current one, we find that mild MIR results in chronic systemic and neuro-inflammation, mTOR pathway activation, mild brain overgrowth followed by regionally specific volumetric changes, sensory processing dysregulation, and social and repetitive behavior abnormalities. Prior studies of rapamycin treatment in autism models have focused on chronic treatments that might be expected to alter or prevent physical brain changes. Here, we have focused on the acute effects of rapamycin to uncover novel mechanisms of dysfunction and related to mTOR pathway signaling. We find that within 2 hours, rapamycin treatment could rapidly rescue neuronal hyper-excitability, seizure susceptibility, functional network connectivity and brain community structure, and repetitive behaviors and sensory over-responsivity in adult offspring with persistent brain overgrowth. These CNS-mediated effects are also associated with alteration of the expression of several ASD-,ion channel-, and epilepsy-associated genes, in the same time frame. Our findings suggest that mTOR dysregulation in MIR offspring is a key contributor to various levels of brain dysfunction, including neuronal excitability, altered gene expression in multiple cell types, sensory functional network connectivity, and modulation of information flow. However, we demonstrate that the adult MIR brain is also amenable to rapid normalization of these functional changes which results in the rescue of both core and comorbid ASD behaviors in adult animals without requiring long-term physical alterations to the brain. Thus, restoring excitatory/inhibitory imbalance and sensory functional network modularity may be important targets for therapeutically addressing both primary sensory and social behavior phenotypes, and compensatory repetitive behavior phenotypes.
Collapse
|
16
|
Kampaite A, Gustafsson R, York EN, Foley P, MacDougall NJJ, Bastin ME, Chandran S, Waldman AD, Meijboom R. Brain connectivity changes underlying depression and fatigue in relapsing-remitting multiple sclerosis: A systematic review. PLoS One 2024; 19:e0299634. [PMID: 38551913 PMCID: PMC10980255 DOI: 10.1371/journal.pone.0299634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/13/2024] [Indexed: 04/01/2024] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune disease affecting the central nervous system, characterised by neuroinflammation and neurodegeneration. Fatigue and depression are common, debilitating, and intertwined symptoms in people with relapsing-remitting MS (pwRRMS). An increased understanding of brain changes and mechanisms underlying fatigue and depression in RRMS could lead to more effective interventions and enhancement of quality of life. To elucidate the relationship between depression and fatigue and brain connectivity in pwRRMS we conducted a systematic review. Searched databases were PubMed, Web-of-Science and Scopus. Inclusion criteria were: studied participants with RRMS (n ≥ 20; ≥ 18 years old) and differentiated between MS subtypes; published between 2001-01-01 and 2023-01-18; used fatigue and depression assessments validated for MS; included brain structural, functional magnetic resonance imaging (fMRI) or diffusion MRI (dMRI). Sixty studies met the criteria: 18 dMRI (15 fatigue, 5 depression) and 22 fMRI (20 fatigue, 5 depression) studies. The literature was heterogeneous; half of studies reported no correlation between brain connectivity measures and fatigue or depression. Positive findings showed that abnormal cortico-limbic structural and functional connectivity was associated with depression. Fatigue was linked to connectivity measures in cortico-thalamic-basal-ganglial networks. Additionally, both depression and fatigue were related to altered cingulum structural connectivity, and functional connectivity involving thalamus, cerebellum, frontal lobe, ventral tegmental area, striatum, default mode and attention networks, and supramarginal, precentral, and postcentral gyri. Qualitative analysis suggests structural and functional connectivity changes, possibly due to axonal and/or myelin loss, in the cortico-thalamic-basal-ganglial and cortico-limbic network may underlie fatigue and depression in pwRRMS, respectively, but the overall results were inconclusive, possibly explained by heterogeneity and limited number of studies. This highlights the need for further studies including advanced MRI to detect more subtle brain changes in association with depression and fatigue. Future studies using optimised imaging protocols and validated depression and fatigue measures are required to clarify the substrates underlying these symptoms in pwRRMS.
Collapse
Affiliation(s)
- Agniete Kampaite
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecka Gustafsson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Elizabeth N. York
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Foley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Niall J. J. MacDougall
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Mark E. Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam D. Waldman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Rozanna Meijboom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Weerasinghe-Mudiyanselage PDE, Kang S, Kim JS, Kim SH, Wang H, Shin T, Moon C. Changes in structural plasticity of hippocampal neurons in an animal model of multiple sclerosis. Zool Res 2024; 45:398-414. [PMID: 38485508 PMCID: PMC11017077 DOI: 10.24272/j.issn.2095-8137.2023.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 03/19/2024] Open
Abstract
Structural plasticity is critical for the functional diversity of neurons in the brain. Experimental autoimmune encephalomyelitis (EAE) is the most commonly used model for multiple sclerosis (MS), successfully mimicking its key pathological features (inflammation, demyelination, axonal loss, and gliosis) and clinical symptoms (motor and non-motor dysfunctions). Recent studies have demonstrated the importance of synaptic plasticity in EAE pathogenesis. In the present study, we investigated the features of behavioral alteration and hippocampal structural plasticity in EAE-affected mice in the early phase (11 days post-immunization, DPI) and chronic phase (28 DPI). EAE-affected mice exhibited hippocampus-related behavioral dysfunction in the open field test during both early and chronic phases. Dendritic complexity was largely affected in the cornu ammonis 1 (CA1) and CA3 apical and dentate gyrus (DG) subregions of the hippocampus during the chronic phase, while this effect was only noted in the CA1 apical subregion in the early phase. Moreover, dendritic spine density was reduced in the hippocampal CA1 and CA3 apical/basal and DG subregions in the early phase of EAE, but only reduced in the DG subregion during the chronic phase. Furthermore, mRNA levels of proinflammatory cytokines ( Il1β, Tnfα, and Ifnγ) and glial cell markers ( Gfap and Cd68) were significantly increased, whereas the expression of activity-regulated cytoskeleton-associated protein (ARC) was reduced during the chronic phase. Similarly, exposure to the aforementioned cytokines in primary cultures of hippocampal neurons reduced dendritic complexity and ARC expression. Primary cultures of hippocampal neurons also showed significantly reduced extracellular signal-regulated kinase (ERK) phosphorylation upon treatment with proinflammatory cytokines. Collectively, these results suggest that autoimmune neuroinflammation alters structural plasticity in the hippocampus, possibly through the ERK-ARC pathway, indicating that this alteration may be associated with hippocampal dysfunctions in EAE.
Collapse
Affiliation(s)
- Poornima D E Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung-Ho Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hongbing Wang
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea. E-mail:
| |
Collapse
|
18
|
Morsy SAA, Fathelbab MH, El-Sayed NS, El-Habashy SE, Aly RG, Harby SA. Doxycycline-Loaded Calcium Phosphate Nanoparticles with a Pectin Coat Can Ameliorate Lipopolysaccharide-Induced Neuroinflammation Via Enhancing AMPK. J Neuroimmune Pharmacol 2024; 19:2. [PMID: 38236457 PMCID: PMC10796490 DOI: 10.1007/s11481-024-10099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Neuroinflammation occurs in response to different injurious triggers to limit their hazardous effects. However, failure to stop this process can end in multiple neurological diseases. Doxycycline (DX) is a tetracycline, with potential antioxidant and anti-inflammatory properties. The current study tested the effects of free DX, DX-loaded calcium phosphate (DX@CaP), and pectin-coated DX@CaP (Pec/DX@CaP) nanoparticles on the lipopolysaccharide (LPS)-induced neuroinflammation in mice and to identify the role of adenosine monophosphate-activated protein kinase (AMPK) in this effect. The present study was conducted on 48 mice, divided into 6 groups, eight mice each. Group 1 (normal control), Group 2 (blank nanoparticles-treated), Group 3 (LPS (untreated)), Groups 4, 5, and 6 received LPS, then Group 4 received free DX, Group 5 received DX-loaded calcium phosphate nanoparticles (DX@CaP), and Group 6 received DX-loaded calcium phosphate nanoparticles with a pectin coat (Pec/DX@CaP). At the end of the experimentation period, behavioral tests were carried out. Then, mice were sacrificed, and brain tissue was extracted and used for histological examination, and assessment of interleukin-6 positive cells in different brain areas, in addition to biochemical measurement of SOD activity, TLR-4, AMPK and Nrf2. LPS can induce prominent neuroinflammation. Treatment with (Pec/DX@CaP) can reverse most behavioral, histopathological, and biochemical changes caused by LPS. The findings of the current study suggest that (Pec/DX@CaP) exerts a significant reverse of LPS-induced neuroinflammation by enhancing SOD activity, AMPK, and Nrf2 expression, in addition to suppression of TLR-4.
Collapse
Affiliation(s)
| | - Mona Hassan Fathelbab
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Norhan S El-Sayed
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rania G Aly
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sahar A Harby
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
19
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
20
|
Althammer F, Roy RK, Kirchner MK, McGrath S, Lira EC, Stern JE. Angiotensin-II drives changes in microglia-vascular interactions in rats with heart failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573045. [PMID: 38187537 PMCID: PMC10769361 DOI: 10.1101/2023.12.22.573045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Activation of microglia, the resident immune cells of the central nervous system, leading to the subsequent release of pro-inflammatory cytokines, has been linked to cardiac remodeling, autonomic disbalance, and cognitive deficits in heart failure (HF). While previous studies emphasized the role of hippocampal Angiotensin II (AngII) signaling in HF-induced microglial activation, unanswered mechanistic questions persist. Evidence suggests significant interactions between microglia and local microvasculature, potentially affecting blood-brain barrier integrity and cerebral blood flow regulation. Still, whether the microglial-vascular interface is affected in the brain during HF remains unknow. Using a well-established ischemic HF rat model, we demonstrate increased vessel-associated microglia (VAM) in HF rat hippocampi, which showed heightened expression of AngII AT1a receptors. Acute AngII administration to sham rats induced microglia recruitment to the perivascular space, along with increased expression of TNFa. Conversely, administering an AT1aR blocker to HF rats prevented the recruitment of microglia to the perivascular space, normalizing their levels to those in healthy rats. These results highlight the critical importance of a rather understudied phenomenon (i.e., microglia-vascular interactions in the brain) in the context of the pathophysiology of a highly prevalent cardiovascular disease, and unveil novel potential therapeutic avenues aimed at mitigating neuroinflammation in cardiovascular diseases.
Collapse
|
21
|
Hajiluian G, Karegar SJ, Shidfar F, Aryaeian N, Salehi M, Lotfi T, Farhangnia P, Heshmati J, Delbandi AA. The effects of Ellagic acid supplementation on neurotrophic, inflammation, and oxidative stress factors, and indoleamine 2, 3-dioxygenase gene expression in multiple sclerosis patients with mild to moderate depressive symptoms: A randomized, triple-blind, placebo-controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155094. [PMID: 37806153 DOI: 10.1016/j.phymed.2023.155094] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Depression is one of the most common psychological disorders among multiple sclerosis (MS) patients that characterized as the first symptoms. Ellagic acid is a natural polyphenol that may have neuroprotective properties through antioxidant, anti-inflammatory, and immunomodulatory effects. PURPOSE The aim of the present study was to investigate the effects of Ellagic acid on circulating levels of brain derived neurotrophic factor (BDNF), interferon-γ (IFN-ƴ), nitric oxide (NO), nuclear factor erythroid-2-related factor 2 (Nrf2), cortisol, serotonergic system, and indoleamine 2, 3-dioxygenase (IDO) gene expression in MS patients with mild to moderate depressive symptoms. STUDY DESIGN A randomized triple-blind clinical trial. METHODS The eligible patients according to the inclusion criteria were randomly divided into two groups: either 180 mg Ellagic acid (Axenic company) (n = 25) or 180 mg maltodextrin (n = 25) group for 12 weeks. The Ellagic acid supplement were identical to placebo in shape, color and odor. Serum BDNF, NO, Nrf2, cortisol, serotonin, and IFN-ƴ were measured by ELISA kit in the baseline and end of the study. Also, demographic characteristics, anthropometric measurements, physical activity, food intake, Beck Depression Inventory-II (BDI-II) and expanding disability status scale (EDSS) questionnaires, as well as IDO gene expression were assessed. SPSS software version 24 was used for statistical analysis. RESULTS Fifty patients were evaluated, and a significant decrease in BDI-II (p = 0.001), IFN-ƴ (p = 0.001), NO (p = 0.004), cortisol (p = 0.015), IDO gene expression (p = 0.001) and as well as increased the level of BDNF (p = 0.006) and serotonin (p = 0.019) was observed among those who received 90 mg Ellagic acid twice a day for 12 weeks versus control group. However, there were no significant differences between groups for Nrf2 levels (p>0.05) at the end of study. CONCLUSION The current study indicates that Ellagic acid intervention has a favorable effect on depression in MS patients. This is achieved by reducing BDI-II scores, as well as levels of NO, cortisol, IFN-ƴ, and IDO gene expression. Furthermore, we found a significant elevation in circulating levels of BDNF and serotonin.
Collapse
Affiliation(s)
- Ghazaleh Hajiluian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Jafari Karegar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Naheed Aryaeian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Salehi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Teyebeh Lotfi
- Rasoul Akram Clinical Research Development Unit, Iran University of Medical Sciences, Tehran, Iran
| | - Pooya Farhangnia
- Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Heshmati
- Songhor Healthcare Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali-Akbar Delbandi
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Siegel JS, Subramanian S, Perry D, Kay B, Gordon E, Laumann T, Reneau R, Gratton C, Horan C, Metcalf N, Chacko R, Schweiger J, Wong D, Bender D, Padawer-Curry J, Raison C, Raichle M, Lenze EJ, Snyder AZ, Dosenbach NUF, Nicol G. Psilocybin desynchronizes brain networks. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.22.23294131. [PMID: 37701731 PMCID: PMC10493007 DOI: 10.1101/2023.08.22.23294131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
1The relationship between the acute effects of psychedelics and their persisting neurobiological and psychological effects is poorly understood. Here, we tracked brain changes with longitudinal precision functional mapping in healthy adults before, during, and for up to 3 weeks after oral psilocybin and methylphenidate (17 MRI visits per participant) and again 6+ months later. Psilocybin disrupted connectivity across cortical networks and subcortical structures, producing more than 3-fold greater acute changes in functional networks than methylphenidate. These changes were driven by desynchronization of brain activity across spatial scales (area, network, whole brain). Psilocybin-driven desynchronization was observed across association cortex but strongest in the default mode network (DMN), which is connected to the anterior hippocampus and thought to create our sense of self. Performing a perceptual task reduced psilocybin-induced network changes, suggesting a neurobiological basis for grounding, connecting with physical reality during psychedelic therapy. The acute brain effects of psilocybin are consistent with distortions of space-time and the self. Psilocybin induced persistent decrease in functional connectivity between the anterior hippocampus and cortex (and DMN in particular), lasting for weeks but normalizing after 6 months. Persistent suppression of hippocampal-DMN connectivity represents a candidate neuroanatomical and mechanistic correlate for psilocybin's pro-plasticity and anti-depressant effects.
Collapse
|
23
|
Kong Q, Sacca V, Zhu M, Ursitti AK, Kong J. Anatomical and Functional Connectivity of Critical Deep Brain Structures and Their Potential Clinical Application in Brain Stimulation. J Clin Med 2023; 12:4426. [PMID: 37445460 DOI: 10.3390/jcm12134426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Subcortical structures, such as the hippocampus, amygdala, and nucleus accumbens (NAcc), play crucial roles in human cognitive, memory, and emotional processing, chronic pain pathophysiology, and are implicated in various psychiatric and neurological diseases. Interventions modulating the activities of these deep brain structures hold promise for improving clinical outcomes. Recently, non-invasive brain stimulation (NIBS) has been applied to modulate brain activity and has demonstrated its potential for treating psychiatric and neurological disorders. However, modulating the above deep brain structures using NIBS may be challenging due to the nature of these stimulations. This study attempts to identify brain surface regions as source targets for NIBS to reach these deep brain structures by integrating functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). We used resting-state functional connectivity (rsFC) and probabilistic tractography (PTG) analysis to identify brain surface stimulation targets that are functionally and structurally connected to the hippocampus, amygdala, and NAcc in 119 healthy participants. Our results showed that the medial prefrontal cortex (mPFC) is functionally and anatomically connected to all three subcortical regions, while the precuneus is connected to the hippocampus and amygdala. The mPFC and precuneus, two key hubs of the default mode network (DMN), as well as other cortical areas distributed at the prefrontal cortex and the parietal, temporal, and occipital lobes, were identified as potential locations for NIBS to modulate the function of these deep structures. The findings may provide new insights into the NIBS target selections for treating psychiatric and neurological disorders and chronic pain.
Collapse
Affiliation(s)
- Qiao Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Valeria Sacca
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Meixuan Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Amy Katherine Ursitti
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| |
Collapse
|
24
|
Brasanac J, Chien C. A review on multiple sclerosis prognostic findings from imaging, inflammation, and mental health studies. Front Hum Neurosci 2023; 17:1151531. [PMID: 37250694 PMCID: PMC10213782 DOI: 10.3389/fnhum.2023.1151531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Magnetic resonance imaging (MRI) of the brain is commonly used to detect where chronic and active lesions are in multiple sclerosis (MS). MRI is also extensively used as a tool to calculate and extrapolate brain health by way of volumetric analysis or advanced imaging techniques. In MS patients, psychiatric symptoms are common comorbidities, with depression being the main one. Even though these symptoms are a major determinant of quality of life in MS, they are often overlooked and undertreated. There has been evidence of bidirectional interactions between the course of MS and comorbid psychiatric symptoms. In order to mitigate disability progression in MS, treating psychiatric comorbidities should be investigated and optimized. New research for the prediction of disease states or phenotypes of disability have advanced, primarily due to new technologies and a better understanding of the aging brain.
Collapse
Affiliation(s)
- Jelena Brasanac
- Charité – Universitätsmedizin Berlin, Klinik für Psychiatrie und Psychotherapie, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Medizinische Klinik m.S. Psychosomatik, Berlin, Germany
| | - Claudia Chien
- Charité – Universitätsmedizin Berlin, Klinik für Psychiatrie und Psychotherapie, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Medizinische Klinik m.S. Psychosomatik, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Experimental and Clinical Research Center, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Neuroscience Clinical Research Center, Berlin, Germany
| |
Collapse
|
25
|
Yu C, Ruan Y, Sun X, Chen C, Shen T, Liu C, Qiu W, Lu Z, Chan SO, Wang L. rTMS ameliorates depression/anxiety-like behaviors in experimental autoimmune encephalitis by inhibiting neurotoxic reactive astrocytes. J Affect Disord 2023; 331:352-361. [PMID: 36958487 DOI: 10.1016/j.jad.2023.03.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
One third of patients with multiple sclerosis (MS) suffered from depressive symptoms. The pathogenesis of depression in MS patients has been related to innate immune activation in certain regions of the brain such as hippocampus. However, pharmacotherapy lacks sufficient evidence for beneficial effects on depression in MS patients, urging for a novel treatment modality for this mental disorder. Treatment effects of rTMS on depression/anxiety-like behaviors in mice with experimental autoimmune encephalomyelitis (EAE) were assessed by behavioral tests. The role of innate immune response was examined by RNA sequencing, quantitative RT-PCR, and immunofluorescence techniques. Depressive symptom severity and astroglial activation in patients with MS were assessed by Beck Depression Inventory and serum glial fibrillary acidic protein (GFAP), respectively. EAE mice displayed depression/anxiety-like behaviors, which were ameliorated by rTMS. Transcriptome and gene-specific expression analysis of the hippocampus showed significant reduction in transcript levels associated with neurotoxic reactive astrocytes in EAE mice after rTMS treatment. This was confirmed by immunofluorescence studies. Complement component 3d, a marker of neurotoxic reactive astrocytes, was highly expressed in EAE hippocampus, but was reduced to a basal level after rTMS treatment. In patients with MS, astroglial activation, indicated by serum GFAP levels, was significantly elevated in those with moderate or major depressive symptoms. These findings support that the suppression of neurotoxic reactive astrocytes might be a potential target for treatment of depression in patients with MS, and suggest the potential of using rTMS as a potential therapeutic treatment for this disorder.
Collapse
Affiliation(s)
- Chao Yu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China; Medical Examination Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Yiwen Ruan
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiaobo Sun
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Chen Chen
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Ting Shen
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Chunxin Liu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Wei Qiu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Zhengqi Lu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Sun On Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Liqing Wang
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
26
|
Garcia IJP, Kinoshita PF, Valadares JMDM, de Carvalho LED, Cortes VF, Barbosa LA, Scavone C, Santos HDL. Effect of Ouabain on Glutamate Transport in the Hippocampus of Rats with LPS-Induced Neuroinflammation. Biomedicines 2023; 11:biomedicines11030920. [PMID: 36979899 PMCID: PMC10045517 DOI: 10.3390/biomedicines11030920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/19/2023] Open
Abstract
A lipopolysaccharide (LPS)-induced neuroinflammation rat model was used to study the effects of ouabain (OUA) at low concentrations, which can interact with the Na,K-ATPase, causing the modulation of intracellular signalling pathways in the Central Nervous System. Our study aimed to analyse the effects of OUA on glutamate transport in the hippocampus of rats with LPS-induced neuroinflammation. Adult male Wistar rats were divided into four groups: OUA (1.8 µg/kg), saline (CTR), LPS (200 µg/kg), and OUA + LPS (OUA 20 min before LPS). The animals were sacrificed after 2 h, and the hippocampus was collected for analysis. After treatment, we determined the activities of Na,K-ATPase and glutamine synthetase (GS). In addition, expression of the α1, α2, and α3 isoforms of Na,K-ATPase and the glutamate transporters, EAAT1 and EAAT2, were also analysed. Treatment with OUA caused a specific increase in the α2 isoform expression (~20%), whereas LPS decreased its expression (~22%), and treatment with OUA before LPS prevented the effects of LPS. Moreover, LPS caused a decrease of approximately 50% in GS activity compared with that in the CTR group; however, OUA pre-treatment attenuated this effect of LPS. Notably, it was found that treatment with OUA caused an increase in the expression of EAAT1 (~30%) and EAAT2 (~25%), whereas LPS caused a decrease in the expression of EAAT1 (~23%) and EAAT2 (~25%) compared with that in the CTR group. When treated with OUA, the effects of LPS were abrogated. In conclusion, the OUA pre-treatment abolished the effect caused by LPS, suggesting that this finding may be related to the restoration of the interaction between FXYD2 and the studied membrane proteins.
Collapse
Affiliation(s)
- Israel José Pereira Garcia
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Paula Fernanda Kinoshita
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jéssica Martins de Moura Valadares
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Luciana Estefani Drumond de Carvalho
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Vanessa Faria Cortes
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Leandro Augusto Barbosa
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Cristoforo Scavone
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: (C.S.); (H.d.L.S.)
| | - Hérica de Lima Santos
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Correspondence: (C.S.); (H.d.L.S.)
| |
Collapse
|
27
|
Liu Q, Zhang X. Multimodality neuroimaging in vascular mild cognitive impairment: A narrative review of current evidence. Front Aging Neurosci 2023; 15:1073039. [PMID: 37009448 PMCID: PMC10050753 DOI: 10.3389/fnagi.2023.1073039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
The vascular mild cognitive impairment (VaMCI) is generally accepted as the premonition stage of vascular dementia (VaD). However, most studies are focused mainly on VaD as a diagnosis in patients, thus neglecting the VaMCI stage. VaMCI stage, though, is easily diagnosed by vascular injuries and represents a high-risk period for the future decline of patients' cognitive functions. The existing studies in China and abroad have found that magnetic resonance imaging technology can provide imaging markers related to the occurrence and development of VaMCI, which is an important tool for detecting the changes in microstructure and function of VaMCI patients. Nevertheless, most of the existing studies evaluate the information of a single modal image. Due to the different imaging principles, the data provided by a single modal image are limited. In contrast, multi-modal magnetic resonance imaging research can provide multiple comprehensive data such as tissue anatomy and function. Here, a narrative review of published articles on multimodality neuroimaging in VaMCI diagnosis was conducted,and the utilization of certain neuroimaging bio-markers in clinical applications was narrated. These markers include evaluation of vascular dysfunction before tissue damages and quantification of the extent of network connectivity disruption. We further provide recommendations for early detection, progress, prompt treatment response of VaMCI, as well as optimization of the personalized treatment plan.
Collapse
Affiliation(s)
- Qiuping Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
28
|
Hejazi S, Karwowski W, Farahani FV, Marek T, Hancock PA. Graph-Based Analysis of Brain Connectivity in Multiple Sclerosis Using Functional MRI: A Systematic Review. Brain Sci 2023; 13:brainsci13020246. [PMID: 36831789 PMCID: PMC9953947 DOI: 10.3390/brainsci13020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Multiple sclerosis (MS) is an immune system disease in which myelin in the nervous system is affected. This abnormal immune system mechanism causes physical disabilities and cognitive impairment. Functional magnetic resonance imaging (fMRI) is a common neuroimaging technique used in studying MS. Computational methods have recently been applied for disease detection, notably graph theory, which helps researchers understand the entire brain network and functional connectivity. (2) Methods: Relevant databases were searched to identify articles published since 2000 that applied graph theory to study functional brain connectivity in patients with MS based on fMRI. (3) Results: A total of 24 articles were included in the review. In recent years, the application of graph theory in the MS field received increased attention from computational scientists. The graph-theoretical approach was frequently combined with fMRI in studies of functional brain connectivity in MS. Lower EDSSs of MS stage were the criteria for most of the studies (4) Conclusions: This review provides insights into the role of graph theory as a computational method for studying functional brain connectivity in MS. Graph theory is useful in the detection and prediction of MS and can play a significant role in identifying cognitive impairment associated with MS.
Collapse
Affiliation(s)
- Sara Hejazi
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, 30-348 Kraków, Poland
| | - P. A. Hancock
- Department of Psychology, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
29
|
Li Z, Chen K, Shao Q, Lu H, Zhang X, Pu Y, Sun X, He H, Cao L. Nanoparticulate MgH 2 ameliorates anxiety/depression-like behaviors in a mouse model of multiple sclerosis by regulating microglial polarization and oxidative stress. J Neuroinflammation 2023; 20:16. [PMID: 36710351 PMCID: PMC9885636 DOI: 10.1186/s12974-023-02696-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS). Anxiety and depression are the most common psychiatric comorbidities of MS, which seriously affect patients' quality of life, treatment compliance, and prognosis. However, current treatments for anxiety and depression in MS show low therapeutic efficacy and significant side effects. In the present study, we explored the therapeutic effects of a novel low-toxic anti-inflammatory drug, nanoparticulate magnesium hydride (MgH2), on mood disorders of MS. We observed that anxiety/depression-like behaviors in experimental autoimmune encephalomyelitis (EAE) mice were alleviated by MgH2 treatment. In addition, disease severity and inflammatory demyelination were also diminished. Furthermore, we confirmed the suppressive effect of MgH2 on depression in the acute restraint stress model. Mechanistically, MgH2 may play a therapeutic role by promoting microglial M2 polarization, inhibiting microglial M1 polarization, and reducing oxidative stress and mitochondrial damage. Therefore, nanoparticulate MgH2 may be a promising therapeutic drug for psychiatric comorbidities of MS.
Collapse
Affiliation(s)
- Zhenghao Li
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| | - Kefu Chen
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| | - Qi Shao
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| | - Hongtao Lu
- grid.73113.370000 0004 0369 1660Department of Naval Medicine, Naval Medical University, Shanghai, 200433 China
| | - Xin Zhang
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| | - Yingyan Pu
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| | - Xuejun Sun
- grid.73113.370000 0004 0369 1660Department of Naval Medicine, Naval Medical University, Shanghai, 200433 China ,grid.16821.3c0000 0004 0368 8293Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Hua He
- grid.73113.370000 0004 0369 1660Department of Neurosurgery, Third Affiliated Hospital, Naval Medical University, Shanghai, 200438 China
| | - Li Cao
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| |
Collapse
|
30
|
Hu C, Dewey BE, Mowry EM, Fitzgerald KC. Deep gray matter substructure volumes and depressive symptoms in a large multiple sclerosis cohort. Mult Scler 2023:13524585221148144. [PMID: 36691798 DOI: 10.1177/13524585221148144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Consistent findings on underlying brain features or specific structural atrophy patterns contributing to depression in multiple sclerosis (MS) are limited. OBJECTIVE To investigate how deep gray matter (DGM) features predict depressive symptom trajectories in MS patients. METHODS We used data from the MS Partners Advancing Technology and Health Solutions (MS PATHS) network in which standardized patient information and outcomes are collected. We performed whole-brain segmentation using SLANT-CRUISE. We assessed if DGM structures were associated with elevated depressive symptoms over follow-up and with depressive symptom phenotypes. RESULTS We included 3844 participants (average age: 46.05 ± 11.83 years; 72.7% female) of whom 1905 (49.5%) experienced ⩾1 periods of elevated depressive symptoms over 2.6 ± 0.9 years mean follow-up. Higher caudate, putamen, accumbens, ventral diencephalon, thalamus, and amygdala volumes were associated with lower odds of elevated depressive symptoms over follow-up (odds ratio (OR) range per 1 SD (standard deviation) increase in volume: 0.88-0.94). For example, a 1 SD increase in accumbens or caudate volume was associated with 12% or 10% respective lower odds of having a period of elevated depressive symptoms over follow-up (for accumbens: OR: 0.88; 95% confidence interval (CI): 0.83-0.93; p < 0.001; for caudate: OR: 0.90; 95% CI: 0.85-0.96; p = 0.003). CONCLUSION Lower DGM volumes were associated with depressive symptom trajectories in MS.
Collapse
Affiliation(s)
- Chen Hu
- Division of Neuroimmunology and Neurological Infections, Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Blake E Dewey
- Division of Neuroimmunology and Neurological Infections, Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ellen M Mowry
- Division of Neuroimmunology and Neurological Infections, Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Division of Neuroimmunology and Neurological Infections, Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA/Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
31
|
Menculini G, Mancini A, Gaetani L, Bellingacci L, Tortorella A, Parnetti L, Di Filippo M. Psychiatric symptoms in multiple sclerosis: a biological perspective on synaptic and network dysfunction. J Neurol Neurosurg Psychiatry 2023; 94:389-395. [PMID: 36653171 DOI: 10.1136/jnnp-2022-329806] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023]
Abstract
Psychiatric symptoms frequently occur in multiple sclerosis (MS), presenting with a complex phenomenology that encompasses a large clinical spectrum from clear-cut psychiatric disorders up to isolated psychopathological manifestations. Despite their relevant impact on the overall disease burden, such clinical features are often misdiagnosed, receive suboptimal treatment and are not systematically evaluated in the quantification of disease activity. The development of psychiatric symptoms in MS underpins a complex pathogenesis involving both emotional reactions to a disabling disease and structural multifocal central nervous system damage. Here, we review MS psychopathological manifestations under a biological perspective, highlighting the pathogenic relevance of synaptic and neural network dysfunction. Evidence obtained from human and experimental disease models suggests that MS-related psychiatric phenomenology is part of a disconnection syndrome due to diffuse inflammatory and neurodegenerative brain damage.
Collapse
Affiliation(s)
- Giulia Menculini
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Laura Bellingacci
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alfonso Tortorella
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
32
|
Schwarz K, Schmitz F. Synapse Dysfunctions in Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24021639. [PMID: 36675155 PMCID: PMC9862173 DOI: 10.3390/ijms24021639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS.
Collapse
|
33
|
Transcriptome Profiling in the Hippocampi of Mice with Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2022; 23:ijms232314829. [PMID: 36499161 PMCID: PMC9738199 DOI: 10.3390/ijms232314829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), approximates the key histopathological, clinical, and immunological features of MS. Hippocampal dysfunction in MS and EAE causes varying degrees of cognitive and emotional impairments and synaptic abnormalities. However, the molecular alterations underlying hippocampal dysfunctions in MS and EAE are still under investigation. The purpose of this study was to identify differentially expressed genes (DEGs) in the hippocampus of mice with EAE in order to ascertain potential genes associated with hippocampal dysfunction. Gene expression in the hippocampus was analyzed by RNA-sequencing and validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gene expression analysis revealed 1202 DEGs; 1023 were upregulated and 179 were downregulated in the hippocampus of mice with EAE (p-value < 0.05 and fold change >1.5). Gene ontology (GO) analysis showed that the upregulated genes in the hippocampi of mice with EAE were associated with immune system processes, defense responses, immune responses, and regulation of immune responses, whereas the downregulated genes were related to learning or memory, behavior, and nervous system processes in the GO biological process. The expressions of hub genes from the search tool for the retrieval of interacting genes/proteins (STRING) analysis were validated by RT-qPCR. Additionally, gene set enrichment analysis showed that the upregulated genes in the hippocampus were associated with inflammatory responses: interferon-γ responses, allograft rejection, interferon-α responses, IL6_JAK_STAT3 signaling, inflammatory responses, complement, IL2_STAT5 signaling, TNF-α signaling via NF-κB, and apoptosis, whereas the downregulated genes were related to synaptic plasticity, dendritic development, and development of dendritic spine. This study characterized the transcriptome pattern in the hippocampi of mice with EAE and signaling pathways underpinning hippocampal dysfunction. However, further investigation is needed to determine the applicability of these findings from this rodent model to patients with MS. Collectively, these results indicate directions for further research to understand the mechanisms behind hippocampal dysfunction in EAE.
Collapse
|
34
|
Romanello A, Krohn S, von Schwanenflug N, Chien C, Bellmann-Strobl J, Ruprecht K, Paul F, Finke C. Functional connectivity dynamics reflect disability and multi-domain clinical impairment in patients with relapsing-remitting multiple sclerosis. Neuroimage Clin 2022; 36:103203. [PMID: 36179389 PMCID: PMC9668632 DOI: 10.1016/j.nicl.2022.103203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIM Multiple sclerosis (MS) is an autoimmune disease of the central nervous system associated with deficits in cognitive and motor functioning. While structural brain changes such as demyelination are an early hallmark of the disease, a characteristic profile of functional brain alterations in early MS is lacking. Functional neuroimaging studies at various disease stages have revealed complex and heterogeneous patterns of aberrant functional connectivity (FC) in MS, with previous studies largely being limited to a static account of FC. Thus, it remains unclear how time-resolved FC relates to variance in clinical disability status in early MS. We here aimed to characterize brain network organization in early MS patients with time-resolved FC analysis and to explore the relationship between disability status, multi-domain clinical outcomes and altered network dynamics. METHODS Resting-state functional MRI (rs-fMRI) data were acquired from 101 MS patients and 101 age- and sex-matched healthy controls (HC). Based on the Expanded Disability Status Score (EDSS), patients were split into two sub-groups: patients without clinical disability (EDSS ≤ 1, n = 36) and patients with mild to moderate levels of disability (EDSS ≥ 2, n = 39). Five dynamic FC states were extracted from whole-brain rs-fMRI data. Group differences in static and dynamic FC strength, across-state overall connectivity, dwell time, transition frequency, modularity, and global connectivity were assessed. Patients' impairment was quantified as custom clinical outcome z-scores (higher: worse) for the domains depressive symptoms, fatigue, motor, vision, cognition, total brain atrophy, and lesion load. Correlation analyses between functional measures and clinical outcomes were performed with Spearman partial correlation analyses controlling for age. RESULTS Patients with mild to moderate levels of disability exhibited a more widespread spatiotemporal pattern of altered FC and spent more time in a high-connectivity, low-occurrence state compared to patients without disability and HCs. Worse symptoms in all clinical outcome domains were positively associated with EDSS scores. Furthermore, depressive symptom severity was positively related to functional dynamics as measured by state-specific global connectivity and default mode network connectivity with attention networks, while fatigue and motor impairment were related to reduced frontoparietal network connectivity with the basal ganglia. CONCLUSIONS Despite comparably low impairment levels in early MS, we identified distinct connectivity alterations between patients with mild to moderate disability and those without disability, and these changes were sensitive to clinical outcomes in multiple domains. Furthermore, time-resolved analysis uncovered alterations in network dynamics and clinical correlations that remained undetected with conventional static analyses, showing that accounting for temporal dynamics helps disentangle the relationship between functional alterations, disability status, and symptoms in early MS.
Collapse
Affiliation(s)
- Amy Romanello
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephan Krohn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nina von Schwanenflug
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
35
|
Liang L, Wang H, Hu Y, Bian H, Xiao L, Wang G. Oridonin relieves depressive-like behaviors by inhibiting neuroinflammation and autophagy impairment in rats subjected to chronic unpredictable mild stress. Phytother Res 2022; 36:3335-3351. [PMID: 35686337 DOI: 10.1002/ptr.7518] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/11/2022]
Abstract
Major depressive disorder (MDD) is a severe life-threatening disorder with increasing prevalence. However, the mechanistic interplay between depression, neuroinflammation, and autophagy is yet to be demonstrated. This study investigated the effect of Oridonin on CUMS-induced depression, neuroinflammation, and autophagy impairment. Male 4-week-old Sprague-Dawley rats were subjected to chronic unpredictable mild stress (CUMS), some of which were injected with Oridonin, fluoxetine (FLX), or their combination at different durations of CUMS. CUMS significantly increased the levels of cytokines (IL-1β, IL-18, and caspase-1), reduced autophagy-related protein levels (Beclin-1, p62, Atg5, and LC3B), and caused microglia cells activation. Oridonin prevented and reversed the depressive-like behavior. Furthermore, it has a stronger and longer-lasting antidepressant effect than FLX. And the antidepressant effect of Oridonin in combination with fluoxetine was greater than that of high-dose fluoxetine alone. In addition, Oridonin significantly normalized autophagy-related protein levels, and reduced levels of cytokines by blocking the interaction between NLRP3 and NEK7. Similarly, Oridonin abolished levels of cytokines and reversed autophagy impairment in LPS-activated BV2 cells. All these results supported our hypothesis that Oridonin possesses potent anti-depressive action, which might be mediated via inhibition of neuroinflammation and autophagy impairment by blocking the interaction between NLRP3 and NEK7.
Collapse
Affiliation(s)
- Liang Liang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Psychology, The Fourth Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hui Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Hu
- Department of Psychology, The Fourth Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hetao Bian
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Nwaubani P, Cercignani M, Colasanti A. In vivo quantitative imaging of hippocampal inflammation in autoimmune neuroinflammatory conditions: a systematic review. Clin Exp Immunol 2022; 210:24-38. [PMID: 35802780 PMCID: PMC9585553 DOI: 10.1093/cei/uxac058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/17/2022] [Accepted: 07/04/2022] [Indexed: 01/25/2023] Open
Abstract
The hippocampus is a morphologically complex region of the brain limbic system centrally involved in important cognitive, affective, and behavioural regulatory roles. It has exquisite vulnerability to neuroinflammatory processes, with some of its subregions found to be specific sites of neuroinflammatory pathology in ex-vivo studies. Optimizing neuroimaging correlates of hippocampal neuroinflammation would enable the direct study of functional consequences of hippocampal neuroinflammatory pathology, as well as the definition of therapeutic end-points for treatments targeting neuroinflammation, and their related affective or cognitive sequelae. However, in vivo traditional imaging of the hippocampus and its subregions is fraught with difficulties, due to methodological challenges deriving from its unique anatomical characteristics. The main objective of this review is to provide a current update on the characterization of quantitative neuroimaging correlates of hippocampal neuroinflammation by focusing on three prototypical autoimmune neuro-inflammatory conditions [multiple sclerosis (MS), systemic lupus erythematosus (SLE), and autoimmune encephalitis (AE)]. We focused on studies employing TSPO-targeting positron emission tomography (PET), quantitative magnetic resonance imaging (MRI), and spectroscopy techniques assumed to be sensitive to neuroinflammatory tissue changes. We found 18 eligible studies (14, 2, and 2 studies in MS, AE, and SLE, respectively). Across conditions, the largest effect was seen in TSPO PET and diffusion-weighted MRI studies. No study examined neuroinflammation-related changes at the hippocampal subfield level. Overall, results were largely inconsistent due to heterogeneous imaging methods, small sample sizes, and different population studies. We discuss how these data could inform future study design and conclude by suggesting further methodological directions aimed at improving the precision and sensitivity of neuroimaging techniques to characterize hippocampal neuroinflammatory pathology in the human brain.
Collapse
Affiliation(s)
- P Nwaubani
- Department of Clinical Neuroscience and Neuroimaging, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK
| | - M Cercignani
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - A Colasanti
- Correspondence: Alessandro Colasanti, Department of Clinical Neuroscience and Neuroimaging, Brighton and Sussex Medical School, University of Sussex, Trafford Centre for Medical Research, University of Sussex, Falmer, Brighton, BN1 4RY, UK.
| |
Collapse
|
37
|
Chitnis T, Vandercappellen J, King M, Brichetto G. Symptom Interconnectivity in Multiple Sclerosis: A Narrative Review of Potential Underlying Biological Disease Processes. Neurol Ther 2022; 11:1043-1070. [PMID: 35680693 PMCID: PMC9338216 DOI: 10.1007/s40120-022-00368-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Fatigue, cognitive impairment, depression, and pain are highly prevalent symptoms in multiple sclerosis (MS). These often co-occur and may be explained by a common etiology. By reviewing existing literature, we aimed to identify potential underlying biological processes implicated in the interconnectivity between these symptoms. Methods A literature search was conducted to identify articles reporting research into the biological mechanisms responsible for the manifestation of fatigue, cognitive impairment, depression, and pain in MS. PubMed was used to search for articles published from July 2011 to July 2021. We reviewed and assessed findings from the literature to identify biological processes common to the symptoms of interest. Results Of 693 articles identified from the search, 252 were selected following screening of titles and abstracts and assessing reference lists of review articles. Four biological processes linked with two or more of the symptoms of interest were frequently identified from the literature: (1) direct neuroanatomical changes to brain regions linked with symptoms of interest (e.g., thalamic injury associated with cognitive impairment, fatigue, and depression), (2) pro-inflammatory cytokines associated with so-called ‘sickness behavior,’ including manifestation of fatigue, transient cognitive impairment, depression, and pain, (3) dysregulation of monoaminergic pathways leading to depressive symptoms and fatigue, and (4) hyperactivity of the hypothalamic–pituitary-adrenal (HPA) axis as a result of pro-inflammatory cytokines promoting the release of brain noradrenaline, serotonin, and tryptophan, which is associated with symptoms of depression and cognitive impairment. Conclusion The co-occurrence of fatigue, cognitive impairment, depression, and pain in MS appears to be associated with a common set of etiological factors, namely neuroanatomical changes, pro-inflammatory cytokines, dysregulation of monoaminergic pathways, and a hyperactive HPA axis. This association of symptoms and biological processes has important implications for disease management strategies and, eventually, could help find a common therapeutic pathway that will impact both inflammation and neuroprotection. Supplementary Information The online version contains supplementary material available at 10.1007/s40120-022-00368-2.
Collapse
Affiliation(s)
- Tanuja Chitnis
- Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| | | | - Miriam King
- Novartis Pharma AG, Fabrikstrasse 12-2, 4056, Basel, Switzerland
| | - Giampaolo Brichetto
- Associazione Italiana Sclerosi Multipla Rehabilitation Center, Via Operai, 30, 16149, Genoa, GE, Italy
| |
Collapse
|
38
|
Cakmak JD, Liu L, Poirier SE, Schaefer B, Poolacherla R, Burhan AM, Sabesan P, St. Lawrence K, Théberge J, Hicks JW, Finger E, Palaniyappan L, Anazodo UC. The functional and structural associations of aberrant microglial activity in major depressive disorder. J Psychiatry Neurosci 2022; 47:E197-E208. [PMID: 35654450 PMCID: PMC9343118 DOI: 10.1503/jpn.210124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/13/2021] [Accepted: 03/13/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a debilitating mental illness that has been linked to increases in markers of inflammation, as well as to changes in brain functional and structural connectivity, particularly between the insula and the subgenual anterior cingulate cortex (sgACC). In this study, we directly related inflammation and dysconnectivity in treatment-resistant MDD by concurrently measuring the following: microglial activity with [18F]N-2-(fluoroethoxyl)benzyl-N-(4phenoxypyridin-3-yl)acetamide ([18F]FEPPA) positron emission tomography (PET); the severity of MDD; and functional or structural connectivity among insula or sgACC nodes. METHODS Twelve patients with treatment-resistant MDD (8 female, 4 male; mean age ± standard deviation 54.9 ± 4.5 years and 23 healthy controls (11 female, 12 male; 60.3 ± 8.5 years) completed a hybrid [18F]FEPPA PET and MRI acquisition. From these, we extracted relative standardized uptake values for [18F]FEPPA activity and Pearson r-to-z scores representing functional connectivity from our regions of interest. We extracted diffusion tensor imaging metrics from the cingulum bundle, a key white matter bundle in MDD. We performed regressions to relate microglial activity with functional connectivity, structural connectivity and scores on the 17-item Hamilton Depression Rating Scale. RESULTS We found significantly increased [18F]FEPPA uptake in the left sgACC in patients with treatment-resistant MDD compared to healthy controls. Patients with MDD also had a reduction in connectivity between the sgACC and the insula. The [18F]FEPPA uptake in the left sgACC was significantly related to functional connectivity with the insula, and to the structural connectivity of the cingulum bundle. [18F]FEPPA uptake also predicted scores on the Hamilton Depression Rating Scale.Limitations: A relatively small sample size, lack of functional task data and concomitant medication use may have affected our findings. CONCLUSION We present preliminary evidence linking a network-level dysfunction relevant to the pathophysiology of depression and related to increased microglial activity in MDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Lena Palaniyappan
- From the Department of Neuroscience, Western University, London, Ont. (Cakmak, Schaefer, Sabesan, Palaniyappan); the Robarts Research Institute, Western University, London, Ont. (Cakmak, Palaniyappan); the Lawson Health Research Institute, London, Ont. (Liu, Poirier, Burhan, St. Lawrence, Théberge, Hicks, Finger, Anazodo); the Department of Medical Biophysics, Western University, London, Ont. (Poirier, Sabesan, St. Lawrence, Théberge, Hicks, Anazodo); the London Health Sciences Centre, London, Ont. (Schaefer, Poolacherla, Palaniyappan); the Department of Psychiatry, Western University, London, Ont. (Burhan, Théberge, Palaniyappan); the Department of Psychiatry, University of Toronto, Toronto, Ont. (Burhan); the Ontario Shores Centre for Mental Health Sciences, Whitby, Ont. (Burhan); the Department of Clinical Neurological Sciences, Western University, London, Ont. (Finger); the Department of Anesthesia and Perioperative Medicine, Western University, London, Ont. (Poolacherla)
| | | |
Collapse
|
39
|
No Changes in Functional Connectivity After Dimethyl Fumarate Treatment in Multiple Sclerosis. Neurol Ther 2022; 11:471-479. [PMID: 35119678 PMCID: PMC8857342 DOI: 10.1007/s40120-022-00328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/19/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction Despite the increased availability of disease-modifying therapies (DMTs) for treating relapsing-remitting multiple sclerosis (RR-MS), only a few studies have evaluated DMT-associated brain functional changes. Methods We investigated whether significant resting-state functional connectivity (FC) changes occurred in RR-MS patients after 6 and 12 months of dimethyl fumarate (DMF) treatment using both a seed-based and data-driven approach. Results Thirty patients were followed up after 6 months of therapy, and 27 of them reached a 12-month follow-up. Three patients at baseline and only one after 12 months showed gadolinium-enhancing lesions. We did not find any significant FC changes after therapy at either time point. After 12 months of DMF, we observed relatively modest brain volume loss and a significant improvement in Paced Auditory Serial Addition Test 3 s and 25-Foot Walk Test scores. Conclusion The absence of FC changes could be due to the low degree of baseline inflammation in our patients, though we cannot exclude that more time may be required to observe such changes. No FC changes may reflect a beneficial effect of DMF therapy, as supported by conventional MRI findings and clinical improvement.
Collapse
|
40
|
Brasanac J, Ramien C, Gamradt S, Taenzer A, Glau L, Ritter K, Patas K, Agorastos A, Wiedemann K, Demiralay C, Fischer F, Otte C, Bellmann-Strobl J, Friese MA, Tolosa E, Paul F, Heesen C, Weygandt M, Gold SM. Immune signature of multiple sclerosis-associated depression. Brain Behav Immun 2022; 100:174-182. [PMID: 34863857 DOI: 10.1016/j.bbi.2021.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple neurobiological pathways have been implicated in the pathobiology of major depressive disorder (MDD). The identification of reliable biological substrates across the entire MDD spectrum, however, is hampered by a vast heterogeneity in the clinical presentation, presumably as a consequence of heterogeneous pathobiology. One way to overcome this limitation could be to explore disease subtypes based on biological similarity such as "inflammatory depression". As such a subtype may be particularly enriched in depressed patients with an underlying inflammatory condition, multiple sclerosis (MS) could provide an informative disease context for this approach. Few studies have explored immune markers of MS-associated depression and replications are missing. To address this, we analyzed data from two independent case-control studies on immune signatures of MS-associated depression, conducted at two different academic MS centers (overall sample size of n = 132). Using a stepwise data-driven approach, we identified CD4+CCR7lowTCM cell frequencies as a robust correlate of depression in MS. This signature was associated with core symptoms of depression and depression severity (but not MS severity per se) and linked to neuroinflammation as determined by magnetic resonance imaging (MRI). Furthermore, exploratory analyses of T cell polarization revealed this was largely driven by cells with a TH1-like phenotype. Our findings suggest (neuro)immune pathways linked to affective symptoms of autoimmune disorders such as MS, with potential relevance for the understanding of "inflammatory" subtypes of depression.
Collapse
Affiliation(s)
- Jelena Brasanac
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center (NCRC), Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Campus Buch, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Caren Ramien
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Falkenried, 94, 20251 Hamburg, Germany
| | - Stefanie Gamradt
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Aline Taenzer
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Laura Glau
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Kristin Ritter
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kostas Patas
- Laboratory of Biopathology and Immunology, Eginition University Hospital, Ave. Vassilissis Sophias, 72-74, 115 28 Athens, Greece
| | - Agorastos Agorastos
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Martinistraße, 52, 20246 Hamburg, Germany; II. Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Lagkada Str, 196, 56430 Thessaloniki, Greece
| | - Klaus Wiedemann
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Martinistraße, 52, 20246 Hamburg, Germany
| | - Cüneyt Demiralay
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Martinistraße, 52, 20246 Hamburg, Germany
| | - Felix Fischer
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Medizinische Klinik m.S. Psychosomatik, Campus Benjamin Franklin, Hindenburgdamm, 30, 12203 Berlin, Germany
| | - Christian Otte
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center (NCRC), Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Campus Buch, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Falkenried, 94, 20251 Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center (NCRC), Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Campus Buch, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Falkenried, 94, 20251 Hamburg, Germany
| | - Martin Weygandt
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center (NCRC), Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Campus Buch, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Stefan M Gold
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Falkenried, 94, 20251 Hamburg, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Medizinische Klinik m.S. Psychosomatik, Campus Benjamin Franklin, Hindenburgdamm, 30, 12203 Berlin, Germany.
| |
Collapse
|
41
|
Chauveau F, Becker G, Boutin H. Have (R)-[ 11C]PK11195 challengers fulfilled the promise? A scoping review of clinical TSPO PET studies. Eur J Nucl Med Mol Imaging 2021; 49:201-220. [PMID: 34387719 PMCID: PMC8712292 DOI: 10.1007/s00259-021-05425-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE The prototypical TSPO radiotracer (R)-[11C]PK11195 has been used in humans for more than thirty years to visualize neuroinflammation in several pathologies. Alternative radiotracers have been developed to improve signal-to-noise ratio and started to be tested clinically in 2008. Here we examined the scientific value of these "(R)-[11C]PK11195 challengers" in clinical research to determine if they could supersede (R)-[11C]PK11195. METHODS A systematic MEDLINE (PubMed) search was performed (up to end of year 2020) to extract publications reporting TSPO PET in patients with identified pathologies, excluding studies in healthy subjects and methodological studies. RESULTS Of the 288 publications selected, 152 used 13 challengers, and 142 used (R)-[11C]PK11195. Over the last 20 years, the number of (R)-[11C]PK11195 studies remained stable (6 ± 3 per year), but was surpassed by the total number of challenger studies for the last 6 years. In total, 3914 patients underwent a TSPO PET scan, and 47% (1851 patients) received (R)-[11C]PK11195. The 2 main challengers were [11C]PBR28 (24%-938 patients) and [18F]FEPPA (11%-429 patients). Only one-in-ten patients (11%-447) underwent 2 TSPO scans, among whom 40 (1%) were scanned with 2 different TSPO radiotracers. CONCLUSIONS Generally, challengers confirmed disease-specific initial (R)-[11C]PK11195 findings. However, while their better signal-to-noise ratio seems particularly useful in diseases with moderate and widespread neuroinflammation, most challengers present an allelic-dependent (Ala147Thr polymorphism) TSPO binding and genetic stratification is hindering their clinical implementation. As new challengers, insensitive to TSPO human polymorphism, are about to enter clinical evaluation, we propose this systematic review to be regularly updated (living review).
Collapse
Affiliation(s)
- Fabien Chauveau
- University of Lyon, Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, University Lyon 1, Lyon, France.
| | - Guillaume Becker
- GIGA - CRC In Vivo Imaging, University Liege, Liege, Belgium
- University of Lyon, CarMeN Laboratory, INSERM U1060, University Lyon 1, Hospices Civils Lyon, Lyon, France
| | - Hervé Boutin
- Faculty of Biology Medicine and Health, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
| |
Collapse
|
42
|
Bourel J, Planche V, Dubourdieu N, Oliveira A, Séré A, Ducourneau EG, Tible M, Maitre M, Lesté-Lasserre T, Nadjar A, Desmedt A, Ciofi P, Oliet SH, Panatier A, Tourdias T. Complement C3 mediates early hippocampal neurodegeneration and memory impairment in experimental multiple sclerosis. Neurobiol Dis 2021; 160:105533. [PMID: 34673149 DOI: 10.1016/j.nbd.2021.105533] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/09/2021] [Accepted: 10/17/2021] [Indexed: 12/26/2022] Open
Abstract
Memory impairment is one of the disabling manifestations of multiple sclerosis (MS) possibly present from the early stages of the disease and for which there is no specific treatment. Hippocampal synaptic dysfunction and dendritic loss, associated with microglial activation, can underlie memory deficits, yet the molecular mechanisms driving such hippocampal neurodegeneration need to be elucidated. In early-stage experimental autoimmune encephalomyelitis (EAE) female mice, we assessed the expression level of molecules involved in microglia-neuron interactions within the dentate gyrus and found overexpression of genes of the complement pathway. Compared to sham immunized mice, the central element of the complement cascade, C3, showed the strongest and 10-fold upregulation, while there was no increase of downstream factors such as the terminal component C5. The combination of in situ hybridization with immunofluorescence showed that C3 transcripts were essentially produced by activated microglia. Pharmacological inhibition of C3 activity, by daily administration of rosmarinic acid, was sufficient to prevent early dendritic loss, microglia-mediated phagocytosis of synapses in the dentate gyrus, and memory impairment in EAE mice, while morphological markers of microglial activation were still observed. In line, when EAE was induced in C3 deficient mice (C3KO), dendrites and spines of the dentate gyrus as well as memory abilities were preserved. Altogether, these data highlight the central role of microglial C3 in early hippocampal neurodegeneration and memory impairment in EAE and, therefore, pave the way toward new neuroprotective strategies in MS to prevent cognitive deficit using complement inhibitors.
Collapse
Affiliation(s)
- Julien Bourel
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Vincent Planche
- Univ. Bordeaux, CNRS, UMR 5293, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France
| | - Nadège Dubourdieu
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Aymeric Oliveira
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Alexandra Séré
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | | | - Marion Tible
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Marlène Maitre
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | | | - Agnes Nadjar
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France; Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Aline Desmedt
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Philippe Ciofi
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Stéphane H Oliet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Aude Panatier
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Thomas Tourdias
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France; CHU de Bordeaux, Neuroimagerie diagnostique et thérapeutique, F-33000 Bordeaux, France.
| |
Collapse
|
43
|
Exercise protects from hippocampal inflammation and neurodegeneration in experimental autoimmune encephalomyelitis. Brain Behav Immun 2021; 98:13-27. [PMID: 34391817 DOI: 10.1016/j.bbi.2021.08.212] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022] Open
Abstract
Exercise is increasingly recommended as a supportive therapy for people with Multiple Sclerosis (pwMS). While clinical research has still not disclosed the real benefits of exercise on MS disease, animal studies suggest a substantial beneficial effect on motor disability and pathological hallmarks such as central and peripheral dysregulated immune response. The hippocampus, a core area for memory formation and learning, is a brain region involved in MS pathophysiology. Human and rodent studies suggest that the hippocampus is highly sensitive to the effects of exercise, the impact of which on MS hippocampal damage is still elusive. Here we addressed the effects of chronic voluntary exercise on hippocampal function and damage in experimental autoimmune encephalomyelitis (EAE), animal model of MS. Mice were housed in standard or wheel-equipped cages starting from the day of immunization and throughout the disease course. Although running activity was reduced during the symptomatic phase, exercise significantly ameliorated motor disability. Exercise improved cognition that was assessed through the novel object recognition test and the nest building in presymptomatic and acute stages of the disease, respectively. In the acute phase exercise was shown to prevent EAE-induced synaptic plasticity abnormalities in the CA1 area, by promoting the survival of parvalbumin-positive (PV+) interneurons and by attenuating inflammation. Indeed, exercise significantly reduced microgliosis in the CA1 area, the expression of tumour necrosis factor (TNF) in microglia and, to a lesser extent, the hippocampal level of interleukin 1 beta (IL-1β), previously shown to contribute to aberrant synaptic plasticity in the EAE hippocampus. Notably, exercise exerted a precocious and long-lasting mitigating effect on microgliosis that preceded its neuroprotective action, likely underlying the improved cognitive function observed in both presymptomatic and acute phase EAE mice. Overall, these data provide evidence that regular exercise improves cognitive function and synaptic and neuronal pathology that typically affect EAE/MS brains.
Collapse
|
44
|
Haines S, Butler E, Stuckey S, Hester R, Grech LB. Relationship Between Interpersonal Depressive Symptoms and Reduced Amygdala Volume in People with Multiple Sclerosis: Considerations for Clinical Practice. Int J MS Care 2021; 23:178-185. [PMID: 34483757 DOI: 10.7224/1537-2073.2020-015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background The lifetime prevalence of depression in people with multiple sclerosis (MS) is approximately 50% compared with around 15% in the general population. There is a relationship between depression and quality of life in people with MS and evidence that depression may contribute to disease progression. Methods This cross-sectional pilot study assessed the association between depression and regional brain atrophy, including amygdala and hippocampal volume. Forty-nine participants with MS recruited through a hospital MS clinic were administered the Center for Epidemiological Studies Depression Scale Revised (CESD-R) to investigate whether higher endorsements on the items depressive affect and interpersonal symptoms were associated with volumetric magnetic resonance imaging measurements of hippocampal and amygdala atrophy. Results Regression analysis revealed an association between depression-related interpersonal symptoms and right amygdala volume. No association was found between depression and hippocampal volume. Conclusions These results provide preliminary support for a unilateral, biologically based relationship between the right amygdala and characteristic interpersonal depressive symptoms expressed by people with MS and add to the growing body of literature implicating regional brain atrophy in MS-associated depression. Given that the interpersonal subcomponent of the CESD-R measures social functioning, and the neural networks in the amygdala are known to be implicated in processing social stimuli, this research suggests that targeted diagnosis and treatments for depression in people with MS may be particularly beneficial. Further confirmatory research of this relationship is required.
Collapse
|
45
|
Zheng A, Montez DF, Marek S, Gilmore AW, Newbold DJ, Laumann TO, Kay BP, Seider NA, Van AN, Hampton JM, Alexopoulos D, Schlaggar BL, Sylvester CM, Greene DJ, Shimony JS, Nelson SM, Wig GS, Gratton C, McDermott KB, Raichle ME, Gordon EM, Dosenbach NUF. Parallel hippocampal-parietal circuits for self- and goal-oriented processing. Proc Natl Acad Sci U S A 2021; 118:e2101743118. [PMID: 34404728 PMCID: PMC8403906 DOI: 10.1073/pnas.2101743118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hippocampus is critically important for a diverse range of cognitive processes, such as episodic memory, prospective memory, affective processing, and spatial navigation. Using individual-specific precision functional mapping of resting-state functional MRI data, we found the anterior hippocampus (head and body) to be preferentially functionally connected to the default mode network (DMN), as expected. The hippocampal tail, however, was strongly preferentially functionally connected to the parietal memory network (PMN), which supports goal-oriented cognition and stimulus recognition. This anterior-posterior dichotomy of resting-state functional connectivity was well-matched by differences in task deactivations and anatomical segmentations of the hippocampus. Task deactivations were localized to the hippocampal head and body (DMN), relatively sparing the tail (PMN). The functional dichotomization of the hippocampus into anterior DMN-connected and posterior PMN-connected parcels suggests parallel but distinct circuits between the hippocampus and medial parietal cortex for self- versus goal-oriented processing.
Collapse
Affiliation(s)
- Annie Zheng
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110;
| | - David F Montez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Adrian W Gilmore
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicole A Seider
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jacqueline M Hampton
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Chad M Sylvester
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego, CA 92093
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414
| | - Gagan S Wig
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL 60208
- Department of Neurology, Northwestern University, Evanston, IL 60208
| | - Kathleen B McDermott
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110;
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
46
|
Tsouki F, Williams A. Multifaceted involvement of microglia in gray matter pathology in multiple sclerosis. Stem Cells 2021; 39:993-1007. [PMID: 33754376 DOI: 10.1002/stem.3374] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
In the inflammatory demyelinating neurodegenerative disease multiple sclerosis (MS), there is increasing interest in gray matter pathology, as neuronal loss and cortical atrophy correlate with disability and disease progression, and MS therapeutics fail to significantly slow or stop neurodegeneration. Microglia, the central nervous system (CNS)-resident macrophages, are extensively involved in white matter MS pathology, but are also implicated in gray matter pathology, similar to other neurodegenerative diseases, for which there is synaptic, axonal, and neuronal degeneration. Microglia display regional heterogeneity within the CNS, which reflects their highly plastic nature and their ability to deliver context-dependent responses tailored to the demands of their microenvironment. Therefore, microglial roles in the MS gray matter in part reflect and in part diverge from those in the white matter. The present review summarizes current knowledge of microglial involvement in gray matter changes in MS, in demyelination, synaptic damage, and neurodegeneration, with evidence implicating microglia in pathology, neuroprotection, and repair. As our understanding of microglial physiology and pathophysiology increases, we describe how we are moving toward potential therapeutic applications in MS, harnessing microglia to protect and regenerate the CNS.
Collapse
Affiliation(s)
- Foteini Tsouki
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| |
Collapse
|
47
|
Longinetti E, Frisell T, Englund S, Reutfors J, Fang F, Piehl F. Risk of depression in multiple sclerosis across disease-modifying therapies. Mult Scler 2021; 28:632-641. [PMID: 34264143 PMCID: PMC8961249 DOI: 10.1177/13524585211031128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Depression and use of antidepressants are more common among patients with
multiple sclerosis (MS) compared to the general population, but the relation
of psychiatric comorbidity to use of different disease-modifying therapies
(DMTs) is less clear. Objective: To determine whether risk of incident depression or antidepressant use
differed across DMTs, and to assess whether depression and antidepressants
affected risk of DMT discontinuation and MS relapses. Methods: We prospectively followed for 8 years a register-based nationwide cohort of
3803 relapsing-remitting MS patients. Results: Patients on rituximab had a lower risk of being diagnosed with depression or
initiating antidepressants compared with the reference group treated with
interferons (hazard ratio (HR) = 0.72, 95% confidence interval (CI) =
0.54–0.96). Patients diagnosed with depression discontinued interferon
treatment to a higher extent than patients without depression (HR = 1.51;
95% CI = 1.15–1.98), as did patients on fingolimod initiating an
antidepressant compared to patients who did not initiate an antidepressant
(HR = 1.47; 95% CI = 1.04–2.08). Conclusions: Our results indicate that the choice of DMT is associated with subsequent
risk of depression in MS, but further studies are needed to establish
whether there is a causal link. Overall, depression and use of
antidepressants displayed limited associations with DMT discontinuation and
MS relapse.
Collapse
Affiliation(s)
- Elisa Longinetti
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Frisell
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
| | - Simon Englund
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johan Reutfors
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Alvarez GM, Hackman DA, Miller AB, Muscatell KA. Systemic inflammation is associated with differential neural reactivity and connectivity to affective images. Soc Cogn Affect Neurosci 2021; 15:1024-1033. [PMID: 32441308 PMCID: PMC7657451 DOI: 10.1093/scan/nsaa065] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Systemic inflammation is increasingly appreciated as a predictor of health and well-being. Further, inflammation has been shown to influence and be influenced by affective experiences. Although prior work has substantiated associations between inflammatory and affective processes, fewer studies have investigated the neurobiological correlates that underlie links between systemic, low-grade inflammation and affective reactivity. Thus, the current study examined whether markers of systemic inflammation (i.e. interleukin-6, C-reactive protein) are associated with differential patterns of neural activation and connectivity in corticolimbic regions in response to affective images. We investigated this question in a sample of 66 adults (44 women, M age = 54.98 years, range = 35–76) from the Midlife in the United States study. Higher levels of inflammation were associated with lower activity in limbic regions (i.e. amygdala, hippocampus, anterior insula, temporal pole) when viewing positive (vs neutral) images. Higher levels of inflammation were also associated with greater connectivity between the hippocampus and the medial prefrontal cortex in response to positive images. Inflammatory markers were not associated with significant differences in activation or connectivity to negative images. These findings highlight the utility of health neuroscience approaches in demonstrating that physiological processes such as inflammation are related to how our brains respond to affective information.
Collapse
Affiliation(s)
- Gabriella M Alvarez
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3270, USA
| | - Daniel A Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Adam Bryant Miller
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3270, USA
| | - Keely A Muscatell
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3270, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
49
|
Kocovski P, Tabassum-Sheikh N, Marinis S, Dang PT, Hale MW, Orian JM. Immunomodulation Eliminates Inflammation in the Hippocampus in Experimental Autoimmune Encephalomyelitis, but Does Not Ameliorate Anxiety-Like Behavior. Front Immunol 2021; 12:639650. [PMID: 34177891 PMCID: PMC8222726 DOI: 10.3389/fimmu.2021.639650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/17/2021] [Indexed: 01/21/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease targeting the central nervous system, characterized by an unpredictable disease course and a wide range of symptoms. Emotional and cognitive deficits are now recognized as primary disease manifestations and not simply the consequence of living with a chronic condition, raising questions regarding the efficacy of current therapeutics for these specific symptoms. Mechanisms underlying psychiatric sequelae in MS are believed to be similar to those underlying pathogenesis, that is mediated by cytokines and other inflammatory mediators. To gain insight into the pathogenesis of MS depression, we performed behavioral assays in the murine experimental autoimmune encephalomyelitis (EAE) MS model, in the presence or absence of immunomodulation using the drug FTY720, an analogue of the lipid signaling molecule sphingosine-1-phosphate (S1P). Specifically, mice were challenged with the elevated plus maze (EPM) test, a validated experimental paradigm for rodent-specific anxiety-like behavior. FTY720 treatment failed to ameliorate anxiety-like symptoms, irrespective of dosage. On the other hand, it was effective in reducing inflammatory infiltration, microglial reactivity and levels of pro-inflammatory molecules in the hippocampus, confirming the anti-inflammatory capacity of treatment. To explore the absence of FTY720 effect on behavior, we confirmed expression of S1P receptors (S1PR) S1PR1, S1PR3 and S1PR5 in the hippocampus and mapped the dynamics of these receptors in response to drug treatment alone, or in combination with EAE induction. We identified a complex pattern of responses, differing between (1) receptors, (2) dosage and (3) hippocampal sub-field. FTY720 treatment in the absence of EAE resulted in overall downregulation of S1PR1 and S1PR3, while S1PR5 exhibited a dose-dependent upregulation. EAE induction alone resulted in overall downregulation of all three receptors. On the other hand, combined FTY720 and EAE showed generally no effect on S1PR1 and S1PR3 expression except for the fimbrium region, but strong upregulation of S1PR5 over the range of doses examined. These data illustrate a hitherto undescribed complexity of S1PR response to FTY720 in the hippocampus, independent of drug effect on effector immune cells, but simultaneously emphasize the need to explore novel treatment strategies to specifically address mood disorders in MS.
Collapse
Affiliation(s)
- Pece Kocovski
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Nuzhat Tabassum-Sheikh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
| | - Stephanie Marinis
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
| | - Phuc T. Dang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
| | - Matthew W. Hale
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Jacqueline M. Orian
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
50
|
Sheng J, Zhang L, Feng J, Liu J, Li A, Chen W, Shen Y, Wang J, He Y, Xue G. The coupling of BOLD signal variability and degree centrality underlies cognitive functions and psychiatric diseases. Neuroimage 2021; 237:118187. [PMID: 34020011 DOI: 10.1016/j.neuroimage.2021.118187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Brain signal variability has been consistently linked to functional integration; however, whether this coupling is associated with cognitive functions and/or psychiatric diseases has not been clarified. Using multiple multimodality datasets, including resting-state functional magnetic resonance imaging (rsfMRI) data from the Human Connectome Project (HCP: N = 927) and a Beijing sample (N = 416) and cerebral blood flow (CBF) and rsfMRI data from a Hangzhou sample (N = 29), we found that, compared with the existing variability measure (i.e., SDBOLD), the mean-scaled (standardized) fractional standard deviation of the BOLD signal (mfSDBOLD) maintained very high test-retest reliability, showed greater cross-site reliability and was less affected by head motion. We also found strong reproducible couplings between the mfSDBOLD and functional integration measured by the degree centrality (DC), both cross-voxel and cross-subject, which were robust to scanning and preprocessing parameters. Moreover, both mfSDBOLD and DC were correlated with CBF, suggesting a common physiological basis for both measures. Critically, the degree of coupling between mfSDBOLD and long-range DC was positively correlated with individuals' cognitive total composite scores. Brain regions with greater mismatches between mfSDBOLD and long-range DC were more vulnerable to brain diseases. Our results suggest that BOLD signal variability could serve as a meaningful index of local function that underlies functional integration in the human brain and that a strong coupling between BOLD signal variability and functional integration may serve as a hallmark of balanced brain networks that are associated with optimal brain functions.
Collapse
Affiliation(s)
- Jintao Sheng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Liang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Junjiao Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Jing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Anqi Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, and the Collaborative Innovation Center for Brain Science, Hangzhou, Zhejiang 310000, PR China
| | - Yuedi Shen
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310000, PR China
| | - Jinhui Wang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Institute for Brain Research and Rehabilitation, Guangzhou 510631, PR China; Key Laboratory of Brain, Ministry of Education, Cognition and Education Sciences (South China Normal University), PR China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|