1
|
Lin YL, Yao T, Wang YW, Lu JH, Chen YM, Wu YQ, Qian XG, Liu JC, Fang LX, Zheng C, Wu CH, Lin JF. Causal association between mitochondrial function and psychiatric disorders: Insights from a bidirectional two-sample Mendelian randomization study. J Affect Disord 2025; 368:55-66. [PMID: 39265869 DOI: 10.1016/j.jad.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Previous observational studies have suggested that there appears to be a close association between mitochondrial function and psychiatric disorders, but whether a causal role exists remains unclear. METHODS We extracted genetic instruments for 67 mitochondrial-related proteins and 10 psychiatric disorders from publicly available genome-wide association studies, and employed five distinct MR methods and false discovery rate correction to detect causal associations between them. Additionally, we conducted a series of sensitivity tests and additional model analysis to ensure the robustness of the results. For potential causal associations, we further performed reverse MR analyses to assess the impact of reverse causality. RESULTS We identified a total of 2 significant causal associations and 24 suggestive causal associations. Specifically, Phenylalanine-tRNA ligase was found to increase the risk of Alzheimer's disease, while Mitochondrial glutamate carrier 2 decreased the risk of autism spectrum disorder. Furthermore, there was no evidence of significant pleiotropy, heterogeneity, or reverse causality. LIMITATIONS This study was limited to individuals of European ancestry, and the conclusions drawn are merely revelatory. CONCLUSION This study provides novel insights into the relationship between mitochondria and psychiatric disorders, as well as the pathogenesis and treatment strategies for psychiatric disorders.
Collapse
Affiliation(s)
- Yun-Lu Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tao Yao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Ying-Wei Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jia-Hao Lu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yan-Min Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yu-Qing Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xin-Ge Qian
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jing-Chen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Luo-Xiang Fang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Cheng Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Chun-Hui Wu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Department of Ultrasonography, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Jia-Feng Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
2
|
Teranishi M, Ito M, Huang Z, Nishiyama Y, Masuda A, Mino H, Tachibana M, Inada T, Ohno K. Extremely Low-Frequency Electromagnetic Field (ELF-EMF) Increases Mitochondrial Electron Transport Chain Activities and Ameliorates Depressive Behaviors in Mice. Int J Mol Sci 2024; 25:11315. [PMID: 39457098 PMCID: PMC11508854 DOI: 10.3390/ijms252011315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Compromised mitochondrial electron transport chain (ETC) activities are associated with depression in humans and rodents. However, the effects of the enhancement of mitochondrial ETC activities on depression remain elusive. We recently reported that an extremely low-frequency electromagnetic field (ELF-EMF) of as low as 10 μT induced hormetic activation of mitochondrial ETC complexes in human/mouse cultured cells and mouse livers. Chronic social defeat stress (CSDS) for 10 consecutive days caused behavioral defects mimicking depression in mice, and using an ELF-EMF for two to six weeks ameliorated them. CSDS variably decreased the mitochondrial ETC proteins in the prefrontal cortex (PFC) in 10 days, which were increased by an ELF-EMF in six weeks. CSDS had no effect on the mitochondrial oxygen consumption rate in the PFC in 10 days, but using an ELF-EMF for six weeks enhanced it. CSDS inactivated SOD2 by enhancing its acetylation and increased lipid peroxidation in the PFC. In contrast, the ELF-EMF activated the Sirt3-FoxO3a-SOD2 pathway and suppressed lipid peroxidation. Furthermore, CSDS increased markers for mitophagy, which was suppressed by the ELF-EMF in six weeks. The ELF-EMF exerted beneficial hormetic effects on mitochondrial energy production, mitochondrial antioxidation, and mitochondrial dynamics in a mouse model of depression. We envisage that an ELF-EMF is a promising therapeutic option for depression.
Collapse
Affiliation(s)
- Masaki Teranishi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Zhizhou Huang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Yuki Nishiyama
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Hiroyuki Mino
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan;
| | - Masako Tachibana
- Department of Psychiatry, Nagoya University Hospital, Nagoya 466-8560, Japan;
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin 470-0196, Japan
| |
Collapse
|
3
|
Chaves-Filho A, Eyres C, Blöbaum L, Landwehr A, Tremblay MÈ. The emerging neuroimmune hypothesis of bipolar disorder: An updated overview of neuroimmune and microglial findings. J Neurochem 2024; 168:1780-1816. [PMID: 38504593 DOI: 10.1111/jnc.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Bipolar disorder (BD) is a severe and multifactorial disease, with onset usually in young adulthood, which follows a progressive course throughout life. Replicated epidemiological studies have suggested inflammatory mechanisms and neuroimmune risk factors as primary contributors to the onset and development of BD. While not all patients display overt markers of inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease and seems to be mood phase dependent, likely explaining the heterogeneity of findings observed in this population. As the brain's immune cells, microglia orchestrate the brain's immune response and play a critical role in maintaining the brain's health across the lifespan. Microglia are also highly sensitive to environmental changes and respond to physiological and pathological events by adapting their functions, structure, and molecular expression. Recently, it has been highlighted that instead of a single population of cells, microglia comprise a heterogeneous community with specialized states adjusted according to the local molecular cues and intercellular interactions. Early evidence has highlighted the contribution of microglia to BD neuropathology, notably for severe outcomes, such as suicidality. However, the roles and diversity of microglial states in this disease are still largely undermined. This review brings an updated overview of current literature on the contribution of neuroimmune risk factors for the onset and progression of BD, the most prominent neuroimmune abnormalities (including biomarker, neuroimaging, ex vivo studies) and the most recent findings of microglial involvement in BD neuropathology. Combining these different shreds of evidence, we aim to propose a unifying hypothesis for BD pathophysiology centered on neuroimmune abnormalities and microglia. Also, we highlight the urgent need to apply novel multi-system biology approaches to characterize the diversity of microglial states and functions involved in this enigmatic disorder, which can open bright perspectives for novel biomarkers and therapeutic discoveries.
Collapse
Affiliation(s)
- Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
| | - Capri Eyres
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leonie Blöbaum
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Molecular Medicine, Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
4
|
Kong L, Chen Y, Shen Y, Zhang D, Wei C, Lai J, Hu S. Progress and Implications from Genetic Studies of Bipolar Disorder. Neurosci Bull 2024; 40:1160-1172. [PMID: 38206551 PMCID: PMC11306703 DOI: 10.1007/s12264-023-01169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 01/12/2024] Open
Abstract
With the advancements in gene sequencing technologies, including genome-wide association studies, polygenetic risk scores, and high-throughput sequencing, there has been a tremendous advantage in mapping a detailed blueprint for the genetic model of bipolar disorder (BD). To date, intriguing genetic clues have been identified to explain the development of BD, as well as the genetic association that might be applied for the development of susceptibility prediction and pharmacogenetic intervention. Risk genes of BD, such as CACNA1C, ANK3, TRANK1, and CLOCK, have been found to be involved in various pathophysiological processes correlated with BD. Although the specific roles of these genes have yet to be determined, genetic research on BD will help improve the prevention, therapeutics, and prognosis in clinical practice. The latest preclinical and clinical studies, and reviews of the genetics of BD, are analyzed in this review, aiming to summarize the progress in this intriguing field and to provide perspectives for individualized, precise, and effective clinical practice.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yiqing Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuting Shen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Wei
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
5
|
Mishra HK, Wei H, LeRoux M, Ko I, Rohr KE, Nievergelt CM, Maihofer AX, Shilling P, Alda M, Berrettini WH, Calabrese JR, Coryell WH, Frye M, Gershon E, McInnis MG, Nurnberger J, Oedegaard KJ, Zandi PP, Kelsoe JR, McCarthy MJ. Differential contributions of circadian clock genes to cell survival in bipolar disorder patient derived neuronal progenitor cells distinguishes lithium responders and non-responders. RESEARCH SQUARE 2024:rs.3.rs-4331810. [PMID: 38746315 PMCID: PMC11092846 DOI: 10.21203/rs.3.rs-4331810/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Bipolar disorder (BD) is characterized by disrupted circadian rhythms and neuronal loss. Lithium is neuroprotective and used to treat BD, but outcomes are variable. Past research identified that circadian rhythms in BD patient neurons are associated with lithium response (Li-R) or non-response (Li-NR). However, the underlying cellular mechanisms remain unknown. To study interactions among circadian clock genes and cell survival, and their role in BD and predicting lithium response, we tested selected genes (PER1, BMAL1 and REV-ERBα) and small molecule modulators of ROR/REV-ERB nuclear receptors in models of cell survival using mouse neurons and stem-cell derived neuronal progenitor cells (NPC) from BD patients and controls. In apoptosis assays using staurosporine (STS), lithium was neuroprotective. Knockdown of PER1, BMAL1 and REV-ERBα modified cell survival across models. In NPCs, reduced expression of PER1 and BMAL1 led to more extensive cell death in Li-NR vs. Li-R. Reduced REV-ERBα expression caused more extensive cell death in BD vs. control NPCs, without distinguishing Li-R and Li-NR. In IMHN, The REV-ERB agonist GSK4112 had strong effects on circadian rhythm amplitude, and was neuroprotective in mouse neurons and control NPCs, but not in BD NPCs. Expression of cell survival genes following STS and GSK4112 treatments revealed BD-associated, and Li-R associated differences in expression profiles. We conclude that the neuroprotective response to lithium is similar in NPCs from Li-R and Li-NR. However, knockdown of circadian clock genes or stimulation of REV-ERBs reveal distinct contributions to cell death in BD patient NPCs, some of which distinguish Li-R and Li-NR.
Collapse
|
6
|
Ceylan D, Arat-Çelik HE, Aksahin IC. Integrating mitoepigenetics into research in mood disorders: a state-of-the-art review. Front Physiol 2024; 15:1338544. [PMID: 38410811 PMCID: PMC10895490 DOI: 10.3389/fphys.2024.1338544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, are highly prevalent and stand among the leading causes of disability. Despite the largely elusive nature of the molecular mechanisms underpinning these disorders, two pivotal contributors-mitochondrial dysfunctions and epigenetic alterations-have emerged as significant players in their pathogenesis. This state-of-the-art review aims to present existing data on epigenetic alterations in the mitochondrial genome in mood disorders, laying the groundwork for future research into their pathogenesis. Associations between abnormalities in mitochondrial function and mood disorders have been observed, with evidence pointing to notable changes in mitochondrial DNA (mtDNA). These changes encompass variations in copy number and oxidative damage. However, information on additional epigenetic alterations in the mitochondrial genome remains limited. Recent studies have delved into alterations in mtDNA and regulations in the mitochondrial genome, giving rise to the burgeoning field of mitochondrial epigenetics. Mitochondrial epigenetics encompasses three main categories of modifications: mtDNA methylation/hydroxymethylation, modifications of mitochondrial nucleoids, and mitochondrial RNA alterations. The epigenetic modulation of mitochondrial nucleoids, lacking histones, may impact mtDNA function. Additionally, mitochondrial RNAs, including non-coding RNAs, present a complex landscape influencing interactions between the mitochondria and the nucleus. The exploration of mitochondrial epigenetics offers valuable perspectives on how these alterations impact neurodegenerative diseases, presenting an intriguing avenue for research on mood disorders. Investigations into post-translational modifications and the role of mitochondrial non-coding RNAs hold promise to unravel the dynamics of mitoepigenetics in mood disorders, providing crucial insights for future therapeutic interventions.
Collapse
Affiliation(s)
- Deniz Ceylan
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
| | | | - Izel Cemre Aksahin
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
| |
Collapse
|
7
|
Coe JL, Daniels T, Huffhines L, Seifer R, Marsit CJ, Kao HT, Porton B, Parade SH, Tyrka AR. Examining the Biological Impacts of Parent-Child Relationship Dynamics on Preschool-Aged Children who have Experienced Adversity. Dev Psychobiol 2024; 66:e22463. [PMID: 38601953 PMCID: PMC11003752 DOI: 10.1002/dev.22463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/11/2024] [Indexed: 04/12/2024]
Abstract
Parent-child relationship dynamics have been shown to predict socioemotional and behavioral outcomes for children, but little is known about how they may affect biological development. The aim of this study was to test if observational assessments of parent-child relationship dynamics (cohesion, enmeshment, and disengagement) were associated with three biological indices of early life adversity and downstream health risk: (1) methylation of the glucocorticoid receptor gene (NR3C1), (2) telomere attrition, and (3) mitochondrial biogenesis, indexed by mitochondrial DNA copy number (mtDNAcn), all of which were measured in children's saliva. We tested hypotheses using a sample of 254 preschool-aged children (M age = 51.04 months) with and without child welfare-substantiated maltreatment (52% with documented case of moderate-severe maltreatment) who were racially and ethnically diverse (17% Black, 40% White, 23% biracial, and 20% other races; 45% Hispanic) and from primarily low-income backgrounds (91% qualified for public assistance). Results of path analyses revealed that: (1) higher parent-child cohesion was associated with lower levels of methylation of NR3C1 exon 1D and longer telomeres, and (2) higher parent-child disengagement was associated with higher levels of methylation of NR3C1 exon 1D and shorter telomeres. Results suggest that parent-child relationship dynamics may have distinct biological effects on children.
Collapse
Affiliation(s)
- Jesse L. Coe
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Bradley/Hasbro Children’s Research Center, E.P. Bradley Hospital, East Providence, RI, USA
- Initiative on Stress, Trauma, and Resilience (STAR Initiative), Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Teresa Daniels
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Initiative on Stress, Trauma, and Resilience (STAR Initiative), Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Lindsay Huffhines
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Bradley/Hasbro Children’s Research Center, E.P. Bradley Hospital, East Providence, RI, USA
- Initiative on Stress, Trauma, and Resilience (STAR Initiative), Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ronald Seifer
- Frank Porter Graham Child Development Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Emory Rollins School of Public Health, Atlanta, GA, USA
- Department of Epidemiology, Emory Rollins School of Public Health, Atlanta, GA, USA
| | - Hung-Teh Kao
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Barbara Porton
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Stephanie H. Parade
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Bradley/Hasbro Children’s Research Center, E.P. Bradley Hospital, East Providence, RI, USA
- Initiative on Stress, Trauma, and Resilience (STAR Initiative), Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Audrey R. Tyrka
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Initiative on Stress, Trauma, and Resilience (STAR Initiative), Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| |
Collapse
|
8
|
Daniels TE, Zitkovsky EK, Laumann LE, Kunicki ZJ, Price DJ, Peterson AL, Dennery PA, Kao HT, Parade SH, Price LH, Abrantes AM, Tyrka AR. Circulating Cell-Free Mitochondrial DNA and Depressive Symptoms Among Low-Active Adults Who Smoke. Psychosom Med 2024; 86:37-43. [PMID: 37769227 PMCID: PMC10843087 DOI: 10.1097/psy.0000000000001254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
OBJECTIVES Mitochondrial dysfunction is implicated in the pathophysiology of psychiatric disorders. Levels of circulating cell-free mitochondrial DNA (cf-mtDNA) are observed to be altered in depression. However, the few studies that have measured cf-mtDNA in depression have reported conflicting findings. This study examined cf-mtDNA and depressive symptoms in low-active adults who smoke. METHODS Participants were adults 18 to 65 years old ( N = 109; 76% female) with low baseline physical activity and depressive symptoms recruited for a smoking cessation study. Self-report measures assessed depression severity, positive and negative affect, and behavioral activation. Blood was collected and analyzed for cf-mtDNA. Relationships between depressive symptoms and cf-mtDNA were examined with correlations and linear regression. RESULTS Levels of cf-mtDNA were associated with categorically defined depression (Center for Epidemiologic Studies Depression Scale score >15), lower positive affect, and decreased behavioral activation ( p < .05). Relationships remained significant after adjustment for age, sex, and nicotine dependence. In a linear regression model including all depressive symptom measures as predictors, Center for Epidemiologic Studies Depression Scale group and lower positive affect remained significant. CONCLUSIONS This work suggests that mitochondrial changes are associated with depressive symptoms in low-active adults who smoke. Higher levels of cf-mtDNA in association with depression and with lower positive affect and decreased behavioral activation are consistent with a possible role for mitochondrial function in depressive symptoms.
Collapse
Affiliation(s)
- Teresa E. Daniels
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI, 02906, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA
- Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Emily K. Zitkovsky
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI, 02906, USA
- Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Laura E. Laumann
- Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT, 06269, USA
| | - Zachary J. Kunicki
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| | - Destiny J. Price
- Department of Psychiatry, New York State Psychiatric Institute and Columbia University Irving Medical Center, 1051 Riverside Dr, New York, NY 10032, USA
| | - Abigail L. Peterson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Phyllis A. Dennery
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Department of Pediatrics, Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI, 02903, USA
| | - Hung-Teh Kao
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| | - Stephanie H. Parade
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA
- Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Bradley/Hasbro Children’s Research Center, E.P. Bradley Hospital, East Providence, RI, USA
| | - Lawrence H. Price
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI, 02906, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| | - Ana M. Abrantes
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA
- Behavioral Medicine and Addictions Research Department, Butler Hospital, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| | - Audrey R. Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI, 02906, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA
- Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Strekalova T, Svirin E, Gorlova A, Sheveleva E, Burova A, Khairetdinova A, Sitdikova K, Zakharova E, Dudchenko AM, Lyundup A, Morozov S. Resilience and Vulnerability to Stress-Induced Anhedonia: Unveiling Brain Gene Expression and Mitochondrial Dynamics in a Mouse Chronic Stress Depression Model. Biomolecules 2023; 13:1782. [PMID: 38136653 PMCID: PMC10741640 DOI: 10.3390/biom13121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The role of altered brain mitochondrial regulation in psychiatric pathologies, including Major Depressive Disorder (MDD), has attracted increasing attention. Aberrant mitochondrial functions were suggested to underlie distinct inter-individual vulnerability to stress-related MDD syndrome. In this context, insulin receptor sensitizers (IRSs) that regulate brain metabolism have become a focus of recent research, as their use in pre-clinical studies can help to elucidate the role of mitochondrial dynamics in this disorder and contribute to the development of new antidepressant treatment. Here, following 2-week chronic mild stress (CMS) using predation, social defeat, and restraint, MDD-related behaviour and brain molecular markers have been investigated along with the hippocampus-dependent performance and emotionality in mice that received the IRS dicholine succinate (DS). In a sucrose test, mice were studied for the key feature of MDD, a decreased sensitivity to reward, called anhedonia. Based on this test, animals were assigned to anhedonic and resilient-to-stress-induced-anhedonia groups, using a previously established criterion of a decrease in sucrose preference below 65%. Such assignment was based on the fact that none of control, non-stressed animals displayed sucrose preference that would be smaller than this value. DS-treated stressed mice displayed ameliorated behaviours in a battery of assays: sucrose preference, coat state, the Y-maze, the marble test, tail suspension, and nest building. CMS-vulnerable mice exhibited overexpression of the inflammatory markers Il-1β, tnf, and Cox-1, as well as 5-htt and 5-ht2a-R, in various brain regions. The alterations in hippocampal gene expression were the closest to clinical findings and were studied further. DS-treated, stressed mice showed normalised hippocampal expression of the plasticity markers Camk4, Camk2, Pka, Adcy1, Creb-ar, Nmda-2r-ar, and Nmda-2r-s. DS-treated and non-treated stressed mice who were resilient or vulnerable to anhedonia were compared for hippocampal mitochondrial pathway regulation using Illumina profiling. Resilient mice revealed overexpression of the mitochondrial complexes NADH dehydrogenase, succinate dehydrogenase, cytochrome bc1, cytochrome c oxidase, F-type and V-type ATPases, and inorganic pyrophosphatase, which were decreased in anhedonic mice. DS partially normalised the expression of both ATPases. We conclude that hippocampal reduction in ATP synthesis is associated with anhedonia and pro-inflammatory brain changes that are ameliorated by DS.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Wuerzburg, Germany
| | - Evgeniy Svirin
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Anna Gorlova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Elizaveta Sheveleva
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Alisa Burova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Adel Khairetdinova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Kseniia Sitdikova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Elena Zakharova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Alexander M. Dudchenko
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Aleksey Lyundup
- Endocrinology Research Centre, Dmitry Ulyanov St. 19, Moscow 117036, Russia;
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russia
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| |
Collapse
|
10
|
Hing B, Mitchell SB, Eberle M, Filali Y, Hultman I, Matkovich M, Kasturirangan M, Wyche W, Jimenez A, Velamuri R, Johnson M, Srivastava S, Hultman R. Single Cell Transcriptome of Stress Vulnerability Network in mouse Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.14.540705. [PMID: 37662266 PMCID: PMC10473598 DOI: 10.1101/2023.05.14.540705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Increased vulnerability to stress is a major risk factor for the manifestation of several mood disorders, including major depressive disorder (MDD). Despite the status of MDD as a significant donor to global disability, the complex integration of genetic and environmental factors that contribute to the behavioral display of such disorders has made a thorough understanding of related etiology elusive. Recent developments suggest that a brain-wide network approach is needed, taking into account the complex interplay of cell types spanning multiple brain regions. Single cell RNA-sequencing technologies can provide transcriptomic profiling at the single-cell level across heterogenous samples. Furthermore, we have previously used local field potential oscillations and machine learning to identify an electrical brain network that is indicative of a predisposed vulnerability state. Thus, this study combined single cell RNA-sequencing (scRNA-Seq) with electrical brain network measures of the stress-vulnerable state, providing a unique opportunity to access the relationship between stress network activity and transcriptomic changes within individual cell types. We found especially high numbers of differentially expressed genes between animals with high and low stress vulnerability brain network activity in astrocytes and glutamatergic neurons but we estimated that vulnerability network activity depends most on GABAergic neurons. High vulnerability network activity included upregulation of microglia and mitochondrial and metabolic pathways, while lower vulnerability involved synaptic regulation. Genes that were differentially regulated with vulnerability network activity significantly overlapped with genes identified as having significant SNPs by human GWAS for depression. Taken together, these data provide the gene expression architecture of a previously uncharacterized stress vulnerability brain state, enabling new understanding and intervention of predisposition to stress susceptibility.
Collapse
|
11
|
Machado-Vieira R, Courtes AC, Zarate CA, Henter ID, Manji HK. Non-canonical pathways in the pathophysiology and therapeutics of bipolar disorder. Front Neurosci 2023; 17:1228455. [PMID: 37592949 PMCID: PMC10427509 DOI: 10.3389/fnins.2023.1228455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Bipolar disorder (BD) is characterized by extreme mood swings ranging from manic/hypomanic to depressive episodes. The severity, duration, and frequency of these episodes can vary widely between individuals, significantly impacting quality of life. Individuals with BD spend almost half their lives experiencing mood symptoms, especially depression, as well as associated clinical dimensions such as anhedonia, fatigue, suicidality, anxiety, and neurovegetative symptoms. Persistent mood symptoms have been associated with premature mortality, accelerated aging, and elevated prevalence of treatment-resistant depression. Recent efforts have expanded our understanding of the neurobiology of BD and the downstream targets that may help track clinical outcomes and drug development. However, as a polygenic disorder, the neurobiology of BD is complex and involves biological changes in several organelles and downstream targets (pre-, post-, and extra-synaptic), including mitochondrial dysfunction, oxidative stress, altered monoaminergic and glutamatergic systems, lower neurotrophic factor levels, and changes in immune-inflammatory systems. The field has thus moved toward identifying more precise neurobiological targets that, in turn, may help develop personalized approaches and more reliable biomarkers for treatment prediction. Diverse pharmacological and non-pharmacological approaches targeting neurobiological pathways other than neurotransmission have also been tested in mood disorders. This article reviews different neurobiological targets and pathophysiological findings in non-canonical pathways in BD that may offer opportunities to support drug development and identify new, clinically relevant biological mechanisms. These include: neuroinflammation; mitochondrial function; calcium channels; oxidative stress; the glycogen synthase kinase-3 (GSK3) pathway; protein kinase C (PKC); brain-derived neurotrophic factor (BDNF); histone deacetylase (HDAC); and the purinergic signaling pathway.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, United States
| | - Alan C. Courtes
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, United States
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Ioline D. Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Husseini K. Manji
- Deparment of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Khan M, Baussan Y, Hebert-Chatelain E. Connecting Dots between Mitochondrial Dysfunction and Depression. Biomolecules 2023; 13:695. [PMID: 37189442 PMCID: PMC10135685 DOI: 10.3390/biom13040695] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Mitochondria are the prime source of cellular energy, and are also responsible for important processes such as oxidative stress, apoptosis and Ca2+ homeostasis. Depression is a psychiatric disease characterized by alteration in the metabolism, neurotransmission and neuroplasticity. In this manuscript, we summarize the recent evidence linking mitochondrial dysfunction to the pathophysiology of depression. Impaired expression of mitochondria-related genes, damage to mitochondrial membrane proteins and lipids, disruption of the electron transport chain, higher oxidative stress, neuroinflammation and apoptosis are all observed in preclinical models of depression and most of these parameters can be altered in the brain of patients with depression. A deeper knowledge of the depression pathophysiology and the identification of phenotypes and biomarkers with respect to mitochondrial dysfunction are needed to help early diagnosis and the development of new treatment strategies for this devastating disorder.
Collapse
Affiliation(s)
- Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Yann Baussan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Etienne Hebert-Chatelain
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
13
|
Association between mitochondria-related genes and cognitive performance in the PsyCourse Study. J Affect Disord 2023; 325:1-6. [PMID: 36621676 DOI: 10.1016/j.jad.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND Mitochondria generate energy through oxidative phosphorylation (OXPHOS). The function of key OXPHOS proteins can be altered by variation in mitochondria-related genes, which may increase the risk of mental illness. We investigated the association of mitochondria-related genes and their genetic risk burden with cognitive performance. METHODS We leveraged cross-sectional data from 1320 individuals with a severe psychiatric disorder and 466 neurotypical individuals from the PsyCourse Study. The cognitive tests analyzed were the Trail-Making Test, Verbal Digit Span Test, Digit-Symbol Test, and Multiple Choice Vocabulary Intelligence Test. Association analyses between the cognitive tests, and single-nucleotide polymorphisms (SNPs) mapped to mitochondria-related genes, and their polygenic risk score (PRS) for schizophrenia (SCZ) were performed with PLINK 1.9 and R program. RESULTS We found a significant association (FDR-adjusted p < 0.05) in the Cytochrome C Oxidase Assembly Factor 8 (COA8) gene locus of the OXPHOS pathway with the Verbal Digit Span (forward) test. Mitochondrial PRS was not significantly associated with any of the cognitive tests. LIMITATIONS Moderate statistical power due to relatively small sample size. CONCLUSIONS COA8 encodes a poorly characterized mitochondrial protein involved in apoptosis. Here, this gene was associated with the Verbal Digit Span (forward) test, which evaluates short-term memory. Our results warrant replication and may lead to better understanding of cognitive impairment in mental disorders.
Collapse
|
14
|
Hummel EM, Piovesan K, Berg F, Herpertz S, Kessler H, Kumsta R, Moser DA. Mitochondrial DNA as a marker for treatment-response in post-traumatic stress disorder. Psychoneuroendocrinology 2023; 148:105993. [PMID: 36462294 DOI: 10.1016/j.psyneuen.2022.105993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a serious mental health condition thought to be mediated by a dysregulated stress response system. Stress, especially chronic stress, affects mitochondrial activity and their efficiency in duplicating their genomes. Human cells contain numerous mitochondria that harbor multiple copies of their own genome, which consist of a mixture of wild type and variant mtDNA - a condition known as mitochondrial heteroplasmy. Number of mitochondrial genomes in a cell and the degree of heteroplasmy may serve as an indicator of mitochondrial allostatic load. Changes in mtDNA copy number and the proportion of variant mtDNA may be related to mental disorders and symptom severity, suggesting an involvement of mitochondrial dysfunction also in PTSD. Therefore, we examined number and composition of mitochondrial DNA before and after six weeks of inpatient psychotherapy treatment in a cohort of 60 female PTSD patients. We extracted DNA from isolated monocytes before and after inpatient treatment and quantified cellular mtDNA using multiplex qPCR. We hypothesized that treatment would lead to changes in cellular mtDNA levels and that change in mtDNA level would be associated with PTSD symptom severity and treatment response. It could be shown that mtDNA copy number and the ratio of variant mtDNA decreased during therapy, however, this change did not correlate with treatment response. Our results suggest that inpatient treatment can reduce signs of mitochondrial allostatic load, which could have beneficial effects on mental health. The quantification of mtDNA and the determination of cellular heteroplasmy could represent valuable biomarkers for the molecular characterization of mental disorders in the future.
Collapse
Affiliation(s)
- E M Hummel
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - K Piovesan
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - F Berg
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - S Herpertz
- Department of Psychosomatic Medicine and Psychotherapy, LWL-University Hospital, Ruhr University Bochum, Germany
| | - H Kessler
- Department of Psychosomatic Medicine and Psychotherapy, LWL-University Hospital, Ruhr University Bochum, Germany; Department of Psychosomatic Medicine and Psychotherapy, Fulda Hospital, University Medicine Marburg Campus Fulda, Fulda, Germany
| | - R Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany; Department of Behavioural and Cognitive Sciences, Laboratory for Stress and Gene-Environment nterplay, University of Luxemburg, Porte des Sciences, L-4366 Esch-sur-Alzette, Luxemburg
| | - D A Moser
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
15
|
Wang B, Shi H, Yang B, Miao Z, Sun M, Yang H, Xu X. The mitochondrial Ahi1/GR participates the regulation on mtDNA copy numbers and brain ATP levels and modulates depressive behaviors in mice. Cell Commun Signal 2023; 21:21. [PMID: 36691038 PMCID: PMC9869592 DOI: 10.1186/s12964-022-01034-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Previous studies have shown that depression is often accompanied by an increase in mtDNA copy number and a decrease in ATP levels; however, the exact regulatory mechanisms remain unclear. METHODS In the present study, Western blot, cell knockdown, immunofluorescence, immunoprecipitation and ChIP-qPCR assays were used to detect changes in the Ahi1/GR-TFAM-mtDNA pathway in the brains of neuronal Abelson helper integration site-1 (Ahi1) KO mice and dexamethasone (Dex)-induced mice to elucidate the pathogenesis of depression. In addition, a rescue experiment was performed to determine the effects of regular exercise on the Ahi1/GR-TFAM-mtDNA-ATP pathway and depression-like behavior in Dex-induced mice and Ahi1 KO mice under stress. RESULTS In this study, we found that ATP levels decreased and mitochondrial DNA (mtDNA) copy numbers increased in depression-related brain regions in Dex-induced depressive mice and Ahi1 knockout (KO) mice. In addition, Ahi1 and glucocorticoid receptor (GR), two important proteins related to stress and depressive behaviors, were significantly decreased in the mitochondria under stress. Intriguingly, GR can bind to the D-loop control region of mitochondria and regulate mitochondrial replication and transcription. Importantly, regular exercise significantly increased mitochondrial Ahi1/GR levels and ATP levels and thus improved depression-like behaviors in Dex-induced depressive mice but not in Ahi1 KO mice under stress. CONCLUSIONS In summary, our findings demonstrated that the mitochondrial Ahi1/GR complex and TFAM coordinately regulate mtDNA copy numbers and brain ATP levels by binding to the D-loop region of mtDNA Regular exercise increases the levels of the mitochondrial Ahi1/GR complex and improves depressive behaviors. Video Abstract.
Collapse
Affiliation(s)
- Bin Wang
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Haixia Shi
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Miao Sun
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hao Yang
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xingshun Xu
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
16
|
Domingos LB, Silva NR, Chaves Filho AJM, Sales AJ, Starnawska A, Joca S. Regulation of DNA Methylation by Cannabidiol and Its Implications for Psychiatry: New Insights from In Vivo and In Silico Models. Genes (Basel) 2022; 13:2165. [PMID: 36421839 PMCID: PMC9690868 DOI: 10.3390/genes13112165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2023] Open
Abstract
Cannabidiol (CBD) is a non-psychotomimetic compound present in cannabis sativa. Many recent studies have indicated that CBD has a promising therapeutic profile for stress-related psychiatric disorders, such as anxiety, schizophrenia and depression. Such a diverse profile has been associated with its complex pharmacology, since CBD can target different neurotransmitter receptors, enzymes, transporters and ion channels. However, the precise contribution of each of those mechanisms for CBD effects is still not yet completely understood. Considering that epigenetic changes make the bridge between gene expression and environment interactions, we review and discuss herein how CBD affects one of the main epigenetic mechanisms associated with the development of stress-related psychiatric disorders: DNA methylation (DNAm). Evidence from in vivo and in silico studies indicate that CBD can regulate the activity of the enzymes responsible for DNAm, due to directly binding to the enzymes and/or by indirectly regulating their activities as a consequence of neurotransmitter-mediated signaling. The implications of this new potential pharmacological target for CBD are discussed in light of its therapeutic and neurodevelopmental effects.
Collapse
Affiliation(s)
- Luana B. Domingos
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Nicole R. Silva
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Adriano J. M. Chaves Filho
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Amanda J. Sales
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Anna Starnawska
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, Center for Integrative Sequencing, iSEQ, 8000 Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
17
|
Low levels of serum LDH are associated with depression and suicide attempts. Gen Hosp Psychiatry 2022; 79:42-49. [PMID: 36265388 DOI: 10.1016/j.genhosppsych.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND A huge body of evidence has signaled a correlation between adult depression and energy metabolism. The key links are the energy supply and substrates for brain energy metabolism and the crucial signaling molecule lactate. Nevertheless, the association between lactate metabolism and depression remains elusive. OBJECTIVE The primary objective of this study was to explore the difference in serum LDH levels between patients with major depressive disorder (MDD) and the normal population and to determine whether LDH can be employed as a predictor of suicide attempt (SA) in MDD patients. METHODS Serum LDH levels were measured in 232 patients with MDD and 110 healthy controls. Depressive symptoms were assessed using the 24-item Hamilton Depression Scale (HAMD-24). The data were collected and analyzed with SPSS 22.0. RESULTS The serum LDH level of the control group was (196.50 ± 34.40) U/L, while that of the MDD group was (177.94 ± 25.89) U/L (P < 0.001). Notably, the LDH level [(169.96 ± 25.31) U/L] in the SA group was significantly lower than that in the control and non-SA groups [(181.25 ± 25.47) U/L] (P < 0.01); There was no significant correlation with HAMD-24 score (P > 0.05). Collectively, this study demonstrated that a decrease in serum LDH levels is an independent risk factor for SA in MDD patients. CONCLUSION Our results imply that a decrease in LDH levels may be associated with MDD and suicidal behaviors. Early identification of suicide risk and evaluation of the prognosis of depression is critical.
Collapse
|
18
|
Henrique Mastella M, Roggia I, Osmarin Turra B, Ferreira Teixeira C, Elias Assmann C, de Morais-Pinto L, Vidal T, Melazzo C, Emílio da Cruz Jung I, Barbisan F, Beatrice Mânica da Cruz I. Superoxide-imbalance pharmacologically induced by rotenone triggers behavioral, neural, and inflammatory alterations in the Eisenia fetida earthworm. Neuroscience 2022; 502:25-40. [PMID: 36058342 DOI: 10.1016/j.neuroscience.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Some studies have suggested that mitochondrial dysfunction and a superoxide imbalance could increase susceptibility to chronic stressful events, contributing to the establishment of chronic inflammation and the development of mood disorders. The mitochondrial superoxide imbalance induced by some molecules, such as rotenone, could be evolutionarily conserved, causing behavioral, immune, and neurological alterations in animals with a primitive central nervous system. OBJECTIVE Behavioral, immune, and histological markers were analyzed in Eisenia fetida earthworms chronically exposed to rotenone for 14 days. METHODS Earthworms were placed in artificial soil containing 30 nM of rotenone distributed into a plastic cup that allowed the earthworms to leave and return freely into the ground. Since these organisms prefer to be buried, the model predicted that the earthworms would necessarily have to return to the rotenone-contaminated medium, creating a stressful condition. The effect on survival behavior in the immune and histological body wall and ventral nervous ganglia (VNG) structures, as well as gene expression related to inflammation and mitochondrial and neuromuscular changes. RESULTS Rotenone-induced loss of earthworm escape behavior and immune alterations indicated a chronic inflammatory state. Some histological changes in the body wall and VNG indicated a possible earthworm reaction aimed at protecting against rotenone. Overexpression of the nicotinic acetylcholine receptor gene (nAChR α5) in neural tissues could also help earthworms reduce the degenerative effects of rotenone on dopaminergic neurons. CONCLUSION These data suggest that mitochondrial dysfunction could be an evolutionarily conserved element that induces inflammatory and behavioral changes related to chronic stress.
Collapse
Affiliation(s)
- Moisés Henrique Mastella
- Graduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Isabel Roggia
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program of Gerontology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Bárbara Osmarin Turra
- Graduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Cibele Ferreira Teixeira
- Graduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Charles Elias Assmann
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luciano de Morais-Pinto
- Anatomical Design Laboratory, Morphology Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Taís Vidal
- Graduate Program of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Cinthia Melazzo
- Graduate Program of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Ivo Emílio da Cruz Jung
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Fernanda Barbisan
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program of Gerontology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Graduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program of Gerontology, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
19
|
Yin Y, Shen H. Common methods in mitochondrial research (Review). Int J Mol Med 2022; 50:126. [PMID: 36004457 PMCID: PMC9448300 DOI: 10.3892/ijmm.2022.5182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
20
|
Martín-Sánchez A, González-Pardo H, Alegre-Zurano L, Castro-Zavala A, López-Taboada I, Valverde O, Conejo NM. Early-life stress induces emotional and molecular alterations in female mice that are partially reversed by cannabidiol. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110508. [PMID: 34973413 DOI: 10.1016/j.pnpbp.2021.110508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/29/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
Gender is considered as a pivotal determinant of mental health. Indeed, several psychiatric disorders such as anxiety and depression are more common and persistent in women than in men. In the past two decades, impaired brain energy metabolism has been highlighted as a risk factor for the development of these psychiatric disorders. However, comprehensive behavioural and neurobiological studies in brain regions relevant to anxiety and depression symptomatology are scarce. In the present study, we summarize findings describing cannabidiol effects on anxiety and depression in maternally separated female mice as a well-established rodent model of early-life stress associated with many mental disorders. Our results indicate that cannabidiol could prevent anxiolytic- and depressive-related behaviour in early-life stressed female mice. Additionally, maternal separation with early weaning (MSEW) caused long-term changes in brain oxidative metabolism in both nucleus accumbens and amygdalar complex measured by cytochrome c oxidase quantitative histochemistry. However, cannabidiol treatment could not revert brain oxidative metabolism impairment. Moreover, we identified hyperphosphorylation of mTOR and ERK 1/2 proteins in the amygdala but not in the striatum, that could also reflect altered brain intracellular signalling related with to bioenergetic impairment. Altogether, our study supports the hypothesis that MSEW induces profound long-lasting molecular changes in mTOR signalling and brain energy metabolism related to depressive-like and anxiety-like behaviours in female mice, which were partially ameliorated by CBD administration.
Collapse
Affiliation(s)
- Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Isabel López-Taboada
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
21
|
Abstract
Many patients under treatment for mood disorders, in particular patients with bipolar mood disorders, experience episodes of mood switching from one state to another. Various hypotheses have been proposed to explain the mechanism of mood switching, spontaneously or induced by drug treatment. Animal models have also been used to test the role of psychotropic drugs in the switching of mood states. We examine the possible relationship between the pharmacology of psychotropic drugs and their reported incidents of induced mood switching, with reference to the various hypotheses of mechanisms of mood switching.
Collapse
|
22
|
Kageyama Y, Deguchi Y, Kasahara T, Tani M, Kuroda K, Inoue K, Kato T. Intra-individual state-dependent comparison of plasma mitochondrial DNA copy number and IL-6 levels in patients with bipolar disorder. J Affect Disord 2022; 299:644-651. [PMID: 34715189 DOI: 10.1016/j.jad.2021.10.098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/01/2021] [Accepted: 10/23/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Patients with bipolar disorder (BD) have increased plasma IL-6 levels, which are higher in depressed BD (dBD) than remitted BD (rBD). However, the mechanism that differentiates the cytokine levels between dBD and rBD is not understood. First, we determined whether brain-derived mtDNA can be detected in plasma using neuron-specific mutant Polg1 transgenic (Tg) mice. Second, we investigated whether the plasma circulating cell-free mitochondrial DNA (ccf-mtDNA) differentiate the cytokine levels between dBD and rBD. METHODS Mouse plasma ccf-mtDNA levels were measured using real-time PCR targeting two regions of the mtDNA (CO1 and d-loop) in Tg mice and non-Tg littermates. Human plasma ccf-mtDNA levels were measured using real-time PCR targeting two regions of the mtDNA (ND1 and ND4) and IL-6 levels were evaluated in 10 patients in different states (depressed and remitted) of BD in a longitudinal manner and 10 healthy controls. RESULTS The mouse plasma CO1/D-loop ratio was significantly lower in Tg than non-Tg mice (P = 0.0029). Human plasma ccf-mtDNA copy number, ND4/ND1 ratio, and IL-6 levels were not significantly different between dBD and rBD. Human plasma ccf-mtDNA levels showed a nominal significant correlation with delusional symptoms (P = 0.033, ρ = 0.68). LIMITATIONS A larger sample size is required to generalize the results and to determine whether plasma ccf-mtDNA is associated with systemic inflammation. CONCLUSIONS Tg mice revealed that brain-derived mtDNA could be present in peripheral blood. The present findings did not coincide with our hypothesis that plasma ccf-mtDNA differentiates the cytokine levels between dBD and rBD.
Collapse
Affiliation(s)
- Yuki Kageyama
- Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Department of Neuropsychiatry, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Yasuhiko Deguchi
- Department of Neuropsychiatry, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takaoki Kasahara
- Career Development Program, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | | | - Kenji Kuroda
- Department of Psychiatry, Hannan Hospital, Osaka, Japan
| | - Koki Inoue
- Department of Neuropsychiatry, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Madireddy S, Madireddy S. Therapeutic Interventions to Mitigate Mitochondrial Dysfunction and Oxidative Stress–Induced Damage in Patients with Bipolar Disorder. Int J Mol Sci 2022; 23:ijms23031844. [PMID: 35163764 PMCID: PMC8836876 DOI: 10.3390/ijms23031844] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
Bipolar disorder (BD) is characterized by mood changes, including recurrent manic, hypomanic, and depressive episodes, which may involve mixed symptoms. Despite the progress in neurobiological research, the pathophysiology of BD has not been extensively described to date. Progress in the understanding of the neurobiology driving BD could help facilitate the discovery of therapeutic targets and biomarkers for its early detection. Oxidative stress (OS), which damages biomolecules and causes mitochondrial and dopamine system dysfunctions, is a persistent finding in patients with BD. Inflammation and immune dysfunction might also play a role in BD pathophysiology. Specific nutrient supplements (nutraceuticals) may target neurobiological pathways suggested to be perturbed in BD, such as inflammation, mitochondrial dysfunction, and OS. Consequently, nutraceuticals may be used in the adjunctive treatment of BD. This paper summarizes the possible roles of OS, mitochondrial dysfunction, and immune system dysregulation in the onset of BD. It then discusses OS-mitigating strategies that may serve as therapeutic interventions for BD. It also analyzes the relationship between diet and BD as well as the use of nutritional interventions in the treatment of BD. In addition, it addresses the use of lithium therapy; novel antipsychotic agents, including clozapine, olanzapine, risperidone, cariprazine, and quetiapine; and anti-inflammatory agents to treat BD. Furthermore, it reviews the efficacy of the most used therapies for BD, such as cognitive–behavioral therapy, bright light therapy, imagery-focused cognitive therapy, and electroconvulsive therapy. A better understanding of the roles of OS, mitochondrial dysfunction, and inflammation in the pathogenesis of bipolar disorder, along with a stronger elucidation of the therapeutic functions of antioxidants, antipsychotics, anti-inflammatory agents, lithium therapy, and light therapies, may lead to improved strategies for the treatment and prevention of bipolar disorder.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Correspondence:
| | | |
Collapse
|
24
|
Gebara E, Zanoletti O, Ghosal S, Grosse J, Schneider BL, Knott G, Astori S, Sandi C. Mitofusin-2 in the Nucleus Accumbens Regulates Anxiety and Depression-like Behaviors Through Mitochondrial and Neuronal Actions. Biol Psychiatry 2021; 89:1033-1044. [PMID: 33583561 DOI: 10.1016/j.biopsych.2020.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/11/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Emerging evidence points to a central role of mitochondria in psychiatric disorders. However, little is known about the molecular players that regulate mitochondria in neural circuits regulating anxiety and depression and about how they impact neuronal structure and function. Here, we investigated the role of molecules involved in mitochondrial dynamics in medium spiny neurons (MSNs) from the nucleus accumbens (NAc), a hub of the brain's motivation system. METHODS We assessed how individual differences in anxiety-like (measured via the elevated plus maze and open field tests) and depression-like (measured via the forced swim and saccharin preference tests) behaviors in outbred rats relate to mitochondrial morphology (electron microscopy and 3-dimensional reconstructions) and function (mitochondrial respirometry). Mitochondrial molecules were measured for protein (Western blot) and messenger RNA (quantitative reverse transcriptase polymerase chain reaction, RNAscope) content. Dendritic arborization (Golgi Sholl analyses), spine morphology, and MSN excitatory inputs (patch-clamp electrophysiology) were characterized. MFN2 overexpression in the NAc was induced through an AAV9-syn1-MFN2. RESULTS Highly anxious animals showed increased depression-like behaviors, as well as reduced expression of the mitochondrial GTPase MFN2 in the NAc. They also showed alterations in mitochondria (i.e., respiration, volume, and interactions with the endoplasmic reticulum) and MSNs (i.e., dendritic complexity, spine density and typology, and excitatory inputs). Viral MFN2 overexpression in the NAc reversed all of these behavioral, mitochondrial, and neuronal phenotypes. CONCLUSIONS Our results implicate a causal role for accumbal MFN2 on the regulation of anxiety and depression-like behaviors through actions on mitochondrial and MSN structure and function. MFN2 is posited as a promising therapeutic target to treat anxiety and associated behavioral disturbances.
Collapse
Affiliation(s)
- Elias Gebara
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sriparna Ghosal
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bernard L Schneider
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Graham Knott
- Biological Electron Microscopy Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simone Astori
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
25
|
Zitkovsky EK, Daniels TE, Tyrka AR. Mitochondria and early-life adversity. Mitochondrion 2021; 57:213-221. [PMID: 33484871 PMCID: PMC8172448 DOI: 10.1016/j.mito.2021.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/24/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
Early-life adversity (ELA), which includes maltreatment, neglect, or severe trauma in childhood, increases the life-long risk for negative health outcomes. Mitochondria play a key role in the stress response and may be an important mechanism by which stress is transduced into biological risk for disease. By responding to cues from stress-signaling pathways, mitochondria interact dynamically with physiological stress responses coordinated by the central nervous, endocrine, and immune systems. Preclinical evidence suggests that alterations in mitochondrial function and structure are linked to both early stress and systemic biological dysfunction. Early clinical studies support that increased mitochondrial DNA content and altered cellular energy demands may be present in individuals with a history of ELA. Further research should investigate mitochondria as a potential therapeutic target following ELA.
Collapse
Affiliation(s)
- Emily K Zitkovsky
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI 02906, USA; Alpert Medical School of Brown University, 222 Richmond St, Providence, RI 02903, USA.
| | - Teresa E Daniels
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI 02906, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI 02906, USA.
| | - Audrey R Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI 02906, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI 02906, USA.
| |
Collapse
|
26
|
Scaini G, Andrews T, Lima CNC, Benevenuto D, Streck EL, Quevedo J. Mitochondrial dysfunction as a critical event in the pathophysiology of bipolar disorder. Mitochondrion 2021; 57:23-36. [PMID: 33340709 PMCID: PMC10494232 DOI: 10.1016/j.mito.2020.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 12/10/2020] [Indexed: 01/02/2023]
Abstract
The understanding of the pathophysiology of bipolar disorder (BD) remains modest, despite recent advances in neurobiological research. The mitochondrial dysfunction hypothesis of bipolar disorder has been corroborated by several studies involving postmortem brain analysis, neuroimaging, and specific biomarkers in both rodent models and humans. Evidence suggests that BD might be related to abnormal mitochondrial morphology and dynamics, neuroimmune dysfunction, and atypical mitochondrial metabolism and oxidative stress pathways. Mitochondrial dysfunction in mood disorders is also associated with abnormal Ca2+ levels, glutamate excitotoxicity, an imbalance between pro- and antiapoptotic proteins towards apoptosis, abnormal gene expression of electron transport chain complexes, and decreased ATP synthesis. This paper aims to review and discuss the implications of mitochondrial dysfunction in BD etiology and to explore mitochondria as a potential target for novel therapeutic agents.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Taylor Andrews
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Camila N C Lima
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Deborah Benevenuto
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Emilio L Streck
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
27
|
Aly J, Engmann O. The Way to a Human's Brain Goes Through Their Stomach: Dietary Factors in Major Depressive Disorder. Front Neurosci 2020; 14:582853. [PMID: 33364919 PMCID: PMC7750481 DOI: 10.3389/fnins.2020.582853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Globally, more than 250 million people are affected by depression (major depressive disorder; MDD), a serious and debilitating mental disorder. Currently available treatment options can have substantial side effects and take weeks to be fully effective. Therefore, it is important to find safe alternatives, which act more rapidly and in a larger number of patients. While much research on MDD focuses on chronic stress as a main risk factor, we here make a point of exploring dietary factors as a somewhat overlooked, yet highly promising approach towards novel antidepressant pathways. Deficiencies in various groups of nutrients often occur in patients with mental disorders. These include vitamins, especially members of the B-complex (B6, B9, B12). Moreover, an imbalance of fatty acids, such as omega-3 and omega-6, or an insufficient supply with minerals, including magnesium and zinc, are related to MDD. While some of them are relevant for the synthesis of monoamines, others play a crucial role in inflammation, neuroprotection and the synthesis of growth factors. Evidence suggests that when deficiencies return to normal, changes in mood and behavior can be, at least in some cases, achieved. Furthermore, supplementation with dietary factors (so called "nutraceuticals") may improve MDD symptoms even in the absence of a deficiency. Non-vital dietary factors may affect MDD symptoms as well. For instance, the most commonly consumed psychostimulant caffeine may improve behavioral and molecular markers of MDD. The molecular structure of most dietary factors is well known. Hence, dietary factors may provide important molecular tools to study and potentially help treat MDD symptoms. Within this review, we will discuss the role of dietary factors in MDD risk and symptomology, and critically discuss how they might serve as auxiliary treatments or preventative options for MDD.
Collapse
Affiliation(s)
- Janine Aly
- Faculty of Medicine, Friedrich Schiller Universität, Jena, Germany
| | - Olivia Engmann
- Institute for Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
28
|
Weger M, Alpern D, Cherix A, Ghosal S, Grosse J, Russeil J, Gruetter R, de Kloet ER, Deplancke B, Sandi C. Mitochondrial gene signature in the prefrontal cortex for differential susceptibility to chronic stress. Sci Rep 2020; 10:18308. [PMID: 33110158 PMCID: PMC7591539 DOI: 10.1038/s41598-020-75326-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction was highlighted as a crucial vulnerability factor for the development of depression. However, systemic studies assessing stress-induced changes in mitochondria-associated genes in brain regions relevant to depression symptomatology remain scarce. Here, we performed a genome-wide transcriptomic study to examine mitochondrial gene expression in the prefrontal cortex (PFC) and nucleus accumbens (NAc) of mice exposed to multimodal chronic restraint stress. We identified mitochondria-associated gene pathways as most prominently affected in the PFC and with lesser significance in the NAc. A more detailed mitochondrial gene expression analysis revealed that in particular mitochondrial DNA-encoded subunits of the oxidative phosphorylation complexes were altered in the PFC. The comparison of our data with a reanalyzed transcriptome data set of chronic variable stress mice and major depression disorder subjects showed that the changes in mitochondrial DNA-encoded genes are a feature generalizing to other chronic stress-protocols as well and might have translational relevance. Finally, we provide evidence for changes in mitochondrial outputs in the PFC following chronic stress that are indicative of mitochondrial dysfunction. Collectively, our work reinforces the idea that changes in mitochondrial gene expression are key players in the prefrontal adaptations observed in individuals with high behavioral susceptibility and resilience to chronic stress.
Collapse
Affiliation(s)
- Meltem Weger
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Daniel Alpern
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Antoine Cherix
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, England, UK
| | - Sriparna Ghosal
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Julie Russeil
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - E Ronald de Kloet
- Departement of Endocrinology and Metabolic Disease, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
29
|
Mitochondria under the spotlight: On the implications of mitochondrial dysfunction and its connectivity to neuropsychiatric disorders. Comput Struct Biotechnol J 2020; 18:2535-2546. [PMID: 33033576 PMCID: PMC7522539 DOI: 10.1016/j.csbj.2020.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022] Open
Abstract
Neuropsychiatric disorders (NPDs) such as bipolar disorder (BD), schizophrenia (SZ) and mood disorder (MD) are hard to manage due to overlapping symptoms and lack of biomarkers. Risk alleles of BD/SZ/MD are emerging, with evidence suggesting mitochondrial (mt) dysfunction as a critical factor for disease onset and progression. Mood stabilizing treatments for these disorders are scarce, revealing the need for biomarker discovery and artificial intelligence approaches to design synthetically accessible novel therapeutics. Here, we show mt involvement in NPDs by associating 245 mt proteins to BD/SZ/MD, with 7 common players in these disease categories. Analysis of over 650 publications suggests that 245 NPD-linked mt proteins are associated with 800 other mt proteins, with mt impairment likely to rewire these interactions. High dosage of mood stabilizers is known to alleviate manic episodes, but which compounds target mt pathways is another gap in the field that we address through mood stabilizer-gene interaction analysis of 37 prescriptions and over-the-counter psychotropic treatments, which we have refined to 15 mood-stabilizing agents. We show 26 of the 245 NPD-linked mt proteins are uniquely or commonly targeted by one or more of these mood stabilizers. Further, induced pluripotent stem cell-derived patient neurons and three-dimensional human brain organoids as reliable BD/SZ/MD models are outlined, along with multiomics methods and machine learning-based decision making tools for biomarker discovery, which remains a bottleneck for precision psychiatry medicine.
Collapse
|
30
|
Farnezi HCM, Goulart ACX, Santos AD, Ramos MG, Penna MLF. Three-parent babies: Mitochondrial replacement therapies. JBRA Assist Reprod 2020; 24:189-196. [PMID: 32073245 PMCID: PMC7169912 DOI: 10.5935/1518-0557.20190086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mitochondria are intracellular organelles, and just like the cell nucleus they have their own genome. They are extremely important for normal body functioning and are responsible for ATP production - the main energy source for the cell. Mitochondrial diseases are associated with mutations in mitochondrial DNA and are inherited exclusively from the mother. They can affect organs that depend on energy metabolism, such as skeletal muscles, the cardiac system, the central nervous system, the endocrine system, the retina and liver, causing various incurable diseases. Mitochondrial replacement techniques provide women with mitochondrial defects a chance to have normal biological children. The goal of such treatment is to reconstruct functional oocytes and zygotes, in order to avoid the inheritance of mutated genes; for this the nuclear genome is withdrawn from an oocyte or zygotes, which carries mitochondrial mutations, and is implanted in a normal anucleated cell donor. Currently, the options of a couple to prevent the transmission of mitochondrial diseases are limited, and mitochondrial donation techniques provide women with mitochondrial defects a chance to have normal children. The nuclear genome can be transferred from oocytes or zygotes using techniques such as pronuclear transfer, spindle transfer, polar body transfer and germinal vesicle transfer. This study presents a review of developed mitochondrial substitution techniques, and its ability to prevent hereditary diseases.
Collapse
Affiliation(s)
| | | | - Adriana Dos Santos
- Faculdade de Ciências Humanas, Universidade FUMEC, Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|
31
|
Abstract
In seeking to understand mental health and disease, it is fundamental to identify the biological substrates that draw together the experiences and physiological processes that underlie observed psychological changes. Mitochondria are subcellular organelles best known for their central role in energetics, producing adenosine triphosphate to power most cellular processes. Converging lines of evidence indicate that mitochondria play a key role in the biological embedding of adversity. Preclinical research documents the effects of stress exposure on mitochondrial structure and function, and recent human research suggests alterations constituting recalibrations, both adaptive and nonadaptive. Current research suggests dynamic relationships among stress exposure, neuroendocrine signaling, inflammation, and mitochondrial function. These complex relationships are implicated in disease risk, and their elucidation may inform prevention and treatment of stress- and trauma-related disorders. We review and evaluate the evidence for mitochondrial dysfunction as a consequence of stress exposure and as a contributing factor to psychiatric disease.
Collapse
Affiliation(s)
- Teresa E Daniels
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA; , , .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island 02912, USA
| | - Elizabeth M Olsen
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA; , , .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island 02912, USA
| | - Audrey R Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA; , , .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
32
|
Mesdom P, Colle R, Lebigot E, Trabado S, Deflesselle E, Fève B, Becquemont L, Corruble E, Verstuyft C. Human Dermal Fibroblast: A Promising Cellular Model to Study Biological Mechanisms of Major Depression and Antidepressant Drug Response. Curr Neuropharmacol 2020; 18:301-318. [PMID: 31631822 PMCID: PMC7327943 DOI: 10.2174/1570159x17666191021141057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/15/2019] [Accepted: 10/19/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human dermal fibroblasts (HDF) can be used as a cellular model relatively easily and without genetic engineering. Therefore, HDF represent an interesting tool to study several human diseases including psychiatric disorders. Despite major depressive disorder (MDD) being the second cause of disability in the world, the efficacy of antidepressant drug (AD) treatment is not sufficient and the underlying mechanisms of MDD and the mechanisms of action of AD are poorly understood. OBJECTIVE The aim of this review is to highlight the potential of HDF in the study of cellular mechanisms involved in MDD pathophysiology and in the action of AD response. METHODS The first part is a systematic review following PRISMA guidelines on the use of HDF in MDD research. The second part reports the mechanisms and molecules both present in HDF and relevant regarding MDD pathophysiology and AD mechanisms of action. RESULTS HDFs from MDD patients have been investigated in a relatively small number of works and most of them focused on the adrenergic pathway and metabolism-related gene expression as compared to HDF from healthy controls. The second part listed an important number of papers demonstrating the presence of many molecular processes in HDF, involved in MDD and AD mechanisms of action. CONCLUSION The imbalance in the number of papers between the two parts highlights the great and still underused potential of HDF, which stands out as a very promising tool in our understanding of MDD and AD mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Céline Verstuyft
- Address correspondence to this author at the Laboratoire de Pharmacologie, Salle 416, Bâtiment Université, Hôpital du Kremlin Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; Tel: +33145213588; E-mail:
| |
Collapse
|
33
|
Mitochondrial-associated protein biomarkers in patients with attention-deficit/hyperactivity disorder. Mitochondrion 2019; 49:83-88. [DOI: 10.1016/j.mito.2019.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/01/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
|
34
|
Robertson OD, Coronado NG, Sethi R, Berk M, Dodd S. Putative neuroprotective pharmacotherapies to target the staged progression of mental illness. Early Interv Psychiatry 2019; 13:1032-1049. [PMID: 30690898 DOI: 10.1111/eip.12775] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
AIM Neuropsychiatric disorders including depression, bipolar and schizophrenia frequently exhibit a neuroprogressive course from prodrome to chronicity. There are a range of agents exhibiting capacity to attenuate biological mechanisms associated with neuroprogression. This review will update the evidence for putative neuroprotective agents including clinical efficacy, mechanisms of action and limitations in current assessment tools, and identify novel agents with neuroprotective potential. METHOD Data for this review were sourced from online databases PUBMED, Embase and Web of Science. Only data published since 2012 were included in this review, no data were excluded based on language or publication origin. RESULTS Each of the agents reviewed inhibit one or multiple pathways of neuroprogression including: inflammatory gene expression and cytokine release, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophin dysregulation and apoptotic signalling. Some demonstrate clinical efficacy in preventing neural damage or loss, relapse or cognitive/functional decline. Agents include: the psychotropic medications lithium, second generation antipsychotics and antidepressants; other pharmacological agents such as minocycline, aspirin, cyclooxygenase-2 inhibitors, statins, ketamine and alpha-2-delta ligands; and others such as erythropoietin, oestrogen, leptin, N-acetylcysteine, curcumin, melatonin and ebselen. CONCLUSIONS Signals of evidence of clinical neuroprotection are evident for a number of candidate agents. Adjunctive use of multiple agents may present a viable avenue to clinical realization of neuroprotection. Definitive prospective studies of neuroprotection with multimodal assessment tools are required.
Collapse
Affiliation(s)
- Oliver D Robertson
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia
| | - Nieves G Coronado
- Unidad de Gestión Clinica Salud Mental, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Rickinder Sethi
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia.,Department of Psychiatry, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
35
|
Seki T, Yamagata H, Uchida S, Chen C, Kobayashi A, Kobayashi M, Harada K, Matsuo K, Watanabe Y, Nakagawa S. Altered expression of long noncoding RNAs in patients with major depressive disorder. J Psychiatr Res 2019; 117:92-99. [PMID: 31351391 DOI: 10.1016/j.jpsychires.2019.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
Abstract
Although major depressive disorder (MDD) is a leading cause of disability worldwide, its pathophysiology is poorly understood. Increasing evidence suggests that aberrant regulation of transcription plays a key role in the pathophysiology of MDD. Recently, long noncoding RNAs (lncRNAs) have been recognized for their important functions in chromatin structure, gene expression, and the subsequent manifestation of various biological processes in the central nervous system. However, it is unclear whether the aberrant expression and function of lncRNAs are associated with the pathophysiology of MDD. In this study, we sought to evaluate the expression of lncRNAs in peripheral blood leukocytes as potential biomarkers for MDD. We measured the expression levels of 83 lncRNAs in the peripheral blood leukocytes of 29 MDD patients and 29 age- and gender-matched healthy controls using quantitative reverse transcription PCR (RT-qPCR) analysis. We found that MDD patients exhibited distinct expression signatures. Specifically, the expression level of one lncRNA (RMRP) was lower while the levels of four (Y5, MER11C, PCAT1, and PCAT29) were higher in MDD patients compared to healthy controls. The expression level of RMRP was correlated with depression severity as measured by the Hamilton Depression Rating Scale (HAM-D). Moreover, RMRP expression was lower in a mouse model of depression, corroborating the observation from MDD patients. Taken together, our data suggest that lower RMRP levels may serve as a potential biomarker for MDD.
Collapse
Affiliation(s)
- Tomoe Seki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Shusaku Uchida
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Chong Chen
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ayumi Kobayashi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masaaki Kobayashi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
36
|
Schulmann A, Ryu E, Goncalves V, Rollins B, Christiansen M, Frye MA, Biernacka J, Vawter MP. Novel Complex Interactions between Mitochondrial and Nuclear DNA in Schizophrenia and Bipolar Disorder. MOLECULAR NEUROPSYCHIATRY 2019; 5:13-27. [PMID: 31019915 PMCID: PMC6465701 DOI: 10.1159/000495658] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction has been associated with schizophrenia (SZ) and bipolar disorder (BD). This review examines recent publications and novel associations between mitochondrial genes and SZ and BD. Associations of nuclear-encoded mitochondrial variants with SZ were found using gene- and pathway-based approaches. Two control region mitochondrial DNA (mtDNA) SNPs, T16519C and T195C, both showed an association with SZ and BD. A review of 4 studies of A15218G located in the cytochrome B oxidase gene (CYTB, SZ = 11,311, control = 35,735) shows a moderate association with SZ (p = 2.15E-03). Another mtDNA allele A12308G was nominally associated with psychosis in BD type I subjects and SZ. The first published study testing the epistatic interaction between nuclear-encoded and mitochondria-encoded genes demonstrated evidence for potential interactions between mtDNA and the nuclear genome for BD. A similar analysis for the risk of SZ revealed significant joint effects (34 nuclear-mitochondria SNP pairs with joint effect p ≤ 5E-07) and significant enrichment of projection neurons. The mitochondria-encoded gene CYTB was found in both the epistatic interactions for SZ and BD and the single SNP association of SZ. Future efforts considering population stratification and polygenic risk scores will test the role of mitochondrial variants in psychiatric disorders.
Collapse
Affiliation(s)
- Anton Schulmann
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Euijung Ryu
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Vanessa Goncalves
- Molecular Brain Science Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Brandi Rollins
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, California, USA
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joanna Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marquis P. Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
37
|
Agnihotri SK, Sun L, Yee BK, Shen R, Akundi RS, Zhi L, Duncan MJ, Cass WA, Büeler H. PINK1 deficiency is associated with increased deficits of adult hippocampal neurogenesis and lowers the threshold for stress-induced depression in mice. Behav Brain Res 2019; 363:161-172. [PMID: 30735759 DOI: 10.1016/j.bbr.2019.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is characterized by motor impairments and several non-motor features, including frequent depression and anxiety. Stress-induced deficits of adult hippocampal neurogenesis (AHN) have been linked with abnormal affective behavior in animals. It has been speculated that AHN defects may contribute to affective symptoms in PD, but this hypothesis remains insufficiently tested in animal models. Mice that lack the PD-linked kinase PINK1 show impaired differentiation of adult-born neurons in the hippocampus. Here, we examined the relationship between AHN deficits and affective behavior in PINK1-/- mice under basal (no stress) conditions and after exposure to chronic stress. PINK1 loss and corticosterone negatively and jointly affected AHN, leading to lower numbers of neural stem cells and newborn neurons in the dentate gyrus of corticosterone-treated PINK1-/- mice. Despite increased basal AHN deficits, PINK1-deficient mice showed normal affective behavior. However, lack of PINK1 sensitized mice to corticosterone-induced behavioral despair in the tail suspension test at a dose where wildtype mice were unaffected. Moreover, after two weeks of chronic restraint stress male PINK1-/- mice displayed increased immobility in the forced swim test, and protein expression of the glucocorticoid receptor in the hippocampus was reduced. Thus, while impaired AHN as such is insufficient to cause affective dysfunction in this PD model, PINK1 deficiency may lower the threshold for chronic stress-induced depression in PD. Finally, PINK1-deficient mice displayed reduced basal voluntary wheel running but normal rotarod performance, a finding whose mechanisms remain to be determined.
Collapse
Affiliation(s)
- Sandeep K Agnihotri
- School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China
| | - Liuke Sun
- School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China
| | - Benjamin K Yee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ruifang Shen
- School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China
| | - Ravi S Akundi
- Department of Neuroscience, University of Kentucky, Lexington KY 40536, USA
| | - Lianteng Zhi
- Department of Neuroscience, University of Kentucky, Lexington KY 40536, USA
| | - Marilyn J Duncan
- Department of Neuroscience, University of Kentucky, Lexington KY 40536, USA
| | - Wayne A Cass
- Department of Neuroscience, University of Kentucky, Lexington KY 40536, USA
| | - Hansruedi Büeler
- School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China.
| |
Collapse
|
38
|
Tsujii N, Otsuka I, Okazaki S, Yanagi M, Numata S, Yamaki N, Kawakubo Y, Shirakawa O, Hishimoto A. Mitochondrial DNA Copy Number Raises the Potential of Left Frontopolar Hemodynamic Response as a Diagnostic Marker for Distinguishing Bipolar Disorder From Major Depressive Disorder. Front Psychiatry 2019; 10:312. [PMID: 31139101 PMCID: PMC6518968 DOI: 10.3389/fpsyt.2019.00312] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 04/23/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Given a lack of markers, diagnoses of bipolar disorder (BD) and major depressive disorder (MDD) rely on clinical assessment of symptoms. However, the depressive mood states of BD and depressive symptoms of MDD are often difficult to distinguish, which leads to misdiagnoses, which in turn leads to inadequate treatment. Previous studies have shown that the hemodynamic responses of the left frontopolar cortex measured by near-infrared spectroscopy (NIRS) differ between BD and MDD; these hemodynamic responses are associated with altered mitochondrial metabolism; and mitochondrial DNA copy number (mtDNAcn), an index of mitochondrial dysfunction, tends to decrease in BD and increase in MDD patients. In this study, we confirmed that mtDNAcn trends in opposite directions in BD and MDD. We then determined whether mtDNAcn could enhance the utility of NIRS as a diagnostic marker to distinguish between BD and MDD. Methods: We determined mtDNAcn in peripheral blood samples from 58 healthy controls, 79 patients with BD, and 44 patients with MDD. Regional hemodynamic responses during a verbal fluency task (VFT) in 24 BD patients and 44 MDD patients, matched by age and depression severity, were monitored using NIRS. Results: Measurements of mtDNAcn were lower in BD patients and higher in MDD patients than in controls. The left frontopolar region exhibited the most significant differences in mean VFT-related oxy-Hb changes between the BD and MDD groups. Multivariate logistic regression analysis with variables including age, sex, hemodynamic response of the left frontopolar region, and mtDNAcn showed high accuracy for distinguishing BD from MDD (area under the curve = 0.917; 95% confidence interval = 0.849-0.985). For the BD group, we observed a positive correlation between hemodynamic responses in the left frontopolar region and mtDNAcn, while for the MDD group, we observed a negative correlation. Conclusions: Our findings suggest that the association between hemodynamic response and mitochondrial dysfunction in BD or MDD plays an important role in differentiating the pathophysiological mechanisms of BD from those of MDD.
Collapse
Affiliation(s)
- Noa Tsujii
- Department of Neuropsychiatry, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaya Yanagi
- Department of Neuropsychiatry, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Shusuke Numata
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Naruhisa Yamaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiro Kawakubo
- Department of Neuropsychiatry, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Osamu Shirakawa
- Department of Neuropsychiatry, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
39
|
Babenko VN, Smagin DA, Galyamina AG, Kovalenko IL, Kudryavtseva NN. Altered Slc25 family gene expression as markers of mitochondrial dysfunction in brain regions under experimental mixed anxiety/depression-like disorder. BMC Neurosci 2018; 19:79. [PMID: 30537945 PMCID: PMC6288882 DOI: 10.1186/s12868-018-0480-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Development of anxiety- and depression-like states under chronic social defeat stress in mice has been shown by many experimental studies. In this article, the differentially expressed Slc25* family genes encoding mitochondrial carrier proteins were analyzed in the brain of depressive (defeated) mice versus aggressive mice winning in everyday social confrontations. The collected samples of brain regions were sequenced at JSC Genoanalytica ( http://genoanalytica.ru/ , Moscow, Russia). RESULTS Changes in the expression of the 20 Slc25* genes in the male mice were brain region- and social experience (positive or negative)-specific. In particular, most Slc25* genes were up-regulated in the hypothalamus of defeated and aggressive mice and in the hippocampus of defeated mice. In the striatum of defeated mice and in the ventral tegmental area of aggressive mice expression of mitochondrial transporter genes changed specifically. Significant correlations between expression of most Slc25* genes and mitochondrial Mrps and Mrpl genes were found in the brain regions. CONCLUSION Altered expression of the Slc25* genes may serve as a marker of mitochondrial dysfunction in brain, which accompanies the development of many neurological and psychoemotional disorders.
Collapse
Affiliation(s)
- Vladimir N Babenko
- Laboratory of Neuropathology Modeling, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia. .,Neurogenetics of Social Behavior Sector, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia. .,Laboratory of Human Molecular Genetics, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
| | - Dmitry A Smagin
- Laboratory of Neuropathology Modeling, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,Neurogenetics of Social Behavior Sector, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Anna G Galyamina
- Laboratory of Neuropathology Modeling, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,Neurogenetics of Social Behavior Sector, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Irina L Kovalenko
- Laboratory of Neuropathology Modeling, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,Neurogenetics of Social Behavior Sector, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Natalia N Kudryavtseva
- Laboratory of Neuropathology Modeling, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia. .,Neurogenetics of Social Behavior Sector, The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
| |
Collapse
|
40
|
Cruz ACP, Ferrasa A, Muotri AR, Herai RH. Frequency and association of mitochondrial genetic variants with neurological disorders. Mitochondrion 2018; 46:345-360. [PMID: 30218715 DOI: 10.1016/j.mito.2018.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
Mitochondria are small cytosolic organelles and the main source of energy production for the cells, especially in the brain. This organelle has its own genome, the mitochondrial DNA (mtDNA), and genetic variants in this molecule can alter the normal energy metabolism in the brain, contributing to the development of a wide assortment of Neurological Disorders (ND), including neurodevelopmental syndromes, neurodegenerative diseases and neuropsychiatric disorders. These ND are comprised by a heterogeneous group of syndromes and diseases that encompass different cognitive phenotypes and behavioral disorders, such as autism, Asperger's syndrome, pervasive developmental disorder, attention deficit hyperactivity disorder, Huntington disease, Leigh Syndrome and bipolar disorder. In this work we carried out a Systematic Literature Review (SLR) to identify and describe the mitochondrial genetic variants associated with the occurrence of ND. Most of genetic variants found in mtDNA were associated with Single Nucleotide Polimorphisms (SNPs), ~79%, with ~15% corresponding to deletions, ~3% to Copy Number Variations (CNVs), ~2% to insertions and another 1% included mtDNA replication problems and genetic rearrangements. We also found that most of the variants were associated with coding regions of mitochondrial proteins but were also found in regulatory transcripts (tRNA and rRNA) and in the D-Loop replication region of the mtDNA. After analysis of mtDNA deletions and CNV, none of them occur in the D-Loop region. This SLR shows that all transcribed mtDNA molecules have mutations correlated with ND. Finally, we describe that all mtDNA variants found were associated with deterioration of cognitive (dementia) and intellectual functions, learning disabilities, developmental delays, and personality and behavior problems.
Collapse
Affiliation(s)
- Ana Carolina P Cruz
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil
| | - Adriano Ferrasa
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil; Department of Informatics (DEINFO), Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, Paraná 84030-900, Brazil
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92037-0695, USA
| | - Roberto H Herai
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil; Lico Kaesemodel Institute (ILK), Curitiba, Paraná 80240-000, Brazil.
| |
Collapse
|
41
|
Andreazza AC, Nierenberg AA. Mitochondrial Dysfunction: At the Core of Psychiatric Disorders? Biol Psychiatry 2018; 83:718-719. [PMID: 29628041 DOI: 10.1016/j.biopsych.2018.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Ana C Andreazza
- Departments of Pharmacology and Toxicology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew A Nierenberg
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|