1
|
Isgate SB, Budge KE, Byrnes EM, Vassoler FM. Paternal morphine alters offspring circulating beta-endorphin and corticosterone responses to oxycodone and cocaine. Neuropharmacology 2025; 265:110271. [PMID: 39694232 DOI: 10.1016/j.neuropharm.2024.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The opioid epidemic is leading to increased opioid use in adolescent populations. A growing body of evidence suggests that taking opioids during adolescence can disrupt normal development and impact future offspring. This study investigates the impact of paternal morphine exposure during adolescence on the hypothalamic-pituitary-adrenal (HPA) axis and release of endorphins in the offspring. METHODS Male rats were administered morphine once a day from postnatal day (PND)30-39 using an increasing dosing regimen (5-25 mg/kg/day increasing every other day). They were mated during adulthood to drug naïve females. Their offspring were assessed for circulating beta-endorphin (βE) and corticosterone levels on PND30 (a timepoint prior to puberty in both sexes) in response to an acute injection of saline, oxycodone (1 mg/kg, i.p.) or cocaine (10 mg/kg, i.p.). At PND60, naïve littermates were catheterized so that a within-subjects design could be implemented to measure βE and corticosterone in response to saline, oxycodone, or cocaine. RESULTS In males, βE levels in the plasma were increased in Mor-F1 males compared to Sal-F1 males regardless of the acute injection. This elevation was observed at PND30 and PND60. There were no differences in female circulating βE. In terms of corticosterone, male Mor-F1 offspring had blunted corticosterone at PND30, but elevated corticosterone in response to oxycodone at PND60. The females also tended towards lower corticosterone prior to puberty but had significantly elevated levels of circulating corticosterone following an acute cocaine injection. CONCLUSION Paternal morphine exposure during adolescence induces sex- and drug-specific changes in secreted hormone responses in offspring. The alterations in βE and corticosterone levels suggest mechanisms through which adolescent opioid exposure can impact endocrine functions of future offspring. These findings contribute to the understanding of intergenerational transmission of substance use effects.
Collapse
Affiliation(s)
- Sara B Isgate
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Kerri E Budge
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Elizabeth M Byrnes
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Fair M Vassoler
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA.
| |
Collapse
|
2
|
Finnell JE, Ferrario CR. Voluntary food restriction does not affect circulating corticosterone in obesity-prone or -resistant male and female rats. Physiol Behav 2025; 288:114729. [PMID: 39510225 DOI: 10.1016/j.physbeh.2024.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/09/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Food restriction in rodents can increase circulating corticosterone, which reflects activation of physiological stress responses. These responses affect a myriad of behaviors and physiological processes and can increase the risk of obesity. Most studies in this area have used experimenter-imposed restriction. However, rats will voluntarily restrict their food intake if they are returned to chow after a period of access to sugary, fatty "junk food" (JF) diet. Here we examine the effects of voluntary food restriction in obesity-prone and -resistant male and female rats on circulating corticosterone concentrations and determine whether corticosterone release in response to acute stress differs in groups with a history of JF consumption.
Collapse
Affiliation(s)
- Julie E Finnell
- Department of Pharmacology, University of Michigan, Ann Arbor MI 48109, USA; Pharmacology and Toxicology State University of New York at Buffalo, Buffalo NY 14203, USA
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor MI 48109, USA; Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor MI 48109, USA.
| |
Collapse
|
3
|
Barbetti M, Sgoifo A, Carnevali L. Sex-specific behavioral, cardiac, and neuroendocrine responses to repeated witness social stress in adult rats. Physiol Behav 2024; 287:114702. [PMID: 39332593 DOI: 10.1016/j.physbeh.2024.114702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
In humans, sex disparities exist in the prevalence of social stress-related disorders, yet our understanding of the predisposing factors and underlying mechanisms is still elusive. Also at the preclinical level, the investigation of sex differences in social stress responses is limited. In this study, adult male and female wild-type Groningen rats were repeatedly exposed to witness social defeat stress (WS) to assess sex-specific behavioral, neuroendocrine, and cardiac responses to the same social stress paradigm. Male and female rats bore witness to an aggressive social defeat episode between two males for nine consecutive days or were exposed to a control (CTR) procedure. Stress-related parameters were assessed in correspondence to the first and last WS/CTR exposure and also during subsequent exposure to the stress context alone in the absence of social defeat. During WS, rats of both sexes displayed larger amounts of burying behavior and smaller amounts of rearing and grooming behaviors, but with a greater extent in female witnesses. Cardiac autonomic responses to WS were similar between the sexes, yet only females displayed higher plasma corticosterone levels after the first WS exposure compared to CTRs, and had a larger corticosterone increase than male witnesses upon repeated WS. Exposure to the stress context alone (i.e., without the presence of the aggressive resident rat) elicited greater amount of burying behavior and more pronounced and persistent tachycardic responses in females than males with a history of WS. Our findings suggest sex-disparities in the response of adult rats to WS at multiple behavioral, cardiac, and neuroendocrine levels, highlighting the utility of this social stress paradigm for investigating predisposing factors and pathophysiological mechanisms underlying sex-specific vulnerabilities to stress-related pathologies.
Collapse
Affiliation(s)
- Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
4
|
Liu X, Liu R, Sun YX, Wang HL, Wang H, Wang T, Ma YN, Li XX, Wang Q, Su YA, Li JT, Si TM. Dorsal CA3 overactivation mediates witnessing stress-induced recognition memory deficits in adolescent male mice. Neuropsychopharmacology 2024; 49:1666-1677. [PMID: 38504012 PMCID: PMC11399124 DOI: 10.1038/s41386-024-01848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Witnessing violent or traumatic events is common during childhood and adolescence and could cause detrimental effects such as increased risks of psychiatric disorders. This stressor could be modeled in adolescent laboratory animals using the chronic witnessing social defeat (CWSD) paradigm, but the behavioral consequences of CWSD in adolescent animals remain to be validated for cognitive, anxiety-like, and depression-like behaviors and, more importantly, the underlying neural mechanisms remain to be uncovered. In this study, we first established the CWSD model in adolescent male mice and found that CWSD impaired cognitive function and increased anxiety levels and that these behavioral deficits persisted into adulthood. Based on the dorsal-ventral functional division in hippocampus, we employed immediate early gene c-fos immunostaining after behavioral tasks and found that CWSD-induced cognition deficits were associated with dorsal CA3 overactivation and anxiety-like behaviors were associated with ventral CA3 activity reduction. Indeed, chemogenetic activation and inhibition of dorsal CA3 neurons mimicked and reversed CWSD-induced recognition memory deficits (not anxiety-like behaviors), respectively, whereas both inhibition and activation of ventral CA3 neurons increased anxiety-like behaviors in adolescent mice. Finally, chronic administration of vortioxetine (a novel multimodal antidepressant) successfully restored the overactivation of dorsal CA3 neurons and the cognitive deficits in CWSD mice. Together, our findings suggest that dorsal CA3 overactivation mediates CWSD-induced recognition memory deficits in adolescent male mice, shedding light on the pathophysiology of adolescent CWSD-induced adverse effects and providing preclinical evidence for early treatment of stress-induced cognitive deficits.
Collapse
Affiliation(s)
- Xiao Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Rui Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ya-Xin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Hong-Li Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Han Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ting Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yu-Nu Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xue-Xin Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Qi Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
5
|
Smiley CE, Pate BS, Bouknight SJ, Harrington EN, Jasnow AM, Wood SK. The functional role of locus coeruleus microglia in the female stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575076. [PMID: 38260568 PMCID: PMC10802589 DOI: 10.1101/2024.01.10.575076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neuropsychiatric disorders that result from stress exposure are highly associated with central inflammation. Our previous work established that females selectively exhibit heightened proinflammatory cytokine production within the noradrenergic locus coeruleus (LC) along with a hypervigilant behavioral phenotype in response to witnessing social stress, and ablation of microglia using pharmacological techniques prevents this behavioral response. These studies were designed to further investigate the impact of stress-induced neuroimmune signaling on the long-term behavioral and neuronal consequences of social stress exposure in females using chemogenetics. We first characterized the use of an AAV-CD68-Gi-DREADD virus targeted to microglia within the LC and confirmed viral transduction, selectivity, and efficacy. Clozapine-n-oxide (CNO) was used for the suppression of microglial reactivity during acute and chronic exposure to vicarious/witness social defeat in female rats. Chemogenetic-mediated inhibition of microglial reactivity during stress blunted the neuroimmune response to stress and prevented both acute and long-term hypervigilant behavioral responses. Further, a history of microglial suppression during stress prevented the heightened LC activity typically observed in response to stress cues. These studies are among the first to use a chemogenetic approach to inhibit microglia within the female brain in vivo and establish LC inflammation as a key mechanism underlying the behavioral and neuronal responses to social stress in females.
Collapse
Affiliation(s)
- Cora E. Smiley
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
- WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| | - Brittany S. Pate
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
- University of South Carolina, Department of Exercise Science, Columbia, SC 29209
| | - Samantha J. Bouknight
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Evelynn N. Harrington
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
- WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| | - Aaron M. Jasnow
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Susan K. Wood
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
- WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| |
Collapse
|
6
|
Ryan MJ, Clemmer JS, Mathew RO, Faulkner JL, Taylor EB, Abais-Battad JM, Hollis F, Sullivan JC. Revisiting sex as a biological variable in hypertension research. J Clin Invest 2024; 134:e180078. [PMID: 39225093 PMCID: PMC11364402 DOI: 10.1172/jci180078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Half of adults in the United States have hypertension as defined by clinical practice guidelines. Interestingly, women are generally more likely to be aware of their hypertension and have their blood pressure controlled with treatment compared with men, yet hypertension-related mortality is greater in women. This may reflect the fact that the female sex remains underrepresented in clinical and basic science studies investigating the effectiveness of therapies and the mechanisms controlling blood pressure. This Review provides an overview of the impact of the way hypertension research has explored sex as a biological variable (SABV). Emphasis is placed on epidemiological studies, hypertension clinical trials, the genetics of hypertension, sex differences in immunology and gut microbiota in hypertension, and the effect of sex on the central control of blood pressure. The goal is to offer historical perspective on SABV in hypertension, highlight recent studies that include SABV, and identify key gaps in SABV inclusion and questions that remain in the field. Through continued awareness campaigns and engagement/education at the level of funding agencies, individual investigators, and in the editorial peer review system, investigation of SABV in the field of hypertension research will ultimately lead to improved clinical outcomes.
Collapse
Affiliation(s)
- Michael J. Ryan
- Columbia VA Health Care System, Columbia, South Carolina, USA
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - John S. Clemmer
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Roy O. Mathew
- Loma Linda VA Health Care System, Loma Linda, California, USA
| | | | - Erin B. Taylor
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Fiona Hollis
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | |
Collapse
|
7
|
Pate BS, Smiley CE, Harrington EN, Bielicki BH, Davis JM, Reagan LP, Grillo CA, Wood SK. Voluntary wheel running as a promising strategy to promote autonomic resilience to social stress in females: Vagal tone lies at the heart of the matter. Auton Neurosci 2024; 253:103175. [PMID: 38677130 PMCID: PMC11173375 DOI: 10.1016/j.autneu.2024.103175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Social stress is a major risk factor for comorbid conditions including cardiovascular disease and depression. While women exhibit 2-3× the risk for these stress-related disorders compared to men, the mechanisms underlying heightened stress susceptibility among females remain largely unknown. Due to a lack in understanding of the pathophysiology underlying stress-induced comorbidities among women, there has been a significant challenge in developing effective therapeutics. Recently, a causal role for inflammation has been established in the onset and progression of comorbid cardiovascular disease/depression, with women exhibiting increased sensitivity to stress-induced immune signaling. Importantly, reduced vagal tone is also implicated in stress susceptibility, through a reduction in the vagus nerve's well-recognized anti-inflammatory properties. Thus, examining therapeutic strategies that stabilize vagal tone during stress may shed light on novel targets for promoting stress resilience among women. Recently, accumulating evidence has demonstrated that physical activity exerts cardio- and neuro-protective effects by enhancing vagal tone. Based on this evidence, this mini review provides an overview of comorbid cardiovascular and behavioral dysfunction in females, the role of inflammation in these disorders, how stress may impart its negative effects on the vagus nerve, and how exercise may act as a preventative. Further, we highlight a critical gap in the literature with regard to the study of females in this field. This review also presents novel data that are the first to demonstrate a protective role for voluntary wheel running over vagal tone and biomarkers of cardiac dysfunction in the face of social stress exposure in female rats.
Collapse
Affiliation(s)
- Brittany S Pate
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America; Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Cora E Smiley
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America
| | - Evelynn N Harrington
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America
| | - B Hunter Bielicki
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America
| | - J Mark Davis
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America
| | - Claudia A Grillo
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America; USC Institute for Cardiovascular Disease Research, Columbia, SC, United States of America.
| |
Collapse
|
8
|
Bijlsma A, Birza EE, Pimentel TC, Maranus JPM, van Gaans MJJM, Lozeman-van T Klooster JG, Baars AJM, Achterberg EJM, Lesscher HMB, Wierenga CJ, Vanderschuren LJMJ. Opportunities for risk-taking during play alters cognitive performance and prefrontal inhibitory signalling in rats of both sexes. Eur J Neurosci 2024; 59:2748-2765. [PMID: 38511534 DOI: 10.1111/ejn.16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
Social play behaviour is a rewarding activity that can entail risks, thus allowing young individuals to test the limits of their capacities and to train their cognitive and emotional adaptability to challenges. Here, we tested in rats how opportunities for risk-taking during play affect the development of cognitive and emotional capacities and medial prefrontal cortex (mPFC) function, a brain structure important for risk-based decision making. Male and female rats were housed socially or social play-deprived (SPD) between postnatal day (P)21 and P42. During this period, half of both groups were daily exposed to a high-risk play environment. Around P85, all rats were tested for cognitive performance and emotional behaviour after which inhibitory currents were recorded in layer 5 pyramidal neurons in mPFC slices. We show that playing in a high-risk environment altered cognitive flexibility in both sexes and improved behavioural inhibition in males. High-risk play altered anxiety-like behaviour in the elevated plus maze in males and in the open field in females, respectively. SPD affected cognitive flexibility in both sexes and decreased anxiety-like behaviour in the elevated plus maze in females. We found that synaptic inhibitory currents in the mPFC were increased in male, but not female, rats after high-risk play, while SPD lowered prefrontal cortex (PFC) synaptic inhibition in both sexes. Together, our data show that exposure to risks during play affects the development of cognition, emotional behaviour and inhibition in the mPFC. Furthermore, our study suggests that the opportunity to take risks during play cannot substitute for social play behaviour.
Collapse
Affiliation(s)
- Ate Bijlsma
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Evelien E Birza
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Tara C Pimentel
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Janneke P M Maranus
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marieke J J M van Gaans
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - José G Lozeman-van T Klooster
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Annemarie J M Baars
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - E J Marijke Achterberg
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Heidi M B Lesscher
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Corette J Wierenga
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Donders Institute and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Louk J M J Vanderschuren
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Martínez-Caballero MÁ, Calpe-López C, García-Pardo MP, Arenas MC, de la Rubia Ortí JE, Bayona-Babiloni R, Aguilar MA. Behavioural traits related with resilience or vulnerability to the development of cocaine-induced conditioned place preference after exposure of female mice to vicarious social defeat. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110912. [PMID: 38097163 DOI: 10.1016/j.pnpbp.2023.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
Exposure to stress induced by intermittent repeated social defeat (IRSD) increases vulnerability to the development of cocaine-induced conditioned place preference (CPP) among male mice; however, some defeated mice are resilient to these effects of stress. In the present study we evaluated the effects of vicarious IRSD (VIRSD) in female mice and explored behavioural traits that are potentially predictive of resilience. C57BL/6 female mice (n = 28) were exposed to VIRSD, which consisted of the animals witnessing a short experience of social defeat by a male mouse on postnatal day (PND) 47, 50, 53 and 56. The control group (n = 10) was not exposed to stress. Blood samples were collected on PND 47 and 56 for corticosterone and interleukin-6 determinations. On PND 57-58, female mice performed several behavioural tests (elevated plus maze, hole-board, object recognition, social interaction, TST and splash tests). Three weeks later, the effects of cocaine (1.5 mg/kg) on the CPP paradigm were assessed. VIRSD decreased corticosterone levels (on PND 56), increased interleukin-6 levels, enhanced novelty-seeking, improved recognition memory and induced anxiety- and depression-like symptoms. Control and VIRSD female mice did not acquire CPP, although some stressed individuals with certain behavioural traits - including a high novelty-seeking profile or the development of depression-like behaviour in the splash test shortly after VIRSD - acquired cocaine CPP. Our results confirm that some behavioural traits of female mice are associated with vulnerability or resilience to the long-term effects of social stress on cocaine reward, as previously observed in males.
Collapse
Affiliation(s)
- Maria Ángeles Martínez-Caballero
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Claudia Calpe-López
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Maria Pilar García-Pardo
- Department of Psychology and Sociology, Faculty of Social Sciences, University of Zaragoza, Teruel, Spain
| | | | | | - Raquel Bayona-Babiloni
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Martir, Valencia, Spain
| | - Maria Asunción Aguilar
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
10
|
Grippo AJ, Akinbo OI, Amidei A, Wardwell J, Normann MC, Ciosek S, Kovalev D. Maladaptive cardiac and behavioral reactivity to repeated vicarious stress exposure in socially bonded male prairie vole siblings. Auton Neurosci 2024; 251:103145. [PMID: 38194740 PMCID: PMC10843770 DOI: 10.1016/j.autneu.2023.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
Behaviors, emotions, and cardiovascular functions are influenced by stress. But these detrimental effects are not exclusive to an individual that directly experiences stress. Stress is also experienced vicariously through observation of another individual undergoing stress. The current study used the strong social bonds in socially monogamous prairie voles to determine effects of repeated vicarious stress on cardiac and behavioral outcomes. Male prairie voles were exposed to either a 5-minute open field chamber alone [separate (control)] or while concurrently witnessing their sibling undergo a tail-suspension stressor [concurrent (experimental)], repeated across 4 sessions. Cardiac responses in animals in the open field were evaluated for heart rate and heart rate variability prior to, during, and after each test session, and behaviors were evaluated for motion, exploration, stress reactivity, and anxiety-relevant behaviors during each test session. The concurrent condition (versus separate) displayed increased heart rate and reduced heart rate variability during repeated test sessions, and impaired recovery of these parameters following the test sessions. The pattern of disturbances suggests that both increased sympathetic and reduced parasympathetic influence contributed to the cardiac responses. Animals in the concurrent condition (versus separate) displayed disrupted rearing, grooming, and motion; reduced duration of center section exploration; and increased freezing responses across repeated test sessions. Collectively, cardiac and behavioral stress reactivity are increased as a function of vicarious stress in prairie voles, which are evident across repeated experiences of stress. These results inform our understanding of the experience of vicarious stress in social species, including humans.
Collapse
Affiliation(s)
- Angela J Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA.
| | - Oreoluwa I Akinbo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Alex Amidei
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Joshua Wardwell
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Marigny C Normann
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Sarah Ciosek
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Dmitry Kovalev
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
11
|
Tao Y, Shen W, Zhou H, Li Z, Pi T, Wu H, Shi H, Huang F, Wu X. Sex differences in a corticosterone-induced depression model in mice: Behavioral, neurochemical, and molecular insights. Brain Res 2024; 1823:148678. [PMID: 37979605 DOI: 10.1016/j.brainres.2023.148678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Depression is characterized by a significant sex disparity, with higher rates observed in women compared to men. This study aimed to investigate the impact of sex on depressive behaviors and explore the underlying mechanisms using a corticosterone (CORT)-induced depression model in mice. Behavioral tests, Nissl staining, UPLC-MS/MS, and Western blot analysis were performed to assess behavioral changes, as well as neuronal alterations, neurotransmitter levels, and protein expressions in the hippocampus. The mice in the model group exhibited sex-specific anxiety- and depression-like behaviors. Nissl staining revealed structural abnormalities in the CA3 region of the hippocampus in females. Neurotransmitter analysis indicated decreased serotonin and norepinephrine levels in both sexes, while glutamate levels were elevated in females. Furthermore, female mice demonstrated elevated serum CORT levels. Western blot analysis revealed sex-specific alterations in specific protein expression. Female mice exhibited downregulated glucocorticoid receptor and brain-derived neurotrophic factor expression, whereas male mice showed minimal changes. Additionally, female mice displayed reduced phosphorylated AKT, phosphorylated PI3K, and phosphorylated mTOR levels. These findings enhance our understanding of sex-specific differences in the CORT-induced depression model and provide insights into the underlying mechanisms of depression. This research emphasizes sex in depression studies and supports tailored interventions.
Collapse
Affiliation(s)
- Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Wei Shen
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Houyuan Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Zikang Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Ting Pi
- Kunming Yan'an Hospital Chenggong Hospital, PR China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
12
|
Hodes GE, Bangasser D, Sotiropoulos I, Kokras N, Dalla C. Sex Differences in Stress Response: Classical Mechanisms and Beyond. Curr Neuropharmacol 2024; 22:475-494. [PMID: 37855285 PMCID: PMC10845083 DOI: 10.2174/1570159x22666231005090134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 10/20/2023] Open
Abstract
Neuropsychiatric disorders, which are associated with stress hormone dysregulation, occur at different rates in men and women. Moreover, nowadays, preclinical and clinical evidence demonstrates that sex and gender can lead to differences in stress responses that predispose males and females to different expressions of similar pathologies. In this curated review, we focus on what is known about sex differences in classic mechanisms of stress response, such as glucocorticoid hormones and corticotrophin-releasing factor (CRF), which are components of the hypothalamicpituitary- adrenal (HPA) axis. Then, we present sex differences in neurotransmitter levels, such as serotonin, dopamine, glutamate and GABA, as well as indices of neurodegeneration, such as amyloid β and Tau. Gonadal hormone effects, such as estrogens and testosterone, are also discussed throughout the review. We also review in detail preclinical data investigating sex differences caused by recentlyrecognized regulators of stress and disease, such as the immune system, genetic and epigenetic mechanisms, as well neurosteroids. Finally, we discuss how understanding sex differences in stress responses, as well as in pharmacology, can be leveraged into novel, more efficacious therapeutics for all. Based on the supporting evidence, it is obvious that incorporating sex as a biological variable into preclinical research is imperative for the understanding and treatment of stress-related neuropsychiatric disorders, such as depression, anxiety and Alzheimer's disease.
Collapse
Affiliation(s)
| | - Debra Bangasser
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Ioannis Sotiropoulos
- Institute of Biosciences & Applications NCSR “Demokritos”, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Barbetti M, Vilella R, Naponelli V, Bilotti I, Magistrati M, Dallabona C, Ielpo D, Andolina D, Sgoifo A, Savi M, Carnevali L. Repeated witness social stress causes cardiomyocyte contractile impairment and intracellular Ca 2+ derangement in female rats. Physiol Behav 2023; 271:114339. [PMID: 37625474 DOI: 10.1016/j.physbeh.2023.114339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The impact of psychosocial stressors on cardiovascular health in women is of growing interest in both the popular and scientific literature. Rodent models are useful for providing direct experimental evidence of the adverse cardiovascular consequences of psychosocial stressors, yet studies in females are scarce. Here, we investigated the effects of repeated exposure to witness social defeat stress (WS) on cardiomyocyte contractile function and intracellular Ca2+ homeostasis in young adult wild-type Groningen female rats. Female rats bore witness to an aggressive social defeat episode between two males for nine consecutive days or were exposed to a control procedure. Stress-related behaviors were assessed during the first and last WS/control exposure. Twenty-four hours after the last exposure, plasma corticosterone levels were measured, and cardiomyocytes were isolated for analyses of contractile properties and Ca2+ transients, and expression levels of proteins involved in intracellular Ca2+dynamics. The results show an impairment of the intrinsic cardiac mechanical properties and prolonged intracellular Ca2+decay in WS female rats showing social stress-related behavioral (larger amounts of burying behavior) and neuroendocrine (elevated plasma corticosterone levels) phenotypes. Further, the results implicate alterations in the sarcoplasmic reticulum Ca2+-ATPase/phospholamban complex in the contractile defects described in cardiomyocytes of WS female rats. In conclusion, this study highlights the utility of the WS model as an ethologically relevant social stressor for investigating pathophysiological processes that occur in the heart of female subjects and may increase vulnerability to social stress-related cardiovascular risk.
Collapse
Affiliation(s)
- Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rocchina Vilella
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Iolanda Bilotti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donald Ielpo
- IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy
| | - Diego Andolina
- IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
14
|
González-Portilla M, Montagud-Romero S, Rodríguez de Fonseca F, Rodríguez-Arias M. Oleoylethanolamide restores stress-induced prepulse inhibition deficits and modulates inflammatory signaling in a sex-dependent manner. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06403-w. [PMID: 37314479 DOI: 10.1007/s00213-023-06403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
RATIONALE Social stress contributes to the development of depressive and anxiety symptomatology and promotes pro-inflammatory signaling in the central nervous system. In this study, we explored the effects of a lipid messenger with anti-inflammatory properties - oleoylethanolamide (OEA) - on the behavioral deficits caused by social stress in both male and female mice. METHODS Adult mice were assigned to an experimental group according to the stress condition (control or stress) and treatment (vehicle or OEA, 10 mg/kg, i.p.). Male mice in the stress condition underwent a protocol consisting of four social defeat (SD) encounters. In the case of female mice, we employed a procedure of vicarious SD. After the stress protocol resumed, anxiety, depressive-like behavior, social interaction, and prepulse inhibition (PPI) were assessed. In addition, we characterized the stress-induced inflammatory profile by measuring IL-6 and CX3CL1 levels in the striatum and hippocampus. RESULTS Our results showed that both SD and VSD induced behavioral alterations. We found that OEA treatment restored PPI deficits in socially defeated mice. Also, OEA affected differently stress-induced anxiety and depressive-like behavior in male and female mice. Biochemical analyses showed that both male and female stressed mice showed increased levels of IL-6 in the striatum compared to control mice. Similarly, VSD female mice exhibited increased striatal CX3CL1 levels. These neuroinflammation-associated signals were not affected by OEA treatment. CONCLUSIONS In summary, our results confirm that SD and VSD induced behavioral deficits together with inflammatory signaling in the striatum and hippocampus. We observed that OEA treatment reverses stress-induced PPI alterations in male and female mice. These data suggest that OEA can exert a buffering effect on stress-related sensorimotor gating behavioral processing.
Collapse
Affiliation(s)
- Macarena González-Portilla
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad Clínica de Neurología, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
- Atención Primaria, Cronicidad Y Promoción de La Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Málaga, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain.
- Atención Primaria, Cronicidad Y Promoción de La Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Málaga, Spain.
| |
Collapse
|
15
|
Pate BS, Bouknight SJ, Harrington EN, Mott SE, Augenblick LM, Smiley CE, Morgan CG, Calatayud BM, Martínez-Muñiz GA, Thayer JF, Wood SK. Site-Specific knockdown of microglia in the locus coeruleus regulates hypervigilant responses to social stress in female rats. Brain Behav Immun 2023; 109:190-203. [PMID: 36682513 PMCID: PMC11195023 DOI: 10.1016/j.bbi.2023.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Women are at increased risk for psychosocial stress-related anxiety disorders, yet mechanisms regulating this risk are unknown. Psychosocial stressors activate microglia, and the resulting neuroimmune responses that females exhibit heightened sensitivity to may serve as an etiological factor in their elevated risk. However, studies examining the role of microglia during stress in females are lacking. METHODS Microglia were manipulated in the stress-sensitive locus coeruleus (LC) of female rats in the context of social stress in two ways. First, intra-LC lipopolysaccharide (LPS; 0 or 3 μg/side, n = 5-6/group), a potent TLR4 agonist and microglial activator, was administered. One hour later, rats were exposed to control or an aggressive social defeat encounter between two males (WS, 15-min). In a separate study, females were treated with intra-LC or intra-central amygdala mannosylated liposomes containing clodronate (m-CLD; 0 or 25 μg/side, n = 13-14/group), a compound toxic to microglia. WS-evoked burying, cardiovascular responses, and sucrose preference were measured. Brain and plasma cytokines were quantified, and cardiovascular telemetry assessed autonomic balance. RESULTS Intra-LC LPS augmented the WS-induced burying response and increased plasma corticosterone and interleukin-1β (IL-1β). Further, the efficacy and selectivity of microinjected m-CLD was fully characterized. In the context of WS, intra-LC m-CLD attenuated the hypervigilant burying response during WS as well as the accumulation of intra-LC IL-1β. Intra-central amygdala m-CLD had no effect on WS-evoked behavior. CONCLUSIONS These studies highlight an innovative method for depleting microglia in a brain region specific manner and indicate that microglia in the LC differentially regulate hypervigilant WS-evoked behavioral and autonomic responses.
Collapse
Affiliation(s)
- Brittany S Pate
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Samantha J Bouknight
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Evelynn N Harrington
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Sarah E Mott
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Lee M Augenblick
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Cora E Smiley
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC, USA
| | - Christopher G Morgan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Brittney M Calatayud
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Gustavo A Martínez-Muñiz
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Julian F Thayer
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC, USA.
| |
Collapse
|
16
|
Smiley CE, Pate BS, Bouknight SJ, Francis MJ, Nowicki AV, Harrington EN, Wood SK. Estrogen receptor beta in the central amygdala regulates the deleterious behavioral and neuronal consequences of repeated social stress in female rats. Neurobiol Stress 2023; 23:100531. [PMID: 36879670 PMCID: PMC9984877 DOI: 10.1016/j.ynstr.2023.100531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
While over 95% of the population has reported experiencing extreme stress or trauma, females of reproductive age develop stress-induced neuropsychiatric disorders at twice the rate of males. This suggests that ovarian hormones may facilitate neural processes that increase stress susceptibility and underlie the heightened rates of these disorders, like depression and anxiety, that result from stress exposure in females. However, there is contradicting evidence in the literature regarding estrogen's role in stress-related behavioral outcomes. Estrogen signaling through estrogen receptor beta (ERβ) has been traditionally thought of as anxiolytic, but recent studies suggest estrogen exhibits distinct effects in the context of stress. Furthermore, ERβ is found abundantly in many stress-sensitive brain loci, including the central amygdala (CeA), in which transcription of the vital stress hormone, corticotropin releasing factor (CRF), can be regulated by an estrogen response element. Therefore, these experiments sought to identify the role of CeA ERβ activity during stress on behavioral outcomes in naturally cycling, adult, female Sprague-Dawley rats. Rats were exposed to an ethological model of vicarious social stress, witness stress (WS), in which they experienced the sensory and psychological aspects of an aggressive social defeat encounter between two males. Following WS, rats exhibited stress-induced anxiety-like behaviors in the marble burying taskand brain analysis revealed increased ERβ and CRF specifically within the CeA following exposure to stress cues. Subsequent experiments were designed to target this receptor in the CeA using microinjections of the ERβ antagonist, PHTPP, prior to each stress session. During WS, estrogen signaling through ERβ was responsible for the behavioral sensitization to repeated social stress. Sucrose preference, acoustic startle, and marble burying tasks determined that blocking ERβ in the CeA during WS prevented the development of depressive-, anxiety-like, and hypervigilant behaviors. Additionally, brain analysis revealed a long-term decrease of intra-CeA CRF expression in PHTPP-treated rats. These experiments indicate that ERβ signaling in the CeA, likely through its effects on CRF, contributes to the development of negative valence behaviors that result from exposure to repeated social stress in female rats.
Collapse
Key Words
- ACTH, adrenocorticotropic hormone
- ASR, acoustic startle responding
- Anxiety
- BCA, bicinchoninic acid
- CON, control handing
- CORT, corticosterone
- CRF, corticotropin releasing factor
- CeA, central amygdala
- Central amygdala
- Corticotropin releasing factor
- EPM, elevated plus maze
- ERβ, estrogen receptor beta
- Estrogen receptor beta
- HPA, hypothalamic pituitary adrenal axis
- LC, locus coeruleus
- MB, marble burying
- PHTPP, 4-[2-Phenyl-5: 7-bis (trifluoromethyl) pyrazolo [1,5-a] pyrimidine-3- yl] phenol
- SPT, sucrose preference testing
- Social stress
- WS, witness stress
- dB, decibels
Collapse
Affiliation(s)
- Cora E. Smiley
- University of South Carolina, School of Medicine, Department of Pharmacology Physiology and Neuroscience, Columbia, SC, USA
- Dorn VA Medical Center, Columbia, SC, USA
| | - Brittany S. Pate
- University of South Carolina, School of Medicine, Department of Pharmacology Physiology and Neuroscience, Columbia, SC, USA
- University of South Carolina, Arnold School of Public Health, Department of Exercise Science, Columbia, SC, USA
| | - Samantha J. Bouknight
- University of South Carolina, School of Medicine, Department of Pharmacology Physiology and Neuroscience, Columbia, SC, USA
| | - Megan J. Francis
- University of South Carolina, School of Medicine, Department of Pharmacology Physiology and Neuroscience, Columbia, SC, USA
| | - Alexandria V. Nowicki
- University of South Carolina, School of Medicine, Department of Pharmacology Physiology and Neuroscience, Columbia, SC, USA
| | - Evelynn N. Harrington
- University of South Carolina, School of Medicine, Department of Pharmacology Physiology and Neuroscience, Columbia, SC, USA
| | - Susan K. Wood
- University of South Carolina, School of Medicine, Department of Pharmacology Physiology and Neuroscience, Columbia, SC, USA
- Dorn VA Medical Center, Columbia, SC, USA
| |
Collapse
|
17
|
Tryon SC, Sakamoto IM, Kaigler KF, Gee G, Turner J, Bartley K, Fadel JR, Wilson MA. ChAT::Cre transgenic rats show sex-dependent altered fear behaviors, ultrasonic vocalizations and cholinergic marker expression. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12837. [PMID: 36636833 PMCID: PMC9994175 DOI: 10.1111/gbb.12837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
The cholinergic system is a critical regulator of Pavlovian fear learning and extinction. As such, we have begun investigating the cholinergic system's involvement in individual differences in cued fear extinction using a transgenic ChAT::Cre rat model. The current study extends behavioral phenotyping of a transgenic ChAT::Cre rat line by examining both freezing behavior and ultrasonic vocalizations (USVs) during a Pavlovian cued fear learning and extinction paradigm. Freezing, 22 kHz USVs, and 50 kHz USVs were compared between male and female transgenic ChAT::Cre+ rats and their wildtype (Cre-) littermates during fear learning, contextual and cue-conditioned fear recall, cued fear extinction, and generalization to a novel tone. During contextual and cued fear recall ChAT::Cre+ rats froze slightly more than their Cre- littermates, and displayed significant sex differences in contextual and cue-conditioned freezing, 22 kHz USVs, and 50 kHz USVs. Females showed more freezing than males in fear recall trials, but fewer 22 kHz distress calls during fear learning and recall. Females also produced more 50 kHz USVs during exposure to the testing chambers prior to tone (or shock) presentation compared with males, but this effect was blunted in ChAT::Cre+ females. Corroborating previous studies, ChAT::Cre+ transgenic rats overexpressed vesicular acetylcholine transporter immunolabeling in basal forebrain, striatum, basolateral amygdala, and hippocampus, but had similar levels of acetylcholinesterase and numbers of ChAT+ neurons as Cre- rats. This study suggests that variance in behavior between ChAT::Cre+ and wildtype rats is sex dependent and advances theories that distinct neural circuits and processes regulate sexually divergent fear responses.
Collapse
Affiliation(s)
- Sarah C. Tryon
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Iris M. Sakamoto
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Kris F. Kaigler
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Gabriella Gee
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Jarrett Turner
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Katherine Bartley
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Jim R. Fadel
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Marlene A. Wilson
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
- Columbia VA Health Care SystemColumbiaSouth CarolinaUSA
| |
Collapse
|
18
|
Smiley CE, Wood SK. Stress- and drug-induced neuroimmune signaling as a therapeutic target for comorbid anxiety and substance use disorders. Pharmacol Ther 2022; 239:108212. [PMID: 35580690 DOI: 10.1016/j.pharmthera.2022.108212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
Stress and substance use disorders remain two of the most highly prevalent psychiatric conditions and are often comorbid. While individually these conditions have a debilitating impact on the patient and a high cost to society, the symptomology and treatment outcomes are further exacerbated when they occur together. As such, there are few effective treatment options for these patients, and recent investigation has sought to determine the neural processes underlying the co-occurrence of these disorders to identify novel treatment targets. One such mechanism that has been linked to stress- and addiction-related conditions is neuroimmune signaling. Increases in inflammatory factors across the brain have been heavily implicated in the etiology of these disorders, and this review seeks to determine the nature of this relationship. According to the "dual-hit" hypothesis, also referred to as neuroimmune priming, prior exposure to either stress or drugs of abuse can sensitize the neuroimmune system to be hyperresponsive when exposed to these insults in the future. This review completes an examination of the literature surrounding stress-induced increases in inflammation across clinical and preclinical studies along with a summarization of the evidence regarding drug-induced alterations in inflammatory factors. These changes in neuroimmune profiles are also discussed within the context of their impact on the neural circuitry responsible for stress responsiveness and addictive behaviors. Further, this review explores the connection between neuroimmune signaling and susceptibility to these conditions and highlights the anti-inflammatory pharmacotherapies that may be used for the treatment of stress and substance use disorders.
Collapse
Affiliation(s)
- Cora E Smiley
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209, United States of America; WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209, United States of America.
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209, United States of America; WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209, United States of America.
| |
Collapse
|
19
|
Dearing C, Handa RJ, Myers B. Sex differences in autonomic responses to stress: implications for cardiometabolic physiology. Am J Physiol Endocrinol Metab 2022; 323:E281-E289. [PMID: 35793480 PMCID: PMC9448273 DOI: 10.1152/ajpendo.00058.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
Chronic stress is a significant risk factor for negative health outcomes. Furthermore, imbalance of autonomic nervous system control leads to dysregulation of physiological responses to stress and contributes to the pathogenesis of cardiometabolic and psychiatric disorders. However, research on autonomic stress responses has historically focused on males, despite evidence that females are disproportionality affected by stress-related disorders. Accordingly, this mini-review focuses on the influence of biological sex on autonomic responses to stress in humans and rodent models. The reviewed literature points to sex differences in the consequences of chronic stress, including cardiovascular and metabolic disease. We also explore basic rodent studies of sex-specific autonomic responses to stress with a focus on sex hormones and hypothalamic-pituitary-adrenal axis regulation of cardiovascular and metabolic physiology. Ultimately, emerging evidence of sex differences in autonomic-endocrine integration highlights the importance of sex-specific studies to understand and treat cardiometabolic dysfunction.
Collapse
Affiliation(s)
- Carley Dearing
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
20
|
Adkins JM, Halcomb CJ, Rogers D, Jasnow AM. Stress and sex-dependent effects on conditioned inhibition of fear. Learn Mem 2022; 29:246-255. [PMID: 36206391 PMCID: PMC9488025 DOI: 10.1101/lm.053508.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 10/14/2022]
Abstract
Anxiety and stress-related disorders are highly prevalent and are characterized by excessive fear to threatening and nonthreatening stimuli. Moreover, there is a large sex bias in vulnerability to anxiety and stress-related disorders-women make up a disproportionately larger number of affected individuals compared with men. Growing evidence suggests that an impaired ability to suppress fear in the presence of safety signals may in part contribute to the development and maintenance of many anxiety and stress-related disorders. However, the sex-dependent impact of stress on conditioned inhibition of fear remains unclear. The present study investigated sex differences in the acquisition and recall of conditioned inhibition in male and female mice with a focus on understanding how stress impacts fear suppression. In these experiments, the training context served as the "fear" cue and an explicit tone served as the "safety" cue. Here, we found a possible sex difference in the training requirements for safety learning, although this effect was not consistent across experiments. Reductions in freezing to the safety cue in female mice were also not due to alternative fear behavior expression such as darting. Next, using footshock as a stressor, we found that males were impaired in conditioned inhibition of freezing when the stress was experienced before, but not after, conditioned inhibition training. Females were unaffected by footshock stress when it was administered at either time. Extended conditioned inhibition training in males eliminated the deficit produced by footshock stress. Finally, exposing male and female mice to swim stress impaired safety learning in male mice only. Thus, we found sex × stress interactions in the learning of conditioned inhibition and sex-dependent effects of stress modality. The present study adds to the growing literature on sex differences in safety learning, which will be critical for developing sex-specific therapies for a variety of fear-related disorders that involve excessive fear and/or impaired fear inhibition.
Collapse
Affiliation(s)
- Jordan M Adkins
- Department of Psychological Sciences, Brain Health Research Institute, Kent State University, Kent, Ohio 44242, USA
| | - Carly J Halcomb
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29209, USA
| | - Danielle Rogers
- Department of Psychological Sciences, Brain Health Research Institute, Kent State University, Kent, Ohio 44242, USA
| | - Aaron M Jasnow
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29209, USA
| |
Collapse
|
21
|
Waters RC, Gould E. Early Life Adversity and Neuropsychiatric Disease: Differential Outcomes and Translational Relevance of Rodent Models. Front Syst Neurosci 2022; 16:860847. [PMID: 35813268 PMCID: PMC9259886 DOI: 10.3389/fnsys.2022.860847] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
It is now well-established that early life adversity (ELA) predisposes individuals to develop several neuropsychiatric conditions, including anxiety disorders, and major depressive disorder. However, ELA is a very broad term, encompassing multiple types of negative childhood experiences, including physical, sexual and emotional abuse, physical and emotional neglect, as well as trauma associated with chronic illness, family separation, natural disasters, accidents, and witnessing a violent crime. Emerging literature suggests that in humans, different types of adverse experiences are more or less likely to produce susceptibilities to certain conditions that involve affective dysfunction. To investigate the driving mechanisms underlying the connection between experience and subsequent disease, neuroscientists have developed several rodent models of ELA, including pain exposure, maternal deprivation, and limited resources. These studies have also shown that different types of ELA paradigms produce different but somewhat overlapping behavioral phenotypes. In this review, we first investigate the types of ELA that may be driving different neuropsychiatric outcomes and brain changes in humans. We next evaluate whether rodent models of ELA can provide translationally relevant information regarding links between specific types of experience and changes in neural circuits underlying dysfunction.
Collapse
Affiliation(s)
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| |
Collapse
|
22
|
Schaeuble D, Myers B. Cortical–Hypothalamic Integration of Autonomic and Endocrine Stress Responses. Front Physiol 2022; 13:820398. [PMID: 35222086 PMCID: PMC8874315 DOI: 10.3389/fphys.2022.820398] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022] Open
Abstract
The prevalence and severity of cardiovascular disease (CVD) are exacerbated by chronic stress exposure. While stress-induced sympathetic activity and elevated glucocorticoid secretion impair cardiovascular health, the mechanisms by which stress-responsive brain regions integrate autonomic and endocrine stress responses remain unclear. This review covers emerging literature on how specific cortical and hypothalamic nuclei regulate cardiovascular and neuroendocrine stress responses. We will also discuss the current understanding of the cellular and circuit mechanisms mediating physiological stress responses. Altogether, the reviewed literature highlights the current state of stress integration research, as well unanswered questions about the brain basis of CVD risk.
Collapse
|
23
|
Finegood ED, Miller GE. Childhood Violence Exposure, Inflammation, and Cardiometabolic Health. Curr Top Behav Neurosci 2022; 54:439-459. [PMID: 34935115 DOI: 10.1007/7854_2021_283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exposure to interpersonal violence during childhood, a severe and often traumatic form of social stress, is an enduring problem that an emerging body of work suggests may be relevant to cardiometabolic health and the progression of cardiovascular disease (CVD) across the life course. Less is known about this association causally, and consequently, the biological mechanisms that may confer risk for, and resilience to, poor health outcomes in the aftermath of violence are not well understood. Drawing on recent theoretical insights and empirical research in both humans and non-human animal models, the current paper articulates a hypothesis for one way that childhood violence could get "under the skin" to influence CVD. Based on this emerging literature, one plausible way that childhood violence exposure could increase susceptibility to CVD in later life is by sensitizing stress-response neurobiology and immune processes that regulate and promote inflammation, which is a key pathogenic mechanism in CVD. This is inherently a developmental process that begins in early life and that unfolds across the life course, although less is known about the specific mechanisms through which this occurs. The goal of this paper is to articulate some of these plausible mechanisms and to suggest areas for future research that aims to reduce the burden of disease among individuals who are exposed to violence.
Collapse
Affiliation(s)
- Eric D Finegood
- Department of Psychology, Institute for Policy Research, Northwestern University, Evanston, IL, USA.
| | - Gregory E Miller
- Department of Psychology, Institute for Policy Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
24
|
Abstract
Social stressors are known to have strong negative impacts on mental health. There is a long history of preclinical social defeat stress studies in rodents focusing on males that has produced important insights into the neural mechanisms that modulate depression- and anxiety-related behavior. Despite these impressive results, a historical weakness of rodent social stress models has been an under-representation of studies in females. This is problematic because rates of depression and anxiety are higher in women versus men. Recently there has been a surge of interest in adapting social stress methods for female rodents. Here we review new rodent models that have investigated numerous facets of social stress in females. The different models have different strengths and weaknesses, with some model systems having stronger ethological validity with other models having better access to molecular tools to manipulate neural circuits. Continued use and refinement of these complementary models will be critical for addressing gaps in understanding the function of neural circuits modulating depression- and anxiety-related behavior in females.
Collapse
Affiliation(s)
- Jace X Kuske
- Department of Psychology, University of California, Davis, CA, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, USA.
| |
Collapse
|
25
|
Hollis F, Pope BS, Gorman-Sandler E, Wood SK. Neuroinflammation and Mitochondrial Dysfunction Link Social Stress to Depression. Curr Top Behav Neurosci 2022; 54:59-93. [PMID: 35184261 DOI: 10.1007/7854_2021_300] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Major depressive disorder is a debilitating mental illness and a leading cause of global disease burden. While many etiological factors have been identified, social stress is a highly prevalent causative factor for the onset of depression. Unfortunately, rates of depression continue to increase around the world, and the recent COVID-19 pandemic has further exacerbated this mental health crisis. Though several therapeutic strategies are available, nearly 50% of patients who receive treatment never reach remission. The exact mechanisms by which social stress exposure promotes the development of depression are unclear, making it challenging to develop novel and more effective therapeutics. However, accumulating evidence points to a role for stress-induced neuroinflammation, particularly in treatment-resistant patients. Moreover, recent evidence has expanded the concept of the pathogenesis of depression to mitochondrial dysfunction, suggesting that the combined effects of social stress on mitochondria and inflammation may synergize to facilitate stress-related depression. In this chapter, we review evidence for neuroinflammation and mitochondrial dysfunction in the pathogenesis of social stress-induced depression and discuss these in the context of novel therapeutic targets for the treatment of depression.
Collapse
Affiliation(s)
- Fiona Hollis
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Brittany S Pope
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- Department of Exercise Science, University of South Carolina Arnold School of Public Health, Columbia, SC, USA
| | - Erin Gorman-Sandler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
26
|
Seney ML, Glausier J, Sibille E. Large-Scale Transcriptomics Studies Provide Insight Into Sex Differences in Depression. Biol Psychiatry 2022; 91:14-24. [PMID: 33648716 PMCID: PMC8263802 DOI: 10.1016/j.biopsych.2020.12.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a leading cause of disability, affecting more than 300 million people worldwide. We first review the well-known sex difference in incidence of MDD, with women being twice as likely to be diagnosed as men, and briefly summarize how the impact of MDD varies between men and women, with sex differences in symptoms, severity, and antidepressant drug response. We then attempt to deconstruct the biological bases for MDD and discuss implications for sex differences research. Next, we review findings from human postmortem studies, both from selected candidate gene studies and from well-powered, unbiased transcriptomics studies, which suggest distinct, and possibly opposite, molecular changes in the brains of depressed men and women. We then discuss inherent challenges of research on the human postmortem brain and suggest paths forward that rely on thoughtful cohort design. Although studies indicate that circulating gonadal hormones might underlie the observed sex differences in MDD, we discuss how additional sex-specific factors, such as genetic sex and developmental exposure to gonadal hormones, may also contribute to altered vulnerability, and we highlight various nuances that we believe should be considered when determining mechanisms underlying observed sex differences. Altogether, this review highlights not only how various sex-specific factors might influence susceptibility or resilience to depression, but also how those sex-specific factors might result in divergent pathology in men and women.
Collapse
Affiliation(s)
- Marianne L Seney
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania.
| | - Jill Glausier
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute at the Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022; 239:663-693. [PMID: 35072761 PMCID: PMC8785013 DOI: 10.1007/s00213-021-05982-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.
Collapse
|
28
|
Tryon SC, Sakamoto IM, Kellis DM, Kaigler KF, Wilson MA. Individual Differences in Conditioned Fear and Extinction in Female Rats. Front Behav Neurosci 2021; 15:740313. [PMID: 34489657 PMCID: PMC8418198 DOI: 10.3389/fnbeh.2021.740313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
The inability to extinguish a traumatic memory is a key aspect of post-traumatic stress disorder (PTSD). While PTSD affects 10–20% of individuals who experience a trauma, women are particularly susceptible to developing the disorder. Despite this notable female vulnerability, few studies have investigated this particular resistance to fear extinction observed in females. Similar to humans, rodent models of Pavlovian fear learning and extinction show a wide range of individual differences in fear learning and extinction, although female rodents are considerably understudied. Therefore, the present study examined individual differences in fear responses, including freezing behavior and ultrasonic vocalizations (USVs), of female Long–Evans rats during acquisition of fear conditioning and cued fear extinction. Similar to prior studies in males, female rats displayed individual variation in freezing during cued fear extinction and were divided into extinction competent (EC) and extinction resistant (ER) phenotypes. Differences in freezing between ER and EC females were accompanied by shifts in rearing during extinction, but no darting was seen in any trial. Freezing behavior during fear learning did not differ between the EC and ER females. Vocalizations emitted in the 22 and 50 kHz ranges during fear learning and extinction were also examined. Unlike vocalizations seen in previous studies in males, very few 22 kHz distress vocalizations were emitted by female rats during fear acquisition and extinction, with no difference between ER and EC groups. Interestingly, all female rats produced significant levels of 50 kHz USVs, and EC females emitted significantly more 50 kHz USVs than ER rats. This difference in 50 kHz USVs was most apparent during initial exposure to the testing environment. These results suggest that like males, female rodents show individual differences in both freezing and USVs during fear extinction, although females appear to vocalize more in the 50 kHz range, especially during initial periods of exposure to the testing environment, and emit very few of the 22 kHz distress calls that are typically observed in males during fear learning or extinction paradigms. Overall, these findings show that female rodents display fear behavior repertoires divergent from males.
Collapse
Affiliation(s)
- Sarah C Tryon
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Iris M Sakamoto
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Devin M Kellis
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Kris F Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States.,Columbia VA Health Care System, Columbia, SC, United States
| |
Collapse
|
29
|
Lopez J, Bagot RC. Defining Valid Chronic Stress Models for Depression With Female Rodents. Biol Psychiatry 2021; 90:226-235. [PMID: 33965195 DOI: 10.1016/j.biopsych.2021.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
Women are twice as likely to experience depression than men, yet until recently, preclinical studies in rodents have focused almost exclusively on males. As interest in sex differences and sex-specific mechanisms of stress susceptibility increases, chronic stress models for inducing depression-relevant behavioral and physiological changes in male rodents are being applied to females, and several new models have emerged to include both males and females, yet not all models have been systematically validated in females. An increasing number of researchers seek to include female rodents in their experimental designs, asking the question "what is the ideal chronic stress model for depression in females?" We review criteria for assessing female model validity in light of key research questions and the fundamental distinction between studying sex differences and studying both sexes. In overviewing current models, we explore challenges inherent to establishing an ideal female chronic stress model, with particular emphasis on the need for standardization and adoption of validated behavioral tests sensitive to stress effects in females. Taken together, these considerations will empower female chronic stress models to provide a better understanding of stress susceptibility and allow the development of efficient sex-specific treatments.
Collapse
Affiliation(s)
- Joëlle Lopez
- Department of Psychology, McGill University, Montréal, Quebec, Canada
| | - Rosemary C Bagot
- Department of Psychology, McGill University, Montréal, Quebec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Montréal, Quebec, Canada.
| |
Collapse
|
30
|
Pérez-Manrique A, Gomila A. Emotional contagion in nonhuman animals: A review. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 13:e1560. [PMID: 33951303 PMCID: PMC9285817 DOI: 10.1002/wcs.1560] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022]
Abstract
Emotional contagion, the emotional state‐matching of an individual with another, seems to be crucial for many social species. In recent years evidence on emotional contagion in different animal species has accumulated. However, despite its adaptative advantages and its presumed simplicity, the study and direct demonstration of this phenomenon present more complexities than previously thought. For these reasons, a review of the literature on emotional contagion in nonhuman species is timely to integrate current findings. In this paper thus, we carry out a comprehensive review of the most relevant studies on emotional contagion in animals and discuss the main problems and challenges of the field. We conclude that more research is needed to broaden our understanding of the mechanisms and functions of emotional contagion and the extent to which this process is present in a wide variety of species. Furthermore, the comparative study of emotional contagion would benefit from the use of systematized paradigms including both behavioral and physiological measures and the simultaneous recording of the responses of the interacting individuals to reliably assess an emotional state‐matching between them and reliable controls. This article is categorized under:Cognitive Biology > Evolutionary Roots of Cognition Psychology > Comparative Psychology Psychology > Emotion and Motivation
Collapse
Affiliation(s)
- Ana Pérez-Manrique
- Department of Psychology, Human Evolution and Cognition Group (EvoCog), UIB, IFISC, Associated Unit to CSIC, Palma, Spain
| | - Antoni Gomila
- Department of Psychology, Human Evolution and Cognition Group (EvoCog), UIB, IFISC, Associated Unit to CSIC, Palma, Spain
| |
Collapse
|
31
|
Peen NF, Duque-Wilckens N, Trainor BC. Convergent neuroendocrine mechanisms of social buffering and stress contagion. Horm Behav 2021; 129:104933. [PMID: 33465346 PMCID: PMC7965339 DOI: 10.1016/j.yhbeh.2021.104933] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/07/2023]
Abstract
Social interactions play a key role in modulating the impact of stressful experiences. In some cases, social interactions can result in social buffering, the process in which the presence of one individual reduces the physiological and behavioral impact of stress in another individual. On the other hand, there is growing evidence that a key initiating factor of social buffering behaviors is the initiation of an anxiogenic state in the individual that was not directly exposed to the stress. This is referred to as stress contagion (a form of emotion contagion). Both processes involve the transmission of social information, suggesting that contagion and buffering could share similar neural mechanisms. In general, mechanistic studies of contagion and buffering are considered separately, even though behavioral studies show that a degree of contagion is usually necessary for social buffering behaviors to occur. Here we consider the extent to which the neuropeptides corticotropin releasing hormone and oxytocin are involved in contagion and stress buffering. We also assess the importance that frontal cortical areas such as the anterior cingulate cortex and infralimbic cortex play in these behavioral processes. We suggest that further work that directly compares neural mechanisms during stress contagion and stress buffering will be important for identifying what appear to be distinct but overlapping circuits mediating these processes.
Collapse
Affiliation(s)
- Natanja F Peen
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychology, University of California, Davis, CA. USA
| | - Natalia Duque-Wilckens
- Department of Psychology, University of California, Davis, CA. USA; Departments of Physiology and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI. USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA. USA.
| |
Collapse
|
32
|
Kellis DM, Kaigler KF, Witherspoon E, Fadel JR, Wilson MA. Cholinergic neurotransmission in the basolateral amygdala during cued fear extinction. Neurobiol Stress 2020; 13:100279. [PMID: 33344731 PMCID: PMC7739185 DOI: 10.1016/j.ynstr.2020.100279] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 01/06/2023] Open
Abstract
Cholinergic neuromodulation plays an important role in numerous cognitive functions including regulating arousal and attention, as well as associative learning and extinction processes. Further, studies demonstrate that cholinergic inputs from the basal forebrain cholinergic system influence physiological responses in the basolateral amygdala (BLA) as well as fear extinction processes. Since rodent models display individual differences in conditioned fear and extinction responses, this study investigated if cholinergic transmission in the BLA during fear extinction could contribute to differences between extinction resistant and extinction competent phenotypes in outbred Long-Evans male rats. Experiment 1 used in vivo microdialysis to test the hypothesis that acetylcholine (ACH) efflux in the BLA would increase with presentation of an auditory conditioned stimulus (CS+) during extinction learning. Acetylcholine efflux was compared in rats exposed to the CS+, a CS- (the tone never paired with a footshock), or to a context shift alone (without CS+ tone presentation). Consistent with acetylcholine's role in attention and arousal, ACH efflux in the BLA was increased in all three groups (CS+, CS-, Shift Alone) by the initial context shift into the extinction learning chamber, but returned more rapidly to baseline levels in the Shift Alone group (no CS+). In contrast, in the group exposed to the CS+, ACH efflux in the BLA remained elevated during continued presentation of conditioned cues and returned to baseline more slowly, leading to an overall increase in ACH efflux compared with the Shift Alone group. Based on the very dense staining in the BLA for acetylcholinesterase (ACHE), Experiment 2 examined if individual differences in fear extinction were associated with differences in cholinesterase enzyme activity (CHE) in the BLA and/or plasma with a separate cohort of animals. Cholinesterase activity (post-testing) in both the BLA and plasma was higher in extinction competent rats versus rats resistant to extinction learning. There was also a significant negative correlation between BLA CHE activity and freezing during extinction learning. Taken together, our results support a role for ACH efflux in the BLA during cued fear extinction that may be modulated by individual differences in ACHE activity, and are associated with behavioral responses during fear extinction. These findings implicate individual differences in cholinergic regulation in the susceptibility to disorders with dysregulation of extinction learning, such post-traumatic stress disorder (PTSD) in humans.
Collapse
Affiliation(s)
- Devin M. Kellis
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States
| | - Kris Ford Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States
| | - Eric Witherspoon
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States
| | - Jim R. Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States
| | | |
Collapse
|
33
|
Warren BL, Mazei-Robison MS, Robison AJ, Iñiguez SD. Can I Get a Witness? Using Vicarious Defeat Stress to Study Mood-Related Illnesses in Traditionally Understudied Populations. Biol Psychiatry 2020; 88:381-391. [PMID: 32228871 PMCID: PMC7725411 DOI: 10.1016/j.biopsych.2020.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/15/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
The chronic social defeat stress model has been instrumental in shaping our understanding of neurobiology relevant to affect-related illnesses, including major depressive disorder. However, the classic chronic social defeat stress procedure is limited by its exclusive application to adult male rodents. We have recently developed a novel vicarious social defeat stress procedure wherein one mouse witnesses the physical defeat bout of a conspecific from the safety of an adjacent compartment. This witness mouse develops a similar behavioral phenotype to that of the mouse that physically experiences social defeat stress, modeling multiple aspects of major depressive disorder. Importantly, this new procedure allows researchers to perform vicarious social defeat stress in males or females and in juvenile mice, which typically are excluded from classic social defeat experiments. Here we discuss several recent advances made using this procedure and how its application provides a new preclinical approach to study the neurobiology of psychological stress-induced phenotypes.
Collapse
Affiliation(s)
- Brandon L Warren
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| | | | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas.
| |
Collapse
|
34
|
Martinez-Muniz GA, Wood SK. Sex Differences in the Inflammatory Consequences of Stress: Implications for Pharmacotherapy. J Pharmacol Exp Ther 2020; 375:161-174. [PMID: 32759370 DOI: 10.1124/jpet.120.266205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Women are at significantly greater risk of developing stress-related disorders such as depression. The increased risk begins during puberty and continues throughout life until menopause, suggesting a role for ovarian hormones in this increased susceptibility. Importantly, inflammation has been gaining momentum in its role in the pathogenesis of depression. Herein, clinical and preclinical studies have been reviewed to better understand how sex differences within the immune system may contribute to exaggerated risk of depression in females. First, studies that investigate the ability of psychologic stress episodes to engage the inflammatory systems both in the brain and periphery are reviewed with a special focus on sex-specific effects. Moreover, studies are discussed that identify whether imbalanced inflammatory milieu contributes to the development of depression in males versus females and whether these effects are regulated by estradiol. Importantly, we propose a locus coeruleus-norepinephrine-cytokine circuit as a conduit through which stress could increase stress susceptibly in females. Finally, the anti-inflammatory capacity of traditional and nontraditional antidepressants is investigated, with the goal of providing a better understanding of pharmacotherapeutics to enhance strategies to personalize antidepressant treatments between the sexes. The studies reviewed herein strongly support the need for further studies to elucidate whether females are especially sensitive to anti-inflammatory compounds as adjuvants to traditional therapies. SIGNIFICANCE STATEMENT: Women have hve an increased risk of developing stress-related disorders such as depression. In this review, literature from clinical and preclinical studies are integrated to define sex differences in stress-induced inflammatory responses as a potential source for the etiology of sex differences in depressive disorders. Moreover, the anti-inflammatory capacity of traditional and nontraditional antidepressants is reviewed to inform on potential pharmacotherapeutic strategies to personalize antidepressant therapy in a sex-dependent manner.
Collapse
Affiliation(s)
- Gustavo A Martinez-Muniz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina and Dorn Veterans Administration Medical Center, Columbia, South Carolina
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina and Dorn Veterans Administration Medical Center, Columbia, South Carolina
| |
Collapse
|
35
|
Pope BS, Wood SK. Advances in understanding mechanisms and therapeutic targets to treat comorbid depression and cardiovascular disease. Neurosci Biobehav Rev 2020; 116:337-349. [PMID: 32598982 DOI: 10.1016/j.neubiorev.2020.06.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
Chronic or repeated social stress exposure often precipitates the onset of depression and cardiovascular disease (CVD). Despite a clear clinical association between CVD and depression, the pathophysiology underlying these comorbid conditions is unclear. Chronic exposure to social stress can lead to immune system dysregulation, mitochondrial dysfunction, and vagal withdrawal. Further, regular physical exercise is well-known to exert cardioprotective effects, and accumulating evidence demonstrates the antidepressant effect of exercise. This review explores the contribution of inflammation, mitochondrial dysfunction, and vagal withdrawal to stress-induced depression and CVD. Evidence for therapeutic benefits of exercise, anti-inflammatory therapies, and vagus nerve stimulation are also reviewed. Benefits of targeted therapeutics of mitochondrial agents, anti-inflammatory therapies, and vagus nerve stimulation are discussed. Importantly, the ability of exercise to impact each of these factors is also reviewed. The current findings described here implicate a new direction for research, targeting the shared mechanisms underlying comorbid depression-CVD. This will guide the development of novel therapeutic strategies for the prevention and treatment of these stress-related pathologies, particularly within treatment-resistant populations.
Collapse
Affiliation(s)
- Brittany S Pope
- Department of Exercise Science, University of South Carolina Arnold School of Public Health, Columbia, SC, 20208, United States
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, United States; William Jennings Bryan Dorn Veterans Administration Medical Center, Columbia, SC, 29209, United States.
| |
Collapse
|
36
|
Foertsch S, Reber SO. The role of physical trauma in social stress-induced immune activation. Neurosci Biobehav Rev 2020; 113:169-178. [DOI: 10.1016/j.neubiorev.2020.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/08/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
|
37
|
Verbitsky A, Dopfel D, Zhang N. Rodent models of post-traumatic stress disorder: behavioral assessment. Transl Psychiatry 2020; 10:132. [PMID: 32376819 PMCID: PMC7203017 DOI: 10.1038/s41398-020-0806-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022] Open
Abstract
Although the etiology and expression of psychiatric disorders are complex, mammals show biologically preserved behavioral and neurobiological responses to valent stimuli which underlie the use of rodent models of post-traumatic stress disorder (PTSD). PTSD is a complex phenotype that is difficult to model in rodents because it is diagnosed by patient interview and influenced by both environmental and genetic factors. However, given that PTSD results from traumatic experiences, rodent models can simulate stress induction and disorder development. By manipulating stress type, intensity, duration, and frequency, preclinical models reflect core PTSD phenotypes, measured through various behavioral assays. Paradigms precipitate the disorder by applying physical, social, and psychological stressors individually or in combination. This review discusses the methods used to trigger and evaluate PTSD-like phenotypes. It highlights studies employing each stress model and evaluates their translational efficacies against DSM-5, validity criteria, and criteria proposed by Yehuda and Antelman's commentary in 1993. This is intended to aid in paradigm selection by informing readers about rodent models, their benefits to the clinical community, challenges associated with the translational models, and opportunities for future work. To inform PTSD model validity and relevance to human psychopathology, we propose that models incorporate behavioral test batteries, individual differences, sex differences, strain and stock differences, early life stress effects, biomarkers, stringent success criteria for drug development, Research Domain Criteria, technological advances, and cross-species comparisons. We conclude that, despite the challenges, animal studies will be pivotal to advances in understanding PTSD and the neurobiology of stress.
Collapse
Affiliation(s)
- Alexander Verbitsky
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Dopfel
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
38
|
Carnevali L, Montano N, Tobaldini E, Thayer JF, Sgoifo A. The contagion of social defeat stress: Insights from rodent studies. Neurosci Biobehav Rev 2020; 111:12-18. [DOI: 10.1016/j.neubiorev.2020.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/03/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
|
39
|
Carnevali L, Statello R, Vacondio F, Ferlenghi F, Spadoni G, Rivara S, Mor M, Sgoifo A. Antidepressant-like effects of pharmacological inhibition of FAAH activity in socially isolated female rats. Eur Neuropsychopharmacol 2020; 32:77-87. [PMID: 31948828 DOI: 10.1016/j.euroneuro.2019.12.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/24/2022]
Abstract
Pharmacological inhibition of the enzyme fatty acid amide hydrolase (FAAH), which terminates signaling of the endocannabinoid N-arachidonoylethanolamine (or anandamide, AEA), exerts favourable effects in rodent models of stress-related depression. Yet although depression seems to be more common among women than men and in spite of some evidence of sex differences in treatment efficacy, preclinical development of FAAH inhibitors for the pharmacotherapy of stress-related depression has been predominantly conducted in male animals. Here, adult female rats were exposed to six weeks of social isolation and, starting from the second week, treated with the FAAH inhibitor URB694 (0.3 mg/kg/day, i.p.) or vehicle. Compared to pair-housed females, socially isolated female rats treated with vehicle developed behavioral (mild anhedonia, passive stress coping) and physiological (reduced body weight gain, elevated plasma corticosterone levels) alterations. Moreover, prolonged social isolation provoked a reduction in brain-derived neurotrophic factor (BDNF) and AEA levels within the hippocampus. Together, these changes are indicative of an increased risk of developing a depressive-like state. Conversely, pharmacological inhibition of FAAH activity with URB694 restored both AEA and BDNF levels within the hippocampus of socially isolated rats and prevented the development of behavioral and physiological alterations. These results suggest a potential interplay between AEA-mediated signaling and hippocampal BDNF in the pathogenesis of depression-relevant behaviors and physiological alterations and antidepressant action of FAAH inhibition in socially isolated female rats.
Collapse
Affiliation(s)
- Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Rosario Statello
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | | | | | - Gilberto Spadoni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
40
|
Wang L, He Z, Zhu Z, Yuan W, Cai W, Li L, Zhang J, Hou W, Yang Y, Zhang X, Guo Q, Wang X, Lian Z, Tai F. The serotonin system in the hippocampus CA3 involves in effects of CSDS on social recognition in adult female mandarin voles (Microtus mandarinus). Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109704. [PMID: 31330217 DOI: 10.1016/j.pnpbp.2019.109704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Chronic social defeat stress (CSDS) exacerbated the development of stress-related psychiatric disorders, and the social recognition dysfunction is the core feature of many psychiatric disorders. However, the effects of CSDS on female social recognition and the underlying neural mechanisms remain unclear. Using highly aggressive adult female mandarin voles (Microtus mandarinus) as animal model, the aim of this work is to investigate the effects of CSDS on social recognition in adult female rodents and the neurobiological mechanisms underlying these effects. Our results indicate the CSDS disrupted the normal social recognition in adult female voles. Meanwhile, defeated voles exhibited increased neural activity in the DG, CA1 and CA3 of the hippocampus. Furthermore, CSDS reduced levels of serotonin (5-HT) and serotonin 1A receptors (5-HT1AR) in the CA3. We also discovered that microinjection of 8-OH-DPAT into the CA3 effectively reversed the social recognition deficits induced by CSDS, and an infusion of WAY-100635 into the CA3 of control female voles impaired social recognition. Moreover, targeted activation of the 5-HT neuron projection from the DRN to CA3 by long-term administration of CNO significantly prevented the CSDS induced social recognition deficits. Taken together, our study demonstrated that CSDS induced social recognition deficits in adult female voles, and these effects were mediated by the action of 5-HT on the 5-HT1AR in the hippocampus CA3. The projection from the DRN to CA3 may be involved in social recognition deficits induced by CSDS.
Collapse
Affiliation(s)
- Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenxiang Zhu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenqi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yang Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xueni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qianqian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xia Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenmin Lian
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
41
|
Stress-induced inflammation as the "connexin" between post-traumatic stress disorder and cardiovascular disease. Brain Behav Immun 2019; 82:3-5. [PMID: 31425828 DOI: 10.1016/j.bbi.2019.08.182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 11/20/2022] Open
|
42
|
Gururajan A, Reif A, Cryan JF, Slattery DA. The future of rodent models in depression research. Nat Rev Neurosci 2019; 20:686-701. [DOI: 10.1038/s41583-019-0221-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/15/2022]
|
43
|
Wilson MA, Liberzon I, Lindsey ML, Lokshina Y, Risbrough VB, Sah R, Wood SK, Williamson JB, Spinale FG. Common pathways and communication between the brain and heart: connecting post-traumatic stress disorder and heart failure. Stress 2019; 22:530-547. [PMID: 31161843 PMCID: PMC6690762 DOI: 10.1080/10253890.2019.1621283] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Psychiatric illnesses and cardiovascular disease (CVD) contribute to significant overall morbidity, mortality, and health care costs, and are predicted to reach epidemic proportions with the aging population. Within the Veterans Administration (VA) health care system, psychiatric illnesses such as post-traumatic stress disorder (PTSD) and CVD such as heart failure (HF), are leading causes of hospital admissions, prolonged hospital stays, and resource utilization. Numerous studies have demonstrated associations between PTSD symptoms and CVD endpoints, particularly in the Veteran population. Not only does PTSD increase the risk of HF, but this relationship is bi-directional. Accordingly, a VA-sponsored conference entitled "Cardiovascular Comorbidities in PTSD: The Brain-Heart Consortium" was convened to explore potential relationships and common biological pathways between PTSD and HF. The conference was framed around the hypothesis that specific common systems are dysregulated in both PTSD and HF, resulting in a synergistic acceleration and amplification of both disease processes. The conference was not intended to identify all independent pathways that give rise to PTSD and HF, but rather identify shared systems, pathways, and biological mediators that would be modifiable in both disease processes. The results from this conference identified specific endocrine, autonomic, immune, structural, genetic, and physiological changes that may contribute to shared PTSD-CVD pathophysiology and could represent unique opportunities to develop therapies for both PTSD and HF. Some recommendations from the group for future research opportunities are provided.
Collapse
Affiliation(s)
- Marlene A. Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine and Research Service, Columbia VA Health Care System, Columbia SC
- Corresponding author information: Marlene A. Wilson, Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia SC 29208, Research Service, Columbia VA Health Care System, Columbia SC 29209, ; 803-216-3507
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M College of Medicine, Bryan, TX
| | - Merry L. Lindsey
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, and Research Service, Omaha VA Medical Center, Omaha NE
| | - Yana Lokshina
- Department of Psychiatry, Texas A&M College of Medicine, Bryan, TX
| | - Victoria B. Risbrough
- VA Center of Excellence for Stress and Mental Health, La Jolla CA, Dept. of Psychiatry, University of California San Diego
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Susan K. Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine and Research Service, Columbia VA Health Care System, Columbia SC
| | - John B. Williamson
- Department of Neurology, University of Florida College of Medicine, Gainesville FL
| | - Francis G. Spinale
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine and Research Service, Columbia VA Health Care System., Columbia SC
| |
Collapse
|
44
|
Finnell JE, Moffitt CM, Hesser LA, Harrington E, Melson MN, Wood CS, Wood SK. The contribution of the locus coeruleus-norepinephrine system in the emergence of defeat-induced inflammatory priming. Brain Behav Immun 2019; 79:102-113. [PMID: 30707932 PMCID: PMC6591045 DOI: 10.1016/j.bbi.2019.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 12/14/2022] Open
Abstract
Exposure to psychosocial stress is known to precipitate the emergence of stress related psychiatric disorders such as depression and anxiety. While mechanisms by which this occurs remain largely unclear, recent evidence points towards a causative role for inflammation. Neurotransmitters, such as norepinephrine (NE), are capable of regulating expression of proinflammatory cytokines and thus may contribute to the emergence of stress-related disorders. The locus coeruleus (LC) is the major source of norepinephrine (NE) to the brain and therefore the current study utilized N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), an LC selective noradrenergic neurotoxin, to determine the discrete involvement of the LC-NE system in social defeat-induced inflammation in LC projection regions including the central amygdala (CeA), dorsal raphe (DR) and plasma. In the current study, rats were exposed to brief social defeat or control manipulations on 5 consecutive days. To determine whether a history of social defeat enhanced or "primed" the inflammatory response to a subsequent defeat exposure, all rats regardless of stress history were exposed to an acute social defeat challenge immediately preceeding tissue collection. As anticipated, prior history of social defeat primed inflammatory responses in the plasma and CeA while neuroinflammation in the DR was markedly reduced. Notably, DSP-4 treatment suppressed stress-induced circulating inflammatory cytokines independent of prior stress history. In contrast, neuroinflammation in the CeA and DR were greatly augmented selectively in DSP-4 treated rats with a history of social defeat. Together these data highlight the dichotomous nature of NE in stress-induced inflammatory priming in the periphery and the brain and directly implicate the LC-NE system in these processes.
Collapse
Affiliation(s)
- Julie E Finnell
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Casey M Moffitt
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - L Ande Hesser
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Evelynn Harrington
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Michael N Melson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Christopher S Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States.
| |
Collapse
|
45
|
Tsyglakova M, McDaniel D, Hodes GE. Immune mechanisms of stress susceptibility and resilience: Lessons from animal models. Front Neuroendocrinol 2019; 54:100771. [PMID: 31325456 DOI: 10.1016/j.yfrne.2019.100771] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Stress has an impact on the brain and the body. A growing literature demonstrates that feedback between the peripheral immune system and the brain contributes to individual differences in the behavioral response to stress. Here we examine preclinical literature to demonstrate a holistic vision of risk and resilience to stress. We identify a variety of cellular, cytokine and molecular mechanisms in adult animals that act in concert to produce a stress susceptible individual response. We discuss how cross talk between immune cells in the brain and in the periphery act together to increase permeability across the blood brain barrier or block it, resulting in susceptible or stress resilient phenotype. These preclinical studies have importance for understanding how individual differences in the immune response to stress may be contributing to mood related disorders such as depression, anxiety and posttraumatic stress disorders.
Collapse
Affiliation(s)
- Mariya Tsyglakova
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, USA
| | - Dylan McDaniel
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Georgia E Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
46
|
Ferrer-Pérez C, Martinez TE, Montagud-Romero S, Ballestín R, Reguilón MD, Miñarro J, Rodríguez-Arias M. Indomethacin blocks the increased conditioned rewarding effects of cocaine induced by repeated social defeat. PLoS One 2018; 13:e0209291. [PMID: 30557308 PMCID: PMC6296503 DOI: 10.1371/journal.pone.0209291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023] Open
Abstract
It is well established that repeated social defeat stress can induce negative long-term consequences such as increased anxiety-like behavior and enhances the reinforcing effect of psychostimulants in rodents. In the current study, we evaluated how the immune system may play a role in these long-term effects of stress. A total of 148 OF1 mice were divided into different experimental groups according to stress condition (exploration or social defeat) and pre-treatment (saline, 5 or 10 mg/kg of the anti-inflammatory indomethacin) before each social defeat or exploration episode. Three weeks after the last social defeat, anxiety was evaluated using an elevated plus maze paradigm. After this test, conditioned place preference (CPP) was induced by a subthreshold dose of cocaine (1 mg/kg). Biological samples were taken four hours after the first and the fourth social defeat, 3 weeks after the last defeat episode, and after the CPP procedure. Plasma and brain tissue (prefrontal cortex, striatum and hippocampus) were used to determine the levels of the pro-inflammatory cytokine interleukin 6 (IL-6). Results showed an increase of peripheral and brain IL-6 levels after the first and fourth social defeat that was reverted three weeks later. Intraperitoneal administration of the anti-inflammatory drug indomethacin before each episode of stress prevented this enhancement of IL-6 levels and also reversed the increase in the rewarding effects of cocaine in defeated mice. Conversely, this protective effect was not observed with respect to the anxiogenic consequences of social stress. Our results confirm the hypothesis of a modulatory proinflammatory contribution to stress-induced vulnerability to drug abuse disorders and highlight anti-inflammatory interventions as a potential therapeutic tool to treat stress-related addiction disorders.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Tamara Escrivá Martinez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Raúl Ballestín
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marina D. Reguilón
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - José Miñarro
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| |
Collapse
|
47
|
Wang L, Zhu Z, Hou W, Zhang X, He Z, Yuan W, Yang Y, Zhang S, Jia R, Tai F. Serotonin Signaling Trough Prelimbic 5-HT1A Receptors Modulates CSDS-Induced Behavioral Changes in Adult Female Voles. Int J Neuropsychopharmacol 2018; 22:208-220. [PMID: 30445535 PMCID: PMC6403097 DOI: 10.1093/ijnp/pyy093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Most previous studies have focused on the effects of social defeat in male juvenile individuals. Whether chronic social defeat stress in adulthood affects female emotion and the underlying mechanisms remains unclear. METHODS Using highly aggressive adult female mandarin voles (Microtus mandarinus), the present study aimed to determine the effects of chronic social defeat stress on anxiety- and depression-like behaviors in adult female rodents and investigate the neurobiological mechanisms underlying these effects. RESULTS Exposure of adult female voles to social defeat stress for 14 days reduced the time spent in the central area of the open field test and in the open arms of the elevated plus maze and lengthened the immobility time in the tail suspension and forced swimming tests, indicating increased anxiety- and depression-like behaviors. Meanwhile, defeated voles exhibited increased neural activity in the prelimbic cortex of the medial prefrontal cortex. Furthermore, chronic social defeat stress reduced serotonin projections and levels of serotonin 1A receptors in the medial prefrontal cortex-prelimbic cortex. Intra-prelimbic cortex microinjections of the serotonin 1A receptor agonist 8-OH-DPAT reversed the alterations in emotional behaviors, whereas injections of the serotonin 1A receptor antagonist WAY-100635 into the prelimbic cortex of control voles increased the levels of anxiety- and depression-like behaviors. CONCLUSIONS Taken together, our results demonstrated that chronic social defeat stress increased anxiety- and depression-like behaviors in adult female voles, and these effects were mediated by the action of serotonin on the serotonin 1A receptors in the prelimbic cortex. The serotonin system may be a promising target to treat emotional disorders induced by chronic social defeat stress.
Collapse
Affiliation(s)
- Limin Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Zhenxiang Zhu
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Wenjuan Hou
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Xueni Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Zhixiong He
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Wei Yuan
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Yang Yang
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Siyi Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Rui Jia
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Fadao Tai
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China,Correspondence: Fadao Tai, PhD, Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi 710062, China ()
| |
Collapse
|
48
|
Finnell JE, Wood SK. Putative Inflammatory Sensitive Mechanisms Underlying Risk or Resilience to Social Stress. Front Behav Neurosci 2018; 12:240. [PMID: 30416436 PMCID: PMC6212591 DOI: 10.3389/fnbeh.2018.00240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/25/2018] [Indexed: 12/30/2022] Open
Abstract
It has been well recognized that exposure to stress can lead to the onset of psychosocial disorders such as depression. While there are a number of antidepressant therapies currently available and despite producing immediate neurochemical alterations, they require weeks of continuous use in order to exhibit antidepressant efficacy. Moreover, up to 30% of patients do not respond to typical antidepressants, suggesting that our understanding of the pathophysiology underlying stress-induced depression is still limited. In recent years inflammation has become a major focus in the study of depression as several clinical and preclinical studies have demonstrated that peripheral and central inflammatory mediators, including interleukin (IL)-1β, are elevated in depressed patients. Moreover, it has been suggested that inflammation and particularly neuroinflammation may be a direct and immediate link in the emergence of stress-induced depression due to the broad neural and glial effects that are elicited by proinflammatory cytokines. Importantly, individual differences in inflammatory reactivity may further explain why certain individuals exhibit differing susceptibility to the consequences of stress. In this review article, we discuss sources of individual differences such as age, sex and coping mechanisms that are likely sources of distinct changes in stress-induced neuroimmune factors and highlight putative sources of exaggerated neuroinflammation in susceptible individuals. Furthermore, we review the current literature of specific neural and glial mechanisms that are regulated by stress and inflammation including mitochondrial function, oxidative stress and mechanisms of glutamate excitotoxicity. Taken together, the impetus for this review is to move towards a better understanding of mechanisms regulated by inflammatory cytokines and chemokines that are capable of contributing to the emergence of depressive-like behaviors in susceptible individuals.
Collapse
Affiliation(s)
- Julie E Finnell
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States.,WJB Dorn Veterans Administration Medical Center, Columbia, SC, United States
| |
Collapse
|