1
|
Kremer TL, Chen J, Buhl A, Berhe O, Bilek E, Geiger LS, Ma R, Moessnang C, Reichert M, Reinhard I, Schwarz K, Schweiger JI, Streit F, Witt SH, Zang Z, Zhang X, Nöthen MM, Rietschel M, Ebner-Priemer UW, Schwarz E, Meyer-Lindenberg A, Braun U, Tost H. Multimodal Associations of FKBP5 Methylation With Emotion-Regulatory Brain Circuits. Biol Psychiatry 2024; 96:858-867. [PMID: 38460581 DOI: 10.1016/j.biopsych.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Understanding the biological processes that underlie individual differences in emotion regulation and stress responsivity is a key challenge for translational neuroscience. The gene FKBP5 is a core regulator in molecular stress signaling that is implicated in the development of psychiatric disorders. However, it remains unclear how FKBP5 DNA methylation in peripheral blood is related to individual differences in measures of neural structure and function and their relevance to daily-life stress responsivity. METHODS Here, we characterized multimodal correlates of FKBP5 DNA methylation by combining epigenetic data with neuroimaging and ambulatory assessment in a sample of 395 healthy individuals. RESULTS First, we showed that FKBP5 demethylation as a psychiatric risk factor was related to an anxiety-associated reduction of gray matter volume in the ventromedial prefrontal cortex, a brain area that is involved in emotion regulation and mental health risk and resilience. This effect of epigenetic upregulation of FKBP5 on neuronal structure is more pronounced where FKBP5 is epigenetically downregulated at baseline. Leveraging 208 functional magnetic resonance imaging scans during a well-established emotion-processing task, we found that FKBP5 DNA methylation in peripheral blood was associated with functional differences in prefrontal-limbic circuits that modulate affective responsivity to daily stressors, which we measured using ecological momentary assessment in daily life. CONCLUSIONS Overall, we demonstrated how FKBP5 contributes to interindividual differences in neural and real-life affect regulation via structural and functional changes in prefrontal-limbic brain circuits.
Collapse
Affiliation(s)
- Thomas L Kremer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Junfang Chen
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anais Buhl
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Oksana Berhe
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Edda Bilek
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Lena S Geiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ren Ma
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus Reichert
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mental mHealth Lab, Chair of Applied Psychology, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany; Department of eHealth and Sports Analytics, Ruhr University Bochum, Bochum, Germany
| | - Iris Reinhard
- Department of Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kristina Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Janina I Schweiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Fabian Streit
- DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Zhenxiang Zang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaolong Zhang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany; Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Marcella Rietschel
- DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ulrich W Ebner-Priemer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Mental mHealth Lab, Chair of Applied Psychology, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Urs Braun
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany.
| |
Collapse
|
2
|
Lee A, Thuras P, Baller J, Jiao C, Guo B, Erbes CR, Polusny MA, Liu C, Wu B, Lim KO, Bishop JR. Serotonin Transporter (SLC6A4) and FK506-Binding Protein 5 (FKBP5) Genotype and Methylation Relationships with Response to Meditation in Veterans with PTSD. Mol Neurobiol 2024; 61:9608-9622. [PMID: 38671329 DOI: 10.1007/s12035-024-04096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
Meditation-based interventions are novel and effective non-pharmacologic treatments for veterans with PTSD. We examined relationships between treatment response, early life trauma exposure, DNA polymorphisms, and methylation in the serotonin transporter (SLC6A4) and FK506-binding protein 5 (FKBP5) genes. DNA samples and clinical outcomes were examined in 72 veterans with PTSD who received meditation-based therapy in two separate studies of mindfulness-based stress reduction (MBSR) and Transcendental Meditation (TM). The PTSD Checklist was administered to assess symptoms at baseline and after 9 weeks of meditation intervention. We examined the SLC6A4 promoter (5HTTLPR_L/S insertion/deletion + rs25531_A/G) polymorphisms according to previously defined gene expression groups, and the FKBP5 variant rs1360780 previously associated with PTSD disease risk. Methylation for CpG sites of SLC6A4 (28 sites) and FKBP5 (45 sites) genes was quantified in DNA samples collected before and after treatment. The 5HTTLPR LALA high expression genotype was associated with greater symptom improvement in participants exposed to early life trauma (p = 0.015). Separately, pre to post-treatment change of DNA methylation in a group of nine FKBP5 CpG sites was associated with greater symptom improvement (OR = 2.8, 95% CI 1.1-7.1, p = 0.027). These findings build on a wealth of existing knowledge regarding epigenetic and genetic relationships with PTSD disease risk to highlight the potential importance of SLC6A4 and FKBP5 for treatment mechanisms and as biomarkers of symptom improvement.
Collapse
Affiliation(s)
- Adam Lee
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Room 7-115 Weaver-Densford Hall, 308 Harvard St SE, Minneapolis, MN, 55455, USA
| | - Paul Thuras
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Joshua Baller
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Chuan Jiao
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Krebs, Université Paris Cité, 75014, Paris, France
| | - Bin Guo
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Christopher R Erbes
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Center for Care Delivery and Outcomes Research, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Melissa A Polusny
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Center for Care Delivery and Outcomes Research, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Chunyu Liu
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Baolin Wu
- Department of Epidemiology and Biostatistics, Program in Public Health, University of California-Irvine, Irvine, CA, USA
| | - Kelvin O Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Geriatric Research, Education, and Clinical Center, Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Room 7-115 Weaver-Densford Hall, 308 Harvard St SE, Minneapolis, MN, 55455, USA.
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Kim M, Yoon M, Cho S, Kim MJ, Um MY. Rice bran supplement ameliorates chronic restraint stress-induced depression-like behaviors in mice. Food Funct 2024; 15:10600-10613. [PMID: 39310986 DOI: 10.1039/d4fo00718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Depression is emerging as a social and health-related issue worldwide. Rice bran possesses a variety of biological properties; however, its potential efficacy and molecular mechanisms in depression remain unclear. This study investigated the antidepressant effects of rice bran supplement (RBS) in a mouse model of chronic restraint stress (CRS)-induced depression. RBS was administered to mice subjected to CRS for 5 weeks. RBS improved depressive symptoms in CRS-exposed mice, as evidenced by increased sucrose preference and reduced immobility time. It reduced hypothalamic-pituitary-adrenal (HPA) axis-related hormones. Additionally, RBS downregulated the glucocorticoid receptor (GR) pathway and upregulated the ERK-CREB-BDNF pathway in the prefrontal cortex and hippocampus. Furthermore, RBS increased neurotransmitter levels and decreased monoamine oxidase levels in the brain. Molecular docking analysis indicated that γ-oryzanol (ORY) interacts with GR. Moreover, ORY inhibited GR activity in GR-transfected HEK293T cells. The effects of ORY were not significantly altered by treatment with GR antagonist mifepristone or GR siRNA, suggesting ORY functions as a GR antagonist. Additionally, ORY administration improved depressive behaviors in CRS-exposed mice and modulated the imbalance of HPA axis-related hormones in mice. Mechanisms of action in the RBS were partially attributed by ORY, a key component of RBS, suggesting that ORY contributes synergistically to the effect of RBS. Thus, RBS administration could be a promising therapeutic approach to treating CRS-induced depression.
Collapse
Affiliation(s)
- Minji Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55364, Republic of Korea.
- Department of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Minseok Yoon
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55364, Republic of Korea.
| | - Suengmok Cho
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Min Jung Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55364, Republic of Korea.
| | - Min Young Um
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55364, Republic of Korea.
- Department of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
4
|
Kovarova V, Bordes J, Mitra S, Narayan S, Springer M, Brix LM, Deussing JM, Schmidt MV. Deep phenotyping reveals CRH and FKBP51-dependent behavioral profiles following chronic social stress exposure in male mice. Neuropsychopharmacology 2024:10.1038/s41386-024-02008-9. [PMID: 39438757 DOI: 10.1038/s41386-024-02008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The co-chaperone FKBP51, encoded by FKBP5 gene, is recognized as a psychiatric risk factor for anxiety and depressive disorders due to its crucial role in the stress response. Another key modulator in stress response regulation is the corticotropin releasing hormone (CRH), which is co-expressed with FKBP51 in many stress-relevant brain-regions and cell-types. Together, they intricately influence the balance of the hypothalamic-pituitary-adrenal (HPA) axis, one of the primary stress response systems. Previous research underscores the potential moderating effects these genes have on the regulation of the stressful life events towards the vulnerability of major depressive disorder (MDD). However, the specific function of FKBP51 in CRH-expressing neurons remains largely unexplored. Here, through deep behavioral phenotyping, we reveal heightened stress effects in mice lacking FKBP51 in CRH co-expressing neurons (CRHFKBP5-/-), particularly evident in social contexts. Our findings highlight the importance of considering cell-type specificity and context in comprehending stress responses and advocate for the utilization of machine-learning-driven phenotyping of mouse models. By elucidating these intricacies, we lay down the groundwork for personalized interventions aimed at enhancing stress resilience and individual well-being.
Collapse
Affiliation(s)
- Veronika Kovarova
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Shiladitya Mitra
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Margherita Springer
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lea Maria Brix
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
5
|
Su K, Cui X, Zhou J, Yi Q, Liu O. Construction of an interactome network among circRNA-miRNA-mRNA reveals new biomarkers in hBMSCs osteogenic differentiation. Sci Rep 2024; 14:24507. [PMID: 39424659 PMCID: PMC11489463 DOI: 10.1038/s41598-024-76136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Human bone marrow mesenchymal stem cells (hBMSCs) are adult stem cells residing in the bone marrow, characterized by their capacity for multi-directional differentiation, self-renewal, migration, and engraftment. Serving as seed cells, BMSCs play a pivotal role in the regeneration of bone defects. Hence, investigating the transcription factors and signaling pathways involved in the regulation of osteogenic differentiation in BMSCs holds significant importance. Recent research has unveiled that certain circular RNAs (circRNAs) can function as molecular sponges, influencing the osteogenic differentiation process of mesenchymal stem cells. However, many circRNAs remain undiscovered, and their precise mechanisms remain elusive. Therefore, the objective of this study is to construct an osteogenic differentiation-related circRNA-miRNA-mRNA network in hBMSCs. Subsequently, through bioinformatics analysis, we constructed a ceRNA network related to the osteogenic differentiation ability of hBMSCs, comprising 22 circRNAs, 17 miRNAs, and 15 mRNAs. The potential circRNA-miRNA-mRNA axes, including the role of hsa_circ_0001600 in promoting the osteogenic differentiation of hBMSCs through the targeted regulation of hsa-miR-542-3p, were validated through in vitro experiments.
Collapse
Affiliation(s)
- Kaixin Su
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Xiangya Road, Changsha, 410008, Hunan, China
| | - Xinyan Cui
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Xiangya Road, Changsha, 410008, Hunan, China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing, 100050, China
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiao Yi
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Xiangya Road, Changsha, 410008, Hunan, China.
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Tang L, Zhao P, Pan C, Song Y, Zheng J, Zhu R, Wang F, Tang Y. Epigenetic molecular underpinnings of brain structural-functional connectivity decoupling in patients with major depressive disorder. J Affect Disord 2024; 363:249-257. [PMID: 39029702 DOI: 10.1016/j.jad.2024.07.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is progressively recognized as a stress-related disorder characterized by aberrant brain network dynamics, encompassing both structural and functional domains. Yet, the intricate interplay between these dynamic networks and their molecular underpinnings remains predominantly unexplored. METHODS Both structural and functional networks were constructed using multimodal neuroimaging data from 183 MDD patients and 300 age- and gender-matched healthy controls (HC). structural-functional connectivity (SC-FC) coupling was evaluated at both the connectome- and nodal-levels. Methylation data of five HPA axis key genes, including NR3C1, FKBP5, CRHBP, CRHR1, and CRHR2, were analyzed using Illumina Infinium Methylation EPIC BeadChip. RESULTS We observed a significant reduction in SC-FC coupling at the connectome-level in patients with MDD compared to HC. At the nodal level, we found an imbalance in SC-FC coupling, with reduced coupling in cortical regions and increased coupling in subcortical regions. Furthermore, we identified 23 differentially methylated CpG sites on the HPA axis, following adjustment for multiple comparisons and control of age, gender, and medication status. Notably, three CpG sites on NR3C1 (cg01294526, cg19457823, and cg23430507), one CpG site on FKBP5 (cg25563198), one CpG site on CRHR1 (cg26656751), and one CpG site on CRHR2 (cg18351440) exhibited significant associations with SC-FC coupling in MDD patients. CONCLUSIONS These findings provide valuable insights into the connection between micro-scale epigenetic changes in the HPA axis and SC-FC coupling at macro-scale connectomes. They unveil the mechanisms underlying increased susceptibility to MDD resulting from chronic stress and may suggest potential pharmacological targets within the HPA-axis for MDD treatment.
Collapse
Affiliation(s)
- Lili Tang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China; Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Pengfei Zhao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Chunyu Pan
- School of Computer Science and Engineering, Northeastern University, Shenyang, PR China
| | - Yanzhuo Song
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Rongxin Zhu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China.
| | - Yanqing Tang
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
7
|
Grigorenko EL. The extraordinary "ordinary magic" of resilience. Dev Psychopathol 2024:1-18. [PMID: 39363871 DOI: 10.1017/s0954579424000841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In this essay, I will briefly sample different instances of the utilization of the concept of resilience, attempting to complement a comprehensive representation of the field in the special issue of Development and Psychopathology inspired by the 42nd Minnesota Symposium on Child Psychology, hosted by the Institute of Child Development at the University of Minnesota and held in October of 2022. Having established the general context of the field, I will zoom in on some of its features, which I consider "low-hanging fruit" and which can be harvested in a systematic way to advance the study of resilience in the context of the future of developmental psychopathology.
Collapse
|
8
|
Specht L, Freiberg A, Mojahed A, Garthus-Niegel S, Schellong J. Adrenocortical deviations and adverse clinical outcomes in children and adolescents exposed to interparental intimate partner violence: A systematic review. Neurosci Biobehav Rev 2024; 165:105866. [PMID: 39233285 DOI: 10.1016/j.neubiorev.2024.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
Childhood exposure to interparental intimate partner violence (i-IPV) is a pervasive form of child maltreatment, posing major public health concerns and elevating risks for enduring adverse clinical and developmental consequences. However, assessing the full spectrum of clinical effects is challenging, potentially leading to inconsistent identification of children in need of early intervention. This systematic review aimed to identify hypothalamic-pituitary-adrenocortical axis dysfunction following i-IPV exposure, elucidating the underlying biopsychobehavioural mechanisms and predicting adverse outcomes. We searched Embase, MEDLINE, and PsycINFO for peer-reviewed studies from infancy through adolescence, screened reference lists and conducted forward searches. Analysis of 23 publications (N = 1848) revealed associations between i-IPV and altered adrenocortical function from early childhood, influenced by FKBP5 haplotype, parental caregiving and offspring emotional insecurity. Results showed that the adrenocortical stress response may predict internalising and externalising problems, childhood asthma, impaired executive function and poor academic performance. Nonetheless, inconsistencies in findings between studies suggest methodological heterogeneity and potential bias. Identifying biomarkers such as cortisol can enhance prediction and mechanism-based intervention efforts but long-term studies with a common theoretical and methodological framework are needed for comprehensive understanding. Integrating biological, emotional, and behavioural assessments could potentiate trauma services and research, ultimately improving outcomes for affected children.
Collapse
Affiliation(s)
- Lina Specht
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany; Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| | - Alice Freiberg
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Amera Mojahed
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Susan Garthus-Niegel
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany; Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany; Institute for Systems Medicine (ISM) and Faculty of Medicine, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany; Department of Childhood and Families, Norwegian Institute of Public Health, Postboks 222 Skøyen, Oslo 0213, Norway
| | - Julia Schellong
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| |
Collapse
|
9
|
Lu H, Rolls ET, Liu H, Stein DJ, Sahakian BJ, Elliott R, Jia T, Xie C, Xiang S, Wang N, Banaschewski T, Bokde AL, Desrivières S, Flor H, Grigis A, Garavan H, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Lemaitre H, Poustka L, Hohmann S, Holz N, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Feng J, Luo Q. Genetic-Dependent Brain Signatures of Resilience: Interactions among Childhood Abuse, Genetic Risks and Brain Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.612982. [PMID: 39345616 PMCID: PMC11429770 DOI: 10.1101/2024.09.16.612982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Resilience to emotional disorders is critical for adolescent mental health, especially following childhood abuse. Yet, brain signatures of resilience remain undetermined due to the differential susceptibility of the brain's emotion processing system to environmental stresses. Analyzing brain's responses to angry faces in a longitudinally large-scale adolescent cohort (IMAGEN), we identified two functional networks related to the orbitofrontal and occipital regions as candidate brain signatures of resilience. In girls, but not boys, higher activation in the orbitofrontal-related network was associated with fewer emotional symptoms following childhood abuse, but only when the polygenic burden for depression was high. This finding defined a genetic-dependent brain (GDB) signature of resilience. Notably, this GDB signature predicted subsequent emotional disorders in late adolescence, extending into early adulthood and generalizable to another independent prospective cohort (ABCD). Our findings underscore the genetic modulation of resilience-brain connections, laying the foundation for enhancing adolescent mental health through resilience promotion.
Collapse
Affiliation(s)
- Han Lu
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Human Phenome Institute, Shanghai 200438, China
| | - Edmund T. Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry, UK
| | - Hanjia Liu
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Dan J. Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Barbara J. Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Rebecca Elliott
- Department of Psychology and Mental Health, University of Manchester, Manchester, Greater Manchester, UK
| | - Tianye Jia
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Chao Xie
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Shitong Xiang
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Nan Wang
- Student Affairs Department, Fudan University, Shanghai 200433, China
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Arun L.W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, Vermont, USA
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli; Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli; Gif-sur-Yvette; and AP-HP. Sorbonne University, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris; France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli; Gif-sur-Yvette; and Psychiatry Department, EPS Barthélémy Durand, Etampes; France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Herve Lemaitre
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, 33076 Bordeaux, France
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Jianfeng Feng
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Human Phenome Institute, Shanghai 200438, China
- Shanghai Research Center of Acupuncture & Meridian, Shanghai 200433, China
| | | |
Collapse
|
10
|
Debs SR, Rothmond DA, Zhu Y, Weickert CS, Purves-Tyson TD. Molecular evidence of altered stress responsivity related to neuroinflammation in the schizophrenia midbrain. J Psychiatr Res 2024; 177:118-128. [PMID: 39004003 DOI: 10.1016/j.jpsychires.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Stress and inflammation are risk factors for schizophrenia. Chronic psychosocial stress is associated with subcortical hyperdopaminergia, a core feature of schizophrenia. Hyperdopaminergia arises from midbrain neurons, leading us to hypothesise that changes in stress response pathways may occur in this region. To identify whether transcriptional changes in glucocorticoid and mineralocorticoid receptors (NR3C1/GR, NR3C2/MR) or other stress signalling molecules (FKBP4, FKBP5) exist in schizophrenia midbrain, we measured gene expression in the human brain (N = 56) using qRT-PCR. We assessed whether alterations in these mRNAs were related to previously identified high/low inflammatory status. We investigated relationships between stress-related transcripts themselves, and between FKBP5 mRNA, dopaminergic, and glial cell transcripts in diagnostic and inflammatory subgroups. Though unchanged by diagnosis, GR mRNA levels were reduced in high inflammatory compared to low inflammatory schizophrenia cases (p = 0.026). We found no effect of diagnosis or inflammation on MR mRNA. FKBP4 mRNA was decreased and FKBP5 mRNA was increased in schizophrenia (p < 0.05). FKBP5 changes occurred in high inflammatory (p < 0.001), whereas FKBP4 changes occurred in low inflammatory schizophrenia cases (p < 0.05). The decrease in mRNA encoding the main stress receptor (GR), as well as increased transcript levels of the stress-responsive negative regulator (FKBP5), may combine to blunt the midbrain response to stress in schizophrenia when neuroinflammation is present. Negative correlations between FKBP5 mRNA and dopaminergic transcripts in the low inflammatory subgroup suggest higher levels of FKBP5 mRNA may also attenuate dopaminergic neurotransmission in schizophrenia even when inflammation is absent. We report alterations in GR-mediated stress signalling in the midbrain in schizophrenia.
Collapse
Affiliation(s)
- Sophie R Debs
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia
| | - Yunting Zhu
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Tertia D Purves-Tyson
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
11
|
Grillo AR. Polygene by environment interactions predicting depressive outcomes. Am J Med Genet B Neuropsychiatr Genet 2024:e33000. [PMID: 39012198 DOI: 10.1002/ajmg.b.33000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024]
Abstract
Depression is a major public health problem with a continued need to uncover its etiology. Current models of depression contend that gene-by-environment (G × E) interactions influence depression risk, and further, that depression is polygenic. Thus, recent models have emphasized two polygenic approaches: a hypothesis-driven multilocus genetic profile score (MGPS; "MGPS × E") and a polygenic risk score (PRS; "PRS × E") derived from genome-wide association studies (GWAS). This review for the first time synthesizes current knowledge on polygene by environment "P × E" interaction research predicting primarily depression-related outcomes, and in brief, neurobiological outcomes. The "environment" of focus in this project is stressful life events. It further discusses findings in the context of differential susceptibility and diathesis-stress theories-two major theories guiding G × E work. This synthesis indicates that, within the MGPS literature, polygenic scores based on the serotonin system, the HPA axis, or across multiple systems, interact with environmental stress exposure to predict outcomes at multiple levels of analyses and most consistently align with differential susceptibility theory. Depressive outcomes are the most studied, but neuroendocrine, and neuroimaging findings are observed as well. By contrast, vast methodological differences between GWAS-based PRS studies contribute to mixed findings that yield inconclusive results.
Collapse
Affiliation(s)
- Alessandra R Grillo
- Department of Psychology, University of North Carolina, Greensboro, North Carolina, USA
| |
Collapse
|
12
|
Eichenauer H, Fischer S, Gardini E, Onsongo S, Ehlert U. Effects of improved on-farm crop storage on DNA methylation of mothers and their infants: evidence from a randomized controlled trial in Kenya. Clin Epigenetics 2024; 16:90. [PMID: 38978139 PMCID: PMC11232227 DOI: 10.1186/s13148-024-01693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Stress during pregnancy can lead to adverse maternal and infant health outcomes through epigenetic changes in the hypothalamic-pituitary-adrenal axis. Among farmers in low-income countries, one important stressor is food insecurity, which can be reduced using hermetic storage bags. This study aimed to determine, for the first time, whether a hermetic storage bag intervention during pregnancy positively affects maternal and infant DNA methylation of the hypothalamic-pituitary-adrenal axis-related genes FKBP5 and NR3C1. We further analyzed whether anthropometrics, stress, and mental health were associated with DNA methylation. METHODS This study was part of a larger matched-pair randomized controlled trial focusing on the impact of improved on-farm storage on food security, poverty, and net income of smallholder farming households. A total of N = 149 mothers were recruited by telephone and invited to attend a study appointment at health facilities in Kakamega County, Western Kenya, with their infants in April or May 2021. During the appointment, anthropometric measurements were taken, questionnaires on stress and mental health were administered, and saliva samples were collected. Logistic and multiple linear regression were used to examine the effect of the intervention and related measures on DNA methylation. RESULTS Mothers in the intervention group showed higher mean NR3C1 methylation levels than those in the control group, corrected for multiple testing. Maternal postpartum body mass index was positively associated with infant NR3C1 CpG3 DNA methylation. The more stressful life events a mother had experienced in the previous 12 months (including during pregnancy), the lower her FKBP5 CpG3 methylation levels. CONCLUSIONS Food insecurity and stressful life events during pregnancy seem to exert significant effects on maternal DNA methylation. While these stressors did not appear to impact infant DNA methylation in the present study, maternal postpartum body mass index was significantly related to infant methylation. These findings suggest that while infants may be protected from excessive maternal glucocorticoids by placental barrier activity, maternal metabolic status is still reflected in their epigenetic make-up. Trial registration This study was part of a larger matched-pair randomized controlled trial on the impact of improved on-farm crop storage on welfare, nutrition, and human health. Registration can be found in the American Economic Association (AEA) RCT Registry, RCT ID: AEARCTR-0005845.
Collapse
Affiliation(s)
- Heike Eichenauer
- Institute of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Binzmuehlestrasse 14/Box 26, 8050, Zurich, Switzerland
| | - Susanne Fischer
- Institute of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Binzmuehlestrasse 14/Box 26, 8050, Zurich, Switzerland
| | - Elena Gardini
- Institute of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Binzmuehlestrasse 14/Box 26, 8050, Zurich, Switzerland
| | | | - Ulrike Ehlert
- Institute of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Binzmuehlestrasse 14/Box 26, 8050, Zurich, Switzerland.
| |
Collapse
|
13
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
14
|
Nagpal J, Eachus H, Lityagina O, Ryu S. Optogenetic induction of chronic glucocorticoid exposure in early-life leads to blunted stress-response in larval zebrafish. Eur J Neurosci 2024; 59:3134-3146. [PMID: 38602078 DOI: 10.1111/ejn.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
Early life stress (ELS) exposure alters stress susceptibility in later life and affects vulnerability to stress-related disorders, but how ELS changes the long-lasting responsiveness of the stress system is not well understood. Zebrafish provides an opportunity to study conserved mechanisms underlying the development and function of the stress response that is regulated largely by the neuroendocrine hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis, with glucocorticoids (GC) as the final effector. In this study, we established a method to chronically elevate endogenous GC levels during early life in larval zebrafish. To this end, we employed an optogenetic actuator, beggiatoa photoactivated adenylyl cyclase, specifically expressed in the interrenal cells of zebrafish and demonstrate that its chronic activation leads to hypercortisolaemia and dampens the acute-stress evoked cortisol levels, across a variety of stressor modalities during early life. This blunting of stress-response was conserved in ontogeny at a later developmental stage. Furthermore, we observe a strong reduction of proopiomelanocortin (pomc)-expression in the pituitary as well as upregulation of fkbp5 gene expression. Going forward, we propose that this model can be leveraged to tease apart the mechanisms underlying developmental programming of the HPA/I axis by early-life GC exposure and its implications for vulnerability and resilience to stress in adulthood.
Collapse
Affiliation(s)
- Jatin Nagpal
- University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- APC Microbiome Ireland and School of Pharmacy and Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Helen Eachus
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Olga Lityagina
- University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Soojin Ryu
- University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
15
|
Li Piani L, Somigliana E, Micci LG, Spinelli G, Barbara G. Going Beyond Childhood and Gender-Based Violence: Epigenetic Modifications and Inheritance. WOMEN'S HEALTH REPORTS (NEW ROCHELLE, N.Y.) 2024; 5:473-484. [PMID: 39035135 PMCID: PMC11257107 DOI: 10.1089/whr.2024.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 07/23/2024]
Abstract
Being exposed to childhood or gender-based violence is associated with subsequent adverse events in individual lives. Not only can it cause psychological distress but violence survivors suffer from a range of long-term adverse health outcomes, including higher morbidity, higher mortality, and higher risk of chronic diseases. Epigenetics may be involved in the determinisms of these long-term detrimental effects. A large body of evidence supports this biological mechanism to explain violence-related health impairment in the long term. However, studies specifically focusing on violence are scant and nonunivocal. Epigenetic modifications of genes involved in stress response and in the hypothalamus-pituitary-adrenal axis regulation are the most commonly and consistently reported. Promising evidence also emerged for the use of epigenetic clocks. Finally, although very limited, there is evidence supporting the notion that long-term health impairment may be transmitted from one generation to the other. Overall, despite promising, available evidence is yet incomplete. The overlap with pure psychological mechanisms of health impairment exposes the findings to confounders and hampers strong conclusions. Based on a literature search on PubMed/Embase, our narrative review aims to illustrate the evidence concerning the potential bond between epigenetics and violence, including also possible impacts on later generations. The goal is to encourage further research to help the development of a more holistic approach for such a vulnerable and often neglected population. Further research is warranted to precisely disentangle the role of epigenetics in mediating the long-term health impairment associated with childhood or gender-based violence. Advances in this area may open new avenues of treatment. Epigenetic modifications may indeed be reversible and could be an attractive therapeutic target to minimize the long-term consequences of childhood or gender-based violence.
Collapse
Affiliation(s)
- Letizia Li Piani
- Dept of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Edgardo Somigliana
- Dept of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- SVSeD - Service for Sexual and Domestic Violence, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laila Giorgia Micci
- SVSeD - Service for Sexual and Domestic Violence, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaia Spinelli
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- SVSeD - Service for Sexual and Domestic Violence, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giussy Barbara
- Dept of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- SVSeD - Service for Sexual and Domestic Violence, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
16
|
Yusupov N, Roeh S, Sotillos Elliott L, Chang S, Loganathan S, Urbina-Treviño L, Fröhlich AS, Sauer S, Ködel M, Matosin N, Czamara D, Deussing JM, Binder EB. DNA methylation patterns of FKBP5 regulatory regions in brain and blood of humanized mice and humans. Mol Psychiatry 2024; 29:1510-1520. [PMID: 38317011 PMCID: PMC11189813 DOI: 10.1038/s41380-024-02430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
Humanized mouse models can be used to explore human gene regulatory elements (REs), which frequently lie in non-coding and less conserved genomic regions. Epigenetic modifications of gene REs, also in the context of gene x environment interactions, have not yet been explored in humanized mouse models. We applied high-accuracy measurement of DNA methylation (DNAm) via targeted bisulfite sequencing (HAM-TBS) to investigate DNAm in three tissues/brain regions (blood, prefrontal cortex and hippocampus) of mice carrying the human FK506-binding protein 5 (FKBP5) gene, an important candidate gene associated with stress-related psychiatric disorders. We explored DNAm in three functional intronic glucocorticoid-responsive elements (at introns 2, 5, and 7) of FKBP5 at baseline, in cases of differing genotype (rs1360780 single nucleotide polymorphism), and following application of the synthetic glucocorticoid dexamethasone. We compared DNAm patterns in the humanized mouse (N = 58) to those in human peripheral blood (N = 447 and N = 89) and human postmortem brain prefrontal cortex (N = 86). Overall, DNAm patterns in the humanized mouse model seem to recapitulate DNAm patterns observed in human tissue. At baseline, this was to a higher extent in brain tissue. The animal model also recapitulated effects of dexamethasone on DNAm, especially in peripheral blood and to a lesser extent effects of genotype on DNAm. The humanized mouse model could thus assist in reverse translation of human findings in psychiatry that involve genetic and epigenetic regulation in non-coding elements.
Collapse
Affiliation(s)
- Natan Yusupov
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Simone Roeh
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Sotillos Elliott
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simon Chang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Srivaishnavi Loganathan
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Anna S Fröhlich
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Susann Sauer
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Maik Ködel
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Darina Czamara
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
17
|
Kershner JR. Early life stress, literacy and dyslexia: an evolutionary perspective. Brain Struct Funct 2024; 229:809-822. [PMID: 38436668 PMCID: PMC11003919 DOI: 10.1007/s00429-024-02766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Stress and learning co-evolved in parallel, with their interdependence critical to the survival of the species. Even today, the regulation of moderate levels of stress by the central autonomic network (CAN), especially during pre- and post-natal periods, facilitates biological adaptability and is an essential precursor for the cognitive requisites of learning to read. Reading is a remarkable evolutionary achievement of the human brain, mysteriously unusual, because it is not pre-wired with a genetic address to facilitate its acquisition. There is no gene for reading. The review suggests that reading co-opts a brain circuit centered in the left hemisphere ventral occipital cortex that evolved as a domain-general visual processor. Its adoption by reading depends on the CAN's coordination of the learning and emotional requirements of learning to read at the metabolic, cellular, synaptic, and network levels. By stabilizing a child's self-control and modulating the attention network's inhibitory controls over the reading circuit, the CAN plays a key role in school readiness and learning to read. In addition, the review revealed two beneficial CAN evolutionary adjustments to early-life stress "overloads" that come with incidental costs of school under-performance and dyslexia. A short-term adaptation involving methylation of the FKBP5 and NR3C1 genes is a liability for academic achievement in primary school. The adaptation leading to dyslexia induces alterations in BDNF trafficking, promoting long-term adaptive fitness by protecting against excessive glucocorticoid toxicity but risks reading difficulties by disruptive signaling from the CAN to the attention networks and the reading circuit.
Collapse
Affiliation(s)
- John R Kershner
- Department of Applied Psychology and Human Resources, University of Toronto, Toronto, ON, M5S 1A1, Canada.
| |
Collapse
|
18
|
Charalampidou A, Nehls T, Meyners C, Gandhesiri S, Pomplun S, Pentelute BL, Lermyte F, Hausch F. Automated Flow Peptide Synthesis Enables Engineering of Proteins with Stabilized Transient Binding Pockets. ACS CENTRAL SCIENCE 2024; 10:649-657. [PMID: 38559286 PMCID: PMC10979424 DOI: 10.1021/acscentsci.3c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
Engineering at the amino acid level is key to enhancing the properties of existing proteins in a desired manner. So far, protein engineering has been dominated by genetic approaches, which have been extremely powerful but only allow for minimal variations beyond the canonical amino acids. Chemical peptide synthesis allows the unrestricted incorporation of a vast set of unnatural amino acids with much broader functionalities, including the incorporation of post-translational modifications or labels. Here we demonstrate the potential of chemical synthesis to generate proteins in a specific conformation, which would have been unattainable by recombinant protein expression. We use recently established rapid automated flow peptide synthesis combined with solid-phase late-stage modifications to rapidly generate a set of FK506-binding protein 51 constructs bearing defined intramolecular lactam bridges. This trapped an otherwise rarely populated transient pocket-as confirmed by crystal structures-which led to an up to 39-fold improved binding affinity for conformation-selective ligands and represents a unique system for the development of ligands for this rare conformation. Overall, our results show how rapid automated flow peptide synthesis can be applied to precision protein engineering.
Collapse
Affiliation(s)
- Anna Charalampidou
- Clemens-Schöpf-Institute,
Department of Chemistry, Technical University
of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
| | - Thomas Nehls
- Clemens-Schöpf-Institute,
Department of Chemistry, Technical University
of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
| | - Christian Meyners
- Clemens-Schöpf-Institute,
Department of Chemistry, Technical University
of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
| | - Satish Gandhesiri
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sebastian Pomplun
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg
55, 2333 CC Leiden, The Netherlands
| | - Bradley L. Pentelute
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Frederik Lermyte
- Clemens-Schöpf-Institute,
Department of Chemistry, Technical University
of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
- Department
of Synthetic Biology, Technical University
of Darmstadt, 64287 Darmstadt, Germany
| | - Felix Hausch
- Clemens-Schöpf-Institute,
Department of Chemistry, Technical University
of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
- Department
of Synthetic Biology, Technical University
of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
19
|
Zhao M, Wang Y, Zeng Y, Huang H, Xu T, Liu B, Wu C, Luo X, Jiang Y. Gene‒environment interaction effect of hypothalamic‒pituitary‒adrenal axis gene polymorphisms and job stress on the risk of sleep disturbances. PeerJ 2024; 12:e17119. [PMID: 38525273 PMCID: PMC10960531 DOI: 10.7717/peerj.17119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Background Studies have shown that chronic exposure to job stress may increase the risk of sleep disturbances and that hypothalamic‒pituitary‒adrenal (HPA) axis gene polymorphisms may play an important role in the psychopathologic mechanisms of sleep disturbances. However, the interactions among job stress, gene polymorphisms and sleep disturbances have not been examined from the perspective of the HPA axis. This study aimed to know whether job stress is a risk factor for sleep disturbances and to further explore the effect of the HPA axis gene × job stress interaction on sleep disturbances among railway workers. Methods In this cross-sectional study, 671 participants (363 males and 308 females) from the China Railway Fuzhou Branch were included. Sleep disturbances were evaluated with the Pittsburgh Sleep Quality Index (PSQI), and job stress was measured with the Effort-Reward Imbalance scale (ERI). Generalized multivariate dimensionality reduction (GMDR) models were used to assess gene‒environment interactions. Results We found a significant positive correlation between job stress and sleep disturbances (P < 0.01). The FKBP5 rs1360780-T and rs4713916-A alleles and the CRHR1 rs110402-G allele were associated with increased sleep disturbance risk, with adjusted ORs (95% CIs) of 1.75 [1.38-2.22], 1.68 [1.30-2.18] and 1.43 [1.09-1.87], respectively. However, the FKBP5 rs9470080-T allele was a protective factor against sleep disturbances, with an OR (95% CI) of 0.65 [0.51-0.83]. GMDR analysis indicated that under job stress, individuals with the FKBP5 rs1368780-CT, rs4713916-GG, and rs9470080-CT genotypes and the CRHR1 rs110402-AA genotype had the greatest risk of sleep disturbances. Conclusions Individuals carrying risk alleles who experience job stress may be at increased risk of sleep disturbances. These findings may provide new insights into stress-related sleep disturbances in occupational populations.
Collapse
Affiliation(s)
- Min Zhao
- Department of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuxi Wang
- Department of Public Health, Fujian Medical University, Fuzhou, China
| | - Yidan Zeng
- Department of Public Health, Fujian Medical University, Fuzhou, China
| | - Huimin Huang
- Department of Public Health, Fujian Medical University, Fuzhou, China
| | - Tong Xu
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Baoying Liu
- Department of Public Health, Fujian Medical University, Fuzhou, China
| | - Chuancheng Wu
- Department of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiufeng Luo
- Fuzhou Municipal Center for Disease Control and Prevention, Fuzhou, China
| | - Yu Jiang
- Department of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Cattane N, Di Benedetto MG, D'Aprile I, Riva MA, Cattaneo A. Dissecting the Long-Term Effect of Stress Early in Life on FKBP5: The Role of miR-20b-5p and miR-29c-3p. Biomolecules 2024; 14:371. [PMID: 38540789 PMCID: PMC10967956 DOI: 10.3390/biom14030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Exposure to early-life stress (ELS) has been related to an increased susceptibility to psychiatric disorders later in life. Although the molecular mechanisms underlying this association are still under investigation, glucocorticoid signaling has been proposed to be a key mediator. Here, we used two preclinical models, the prenatal stress (PNS) animal model and an in vitro model of hippocampal progenitor cells, to assess the long-term effect of ELS on FKBP5, NR3C1, NR3C2, and FoxO1, four stress-responsive genes involved in the effects of glucocorticoids. In the hippocampus of male PNS rats sacrificed at different time points during neurodevelopment (PND 21, 40, 62), we found a statistically significant up-regulation of FKBP5 at PND 40 and PND 62 and a significant increase in FoxO1 at PND 62. Interestingly, all four genes were significantly up-regulated in differentiated cells treated with cortisol during cell proliferation. As FKBP5 was consistently modulated by PNS at adolescence (PND 40) and adulthood (PND 62) and by cortisol treatment after cell differentiation, we measured a panel of miRNAs targeting FKBP5 in the same samples where FKBP5 expression levels were available. Interestingly, both miR-20b-5p and miR-29c-3p were significantly reduced in PNS-exposed animals (both at PND40 and 62) and also in the in vitro model after cortisol exposure. Our results highlight the key role of miR-20b-5p and miR-29c-3p in sustaining the long-term effects of ELS on the stress response system, representing a mechanistic link possibly contributing to the enhanced stress-related vulnerability to mental disorders.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Maria Grazia Di Benedetto
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Ilari D'Aprile
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
21
|
Ishiwari K, King CP, Martin CD, Tripi JA, George AM, Lamparelli AC, Chitre AS, Polesskaya O, Richards JB, Solberg Woods LC, Gancarz AM, Palmer AA, Dietz DM, Mitchell SH, Meyer PJ. Environmental enrichment promotes adaptive responding during tests of behavioral regulation in male heterogeneous stock rats. Sci Rep 2024; 14:4182. [PMID: 38378969 PMCID: PMC10879139 DOI: 10.1038/s41598-024-53943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors. For example, environmental enrichment produces beneficial neurobehavioral effects in animal models of such disorders. The present study determined the effects of environmental enrichment on a range of measures related to behavioral regulation using a large cohort of male, outbred heterogeneous stock (HS) rats as subjects. Subjects were reared from late adolescence onwards either in pairs in standard housing with minimal enrichment (n = 200) or in groups of 16 in a highly enriched environment consisting of a large multi-level cage filled with toys, running wheels, and shelters (n = 64). Rats were subjected to a battery of tests, including: (i) locomotor response to novelty, (ii) light reinforcement, (iii) social reinforcement, (iv) reaction time, (v) a patch-depletion foraging test, (vi) Pavlovian conditioned approach, (vii) conditioned reinforcement, and (viii) cocaine conditioned cue preference. Results indicated that rats housed in the enriched environment were able to filter out irrelevant stimuli more effectively and thereby regulate their behavior more efficiently than standard-housing rats. The dramatic impact of environmental enrichment suggests that behavioral studies using standard housing conditions may not generalize to more complex environments that may be more ethologically relevant.
Collapse
Affiliation(s)
- Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Christopher P King
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Connor D Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Jordan A Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Anthony M George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | | | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jerry B Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - David M Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Suzanne H Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
22
|
Theodoridou D, Tsiantis CO, Vlaikou AM, Chondrou V, Zakopoulou V, Christodoulides P, Oikonomou ED, Tzimourta KD, Kostoulas C, Tzallas AT, Tsamis KI, Peschos D, Sgourou A, Filiou MD, Syrrou M. Developmental Dyslexia: Insights from EEG-Based Findings and Molecular Signatures-A Pilot Study. Brain Sci 2024; 14:139. [PMID: 38391714 PMCID: PMC10887023 DOI: 10.3390/brainsci14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Developmental dyslexia (DD) is a learning disorder. Although risk genes have been identified, environmental factors, and particularly stress arising from constant difficulties, have been associated with the occurrence of DD by affecting brain plasticity and function, especially during critical neurodevelopmental stages. In this work, electroencephalogram (EEG) findings were coupled with the genetic and epigenetic molecular signatures of individuals with DD and matched controls. Specifically, we investigated the genetic and epigenetic correlates of key stress-associated genes (NR3C1, NR3C2, FKBP5, GILZ, SLC6A4) with psychological characteristics (depression, anxiety, and stress) often included in DD diagnostic criteria, as well as with brain EEG findings. We paired the observed brain rhythms with the expression levels of stress-related genes, investigated the epigenetic profile of the stress regulator glucocorticoid receptor (GR) and correlated such indices with demographic findings. This study presents a new interdisciplinary approach and findings that support the idea that stress, attributed to the demands of the school environment, may act as a contributing factor in the occurrence of the DD phenotype.
Collapse
Affiliation(s)
- Daniela Theodoridou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Christos-Orestis Tsiantis
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Angeliki-Maria Vlaikou
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), 45110 Ioannina, Greece
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Vasiliki Chondrou
- Laboratory of Biology, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Victoria Zakopoulou
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Pavlos Christodoulides
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Emmanouil D Oikonomou
- Department of Informatics and Telecommunications, School of Informatics & Telecommunications, University of Ioannina, 47100 Arta, Greece
| | - Katerina D Tzimourta
- Department of Electrical and Computer Engineering, University of Western Macedonia, 50100 Kozani, Greece
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandros T Tzallas
- Department of Informatics and Telecommunications, School of Informatics & Telecommunications, University of Ioannina, 47100 Arta, Greece
| | - Konstantinos I Tsamis
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Peschos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Argyro Sgourou
- Laboratory of Biology, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Michaela D Filiou
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), 45110 Ioannina, Greece
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Maria Syrrou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
23
|
Großmann NL, Weihs A, Kühn L, Sauer S, Röh S, Wiechmann T, Rex-Haffner M, Völzke H, Völker U, Binder EB, Teumer A, Homuth G, Klinger-König J, Grabe HJ. Methylation Patterns of the FKBP5 Gene in Association with Childhood Maltreatment and Depressive Disorders. Int J Mol Sci 2024; 25:1485. [PMID: 38338761 PMCID: PMC10855893 DOI: 10.3390/ijms25031485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Childhood maltreatment is an important risk factor for adult depression and has been associated with changes in the hypothalamic pituitary adrenal (HPA) axis, including cortisol secretion and methylation of the FKBP5 gene. Furthermore, associations between depression and HPA changes have been reported. This study investigated the associations of whole-blood FKBP5 mRNA levels, serum cortisol levels, childhood maltreatment, and depressive symptoms with the whole-blood methylation status (assessed via target bisulfite sequencing) of 105 CpGs at the FKBP5 locus using data from the general population-based Study of Health in Pomerania (SHIP) (N = 203). Both direct and interaction effects with the rs1360780 single-nucleotide polymorphism were investigated. Nominally significant associations of main effects on methylation of a single CpG site were observed at intron 3, intron 7, and the 3'-end of the gene. Additionally, methylation at two clusters at the 3'-end and intron 7 were nominally associated with childhood maltreatment × rs1360780 and depressive symptoms × rs1360780, respectively. The results add to the understanding of molecular mechanisms underlying the emergence of depression and could aid the development of personalised depression therapy and drug development.
Collapse
Affiliation(s)
- Nora L Großmann
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Antoine Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17489 Greifswald, Germany
| | - Luise Kühn
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Susann Sauer
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Simone Röh
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Tobias Wiechmann
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Monika Rex-Haffner
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, University Medicine Greifswald, 17475 Greifswald, Germany
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexander Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Johanna Klinger-König
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
24
|
Merz EC, Myers B, Hansen M, Simon KR, Strack J, Noble KG. Socioeconomic Disparities in Hypothalamic-Pituitary-Adrenal Axis Regulation and Prefrontal Cortical Structure. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:83-96. [PMID: 38090738 PMCID: PMC10714216 DOI: 10.1016/j.bpsgos.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 02/01/2024] Open
Abstract
Socioeconomic disadvantage during childhood predicts an increased risk for mental health problems across the life span. Socioeconomic disadvantage shapes multiple aspects of children's proximal environments and increases exposure to chronic stressors. Drawing from multiple literatures, we propose that childhood socioeconomic disadvantage may lead to adaptive changes in the regulation of stress response systems including the hypothalamic-pituitary-adrenal (HPA) axis. These changes, in turn, affect the development of prefrontal cortical (PFC) circuitry responsible for top-down control over cognitive and emotional processes. Translational findings indicate that chronic stress reduces dendritic complexity and spine density in the medial PFC and anterior cingulate cortex, in part through altered HPA axis regulation. Socioeconomic disadvantage has frequently been associated with reduced gray matter in the dorsolateral and ventrolateral PFC and anterior cingulate cortex and lower fractional anisotropy in the superior longitudinal fasciculus, cingulum bundle, and uncinate fasciculus during middle childhood and adolescence. Evidence of socioeconomic disparities in hair cortisol concentrations in children has accumulated, although null findings have been reported. Coupled with links between cortisol levels and reduced gray matter in the PFC and anterior cingulate cortex, these results support mechanistic roles for the HPA axis and these PFC circuits. Future longitudinal studies should simultaneously consider multiple dimensions of proximal factors, including cognitive stimulation, while focusing on epigenetic processes and genetic moderators to elucidate how socioeconomic context may influence the HPA axis and PFC circuitry involved in cognitive and emotional control. These findings, which point to modifiable factors, can be harnessed to inform policy and more effective prevention strategies.
Collapse
Affiliation(s)
- Emily C. Merz
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Melissa Hansen
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Katrina R. Simon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York
| | - Jordan Strack
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Kimberly G. Noble
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York
| |
Collapse
|
25
|
Curry AR, Ooi L, Matosin N. How spatial omics approaches can be used to map the biological impacts of stress in psychiatric disorders: a perspective, overview and technical guide. Stress 2024; 27:2351394. [PMID: 38752853 DOI: 10.1080/10253890.2024.2351394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Exposure to significant levels of stress and trauma throughout life is a leading risk factor for the development of major psychiatric disorders. Despite this, we do not have a comprehensive understanding of the mechanisms that explain how stress raises psychiatric disorder risk. Stress in humans is complex and produces variable molecular outcomes depending on the stress type, timing, and duration. Deciphering how stress increases disorder risk has consequently been challenging to address with the traditional single-target experimental approaches primarily utilized to date. Importantly, the molecular processes that occur following stress are not fully understood but are needed to find novel treatment targets. Sequencing-based omics technologies, allowing for an unbiased investigation of physiological changes induced by stress, are rapidly accelerating our knowledge of the molecular sequelae of stress at a single-cell resolution. Spatial multi-omics technologies are now also emerging, allowing for simultaneous analysis of functional molecular layers, from epigenome to proteome, with anatomical context. The technology has immense potential to transform our understanding of how disorders develop, which we believe will significantly propel our understanding of how specific risk factors, such as stress, contribute to disease course. Here, we provide our perspective of how we believe these technologies will transform our understanding of the neurobiology of stress, and also provided a technical guide to assist molecular psychiatry and stress researchers who wish to implement spatial omics approaches in their own research. Finally, we identify potential future directions using multi-omics technology in stress research.
Collapse
Affiliation(s)
- Amber R Curry
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Molecular Horizons, School of Chemistry and Molecular Bioscience, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Molecular Horizons, School of Chemistry and Molecular Bioscience, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Molecular Horizons, School of Chemistry and Molecular Bioscience, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
26
|
Ma J, Yang Z, Gao H, Huda N, Jiang Y, Liangpunsakul S. FK-binding protein 5: Possible relevance to the pathogenesis of metabolic dysfunction and alcohol-associated liver disease. J Investig Med 2024; 72:128-138. [PMID: 37807186 DOI: 10.1177/10815589231207793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The FK506-binding protein (FKBP5) plays significant roles in mediating stress responses by interacting with glucocorticoids, participating in adipogenesis, and influencing various cellular pathways throughout the body. In this review, we described the potential role of FKBP5 in the pathogenesis of two common chronic liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD), and alcohol-associated liver disease (ALD). We provided an overview of the FK-binding protein family and elucidated their roles in cellular stress responses, metabolic diseases, and adipogenesis. We explored how FKBP5 may mechanistically influence the pathogenesis of MASLD and ALD and provided insights for further investigation into the role of FKBP5 in these two diseases.
Collapse
Affiliation(s)
- Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hui Gao
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
27
|
de Kloet ER, Joëls M. The cortisol switch between vulnerability and resilience. Mol Psychiatry 2024; 29:20-34. [PMID: 36599967 DOI: 10.1038/s41380-022-01934-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
In concert with neuropeptides and transmitters, the end products of the hypothalamus-pituitary-adrenal (HPA) axis, the glucocorticoid hormones cortisol and corticosterone (CORT), promote resilience: i.e., the ability to cope with threats, adversity, and trauma. To exert this protective action, CORT activates mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) that operate in a complementary manner -as an on/off switch- to coordinate circadian events, stress-coping, and adaptation. The evolutionary older limbic MR facilitates contextual memory retrieval and supports an on-switch in the selection of stress-coping styles at a low cost. The rise in circulating CORT concentration after stress subsequently activates a GR-mediated off-switch underlying recovery of homeostasis by providing the energy for restraining the primary stress reactions and promoting cognitive control over emotional reactivity. GR activation facilitates contextual memory storage of the experience to enable future stress-coping. Such complementary MR-GR-mediated actions involve rapid non-genomic and slower gene-mediated mechanisms; they are time-dependent, conditional, and sexually dimorphic, and depend on genetic background and prior experience. If coping fails, GR activation impairs cognitive control and promotes emotional arousal which eventually may compromise resilience. Such breakdown of resilience involves a transition to a chronic stress construct, where information processing is crashed; it leads to an imbalanced MR-GR switch and hence increased vulnerability. Novel MR-GR modulators are becoming available that may reset a dysregulated stress response system to reinstate the cognitive flexibility required for resilience.
Collapse
Affiliation(s)
- E Ronald de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, The Netherlands.
- Leiden/Amsterdam Center of Drug Research, Leiden University, Leiden, The Netherlands.
| | - Marian Joëls
- Dept. Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Seo JH, Kim ST, Jeon S, Kang JI, Kim SJ. Sex-dependent association of DNA methylation of HPA axis-related gene FKBP5 with obsessive-compulsive disorder. Psychoneuroendocrinology 2023; 158:106404. [PMID: 37769537 DOI: 10.1016/j.psyneuen.2023.106404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
AIMS Although hypothalamic-pituitary-adrenal (HPA) axis dysregulation in obsessive-compulsive disorder (OCD) has been reported, epigenetic changes in HPA axis-related genes have not been well studied in OCD. The present study investigated whether the epigenetic regulation of FK506-binding protein 51 gene (FKBP5) intron 7 is associated with OCD status in each sex. In addition, relationships among the DNA methylation levels of FKBP5 intron 7, OCD status and early-life trauma were explored. METHODS A total of 267 patients with OCD and 201 controls aged between 18 and 40 years were recruited. Demographic and clinical assessment, FKBP5 rs1360780 genotyping, and pyrosequencing of FKBP5 intron 7 were conducted. DNA was extracted from peripheral blood leucocytes. First, multivariate analysis of covariance for differential DNA methylation levels between OCD patients and controls was conducted with adjustment for FKBP5 rs1360780 genotype, early-life trauma, depressive symptoms, and age as covariates in each sex. Next, path analysis was conducted to determine the mediation effects of DNA methylation levels of FKBP5 between early-life trauma and OCD status. In addition, sensitivity analyses for medication and lifetime major depression were also performed. RESULTS DNA methylation at the FKBP5 intron 7 CpG site was significantly lower in men with OCD, compared to controls (mean difference -1.33%, 95% CI -2.11 to -0.55, p < 0.001). The results remained significant for drug naïve or free subjects (mean difference -1.27%, 95% CI -2.18 to -0.37, p = 0.006, in men) and for subjects without lifetime major depressive disorder (mean difference -1.60%, 95% CI -2.54 to -0.66, p < 0.001, in men). The mediation effect of DNA methylation levels was not significant between early-life trauma and OCD status. CONCLUSION These findings suggest that epigenetic factors of HPA axis-related gene FKBP5 may play a role in the pathogenesis of OCD. Further studies are needed to determine how altered DNA methylation of FKBP5 intron 7 and HPA axis function are involved in OCD.
Collapse
Affiliation(s)
- Jun Ho Seo
- Department of Psychiatry, Yonsei University Wonju College of Medicine, Wonju, South Korea; Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Shin Tae Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea; Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sumoa Jeon
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jee In Kang
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea; Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| | - Se Joo Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea; Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
29
|
de Kloet ER. Glucocorticoid feedback paradox: a homage to Mary Dallman. Stress 2023; 26:2247090. [PMID: 37589046 DOI: 10.1080/10253890.2023.2247090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
As the end product of the hypothalamus-pituitary-adrenal (HPA) axis, the glucocorticoid hormones cortisol and corticosterone coordinate circadian activities, stress-coping, and adaptation to change. For this purpose, the hormone promotes energy metabolism and controls defense reactions in the body and brain. This life-sustaining action exerted by glucocorticoids occurs in concert with the autonomic nervous and immune systems, transmitters, growth factors/cytokines, and neuropeptides. The current contribution will focus on the glucocorticoid feedback paradox in the HPA-axis: the phenomenon that stress responsivity remains resilient if preceded by stress-induced secretion of glucocorticoid hormone, but not if this hormone is previously administered. Furthermore, in animal studies, the mixed progesterone/glucocorticoid antagonist RU486 or mifepristone switches to an apparent partial agonist upon repeated administration. To address these enigmas several interesting phenomena are highlighted. These include the conditional nature of the excitation/inhibition balance in feedback regulation, the role of glucose as a determinant of stress responsivity, and the potential of glucocorticoids in resetting the stress response system. The analysis of the feedback paradox provides also a golden opportunity to review the progress in understanding the role of glucocorticoid hormone in resilience and vulnerability during stress, the science that was burned deeply in Mary Dallman's emotions.
Collapse
Affiliation(s)
- Edo Ronald de Kloet
- Department of Clinical Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
30
|
Joseph J, Buss C, Knop A, de Punder K, Winter SM, Spors B, Binder E, Haynes JD, Heim C. Greater maltreatment severity is associated with smaller brain volume with implication for intellectual ability in young children. Neurobiol Stress 2023; 27:100576. [PMID: 37810429 PMCID: PMC10558820 DOI: 10.1016/j.ynstr.2023.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Background Childhood maltreatment profoundly alters trajectories of brain development, promoting markedly increased long-term health risks and impaired intellectual development. However, the immediate impact of maltreatment on brain development in children and the extent to which altered global brain volume contributes to intellectual development in children with maltreatment experience is currently unknown. We here utilized MRI data obtained from children within 6 months after the exposure to maltreatment to assess the association of maltreatment severity with global brain volume changes. We further assessed the association between maltreatment severity and intellectual development and tested for the mediating effect of brain volume on this association. Method We used structural MRI (3T) in a sample of 49 children aged 3-5 years with maltreatment exposure, i.e. emotional and physical abuse and/or neglect within 6 months, to characterize intracranial and tissue-specific volumes. Maltreatment severity was coded using the Maternal Interview for the Classification of Maltreatment. IQ was tested at study entry and after one year using the Snijders Oomen Nonverbal Test. Results Higher maltreatment severity was significantly correlated with smaller intracranial volume (r = -.393, p = .008), which was mainly driven by lower total brain volume (r = -.393, p = .008), which in turn was primarily due to smaller gray matter volume (r = -.454, p = .002). Furthermore, smaller gray matter volume was associated with lower IQ at study entry (r = -.548, p < .001) and predicted IQ one year later (r = -.493, p = .004.). The observed associations were independent of potential confounding variables, including height, socioeconomic status, age and sex. Importance We provide evidence that greater maltreatment severity in early childhood is related to smaller brain size at a very young age with significant consequences for intellectual ability, likely setting a path for far-reaching long-term disadvantages. Insights into the molecular and neural processes that underlie the impact of maltreatment on brain structure and function are urgently needed to derive mechanism-driven targets for early intervention.
Collapse
Affiliation(s)
- Judith Joseph
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Claudia Buss
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
- Development, Health, and Disease Research Program, Department of Pediatrics, University of California, Irvine, Orange, CA, USA
| | - Andrea Knop
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Karin de Punder
- Department of Clinical Psychology, University of Innsbruck, Austria
| | - Sibylle M. Winter
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Berlin, Germany
| | - Birgit Spors
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Elisabeth Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - John-Dylan Haynes
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Neuroimaging, Berlin, Germany
- Department of Psychology, Humboldt Universitat zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Christine Heim
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
31
|
Fischer S, Kleinstäuber M, Fiori LM, Turecki G, Wagner J, von Känel R. DNA Methylation Signatures of Functional Somatic Syndromes: Systematic Review. Psychosom Med 2023; 85:672-681. [PMID: 37531610 DOI: 10.1097/psy.0000000000001237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
OBJECTIVE Functional somatic syndromes (FSS) are highly prevalent across all levels of health care. The fact that they are characterized by medically unexplained symptoms, such as fatigue and pain, raises the important question of their underlying pathophysiology. Psychosocial stress represents a significant factor in the development of FSS and can induce long-term modifications at the epigenetic level. The aim of this review was to systematically review, for the first time, whether individuals with FSS are characterized by specific alterations in DNA methylation. METHODS MEDLINE and PsycINFO were searched from the first available date to September 2022. The inclusion criteria were as follows: a) adults fulfilling the research diagnostic criteria for chronic fatigue syndrome, fibromyalgia syndrome, and/or irritable bowel syndrome; b) healthy control group; and c) candidate-gene or genome-wide study of DNA methylation. RESULTS Sixteen studies ( N = 957) were included. In candidate-gene studies, specific sites within NR3C1 were identified, which were hypomethylated in individuals with chronic fatigue syndrome compared with healthy controls. In genome-wide studies in chronic fatigue syndrome, a hypomethylated site located to LY86 and hypermethylated sites within HLA-DQB1 were found. In genome-wide studies in fibromyalgia syndrome, differential methylation in sites related to HDAC4 , TMEM44 , KCNQ1 , SLC17A9 , PRKG1 , ALPK3 , TFAP2A , and LY6G5C was found. CONCLUSIONS Individuals with chronic fatigue syndrome and fibromyalgia syndrome seem to be characterized by altered DNA methylation of genes regulating cellular signaling and immune functioning. In chronic fatigue syndrome, there is preliminary evidence for these to be implicated in key pathophysiological alterations, such as hypocortisolism and low-grade inflammation, and to contribute to the debilitating symptoms these individuals experience. PREREGISTRATION PROSPERO identifier: CRD42022364720.
Collapse
Affiliation(s)
- Susanne Fischer
- From the Institute of Psychology (Fischer), Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland; Department of Psychology, Emma Eccles Jones College of Education and Human Services (Kleinstäuber), Utah State University, Logan, Utah; McGill Group for Suicide Studies, Douglas Hospital Research Center (Fiori, Turecki), Montréal, Canada; Department of Psychiatry (Turecki), McGill University, Montréal, Canada; and Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine (Wagner, von Känel). University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Yusupov N, van Doeselaar L, Röh S, Wiechmann T, Ködel M, Sauer S, Rex-Haffner M, Schmidt MV, Binder EB. Extensive evaluation of DNA methylation of functional elements in the murine Fkbp5 locus using high-accuracy DNA methylation measurement via targeted bisulfite sequencing. Eur J Neurosci 2023; 58:2662-2676. [PMID: 37414581 DOI: 10.1111/ejn.16078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
FKBP5 is an important stress-regulatory gene implicated in stress-related psychiatric diseases. Single nucleotide polymorphisms of the FKBP5 gene were shown to interact with early life stress to alter the glucocorticoid-related stress response and moderate disease risk. Demethylation of cytosine-phosphate-guanine-dinucleotides (CpGs) in regulatory glucocorticoid-responsive elements was suggested to be the mediating epigenetic mechanism for long-term stress effects, but studies on Fkbp5 DNA methylation (DNAm) in rodents are so far limited. We evaluated the applicability of high-accuracy DNA methylation measurement via targeted bisulfite sequencing (HAM-TBS), a next-generation sequencing-based technology, to allow a more in-depth characterisation of the DNA methylation of the murine Fkbp5 locus in three different tissues (blood, frontal cortex and hippocampus). In this study, we not only increased the number of evaluated sites in previously described regulatory regions (in introns 1 and 5), but also extended the evaluation to novel, possibly relevant regulatory regions of the gene (in intron 8, the transcriptional start site, the proximal enhancer and CTCF-binding sites within the 5'UTR). We here describe the assessment of HAM-TBS assays for a panel of 157 CpGs with possible functional relevance in the murine Fkbp5 gene. DNAm profiles were tissue-specific, with lesser differences between the two brain regions than between the brain and blood. Moreover, we identified DNAm changes in the Fkbp5 locus after early life stress exposure in the frontal cortex and blood. Our findings indicate that HAM-TBS is a valuable tool for broader exploration of the DNAm of the murine Fkbp5 locus and its involvement in the stress response.
Collapse
Affiliation(s)
- Natan Yusupov
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Lotte van Doeselaar
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simone Röh
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tobias Wiechmann
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Maik Ködel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Susann Sauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
33
|
Ishiwari K, King CP, Martin CD, Tripi JA, George AM, Lamparelli AC, Chitre A, Polesskaya O, Richards JB, Woods LCS, Gancarz A, Palmer AA, Dietz DM, Mitchell SH, Meyer PJ. Environmental enrichment promotes adaptive responding during tests of behavioral regulation in male heterogeneous stock rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547228. [PMID: 37503161 PMCID: PMC10369912 DOI: 10.1101/2023.06.30.547228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors. For example, environmental enrichment produces beneficial neurobehavioral effects in animal models of such disorders. The present study determined the effects of environmental enrichment on a range of measures related to behavioral regulation using a large cohort of male, outbred heterogeneous stock (HS) rats as subjects to mimic the genetic variability found in the human population. Subjects were reared from late adolescence onwards either in pairs in standard housing with minimal enrichment (n=200) or in groups of 16 in a highly enriched environment consisting of a large multi-level cage filled with toys, running wheels, and shelters (n=64). Rats were subjected to a battery of tests, including: (i) locomotor response to novelty, (iI) light reinforcement, (iii) social reinforcement, (iv) reaction time, (v) a patch-depletion foraging test, (vi) Pavlovian conditioned approach, (vii) conditioned reinforcement, and (viii) cocaine conditioned cue preference. Results indicated that rats housed in the enriched environment were able to filter out irrelevant stimuli more effectively and thereby regulate their behavior more efficiently than standard-housing rats. The dramatic impact of environmental enrichment suggests that behavioral studies using standard housing conditions may not generalize to more complex environments that may be more ethologically relevant.
Collapse
Affiliation(s)
- Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Christopher P. King
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Connor D. Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Jordan A. Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Anthony M. George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | | | - Apurva Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jerry B. Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amy Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, CA, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - David M. Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Suzanne H. Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Paul J. Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
34
|
Malekpour M, Shekouh D, Safavinia ME, Shiralipour S, Jalouli M, Mortezanejad S, Azarpira N, Ebrahimi ND. Role of FKBP5 and its genetic mutations in stress-induced psychiatric disorders: an opportunity for drug discovery. Front Psychiatry 2023; 14:1182345. [PMID: 37398599 PMCID: PMC10313426 DOI: 10.3389/fpsyt.2023.1182345] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Stress-induced mental health disorders are affecting many people around the world. However, effective drug therapy for curing psychiatric diseases does not occur sufficiently. Many neurotransmitters, hormones, and mechanisms are essential in regulating the body's stress response. One of the most critical components of the stress response system is the hypothalamus-pituitary-adrenal (HPA) axis. The FKBP prolyl isomerase 51 (FKBP51) protein is one of the main negative regulators of the HPA axis. FKBP51 negatively regulates the cortisol effects (the end product of the HPA axis) by inhibiting the interaction between glucocorticoid receptors (GRs) and cortisol, causing reduced transcription of downstream cortisol molecules. By regulating cortisol effects, the FKBP51 protein can indirectly regulate the sensitivity of the HPA axis to stressors. Previous studies have indicated the influence of FKBP5 gene mutations and epigenetic changes in different psychiatric diseases and drug responses and recommended the FKBP51 protein as a drug target and a biomarker for psychological disorders. In this review, we attempted to discuss the effects of the FKBP5 gene, its mutations on different psychiatric diseases, and drugs affecting the FKBP5 gene.
Collapse
Affiliation(s)
- Mahdi Malekpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dorsa Shekouh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Shadi Shiralipour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Jalouli
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Mortezanejad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
35
|
Winter JJ, Rodríguez-Acevedo KL, Dittrich M, Heller EA. Early life adversity: Epigenetic regulation underlying drug addiction susceptibility. Mol Cell Neurosci 2023; 125:103825. [PMID: 36842544 PMCID: PMC10247461 DOI: 10.1016/j.mcn.2023.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023] Open
Abstract
Drug addiction is a leading cause of disability worldwide, with more than 70,000 Americans dying from drug overdose in 2019 alone. While only a small percentage of chronic drug users escalate to drug addiction, little is understood on the precise mechanisms of this susceptibility. Early life adversity is causally relevant to adult psychiatric disease and may contribute to the risk of addiction. Here we review recent pre-clinical evidence showing that early life exposure to stress and/or drugs regulates changes in behavior, gene expression, and the epigenome that persist into adulthood. We summarize the major findings and gaps in the preclinical literature, highlighting studies that demonstrate the often profound differences between female and male subjects.
Collapse
Affiliation(s)
| | | | - Mia Dittrich
- University of Pennsylvania, Philadelphia, PA 19106, USA
| | | |
Collapse
|
36
|
Gladkova MG, Leidmaa E, Anderzhanova EA. Epidrugs in the Therapy of Central Nervous System Disorders: A Way to Drive on? Cells 2023; 12:1464. [PMID: 37296584 PMCID: PMC10253154 DOI: 10.3390/cells12111464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The polygenic nature of neurological and psychiatric syndromes and the significant impact of environmental factors on the underlying developmental, homeostatic, and neuroplastic mechanisms suggest that an efficient therapy for these disorders should be a complex one. Pharmacological interventions with drugs selectively influencing the epigenetic landscape (epidrugs) allow one to hit multiple targets, therefore, assumably addressing a wide spectrum of genetic and environmental mechanisms of central nervous system (CNS) disorders. The aim of this review is to understand what fundamental pathological mechanisms would be optimal to target with epidrugs in the treatment of neurological or psychiatric complications. To date, the use of histone deacetylases and DNA methyltransferase inhibitors (HDACis and DNMTis) in the clinic is focused on the treatment of neoplasms (mainly of a glial origin) and is based on the cytostatic and cytotoxic actions of these compounds. Preclinical data show that besides this activity, inhibitors of histone deacetylases, DNA methyltransferases, bromodomains, and ten-eleven translocation (TET) proteins impact the expression of neuroimmune inflammation mediators (cytokines and pro-apoptotic factors), neurotrophins (brain-derived neurotropic factor (BDNF) and nerve growth factor (NGF)), ion channels, ionotropic receptors, as well as pathoproteins (β-amyloid, tau protein, and α-synuclein). Based on this profile of activities, epidrugs may be favorable as a treatment for neurodegenerative diseases. For the treatment of neurodevelopmental disorders, drug addiction, as well as anxiety disorders, depression, schizophrenia, and epilepsy, contemporary epidrugs still require further development concerning a tuning of pharmacological effects, reduction in toxicity, and development of efficient treatment protocols. A promising strategy to further clarify the potential targets of epidrugs as therapeutic means to cure neurological and psychiatric syndromes is the profiling of the epigenetic mechanisms, which have evolved upon actions of complex physiological lifestyle factors, such as diet and physical exercise, and which are effective in the management of neurodegenerative diseases and dementia.
Collapse
Affiliation(s)
- Marina G. Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 50411 Tartu, Estonia
| | | |
Collapse
|
37
|
Wang A, Wei Z, Yuan H, Zhu Y, Peng Y, Gao Z, Liu Y, Shen J, Xu H, Guan J, Yin S, Liu F, Li X. FKBP5 genetic variants are associated with respiratory- and sleep-related parameters in Chinese patients with obstructive sleep apnea. Front Neurosci 2023; 17:1170889. [PMID: 37274192 PMCID: PMC10233201 DOI: 10.3389/fnins.2023.1170889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Obstructive sleep apnea (OSA) has been associated with psychiatric disorders, especially depression and posttraumatic stress disorder (PTSD). FKBP5 genetic variants have been previously reported to confer the risk of depression and PTSD. This study aimed to investigate the association of single nucleotide polymorphisms (SNPs) in the FKBP5 gene with OSA and OSA-related quantitative traits. Methods Four SNPs within the FKBP5 gene (rs1360780, rs3800373, rs9296158, rs9470080) were genotyped in 5773 participants with anthropometric and polysomnography data. Linear regression and logistic regression analyses were performed to evaluate the relationship between FKBP5 SNPs and OSA-related traits. Binary logistic regression was used to assess the effect of SNPs on OSA susceptibility. Interacting genes of SNPs were assessed based on the 3DSNP database, and expression quantitative trait loci (eQTL) analysis for SNPs was adopted to examine the correlation of SNPs with gene expression. Gene expression analyses in human brains were performed with the aid of Brain Atlas. Results In moderate-to-severe OSA patients, all four SNPs were positively associated with AHIREM, and rs9296158 showed the strongest association (ß = 1.724, p = 0.001). Further stratified analyses showed that in men with moderate OSA, rs1360780, rs3800373 and rs9470080 were positively associated with wake time (p = 0.0267, p = 0.0254 and p = 0.0043, respectively). Rs1360780 and rs3800373 were 28 and 29.4%more likely to rate a higher ordered MAI category (OR (95% CI) = 1.280 (1.042 - 1.575), p = 0.019; OR (95% CI) = 1.294 (1.052 - 1.592), p = 0.015, respectively). Rs9296158 and rs9470080 increased the risk of low sleep efficiency by 25.7 and 28.1% (OR (95% CI) = 1.257 (1.003 - 1.575), p = 0.047; OR (95% CI) = 1.281 (1.026-1.6), p = 0.029, respectively). Integrated analysis of eQTL and gene expression patterns revealed that four SNPs may exert their effects by regulating FKBP5, TULP1, and ARMC12. Conclusion Single nucleotide polymorphisms in the FKBP5 gene were associated with sleep respiratory events in moderate-to-severe OSA patients during REM sleep and associated with sleep architecture variables in men with moderate OSA. FKBP5 variants may be a potential predisposing factor for sleep disorders, especially in REM sleep.
Collapse
Affiliation(s)
- Anzhao Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Zhicheng Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Haolin Yuan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yaxin Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yu Peng
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Zhenfei Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yuenan Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jinhong Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Huajun Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jian Guan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Feng Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Cugliari G. FKBP5, a Modulator of Stress Responses Involved in Malignant Mesothelioma: The Link between Stress and Cancer. Int J Mol Sci 2023; 24:ijms24098183. [PMID: 37175892 PMCID: PMC10179631 DOI: 10.3390/ijms24098183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare tumour characterized by a long latency period after asbestos exposure and poor survival [...].
Collapse
Affiliation(s)
- Giovanni Cugliari
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
39
|
Matosin N, Arloth J, Czamara D, Edmond KZ, Maitra M, Fröhlich AS, Martinelli S, Kaul D, Bartlett R, Curry AR, Gassen NC, Hafner K, Müller NS, Worf K, Rehawi G, Nagy C, Halldorsdottir T, Cruceanu C, Gagliardi M, Gerstner N, Ködel M, Murek V, Ziller MJ, Scarr E, Tao R, Jaffe AE, Arzberger T, Falkai P, Kleinmann JE, Weinberger DR, Mechawar N, Schmitt A, Dean B, Turecki G, Hyde TM, Binder EB. Associations of psychiatric disease and ageing with FKBP5 expression converge on superficial layer neurons of the neocortex. Acta Neuropathol 2023; 145:439-459. [PMID: 36729133 PMCID: PMC10020280 DOI: 10.1007/s00401-023-02541-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Identification and characterisation of novel targets for treatment is a priority in the field of psychiatry. FKBP5 is a gene with decades of evidence suggesting its pathogenic role in a subset of psychiatric patients, with potential to be leveraged as a therapeutic target for these individuals. While it is widely reported that FKBP5/FKBP51 mRNA/protein (FKBP5/1) expression is impacted by psychiatric disease state, risk genotype and age, it is not known in which cell types and sub-anatomical areas of the human brain this occurs. This knowledge is critical to propel FKBP5/1-targeted treatment development. Here, we performed an extensive, large-scale postmortem study (n = 1024) of FKBP5/1, examining neocortical areas (BA9, BA11 and ventral BA24/BA24a) derived from subjects that lived with schizophrenia, major depression or bipolar disorder. With an extensive battery of RNA (bulk RNA sequencing, single-nucleus RNA sequencing, microarray, qPCR, RNAscope) and protein (immunoblot, immunohistochemistry) analysis approaches, we thoroughly investigated the effects of disease state, ageing and genotype on cortical FKBP5/1 expression including in a cell type-specific manner. We identified consistently heightened FKBP5/1 levels in psychopathology and with age, but not genotype, with these effects strongest in schizophrenia. Using single-nucleus RNA sequencing (snRNAseq; BA9 and BA11) and targeted histology (BA9, BA24a), we established that these disease and ageing effects on FKBP5/1 expression were most pronounced in excitatory superficial layer neurons of the neocortex, and this effect appeared to be consistent in both the granular and agranular areas examined. We then found that this increase in FKBP5 levels may impact on synaptic plasticity, as FKBP5 gex levels strongly and inversely correlated with dendritic mushroom spine density and brain-derived neurotrophic factor (BDNF) levels in superficial layer neurons in BA11. These findings pinpoint a novel cellular and molecular mechanism that has potential to open a new avenue of FKBP51 drug development to treat cognitive symptoms in psychiatric disorders.
Collapse
Affiliation(s)
- Natalie Matosin
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany.
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia.
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia.
| | - Janine Arloth
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Katrina Z Edmond
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Malosree Maitra
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Anna S Fröhlich
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Silvia Martinelli
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Dominic Kaul
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Rachael Bartlett
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Amber R Curry
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Neurohomeostasis Research Group, Institute of Psychiatry, Clinical Centre, University of Bonn, Bonn, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Nikola S Müller
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Karolina Worf
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Ghalia Rehawi
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Cristiana Cruceanu
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Gagliardi
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Nathalie Gerstner
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Maik Ködel
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Vanessa Murek
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Michael J Ziller
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Elizabeth Scarr
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Synaptic Neurobiology and Cognition Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ran Tao
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Andrew E Jaffe
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
- Centre for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Peter Falkai
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Joel E Kleinmann
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Daniel R Weinberger
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, São Paulo, 05453-010, Brazil
| | - Brian Dean
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Synaptic Neurobiology and Cognition Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas M Hyde
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA.
| |
Collapse
|
40
|
Zhou J, Gong X. Longitudinal relation between maladaptive parenting and nonsuicidal self-injury among Chinese early adolescents: The roles of internalizing symptoms and FKBP5 gene variation. J Affect Disord 2023; 331:33-42. [PMID: 36934853 DOI: 10.1016/j.jad.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND While increasing research has effectively documented that maladaptive parenting is a significant risk factor for adolescent nonsuicidal self-injury, the process mechanism and gene-by-environment interaction in this relation among Chinese early adolescents are still poorly understood. METHODS In this study, a multi-informant longitudinal design was applied to investigate the indirect effect of internalizing symptoms in the relation between maladaptive parenting and nonsuicidal self-injury, and to examine how FKBP5 gene variation moderates these association. A total of 1718 Chinese Han early adolescents (44.30 % girls; Mage at Wave 1 = 10.35) and their parents participated this study. RESULTS The results showed that maladaptive parenting significantly predicts adolescent nonsuicidal self-injury after six months. Maladaptive parenting was also indirectly related to nonsuicidal self-injury via internalizing symptoms. Moreover, using a cumulative genetic score approach, the results showed that FKBP5 gene variation moderates the predictive effect of maladaptive parenting on internalizing symptoms and also moderates the indirect effect of internalizing symptoms between maladaptive parenting and nonsuicidal self-injury. These effects were more salient among adolescents with high (versus low) FKBP5 gene related cumulative genetic score linked to heightened stress reactivity. LIMITATIONS Our study only obtained two waves of data. Three waves of data would be more suitable for examining a mediation model. CONCLUSION This study reveals the process mechanism between maladaptive parenting and nonsuicidal self-injury and highlights the significance of gene-by-environment interaction to explain the emergence of nonsuicidal self-injury among adolescents.
Collapse
Affiliation(s)
- Jianhua Zhou
- School of Psychology, Northwest Normal University, Lanzhou, People's Republic of China
| | - Xue Gong
- Department of Psychology, Normal College, Qingdao University, Qingdao, People's Republic of China.
| |
Collapse
|
41
|
Buffa V, Knaup FH, Heymann T, Springer M, Schmidt MV, Hausch F. Analysis of the Selective Antagonist SAFit2 as a Chemical Probe for the FK506-Binding Protein 51. ACS Pharmacol Transl Sci 2023; 6:361-371. [PMID: 36926456 PMCID: PMC10012253 DOI: 10.1021/acsptsci.2c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 02/16/2023]
Abstract
The FK506-binding protein 51 (FKBP51) has emerged as an important regulator of the mammalian stress response and is involved in persistent pain states and metabolic pathways. The FK506 analog SAFit2 (short for selective antagonist of FKBP51 by induced fit) was the first potent and selective FKBP51 ligand with an acceptable pharmacokinetic profile. At present, SAFit2 represents the gold standard for FKBP51 pharmacology and has been extensively used in numerous biological studies. Here we review the current knowledge on SAFit2 as well as guidelines for its use.
Collapse
Affiliation(s)
- Vanessa Buffa
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Fabian H. Knaup
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Tim Heymann
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Margherita Springer
- Research
Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Mathias V. Schmidt
- Research
Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Felix Hausch
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
42
|
Bassil K, Krontira AC, Leroy T, Escoto AIH, Snijders C, Pernia CD, Pasterkamp RJ, de Nijs L, van den Hove D, Kenis G, Boks MP, Vadodaria K, Daskalakis NP, Binder EB, Rutten BPF. In vitro modeling of the neurobiological effects of glucocorticoids: A review. Neurobiol Stress 2023; 23:100530. [PMID: 36891528 PMCID: PMC9986648 DOI: 10.1016/j.ynstr.2023.100530] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Hypothalamic-pituitary adrenal (HPA)axis dysregulation has long been implicated in stress-related disorders such as major depression and post-traumatic stress disorder. Glucocorticoids (GCs) are released from the adrenal glands as a result of HPA-axis activation. The release of GCs is implicated with several neurobiological changes that are associated with negative consequences of chronic stress and the onset and course of psychiatric disorders. Investigating the underlying neurobiological effects of GCs may help to better understand the pathophysiology of stress-related psychiatric disorders. GCs impact a plethora of neuronal processes at the genetic, epigenetic, cellular, and molecular levels. Given the scarcity and difficulty in accessing human brain samples, 2D and 3D in vitro neuronal cultures are becoming increasingly useful in studying GC effects. In this review, we provide an overview of in vitro studies investigating the effects of GCs on key neuronal processes such as proliferation and survival of progenitor cells, neurogenesis, synaptic plasticity, neuronal activity, inflammation, genetic vulnerability, and epigenetic alterations. Finally, we discuss the challenges in the field and offer suggestions for improving the use of in vitro models to investigate GC effects.
Collapse
Affiliation(s)
- Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Anthi C Krontira
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Thomas Leroy
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Alana I H Escoto
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Clara Snijders
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Cameron D Pernia
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Marco P Boks
- Psychiatry, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Krishna Vadodaria
- Salk Institute for Biological Studies, La Jolla, San Diego, United States
| | | | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
43
|
Holz NE, Berhe O, Sacu S, Schwarz E, Tesarz J, Heim CM, Tost H. Early Social Adversity, Altered Brain Functional Connectivity, and Mental Health. Biol Psychiatry 2023; 93:430-441. [PMID: 36581495 DOI: 10.1016/j.biopsych.2022.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Early adverse environmental exposures during brain development are widespread risk factors for the onset of severe mental disorders and strong and consistent predictors of stress-related mental and physical illness and reduced life expectancy. Current evidence suggests that early negative experiences alter plasticity processes during developmentally sensitive time windows and affect the regular functional interaction of cortical and subcortical neural networks. This, in turn, may promote a maladapted development with negative consequences on the mental and physical health of exposed individuals. In this review, we discuss the role of functional magnetic resonance imaging-based functional connectivity phenotypes as potential biomarker candidates for the consequences of early environmental exposures-including but not limited to-childhood maltreatment. We take an expanded concept of developmentally relevant adverse experiences from infancy over childhood to adolescence as our starting point and focus our review of functional connectivity studies on a selected subset of functional magnetic resonance imaging-based phenotypes, including connectivity in the limbic and within the frontoparietal as well as default mode networks, for which we believe there is sufficient converging evidence for a more detailed discussion in a developmental context. Furthermore, we address specific methodological challenges and current knowledge gaps that complicate the interpretation of early stress effects on functional connectivity and deserve particular attention in future studies. Finally, we highlight the forthcoming prospects and challenges of this research area with regard to establishing functional connectivity measures as validated biomarkers for brain developmental processes and individual risk stratification and as target phenotypes for mechanism-based interventions.
Collapse
Affiliation(s)
- Nathalie E Holz
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Oksana Berhe
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Seda Sacu
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jonas Tesarz
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine M Heim
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany; College of Health and Human Development, The Pennsylvania State University, University Park, Pennsylvania
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
44
|
Gebru NT, Hill SE, Blair LJ. Genetically engineered mouse models of FK506-binding protein 5. J Cell Biochem 2023:10.1002/jcb.30374. [PMID: 36780339 PMCID: PMC10423308 DOI: 10.1002/jcb.30374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 01/15/2023] [Indexed: 02/14/2023]
Abstract
FK506 binding protein 51 (FKBP51) is a molecular chaperone that influences stress response. In addition to having an integral role in the regulation of steroid hormone receptors, including glucocorticoid receptor, FKBP51 has been linked with several biological processes including metabolism and neuronal health. Genetic and epigenetic alterations in the gene that encodes FKBP51, FKBP5, are associated with increased susceptibility to multiple neuropsychiatric disorders, which has fueled much of the research on this protein. Because of the complexity of these processes, animal models have been important in understanding the role of FKBP51. This review examines each of the current mouse models of FKBP5, which include whole animal knockout, conditional knockout, overexpression, and humanized mouse models. The generation of each model and observational details are discussed, including behavioral phenotypes, molecular changes, and electrophysiological alterations basally and following various challenges. While much has been learned through these models, there are still many aspects of FKBP51 biology that remain opaque and future studies are needed to help illuminate these current gaps in knowledge. Overall, FKBP5 continues to be an exciting potential target for stress-related disorders.
Collapse
Affiliation(s)
- Niat T. Gebru
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
| | - Shannon E. Hill
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
| | - Laura J. Blair
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Research Service, James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, United States
| |
Collapse
|
45
|
Ketchesin KD, Zong W, Hildebrand MA, Scott MR, Seney ML, Cahill KM, Shankar VG, Glausier JR, Lewis DA, Tseng GC, McClung CA. Diurnal Alterations in Gene Expression Across Striatal Subregions in Psychosis. Biol Psychiatry 2023; 93:137-148. [PMID: 36302706 PMCID: PMC10411997 DOI: 10.1016/j.biopsych.2022.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Psychosis is a defining feature of schizophrenia and highly prevalent in bipolar disorder. Notably, individuals with these illnesses also have major disruptions in sleep and circadian rhythms, and disturbances of sleep and circadian rhythms can precipitate or exacerbate psychotic symptoms. Psychosis is associated with the striatum, though to our knowledge, no study to date has directly measured molecular rhythms and determined how they are altered in the striatum of subjects with psychosis. METHODS We performed RNA sequencing and both differential expression and rhythmicity analyses to investigate diurnal alterations in gene expression in human postmortem striatal subregions (nucleus accumbens, caudate, and putamen) in subjects with psychosis (n = 36) relative to unaffected comparison subjects (n = 36). RESULTS Across regions, we found differential expression of immune-related transcripts and a substantial loss of rhythmicity in core circadian clock genes in subjects with psychosis. In the nucleus accumbens, mitochondrial-related transcripts had decreased expression in subjects with psychosis, but only in those who died at night. Additionally, we found a loss of rhythmicity in small nucleolar RNAs and a gain of rhythmicity in glutamatergic signaling in the nucleus accumbens of subjects with psychosis. Between-region comparisons indicated that rhythmicity in the caudate and putamen was far more similar in subjects with psychosis than in matched comparison subjects. CONCLUSIONS Together, these findings reveal differential and rhythmic gene expression differences across the striatum that may contribute to striatal dysfunction and psychosis in psychotic disorders.
Collapse
Affiliation(s)
- Kyle D Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wei Zong
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mariah A Hildebrand
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Madeline R Scott
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marianne L Seney
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kelly M Cahill
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vaishnavi G Shankar
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jill R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Colleen A McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
46
|
Fries GR, Saldana VA, Finnstein J, Rein T. Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry 2023; 28:284-297. [PMID: 36203007 PMCID: PMC9540059 DOI: 10.1038/s41380-022-01806-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) is a psychiatric disease of still poorly understood molecular etiology. Extensive studies at different molecular levels point to a high complexity of numerous interrelated pathways as the underpinnings of depression. Major systems under consideration include monoamines, stress, neurotrophins and neurogenesis, excitatory and inhibitory neurotransmission, mitochondrial dysfunction, (epi)genetics, inflammation, the opioid system, myelination, and the gut-brain axis, among others. This review aims at illustrating how these multiple signaling pathways and systems may interact to provide a more comprehensive view of MDD's neurobiology. In particular, considering the pattern of synaptic activity as the closest physical representation of mood, emotion, and conscience we can conceptualize, each pathway or molecular system will be scrutinized for links to synaptic neurotransmission. Models of the neurobiology of MDD will be discussed as well as future actions to improve the understanding of the disease and treatment options.
Collapse
Affiliation(s)
- Gabriel R. Fries
- grid.267308.80000 0000 9206 2401Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX 77054 USA ,grid.240145.60000 0001 2291 4776Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Valeria A. Saldana
- grid.262285.90000 0000 8800 2297Frank H. Netter MD School of Medicine at Quinnipiac University, 370 Bassett Road, North Haven, CT 06473 USA
| | - Johannes Finnstein
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804 Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804, Munich, Germany.
| |
Collapse
|
47
|
Galigniana NM, Ruiz MC, Piwien-Pilipuk G. FK506 binding protein 51: Its role in the adipose organ and beyond. J Cell Biochem 2022. [PMID: 36502528 DOI: 10.1002/jcb.30351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 02/17/2024]
Abstract
There is a great body of evidence that the adipose organ plays a central role in the control not only of energy balance, but importantly, in the maintenance of metabolic homeostasis. Interest in the study of different aspects of its physiology grew in the last decades due to the pandemic of obesity and the consequences of metabolic syndrome. It was not until recently that the first evidence for the role of the high molecular weight immunophilin FK506 binding protein (FKBP) 51 in the process of adipocyte differentiation have been described. Since then, many new facets have been discovered of this stress-responsive FKBP51 as a central node for precise coordination of many cell functions, as shown for nuclear steroid receptors, autophagy, signaling pathways as Akt, p38 MAPK, and GSK3, as well as for insulin signaling and the control of glucose homeostasis. Thus, the aim of this review is to integrate and discuss the recent advances in the understanding of the many roles of FKBP51 in the adipose organ.
Collapse
Affiliation(s)
- Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marina C Ruiz
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| |
Collapse
|
48
|
Luo L, You W, DelBello MP, Gong Q, Li F. Recent advances in psychoradiology. Phys Med Biol 2022; 67. [PMID: 36279868 DOI: 10.1088/1361-6560/ac9d1e] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022]
Abstract
Abstract
Psychiatry, as a field, lacks objective markers for diagnosis, progression, treatment planning, and prognosis, in part due to difficulties studying the brain in vivo, and diagnoses are based on self-reported symptoms and observation of patient behavior and cognition. Rapid advances in brain imaging techniques allow clinical investigators to noninvasively quantify brain features at the structural, functional, and molecular levels. Psychoradiology is an emerging discipline at the intersection of psychiatry and radiology. Psychoradiology applies medical imaging technologies to psychiatry and promises not only to improve insight into structural and functional brain abnormalities in patients with psychiatric disorders but also to have potential clinical utility. We searched for representative studies related to recent advances in psychoradiology through May 1, 2022, and conducted a selective review of 165 references, including 75 research articles. We summarize the novel dynamic imaging processing methods to model brain networks and present imaging genetics studies that reveal the relationship between various neuroimaging endophenotypes and genetic markers in psychiatric disorders. Furthermore, we survey recent advances in psychoradiology, with a focus on future psychiatric diagnostic approaches with dimensional analysis and a shift from group-level to individualized analysis. Finally, we examine the application of machine learning in psychoradiology studies and the potential of a novel option for brain stimulation treatment based on psychoradiological findings in precision medicine. Here, we provide a summary of recent advances in psychoradiology research, and we hope this review will help guide the practice of psychoradiology in the scientific and clinical fields.
Collapse
|
49
|
Mohammadi S, Beh-Pajooh A, Ahmadimanesh M, Amini M, Ghazi-Khansari M, Moallem SA, Hosseini R, Nourian YH, Ghahremani MH. Evaluation of DNA methylation in BDNF, SLC6A4, NR3C1 and FKBP5 before and after treatment with selective serotonin-reuptake inhibitor in major depressive disorder. Epigenomics 2022; 14:1269-1280. [DOI: 10.2217/epi-2022-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aim: To identify the DNA methylation status of related genes in major depressive disorder following selective serotonin-reuptake inhibitor treatment. Materials & methods: 45 patients with major depressive disorder and 45 healthy volunteers were considered experimental and control groups, respectively. High-resolution melting real-time PCR was implemented to evaluate DNA methylation. Results: After 100 days of selective serotonin-reuptake inhibitor treatment, methylation of promoter CpG sites of BDNF, NR3C1, FKBP5 and SLC6A4 was significantly reduced. Compared with before treatment, patients' Hamilton Depression Rating Scale scores were significantly reduced after selective serotonin-reuptake inhibitor treatment (p ≤ 0.0001). Conclusion: Based on the proven effect of antidepressants on DNA methylation and gene expression, these medications can improve the treatment process and reduce depression scores after treatment.
Collapse
Affiliation(s)
- Saeid Mohammadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Beh-Pajooh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadimanesh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Rohollah Hosseini
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Hasani Nourian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Toxicology and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Reshetnikov VV, Kisaretova PE, Bondar NP. Transcriptome Alterations Caused by Social Defeat Stress of Various Durations in Mice and Its Relevance to Depression and Posttraumatic Stress Disorder in Humans: A Meta-Analysis. Int J Mol Sci 2022; 23:ijms232213792. [PMID: 36430271 PMCID: PMC9698544 DOI: 10.3390/ijms232213792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The research on molecular causes of stress-associated psychopathologies is becoming highly important because the number of people with depression, generalized anxiety disorder and posttraumatic stress disorders (PTSDs) is steadily increasing every year. Investigation of molecular mechanisms in animal models opens up broad prospects for researchers, but relevant molecular signatures can differ significantly between patients and animal models. In our work, we for the first time carried out a meta-analysis of transcriptome changes in the prefrontal cortex of C57BL/6 mice after 10 and 30 days of social defeat stress (SDS). We then examined possible correlations of these alterations with transcriptome changes found in post-mortem samples from patients with depression or PTSD. Although transcriptional signatures of human psychiatric disorders and SDS did not overlap substantially, our results allowed us to identify the most reproducible changes seen after SDS of various durations. In addition, we were able to identify the genes involved in susceptibility to SDS after 10 days of stress. Taken together, these data help us to elucidate the molecular changes induced by SDS depending on its duration as well as their relevance to the alterations found in depression or PTSD in humans.
Collapse
Affiliation(s)
- Vasiliy V. Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Avenue, Sochi 354340, Russia
- Correspondence: ; Tel.: +7-913-715-0695
| | - Polina E. Kisaretova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Natalia P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| |
Collapse
|