1
|
Nadler E, Jacobus J, Rabin RA. Prenatal Cannabis and Tobacco Co-Exposure and Its Association with Behavioural Outcomes in Middle Childhood: Co-exposition prénatale au cannabis et au tabac et son association avec les résultats comportementaux au cours de l'enfance intermédiaire. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2025; 70:41-53. [PMID: 39140868 PMCID: PMC11572036 DOI: 10.1177/07067437241271696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
OBJECTIVES Cannabis legalization has triggered an increase in prenatal cannabis use. Given that tobacco is commonly co-used with cannabis, determining outcomes associated with prenatal cannabis and tobacco co-exposure is crucial. While literature exists regarding the individual effects of prenatal cannabis and tobacco exposure on childhood behaviour, there is a gap regarding their combined use, which may have interactive effects. Therefore, we investigated whether prenatal cannabis and tobacco co-exposure was associated with greater externalizing and internalizing problems in middle childhood compared to prenatal exposure to either substance alone or no exposure. METHODS Baseline data from the Adolescent Brain Cognitive Development (ABCD) Study (collected in children ages 9-11) were used to explore differences in externalizing and internalizing scores derived from the Childhood Behavior Checklist across four groups: children with prenatal cannabis and tobacco co-exposure (CT, n = 290), children with prenatal cannabis-only exposure (CAN, n = 225), children with prenatal tobacco-only exposure (TOB, n = 966), and unexposed children (CTL, n = 8,311). We also examined if the daily quantity of tobacco exposure modulated the effect of cannabis exposure on outcomes. RESULTS Adjusting for covariates, a 2 × 2 ANCOVA revealed significant main effects for prenatal cannabis (p = 0.03) and tobacco exposure (p < 0.001), and a significant interaction effect on externalizing scores (p = 0.032); no significant main effects or interactions were found for internalizing scores. However, interactions between daily quantity of cannabis and tobacco exposure significantly predicted both externalizing and internalizing scores (p < 0.01). CONCLUSIONS These findings indicate that co-exposure is associated with greater externalizing problems than exposure to either substance alone, which did not differ from each other. Further, greater tobacco exposure may amplify the negative effect of cannabis exposure on both externalizing and internalizing behaviours in children. These findings underscore the need for interventions that target cannabis and tobacco co-use in pregnant women to circumvent their adverse impact on middle childhood behaviour. PLAIN LANGUAGE SUMMARY TITLE Prenatal Cannabis and Tobacco Co-exposure and its Association with Middle Childhood Behaviours.
Collapse
Affiliation(s)
| | - Joanna Jacobus
- Department of Psychiatry, University of California San Diego, San Diego, California, USA
| | - Rachel A Rabin
- Department of Psychiatry, McGill University and The Douglas Mental Health University Institute, Montreal, Canada
| |
Collapse
|
2
|
Hill MN, Haney M, Hillard CJ, Karhson DS, Vecchiarelli HA. The endocannabinoid system as a putative target for the development of novel drugs for the treatment of psychiatric illnesses. Psychol Med 2023; 53:7006-7024. [PMID: 37671673 PMCID: PMC10719691 DOI: 10.1017/s0033291723002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023]
Abstract
Cannabis is well established to impact affective states, emotion and perceptual processing, primarily through its interactions with the endocannabinoid system. While cannabis use is quite prevalent in many individuals afflicted with psychiatric illnesses, there is considerable controversy as to whether cannabis may worsen these conditions or provide some form of therapeutic benefit. The development of pharmacological agents which interact with components of the endocannabinoid system in more localized and discrete ways then via phytocannabinoids found in cannabis, has allowed the investigation if direct targeting of the endocannabinoid system itself may represent a novel approach to treat psychiatric illness without the potential untoward side effects associated with cannabis. Herein we review the current body of literature regarding the various pharmacological tools that have been developed to target the endocannabinoid system, their impact in preclinical models of psychiatric illness and the recent data emerging of their utilization in clinical trials for psychiatric illnesses, with a specific focus on substance use disorders, trauma-related disorders, and autism. We highlight several candidate drugs which target endocannabinoid function, particularly inhibitors of endocannabinoid metabolism or modulators of cannabinoid receptor signaling, which have emerged as potential candidates for the treatment of psychiatric conditions, particularly substance use disorder, anxiety and trauma-related disorders and autism spectrum disorders. Although there needs to be ongoing clinical work to establish the potential utility of endocannabinoid-based drugs for the treatment of psychiatric illnesses, the current data available is quite promising and shows indications of several potential candidate diseases which may benefit from this approach.
Collapse
Affiliation(s)
- Matthew N. Hill
- Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, Hotchkiss Brain Institute and The Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
| | - Margaret Haney
- Department of Psychiatry, New York State Psychiatric Institute and Columbia University Irving Medical Center, New York, USA
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, USA
| | - Debra S. Karhson
- Department of Psychology, University of New Orleans, New Orleans, USA
| | | |
Collapse
|
3
|
Yeap ZJS, Marsault J, George TP, Mizrahi R, Rabin RA. Does tobacco dependence worsen cannabis withdrawal in people with and without schizophrenia-spectrum disorders? Am J Addict 2023; 32:367-375. [PMID: 36815595 DOI: 10.1111/ajad.13394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Rates of cannabis use disorder (CUD) are higher in people with schizophrenia than in the general population. Irrespective of psychiatric diagnosis, tobacco co-use is prevalent in those with CUD and leads to poor cannabis cessation outcomes. The cannabis withdrawal syndrome is well-established and increases cannabis relapse risk. We investigated whether cannabis withdrawal severity differed as a function of high versus no/low tobacco dependence and psychiatric diagnosis in individuals with CUD. METHOD Men with CUD (N = 55) were parsed into four groups according to schizophrenia diagnosis and tobacco dependence severity using the Fagerstrom Test for Nicotine Dependence (FTND): men with schizophrenia with high tobacco dependence (SCT+, n = 13; FTND ≥ 5) and no/low tobacco dependence (SCT-, n = 22; FTND ≤ 4), and nonpsychiatric controls with high (CCT+, n = 7; FTND ≥ 5) and no/low (CCT-, n = 13; FTND ≤ 4) tobacco dependence. Participants completed the Marijuana Withdrawal Checklist following 12-h of cannabis abstinence. RESULTS There was a significant main effect of tobacco dependence on cannabis withdrawal severity (p < .001). Individuals with high tobacco dependence had significantly greater cannabis withdrawal severity (M = 13.85 [6.8]) compared to individuals with no/low tobacco dependence (M = 6.49, [4.9]). Psychiatric diagnosis and the interaction effects were not significant. Lastly, cannabis withdrawal severity positively correlated with FTND (r = .41, p = .002). CONCLUSION AND SCIENTIFIC SIGNIFICANCE Among individuals with CUD and high tobacco dependence, cannabis withdrawal severity was elevated twofold, irrespective of diagnosis, relative to individuals with CUD and no/low tobacco dependence. Findings from this study emphasize the importance of addressing tobacco co-use when treating CUD.
Collapse
Affiliation(s)
- Zac J S Yeap
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Justine Marsault
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Tony P George
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Centre for Complex Interventions and Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Romina Mizrahi
- Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Rachel A Rabin
- Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Stella N. THC and CBD: Similarities and differences between siblings. Neuron 2023; 111:302-327. [PMID: 36638804 PMCID: PMC9898277 DOI: 10.1016/j.neuron.2022.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/14/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Δ9-tetrahydrocannabinol (THC) and its sibling, cannabidiol (CBD), are produced by the same Cannabis plant and have similar chemical structures but differ dramatically in their mechanisms of action and effects on brain functions. Both THC and CBD exhibit promising therapeutic properties; however, impairments and increased incidence of mental health diseases are associated with acute and chronic THC use, respectively, and significant side effects are associated with chronic use of high-dose CBD. This review covers recent molecular and preclinical discoveries concerning the distinct mechanisms of action and bioactivities of THC and CBD and their impact on human behavior and diseases. These discoveries provide a foundation for the development of cannabinoid-based therapeutics for multiple devastating diseases and to assure their safe use in the growing legal market of Cannabis-based products.
Collapse
Affiliation(s)
- Nephi Stella
- Department of Pharmacology, Department Psychiatry and Behavioral Sciences, Center for Cannabis Research, Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Gao W, Anna Valdimarsdóttir U, Hauksdóttir A, Eyrún Torfadóttir J, Kirschbaum C. The assessment of endocannabinoids and N-acylethanolamines in human hair: Associations with sociodemographic and psychological variables. Clin Chim Acta 2022; 537:1-8. [DOI: 10.1016/j.cca.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
|
6
|
Ajalin RM, Al-Abdulrasul H, Tuisku JM, Hirvonen JES, Vahlberg T, Lahdenpohja S, Rinne JO, Brück AE. Cannabinoid Receptor Type 1 in Parkinson's Disease: A Positron Emission Tomography Study with [ 18 F]FMPEP-d 2. Mov Disord 2022; 37:1673-1682. [PMID: 35674270 PMCID: PMC9544132 DOI: 10.1002/mds.29117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background The endocannabinoid system is a widespread neuromodulatory system affecting several biological functions and processes. High densities of type 1 cannabinoid (CB1) receptors and endocannabinoids are found in basal ganglia, which makes them an interesting target group for drug development in basal ganglia disorders such as Parkinson's disease (PD). Objective The aim of this study was to investigate CB1 receptors in PD with [18F]FMPEP‐d2 positron emission tomography (PET) and the effect of dopaminergic medication on the [18F]FMPEP‐d2 binding. Methods The data consisted of 16 subjects with PD and 10 healthy control subjects (HCs). All participants underwent a [18F]FMPEP‐d2 high‐resolution research tomograph PET examination for the quantitative assessment of cerebral binding to CB1 receptors. To investigate the effect of dopaminergic medication on the [18F]FMPEP‐d2 binding, 15 subjects with PD underwent [18F]FMPEP‐d2 PET twice, both on and off antiparkinsonian medication. Results [18F]FMPEP‐d2 distribution volume was significantly lower in the off scan compared with the on scan in basal ganglia, thalamus, hippocampus, and amygdala (P < 0.05). Distribution volume was lower in subjects with PD off than in HCs globally (P < 0.05), but not higher than in HCs in any brain region. Conclusions Subjects with PD have lower CB1 receptor availability compared with HCs. PD medication increases CB1 receptor toward normal levels. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Riikka M Ajalin
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Neurocenter, Turku University Hospital and Clinical Neurosciences, University of Turku, Turku, Finland
| | - Haidar Al-Abdulrasul
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Jouni M Tuisku
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland
| | - Jussi E S Hirvonen
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tero Vahlberg
- Department of Biostatistics, University of Turku, Turku, Finland
| | - Salla Lahdenpohja
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Neurocenter, Turku University Hospital and Clinical Neurosciences, University of Turku, Turku, Finland
| | - Anna E Brück
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Neurocenter, Turku University Hospital and Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
7
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
8
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Navarro D, López-Picón F, Morcuende Á, Femenía T, Manzanares J. Biomarkers of the Endocannabinoid System in Substance Use Disorders. Biomolecules 2022; 12:biom12030396. [PMID: 35327588 PMCID: PMC8946268 DOI: 10.3390/biom12030396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Despite substance use disorders (SUD) being one of the leading causes of disability and mortality globally, available therapeutic approaches remain ineffective. The difficulty in accurately characterizing the neurobiological mechanisms involved with a purely qualitative diagnosis is an obstacle to improving the classification and treatment of SUD. In this regard, identifying central and peripheral biomarkers is essential to diagnosing the severity of drug dependence, monitoring therapeutic efficacy, predicting treatment response, and enhancing the development of safer and more effective pharmacological tools. In recent years, the crucial role that the endocannabinoid system (ECS) plays in regulating the reinforcing and motivational properties of drugs of abuse has been described. This has led to studies characterizing ECS alterations after exposure to various substances to identify biomarkers with potential diagnostic, prognostic, or therapeutic utility. This review aims to compile the primary evidence available from rodent and clinical studies on how the ECS components are modified in the context of different substance-related disorders, gathering data from genetic, molecular, functional, and neuroimaging experimental approaches. Finally, this report concludes that additional translational research is needed to further characterize the modifications of the ECS in the context of SUD, and their potential usefulness in the necessary search for biomarkers.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Francisco López-Picón
- PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, 20520 Turku, Finland;
| | - Álvaro Morcuende
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
| | - Teresa Femenía
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-965-919-248
| |
Collapse
|
9
|
Ho W, Kolla NJ. The endocannabinoid system in borderline personality disorder and antisocial personality disorder: A scoping review. BEHAVIORAL SCIENCES & THE LAW 2022; 40:331-350. [PMID: 35575169 DOI: 10.1002/bsl.2576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/06/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Individuals with borderline personality disorder (BPD) or antisocial personality disorder (ASPD) are overrepresented in forensic settings. Yet, despite the burden these disorders place on healthcare and criminal justice systems, there remains a lack of evidence-based pharmacological treatments. Epidemiological data have shown that comorbid cannabis use disorders are common in BPD and ASPD. ∆9 -Tetrahydrocannabinol, the primary psychoactive constituent of cannabis, is an exogenous cannabinoid that stimulates the endocannabinoid system (ECS). Hence, an investigation of the ECS in these conditions is warranted. This scoping review screened 105 records and summarized the extant research on the ECS in ASPD (n = 69) and BPD (n = 61) participants. Preliminary results suggest that alterations of the ECS may be present in these disorders. Although research examining the ECS in personality disorders is still in its infancy, more research is warranted given initial positive findings.
Collapse
Affiliation(s)
- Wilson Ho
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Nathan J Kolla
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada
- Waypoint/University of Toronto Research Chair in Forensic Mental Health Science, Penetanguishene, ON, Canada
| |
Collapse
|
10
|
Spindle TR, Kuwabara H, Eversole A, Nandi A, Vandrey R, Antoine DG, Umbricht A, Guarda AS, Wong DF, Weerts EM. Brain imaging of cannabinoid type I (CB 1 ) receptors in women with cannabis use disorder and male and female healthy controls. Addict Biol 2021; 26:e13061. [PMID: 34028926 PMCID: PMC8516687 DOI: 10.1111/adb.13061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Cannabis effects are predominantly mediated by pharmacological actions on cannabinoid type 1 (CB1 ) receptors. Prior positron emission tomography (PET) studies in individuals who use cannabis included almost exclusively males. PET studies in females are needed because there are sex differences in cannabis effects, progression to cannabis use disorder (CUD), and withdrawal symptom severity. Females with CUD (N = 10) completed two double-blind cannabis smoking sessions (Session 1: placebo; Session 2: active), and acute cannabis effects were assessed. After Session 2, participants underwent 3 days of monitored cannabis abstinence; mood, craving, and withdrawal symptoms were assessed and a PET scan (radiotracer: [11 C]OMAR) followed. [11 C]OMAR Distribution volume (VT ) from these participants was compared with VT of age/BMI-similar female non-users of cannabis ("healthy controls"; N = 10). VT was also compared between female and male healthy controls (N = 7). Females with CUD displayed significantly lower VT than female healthy controls in specific brain regions (hippocampus, amygdala, cingulate, and insula). Amygdala VT was negatively correlated with mood changes (anger/hostility) during abstinence, but VT was not correlated with other withdrawal symptoms or cannabis effects. Among healthy controls, females had significantly higher VT than males in all brain regions examined. Chronic cannabis use appears to foster downregulation of CB1 receptors in women, as observed previously in men, and there are inherent sex differences in CB1 availability. Future studies should elucidate the time course of CB1 downregulation among females who use cannabis and examine the relation between CB1 availability and cannabis effects among other populations (e.g., infrequent users; medicinal users).
Collapse
Affiliation(s)
- Tory R. Spindle
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Hiroto Kuwabara
- Division of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline Street, Baltimore, MD, 21287, USA
| | - Alisha Eversole
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Ayon Nandi
- Division of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline Street, Baltimore, MD, 21287, USA
| | - Ryan Vandrey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Denis G. Antoine
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Annie Umbricht
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Angela S. Guarda
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Dean F. Wong
- Division of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline Street, Baltimore, MD, 21287, USA
| | - Elise M. Weerts
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| |
Collapse
|
11
|
Borgan F, O'Daly O, Veronese M, Reis Marques T, Laurikainen H, Hietala J, Howes O. The neural and molecular basis of working memory function in psychosis: a multimodal PET-fMRI study. Mol Psychiatry 2021; 26:4464-4474. [PMID: 31801965 PMCID: PMC8550949 DOI: 10.1038/s41380-019-0619-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 01/10/2023]
Abstract
Working memory (WM) deficits predict clinical and functional outcomes in schizophrenia but are poorly understood and unaddressed by existing treatments. WM encoding and WM retrieval have not been investigated in schizophrenia without the confounds of illness chronicity or the use of antipsychotics and illicit substances. Moreover, it is unclear if WM deficits may be linked to cannabinoid 1 receptor dysfunction in schizophrenia. Sixty-six volunteers (35 controls, 31 drug-free patients with diagnoses of schizophrenia or schizoaffective disorder) completed the Sternberg Item-Recognition paradigm during an fMRI scan. Neural activation during WM encoding and WM retrieval was indexed using the blood-oxygen-level-dependent hemodynamic response. A subset of volunteers (20 controls, 20 drug-free patients) underwent a dynamic PET scan to measure [11C] MePPEP distribution volume (ml/cm3) to index CB1R availability. In a whole-brain analysis, there was a significant main effect of group on task-related BOLD responses in the superior parietal lobule during WM encoding, and the bilateral hippocampus during WM retrieval. Region of interest analyses in volunteers who had PET/fMRI indicated that there was a significant main effect of group on task-related BOLD responses in the right hippocampus, left DLPFC, left ACC during encoding; and in the bilateral hippocampus, striatum, ACC and right DLPFC during retrieval. Striatal CB1R availability was positively associated with mean striatal activation during WM retrieval in male patients (R = 0.5, p = 0.02) but not male controls (R = -0.20, p = 0.53), and this was significantly different between groups, Z = -2.20, p = 0.02. Striatal CB1R may contribute to the pathophysiology of WM deficits in male patients and have implications for drug development in schizophrenia.
Collapse
Affiliation(s)
- Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, England.
| | - Owen O'Daly
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Tiago Reis Marques
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, England
| | - Heikki Laurikainen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Jarmo Hietala
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| |
Collapse
|
12
|
Endocannabinoid system in psychotic and mood disorders, a review of human studies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110096. [PMID: 32898588 PMCID: PMC8582009 DOI: 10.1016/j.pnpbp.2020.110096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Despite widespread evidence of endocannabinoid system involvement in the pathophysiology of psychiatric disorders, our understanding remains rudimentary. Here we review studies of the endocannabinoid system in humans with psychotic and mood disorders. Postmortem, peripheral, cerebrospinal fluid and in vivo imaging studies provide evidence for the involvement of the endocannabinoid system in psychotic and mood disorders. Psychotic disorders and major depressive disorder exhibit alterations of brain cannabinoid CB1 receptors and peripheral blood endocannabinoids. Further, these changes may be sensitive to treatment status, disease state, and symptom severity. Evidence from psychotic disorder extend to endocannabinoid metabolizing enzymes in the brain and periphery, whereas these lines of evidence remain poorly developed in mood disorders. A paucity of studies examining this system in bipolar disorder represents a notable gap in the literature. Despite a growing body of productive work in this field of research, there is a clear need for investigation beyond the CB1 receptor in order to more fully elucidate the role of the endocannabinoid system in psychotic and mood disorders.
Collapse
|
13
|
Prospero-Garcia OE, Ruiz-Contreras AE, Morelos J, Herrera-Solis A, Mendez-Díaz M. Fragility of reward vs antifragility of defense brain systems in drug dependence. Soc Neurosci 2021; 16:145-152. [PMID: 33529536 DOI: 10.1080/17470919.2021.1876759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Drug dependence is a debilitating disorder, affecting 30 million people worldwide. In this short review we discuss about the plasticity changes in the reward and defense brain systems induced by early-life psychosocial stressful experiences. Such changes may render persons more vulnerable to illicit drugs use, facilitating behaviors of abuse and development of addiction. We propose that underlying plasticity changes render brain reward system as increasingly fragile because of tolerance and other physiological effects that reduce responsiveness with repeated use. In contrast, we propose that brain defense system makes maintain antifragile mechanisms that generate more robust responses with the prolonged consumption of drugs. Investigating the underlying mechanisms of these brain plasticity changes may advance the development of more efficacious pharmacologic and psychotherapeutic approaches to rehabilitate patients and more efficacious prevention policies to protect children from stressful experiences.
Collapse
Affiliation(s)
- Oscar E Prospero-Garcia
- Depto. De Fisiología, Facultad De Medicina, Laboratorio De Canabinoides, Mexico City, Mexico
| | - Alejandra E Ruiz-Contreras
- Psicobiología Y Neurociencias, Facultad De Psicología.Laboratorio De Neurogenómica Cognitiva, Coordinación De
| | | | - Andrea Herrera-Solis
- Subdirección De Investigación Biomédica, Hospital General Dr. Manuel Gea GonzálezLaboratorio Efectos Terapéuticos De Los Canabinoides
| | - Mónica Mendez-Díaz
- Depto. De Fisiología, Facultad De Medicina, Laboratorio De Canabinoides, Mexico City, Mexico
| |
Collapse
|
14
|
Chukwueke CC, Kowalczyk WJ, Gendy M, Taylor R, Tyndale RF, Le Foll B, Heishman SJ. The CB1R rs2023239 receptor gene variant significantly affects the reinforcing effects of nicotine, but not cue reactivity, in human smokers. Brain Behav 2021; 11:e01982. [PMID: 33369277 PMCID: PMC7882168 DOI: 10.1002/brb3.1982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION The cannabinoid CB1 receptor (CB1R) has been shown in preclinical studies to be involved in nicotine reinforcement and relapse-like behavior. The common single nucleotide polymorphism (SNP) rs2023239 may code for an alternative CB1R protein, alter CB1R expression, and be involved in nicotine dependence. To date, no study has explored the relationship between this SNP in CB1R and specific phenotypes of nicotine dependence. METHODS The current study investigated the influence of CB1R rs2023239 in nicotine reinforcement and craving in regular cigarette smokers. Current smokers (n = 104, cigarettes per day ≥ 10) were genetically grouped (C allele group vs. No C allele group) and underwent laboratory measures of nicotine reinforcement and smoking cue-elicited craving. Nicotine reinforcement was assessed using a forced choice paradigm, while a cue-reactivity procedure measured cue-elicited craving. RESULTS These results show that smokers with the C allele variant (CC + CT genotypes) experienced a lower nicotine reinforcement effect compared to those without the C allele (TT genotype). These results were similar in both our subjective and behavioral reinforcement measures, though the subjective effects did not withstand controlling for race. There was no difference between genotype groups with respect to cue-elicited craving, suggesting a lack of influence in cue reactivity. CONCLUSION Taken together, these results suggest that the variation in the CB1R (i.e., rs2023239 SNP) may play a larger role in nicotine reinforcement compared to cue reactivity. This work provides impetus to further understand the physiological mechanisms that explain how CB1Rs influence nicotine dependence phenotypes.
Collapse
Affiliation(s)
- Chidera C Chukwueke
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - William J Kowalczyk
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.,Department of Psychology, Hartwick College, Oneonta, NY, USA
| | - Marie Gendy
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Richard Taylor
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Rachel F Tyndale
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.,CAMH, Campbell Family Mental Health Research Institute, Toronto, ON, Canada.,Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada.,CAMH, Campbell Family Mental Health Research Institute, Toronto, ON, Canada.,Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Acute Care Program, CAMH, Toronto, ON, Canada.,Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health, Institute for Mental Health Policy Research, Toronto, ON, Canada
| | - Stephen J Heishman
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| |
Collapse
|
15
|
Gianessi CA, Groman SM, Taylor JR. The effects of fatty acid amide hydrolase inhibition and monoacylglycerol lipase inhibition on habit formation in mice. Eur J Neurosci 2021; 55:922-938. [PMID: 33506530 PMCID: PMC10370500 DOI: 10.1111/ejn.15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/31/2022]
Abstract
Emerging data indicate that endocannabinoid signaling is critical to the formation of habitual behavior. Previous work demonstrated that antagonism of cannabinoid receptor type 1 (CB1R) with AM251 during operant training impairs habit formation, but it is not known if this behavioral effect is specific to disrupted signaling of the endocannabinoid ligands anandamide or 2-arachidonoyl glycerol (2-AG). Here, we used selective pharmacological compounds during operant training to determine the impact of fatty acid amide hydrolase (FAAH) inhibition to increase anandamide (and other n-acylethanolamines) or monoacylglycerol lipase (MAGL) inhibition to increase 2-AG levels on the formation of habitual behaviors in mice using a food-reinforced contingency degradation procedure. We found, contrary to our hypothesis, that inhibition of FAAH and of MAGL disrupted the formation of habits. Next, AM251 was administered during training to verify that impaired habit formation could be assessed using contingency degradation. AM251-exposed mice responded at lower rates during training and at higher rates in the test. To understand the inconsistency with published data, we performed a proof-of-principle dose-response experiment to compare AM251 in our vehicle-solution to the published vehicle-suspension on response rates. We found consistent reductions in response rate with increasing doses of AM251 in solution and an inconsistent dose-response relationship with AM251 in suspension. Together, our data suggest that further characterization of the role of CB1R signaling in the formation of habitual responding is warranted and that augmenting endocannabinoids may have clinical utility for prophylactically preventing aberrant habit formation such as that hypothesized to occur in substance use disorders.
Collapse
Affiliation(s)
- Carol A Gianessi
- Interdepartmental Neuroscience Program, Yale University Graduate School of Arts and Sciences, New Haven, CT, USA
| | - Stephanie M Groman
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jane R Taylor
- Interdepartmental Neuroscience Program, Yale University Graduate School of Arts and Sciences, New Haven, CT, USA.,Division of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Department of Psychology, Yale University, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
16
|
Terry GE, Raymont V, Horti AG. PET Imaging of the Endocannabinoid System. PET AND SPECT OF NEUROBIOLOGICAL SYSTEMS 2021:319-426. [DOI: 10.1007/978-3-030-53176-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Miederer I, Wiegand V, Bausbacher N, Leukel P, Maus S, Hoffmann MA, Lutz B, Schreckenberger M. Quantification of the Cannabinoid Type 1 Receptor Availability in the Mouse Brain. Front Neuroanat 2020; 14:593793. [PMID: 33328905 PMCID: PMC7714830 DOI: 10.3389/fnana.2020.593793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: The endocannabinoid system is involved in several diseases such as addictive disorders, schizophrenia, post-traumatic stress disorder, and eating disorders. As often mice are used as the preferred animal model in translational research, in particular when using genetically modified mice, this study aimed to provide a systematic analysis of in vivo cannabinoid type 1 (CB1) receptor ligand-binding capacity using positron emission tomography (PET) using the ligand [18F]MK-9470. We then compared the PET results with literature data from immunohistochemistry (IHC) to review the consistency between ex vivo protein expression and in vivo ligand binding. Methods: Six male C57BL/6J (6–9 weeks) mice were examined with the CB1 receptor ligand [18F]MK-9470 and small animal PET. Different brain regions were evaluated using the parameter %ID/ml. The PET results of the [18F]MK-9470 accumulation in the mouse brain were compared with immunohistochemical literature data. Results: The ligand [18F]MK-9470 was taken up into the mouse brain within 5 min after injection and exhibited slow kinetics. It accumulated highly in most parts of the brain. PET and IHC classifications were consistent for most parts of the telencephalon, while brain regions of the diencephalon, mesencephalon, and rhombencephalon were rated higher with PET than IHC. Conclusions: This preclinical [18F]MK-9470 study demonstrated the radioligand’s applicability for imaging the region-specific CB1 receptor availability in the healthy adult mouse brain and thus offers the potential to study CB1 receptor availability in pathological conditions.
Collapse
Affiliation(s)
- Isabelle Miederer
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Viktoria Wiegand
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nicole Bausbacher
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephan Maus
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manuela A Hoffmann
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Occupational Health and Safety, Federal Ministry of Defense, Bonn, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Mathias Schreckenberger
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
18
|
Chang L, Liang H, Kandel SR, He JJ. Independent and Combined Effects of Nicotine or Chronic Tobacco Smoking and HIV on the Brain: A Review of Preclinical and Clinical Studies. J Neuroimmune Pharmacol 2020; 15:658-693. [PMID: 33108618 DOI: 10.1007/s11481-020-09963-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Tobacco smoking is highly prevalent among HIV-infected individuals. Chronic smokers with HIV showed greater cognitive deficits and impulsivity, and had more psychopathological symptoms and greater neuroinflammation than HIV non-smokers or smokers without HIV infection. However, preclinical studies that evaluated the combined effects of HIV-infection and tobacco smoking are scare. The preclinical models typically used cell cultures or animal models that involved specific HIV viral proteins or the administration of nicotine to rodents. These preclinical models consistently demonstrated that nicotine had neuroprotective and anti-inflammatory effects, leading to cognitive enhancement. Although the major addictive ingredient in tobacco smoking is nicotine, chronic smoking does not lead to improved cognitive function in humans. Therefore, preclinical studies designed to unravel the interactive effects of chronic tobacco smoking and HIV infection are needed. In this review, we summarized the preclinical studies that demonstrated the neuroprotective effects of nicotine, the neurotoxic effects of the HIV viral proteins, and the scant literature on nicotine or tobacco smoke in HIV transgenic rat models. We also reviewed the clinical studies that evaluated the neurotoxic effects of tobacco smoking, HIV infection and their combined effects on the brain, including studies that evaluated the cognitive and behavioral assessments, as well as neuroimaging measures. Lastly, we compared the different approaches between preclinical and clinical studies, identified some gaps and proposed some future directions. Graphical abstract Independent and combined effects of HIV and tobacco/nicotine. Left top and bottom panels: Both clinical studies of HIV infected persons and preclinical studies using viral proteins in vitro or in vivo in animal models showed that HIV infection could lead to neurotoxicity and neuroinflammation. Right top and bottom panels: While clinical studies of tobacco smoking consistently showed deleterious effects of smoking, clinical and preclinical studies that used nicotine show mild cognitive enhancement, neuroprotective and possibly anti-inflammatory effects. In the developing brain, however, nicotine is neurotoxic. Middle overlapping panels: Clinical studies of persons with HIV who were smokers typically showed additive deleterious effects of HIV and tobacco smoking. However, in the preclinical studies, when nicotine was administered to the HIV-1 Tg rats, the neurotoxic effects of HIV were attenuated, but tobacco smoke worsened the inflammatory cascade.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA.
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA
| | - Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA.
| |
Collapse
|
19
|
Butler K, Le Foll B. Novel therapeutic and drug development strategies for tobacco use disorder: endocannabinoid modulation. Expert Opin Drug Discov 2020; 15:1065-1080. [DOI: 10.1080/17460441.2020.1767581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kevin Butler
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Hindley G, Beck K, Borgan F, Ginestet CE, McCutcheon R, Kleinloog D, Ganesh S, Radhakrishnan R, D'Souza DC, Howes OD. Psychiatric symptoms caused by cannabis constituents: a systematic review and meta-analysis. Lancet Psychiatry 2020; 7:344-353. [PMID: 32197092 PMCID: PMC7738353 DOI: 10.1016/s2215-0366(20)30074-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Approximately 188 million people use cannabis yearly worldwide, and it has recently been legalised in 11 US states, Canada, and Uruguay for recreational use. The potential for increased cannabis use highlights the need to better understand its risks, including the acute induction of psychotic and other psychiatric symptoms. We aimed to investigate the effect of the cannabis constituent Δ9-tetrahydrocannabinol (THC) alone and in combination with cannabidiol (CBD) compared with placebo on psychiatric symptoms in healthy people. METHODS In this systematic review and meta-analysis, we searched MEDLINE, Embase, and PsycINFO for studies published in English between database inception and May 21, 2019, with a within-person, crossover design. Inclusion criteria were studies reporting symptoms using psychiatric scales (the Brief Psychiatric Rating Scale [BPRS] and the Positive and Negative Syndrome Scale [PANSS]) following the acute administration of intravenous, oral, or nasal THC, CBD, and placebo in healthy participants, and presenting data that allowed calculation of standardised mean change (SMC) scores for positive (including delusions and hallucinations), negative (such as blunted affect and amotivation), and general (including depression and anxiety) symptoms. We did a random-effects meta-analysis to assess the main outcomes of the effect sizes for total, positive, and negative PANSS and BPRS scores measured in healthy participants following THC administration versus placebo. Because the number of studies to do a meta-analysis on CBD's moderating effects was insufficient, this outcome was only systematically reviewed. This study is registered with PROSPERO, CRD42019136674. FINDINGS 15 eligible studies involving the acute administration of THC and four studies on CBD plus THC administration were identified. Compared with placebo, THC significantly increased total symptom severity with a large effect size (assessed in nine studies, with ten independent samples, involving 196 participants: SMC 1·10 [95% CI 0·92-1·28], p<0·0001); positive symptom severity (assessed in 14 studies, with 15 independent samples, involving 324 participants: SMC 0·91 [95% CI 0·68-1·14], p<0·0001); and negative symptom severity with a large effect size (assessed in 12 studies, with 13 independent samples, involving 267 participants: SMC 0·78 [95% CI 0·59-0·97], p<0·0001). In the systematic review, of the four studies evaluating CBD's effects on THC-induced symptoms, only one identified a significant reduction in symptoms. INTERPRETATION A single THC administration induces psychotic, negative, and other psychiatric symptoms with large effect sizes. There is no consistent evidence that CBD induces symptoms or moderates the effects of THC. These findings highlight the potential risks associated with the use of cannabis and other cannabinoids that contain THC for recreational or therapeutic purposes. FUNDING UK Medical Research Council, Maudsley Charity, Brain and Behavior Research Foundation, Wellcome Trust, and the UK National Institute for Health Research.
Collapse
Affiliation(s)
- Guy Hindley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and the Maudsley NHS Foundation Trust, London, UK; MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Cedric E Ginestet
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniel Kleinloog
- Department of Intensive Care Medicine, Leiden University Medical Hospital, Leiden, Netherlands
| | - Suhas Ganesh
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Deepak Cyril D'Souza
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and the Maudsley NHS Foundation Trust, London, UK; MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
21
|
Solingapuram Sai JKK, Hurley RA, Dodda M, Taber KH. Positron Emission Tomography: Updates on Imaging of Addiction. J Neuropsychiatry Clin Neurosci 2020; 31:A6-288. [PMID: 31613195 DOI: 10.1176/appi.neuropsych.19080169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ja Kiran Kumar Solingapuram Sai
- The Department of Radiology, Wake Forest School of Medicine, Winston-Salem, N.C. (Sai, Dodda, Hurley); The Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center, and the Research and Academic Affairs Service Line at the W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (Hurley, Taber); the Department of Psychiatry, Wake Forest School of Medicine, Winston-Salem, N.C. (Hurley); the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley); the Division of Biomedical Sciences, Via College of Osteopathic Medicine, Blacksburg, Va. (Taber); and the Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston (Taber)
| | - Robin A Hurley
- The Department of Radiology, Wake Forest School of Medicine, Winston-Salem, N.C. (Sai, Dodda, Hurley); The Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center, and the Research and Academic Affairs Service Line at the W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (Hurley, Taber); the Department of Psychiatry, Wake Forest School of Medicine, Winston-Salem, N.C. (Hurley); the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley); the Division of Biomedical Sciences, Via College of Osteopathic Medicine, Blacksburg, Va. (Taber); and the Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston (Taber)
| | - Meghana Dodda
- The Department of Radiology, Wake Forest School of Medicine, Winston-Salem, N.C. (Sai, Dodda, Hurley); The Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center, and the Research and Academic Affairs Service Line at the W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (Hurley, Taber); the Department of Psychiatry, Wake Forest School of Medicine, Winston-Salem, N.C. (Hurley); the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley); the Division of Biomedical Sciences, Via College of Osteopathic Medicine, Blacksburg, Va. (Taber); and the Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston (Taber)
| | - Katherine H Taber
- The Department of Radiology, Wake Forest School of Medicine, Winston-Salem, N.C. (Sai, Dodda, Hurley); The Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center, and the Research and Academic Affairs Service Line at the W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (Hurley, Taber); the Department of Psychiatry, Wake Forest School of Medicine, Winston-Salem, N.C. (Hurley); the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley); the Division of Biomedical Sciences, Via College of Osteopathic Medicine, Blacksburg, Va. (Taber); and the Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston (Taber)
| |
Collapse
|
22
|
Hillmer AT. The Importance of Drug and Sex Effects in Psychiatric Research. Biol Psychiatry 2018; 84:e71-e72. [PMID: 30360777 PMCID: PMC6793934 DOI: 10.1016/j.biopsych.2018.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Ansel T. Hillmer
- Dept. of Psychiatry, Yale University School of
Medicine,Dept. of Radiology and Biomedical Imaging, Yale University
School of Medicine,Dept. of Yale PET Center, Yale University School of
Medicine
| |
Collapse
|