1
|
Zhao Q, Nooner KB, Tapert SF, Adeli E, Pohl KM, Kuceyeski A, Sabuncu MR. The Transition From Homogeneous to Heterogeneous Machine Learning in Neuropsychiatric Research. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100397. [PMID: 39526023 PMCID: PMC11546160 DOI: 10.1016/j.bpsgos.2024.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Despite the advantage of neuroimaging-based machine learning (ML) models as pivotal tools for investigating brain-behavior relationships in neuropsychiatric studies, these data-driven predictive approaches have yet to yield substantial, clinically actionable insights for mental health care. A notable impediment lies in the inadequate accommodation of most ML research to the natural heterogeneity within large samples. Although commonly thought of as individual-level analyses, many ML algorithms are unimodal and homogeneous and thus incapable of capturing the potentially heterogeneous relationships between biology and psychopathology. We review the current landscape of computational research targeting population heterogeneity and argue that there is a need to expand from brain subtyping and behavioral phenotyping to analyses that focus on heterogeneity at the relational level. To this end, we review and suggest several existing ML models with the capacity to discern how external environmental and sociodemographic factors moderate the brain-behavior mapping function in a data-driven fashion. These heterogeneous ML models hold promise for enhancing the discovery of individualized brain-behavior associations and advancing precision psychiatry.
Collapse
Affiliation(s)
- Qingyu Zhao
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Kate B. Nooner
- Department of Psychology, University of North Carolina Wilmington, Wilmington, North Carolina
| | - Susan F. Tapert
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Ehsan Adeli
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
- Department of Computer Science, Stanford University, Stanford, California
| | - Kilian M. Pohl
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
- Department of Electrical Engineering, Stanford University, Stanford, California
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Mert R. Sabuncu
- Department of Radiology, Weill Cornell Medicine, New York, New York
- School of Electrical and Computer Engineering, Cornell University and Cornell Tech, New York, New York
| |
Collapse
|
2
|
Lahey BB, Durham EL, Brislin SJ, Barr PB, Dick DM, Moore TM, Pierce BL, Tong L, Reimann GE, Jeong HJ, Dupont RM, Kaczkurkin AN. Mapping potential pathways from polygenic liability through brain structure to psychological problems across the transition to adolescence. J Child Psychol Psychiatry 2024; 65:1047-1060. [PMID: 38185921 PMCID: PMC11227600 DOI: 10.1111/jcpp.13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND We used a polygenic score for externalizing behavior (extPGS) and structural MRI to examine potential pathways from genetic liability to conduct problems via the brain across the adolescent transition. METHODS Three annual assessments of child conduct problems, attention-deficit/hyperactivity problems, and internalizing problems were conducted across across 9-13 years of age among 4,475 children of European ancestry in the Adolescent Brain Cognitive DevelopmentSM Study (ABCD Study®). RESULTS The extPGS predicted conduct problems in each wave (R2 = 2.0%-2.9%). Bifactor models revealed that the extPRS predicted variance specific to conduct problems (R2 = 1.7%-2.1%), but also variance that conduct problems shared with other measured problems (R2 = .8%-1.4%). Longitudinally, extPGS predicted levels of specific conduct problems (R2 = 2.0%), but not their slope of change across age. The extPGS was associated with total gray matter volume (TGMV; R2 = .4%) and lower TGMV predicted both specific conduct problems (R2 = 1.7%-2.1%) and the variance common to all problems in each wave (R2 = 1.6%-3.1%). A modest proportion of the polygenic liability specific to conduct problems in each wave was statistically mediated by TGMV. CONCLUSIONS Across the adolescent transition, the extPGS predicted both variance specific to conduct problems and variance shared by all measured problems. The extPGS also was associated with TGMV, which robustly predicted conduct problems. Statistical mediation analyses suggested the hypothesis that polygenic variation influences individual differences in brain development that are related to the likelihood of conduct problems during the adolescent transition, justifying new research to test this causal hypothesis.
Collapse
Affiliation(s)
| | | | | | - Peter B. Barr
- SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | | | | | | | - Lin Tong
- University of Chicago, Chicago, IL 60637
| | | | | | | | | |
Collapse
|
3
|
Gao Y, Feng R, Ouyang X, Zhou Z, Bao W, Li Y, Zhuo L, Hu X, Li H, Zhang L, Huang G, Huang X. Multivariate association between psychosocial environment, behaviors, and brain functional networks in adolescent depression. Asian J Psychiatr 2024; 95:104009. [PMID: 38520945 DOI: 10.1016/j.ajp.2024.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/06/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Adolescent depression shows high clinical heterogeneity. Brain functional networks serve as a powerful tool for investigating neural mechanisms underlying depression profiles. A key challenge is to characterize how variation in brain functional organization links to behavioral features and psychosocial environmental influences. METHODS We recruited 80 adolescents with major depressive disorder (MDD) and 42 healthy controls (HCs). First, we estimated the differences in functional connectivity of resting-state networks (RSN) between the two groups. Then, we used sparse canonical correlation analysis to characterize patterns of associations between RSN connectivity and symptoms, cognition, and psychosocial environmental factors in MDD adolescents. Clustering analysis was applied to stratify patients into homogenous subtypes according to these brain-behavior-environment associations. RESULTS MDD adolescents showed significantly hyperconnectivity between the ventral attention and cingulo-opercular networks compared with HCs. We identified one reliable pattern of covariation between RSN connectivity and clinical/environmental features in MDD adolescents. In this pattern, psychosocial factors, especially the interpersonal and family relationships, were major contributors to variation in connectivity of salience, cingulo-opercular, ventral attention, subcortical and somatosensory-motor networks. Based on this association, we categorized patients into two subgroups which showed different environment and symptoms characteristics, and distinct connectivity alterations. These differences were covered up when the patients were taken as a whole group. CONCLUSION This study identified the environmental exposures associated with specific functional networks in MDD youths. Our findings emphasize the importance of the psychosocial context in assessing brain function alterations in adolescent depression and have the potential to promote targeted treatment and precise prevention.
Collapse
Affiliation(s)
- Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Ruohan Feng
- Department of Radiology, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Xinqin Ouyang
- Department of Radiology, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Zilin Zhou
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yang Li
- Department of Psychiatry, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Lihua Zhuo
- Department of Radiology, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Xinyue Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Guoping Huang
- Department of Psychiatry, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; The Xiaman Key Lab of psychoradiology and neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
4
|
Voineskos AN, Hawco C, Neufeld NH, Turner JA, Ameis SH, Anticevic A, Buchanan RW, Cadenhead K, Dazzan P, Dickie EW, Gallucci J, Lahti AC, Malhotra AK, Öngür D, Lencz T, Sarpal DK, Oliver LD. Functional magnetic resonance imaging in schizophrenia: current evidence, methodological advances, limitations and future directions. World Psychiatry 2024; 23:26-51. [PMID: 38214624 PMCID: PMC10786022 DOI: 10.1002/wps.21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Neufeld
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression and McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan Anticevic
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Malhotra
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Todd Lencz
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Deepak K Sarpal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
5
|
Stier AJ, Cardenas-Iniguez C, Kardan O, Moore TM, Meyer FAC, Rosenberg MD, Kaczkurkin AN, Lahey BB, Berman MG. A pattern of cognitive resource disruptions in childhood psychopathology. Netw Neurosci 2023; 7:1153-1180. [PMID: 37781141 PMCID: PMC10473262 DOI: 10.1162/netn_a_00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/01/2023] [Indexed: 10/03/2023] Open
Abstract
The Hurst exponent (H) isolated in fractal analyses of neuroimaging time series is implicated broadly in cognition. Within this literature, H is associated with multiple mental disorders, suggesting that H is transdimensionally associated with psychopathology. Here, we unify these results and demonstrate a pattern of decreased H with increased general psychopathology and attention-deficit/hyperactivity factor scores during a working memory task in 1,839 children. This pattern predicts current and future cognitive performance in children and some psychopathology in 703 adults. This pattern also defines psychological and functional axes associating psychopathology with an imbalance in resource allocation between fronto-parietal and sensorimotor regions, driven by reduced resource allocation to fronto-parietal regions. This suggests the hypothesis that impaired working memory function in psychopathology follows from a reduced cognitive resource pool and a reduction in resources allocated to the task at hand.
Collapse
Affiliation(s)
| | | | - Omid Kardan
- Department of Psychology, University of Chicago
| | | | | | - Monica D. Rosenberg
- Department of Psychology, University of Chicago
- The Neuroscience Institute, University of Chicago
| | | | | | - Marc G. Berman
- Department of Psychology, University of Chicago
- The Neuroscience Institute, University of Chicago
| |
Collapse
|
6
|
Yu G, Liu Z, Wu X, Becker B, Zhang K, Fan H, Peng S, Kuang N, Kang J, Dong G, Zhao XM, Schumann G, Feng J, Sahakian BJ, Robbins TW, Palaniyappan L, Zhang J. Common and disorder-specific cortical thickness alterations in internalizing, externalizing and thought disorders during early adolescence: an Adolescent Brain and Cognitive Development study. J Psychiatry Neurosci 2023; 48:E345-E356. [PMID: 37673436 PMCID: PMC10495167 DOI: 10.1503/jpn.220202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/13/2023] [Accepted: 05/17/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND A growing body of neuroimaging studies has reported common neural abnormalities among mental disorders in adults. However, it is unclear whether the distinct disorder-specific mechanisms operate during adolescence despite the overlap among disorders. METHODS We studied a large cohort of more than 11 000 preadolescent (age 9-10 yr) children from the Adolescent Brain and Cognitive Development cohort. We adopted a regrouping approach to compare cortical thickness (CT) alterations and longitudinal changes between healthy controls (n = 4041) and externalizing (n = 1182), internalizing (n = 1959) and thought disorder (n = 347) groups. Genome-wide association study (GWAS) was performed on regional CT across 4468 unrelated European youth. RESULTS Youth with externalizing or internalizing disorders exhibited increased regional CT compared with controls. Externalizing (p = 8 × 10-4, Cohen d = 0.10) and internalizing disorders (p = 2 × 10-3, Cohen d = 0.08) shared thicker CT in the left pars opercularis. The somatosensory and the primary auditory cortex were uniquely affected in externalizing disorders, whereas the primary motor cortex and higher-order visual association areas were uniquely affected in internalizing disorders. Only youth with externalizing disorders showed decelerated cortical thinning from age 10-12 years. The GWAS found 59 genome-wide significant associated genetic variants across these regions. Cortical thickness in common regions was associated with glutamatergic neurons, while internalizing-specific regional CT was associated with astrocytes, oligodendrocyte progenitor cells and GABAergic neurons. LIMITATIONS The sample size of the GWAS was relatively small. CONCLUSION Our study provides strong evidence for the presence of specificity in CT, developmental trajectories and underlying genetic underpinnings among externalizing and internalizing disorders during early adolescence. Our results support the neurobiological validity of the regrouping approach that could supplement the use of a dimensional approach in future clinical practice.
Collapse
Affiliation(s)
- Gechang Yu
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Zhaowen Liu
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Xinran Wu
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Benjamin Becker
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Kai Zhang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Huaxin Fan
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Songjun Peng
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Nanyu Kuang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Jujiao Kang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Guiying Dong
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Xing-Ming Zhao
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Gunter Schumann
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Jianfeng Feng
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Barbara J Sahakian
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Trevor W Robbins
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Lena Palaniyappan
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Jie Zhang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| |
Collapse
|
7
|
Borges MS, Hoffmann MS, Simioni A, Axelrud LK, Teixeira DS, Zugman A, Jackowski A, Pan PM, Bressan RA, Parker N, Germann J, Bado PP, Satterthwaite TD, Milham MP, Chakravarty MM, Paim Rohde LA, Constantino Miguel E, Paus T, Salum GA. Deviations from a typical development of the cerebellum in youth are associated with psychopathology, executive functions and educational outcomes. Psychol Med 2023; 53:5698-5708. [PMID: 36226568 DOI: 10.1017/s0033291722002926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Understanding deviations from typical brain development is a promising approach to comprehend pathophysiology in childhood and adolescence. We investigated if cerebellar volumes different than expected for age and sex could predict psychopathology, executive functions and academic achievement. METHODS Children and adolescents aged 6-17 years from the Brazilian High-Risk Cohort Study for Mental Conditions had their cerebellar volume estimated using Multiple Automatically Generated Templates from T1-weighted images at baseline (n = 677) and at 3-year follow-up (n = 447). Outcomes were assessed using the Child Behavior Checklist and standardized measures of executive functions and school achievement. Models of typically developing cerebellum were based on a subsample not exposed to risk factors and without mental-health conditions (n = 216). Deviations from this model were constructed for the remaining individuals (n = 461) and standardized variation from age and sex trajectory model was used to predict outcomes in cross-sectional, longitudinal and mediation analyses. RESULTS Cerebellar volumes higher than expected for age and sex were associated with lower externalizing specific factor and higher executive functions. In a longitudinal analysis, deviations from typical development at baseline predicted inhibitory control at follow-up, and cerebellar deviation changes from baseline to follow-up predicted changes in reading and writing abilities. The association between deviations in cerebellar volume and academic achievement was mediated by inhibitory control. CONCLUSIONS Deviations in the cerebellar typical development are associated with outcomes in youth that have long-lasting consequences. This study highlights both the potential of typical developing models and the important role of the cerebellum in mental health, cognition and education.
Collapse
Affiliation(s)
- Marina S Borges
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
| | - Maurício S Hoffmann
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Neuropsychiatry, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, 97105-900, Brazil
| | - André Simioni
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza K Axelrud
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danielle S Teixeira
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Zugman
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Andrea Jackowski
- Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Pedro M Pan
- Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo A Bressan
- Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Nadine Parker
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jurgen Germann
- University Health Network, Toronto, ON, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Patrícia P Bado
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Michael P Milham
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Luis Augusto Paim Rohde
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Eurípedes Constantino Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
- Universidade de São Paulo (USP), São Paulo, Brazil
| | - Tomas Paus
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre hospitalier universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Giovanni A Salum
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
- Department of Psychiatry and Legal Medicine, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
| |
Collapse
|
8
|
Durham EL, Ghanem K, Stier AJ, Cardenas-Iniguez C, Reimann GE, Jeong HJ, Dupont RM, Dong X, Moore TM, Berman MG, Lahey BB, Bzdok D, Kaczkurkin AN. Multivariate analytical approaches for investigating brain-behavior relationships. Front Neurosci 2023; 17:1175690. [PMID: 37583413 PMCID: PMC10423877 DOI: 10.3389/fnins.2023.1175690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/13/2023] [Indexed: 08/17/2023] Open
Abstract
Background Many studies of brain-behavior relationships rely on univariate approaches where each variable of interest is tested independently, which does not allow for the simultaneous investigation of multiple correlated variables. Alternatively, multivariate approaches allow for examining relationships between psychopathology and neural substrates simultaneously. There are multiple multivariate methods to choose from that each have assumptions which can affect the results; however, many studies employ one method without a clear justification for its selection. Additionally, there are few studies illustrating how differences between methods manifest in examining brain-behavior relationships. The purpose of this study was to exemplify how the choice of multivariate approach can change brain-behavior interpretations. Method We used data from 9,027 9- to 10-year-old children from the Adolescent Brain Cognitive DevelopmentSM Study (ABCD Study®) to examine brain-behavior relationships with three commonly used multivariate approaches: canonical correlation analysis (CCA), partial least squares correlation (PLSC), and partial least squares regression (PLSR). We examined the associations between psychopathology dimensions including general psychopathology, attention-deficit/hyperactivity symptoms, conduct problems, and internalizing symptoms with regional brain volumes. Results The results of CCA, PLSC, and PLSR showed both consistencies and differences in the relationship between psychopathology symptoms and brain structure. The leading significant component yielded by each method demonstrated similar patterns of associations between regional brain volumes and psychopathology symptoms. However, the additional significant components yielded by each method demonstrated differential brain-behavior patterns that were not consistent across methods. Conclusion Here we show that CCA, PLSC, and PLSR yield slightly different interpretations regarding the relationship between child psychopathology and brain volume. In demonstrating the divergence between these approaches, we exemplify the importance of carefully considering the method's underlying assumptions when choosing a multivariate approach to delineate brain-behavior relationships.
Collapse
Affiliation(s)
- E. Leighton Durham
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Karam Ghanem
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Andrew J. Stier
- Department of Psychology, University of Chicago, Chicago, IL, United States
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | | | - Hee Jung Jeong
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Randolph M. Dupont
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Xiaoyu Dong
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Tyler M. Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Marc G. Berman
- Department of Psychology, University of Chicago, Chicago, IL, United States
- The University of Chicago Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Benjamin B. Lahey
- Department of Health Studies, University of Chicago, Chicago, IL, United States
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, United States
| | - Danilo Bzdok
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
9
|
Reimann GE, Stier AJ, Moore TM, Durham EL, Jeong HJ, Cardenas-Iniguez C, Dupont RM, Pines JR, Berman MG, Lahey BB, Kaczkurkin AN. Atypical Functional Network Properties and Associated Dimensions of Child Psychopathology During Rest and Task Performance. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:541-549. [PMID: 37519454 PMCID: PMC10382736 DOI: 10.1016/j.bpsgos.2022.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 10/15/2022] Open
Abstract
Background When brain networks deviate from typical development, this is thought to contribute to varying forms of psychopathology. However, research has been limited by the reliance on discrete diagnostic categories that overlook the potential for psychological comorbidity and the dimensional nature of symptoms. Methods This study examined the topology of functional networks in association with 4 bifactor-defined psychopathology dimensions-general psychopathology, internalizing symptoms, conduct problems, and attention-deficit/hyperactivity disorder symptoms-via the Child Behavior Checklist in a sample of 3568 children from the ABCD (Adolescent Brain Cognitive Development) Study. Local and global graph theory metrics were calculated at rest and during tasks of reward processing, inhibition, and working memory. Results Greater attention-deficit/hyperactivity disorder symptoms were associated with reduced modularity across rest and tasks as well as reduced local efficiency in motor networks at rest. Results survived sensitivity analyses for medication and socioeconomic status. Greater conduct problem symptoms were associated with reduced modularity on working memory and reward processing tasks; however, these results did not persist after sensitivity analyses. General psychopathology and internalizing symptoms showed no significant network associations. Conclusions Our findings suggest reduced efficiency in topology in those with greater attention-deficit/hyperactivity disorder symptoms across 4 critical cognitive states, with conduct problems also showing network deficits, although less consistently. This may suggest that modularity deficits are a neurobiological marker of externalizing behavior in children. Such specificity has not been demonstrated before using graph theory metrics and has the potential to redefine our understanding of network deficits in children with psychopathology symptoms.
Collapse
Affiliation(s)
| | - Andrew J. Stier
- Department of Psychology, University of Chicago, Chicago, Illinois
| | - Tyler M. Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Hee Jung Jeong
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | | | - Julia R. Pines
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Marc G. Berman
- Department of Psychology, University of Chicago, Chicago, Illinois
- University of Chicago Neuroscience Institute, University of Chicago, Chicago, Illinois
| | - Benjamin B. Lahey
- Departments of Health Studies and Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois
| | | |
Collapse
|
10
|
Dwyer DB, Chand GB, Pigoni A, Khuntia A, Wen J, Antoniades M, Hwang G, Erus G, Doshi J, Srinivasan D, Varol E, Kahn RS, Schnack HG, Meisenzahl E, Wood SJ, Zhuo C, Sotiras A, Shinohara RT, Shou H, Fan Y, Schaulfelberger M, Rosa P, Lalousis PA, Upthegrove R, Kaczkurkin AN, Moore TM, Nelson B, Gur RE, Gur RC, Ritchie MD, Satterthwaite TD, Murray RM, Di Forti M, Ciufolini S, Zanetti MV, Wolf DH, Pantelis C, Crespo-Facorro B, Busatto GF, Davatzikos C, Koutsouleris N, Dazzan P. Psychosis brain subtypes validated in first-episode cohorts and related to illness remission: results from the PHENOM consortium. Mol Psychiatry 2023; 28:2008-2017. [PMID: 37147389 PMCID: PMC10575777 DOI: 10.1038/s41380-023-02069-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 03/15/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups-a 'lower brain volume' subgroup (SG1) and an 'higher striatal volume' subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership ('None'), and mixed SG1 + SG2 subgroups ('Mixed'). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of 'lower brain volume' in SG1 and 'higher striatal volume' (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p < 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature.
Collapse
Affiliation(s)
- Dominic B Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany.
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia.
- Orygen, Melbourne, VIC, Australia.
| | - Ganesh B Chand
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Alessandro Pigoni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Adyasha Khuntia
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
- Max-Planck Institute of Psychiatry, Munich, Germany
| | - Junhao Wen
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathilde Antoniades
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gyujoon Hwang
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jimit Doshi
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dhivya Srinivasan
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erdem Varol
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Statistics, Zuckerman Institute, Columbia University, New York, NY, USA
| | - Rene S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hugo G Schnack
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva Meisenzahl
- LVR-Klinikum Düsseldorf, Kliniken der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Stephen J Wood
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Orygen, Melbourne, VIC, Australia
- University of Birmingham, Edgbaston, UK
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital; Department of Psychiatry, Tianjin Medical University, Tianjin, China
| | - Aristeidis Sotiras
- Department of Radiology and Institute for Informatics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Haochang Shou
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Pedro Rosa
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paris A Lalousis
- Institute for Mental Health and Centre for Brain Health, University of Birmingham, Birmingham, UK
| | - Rachel Upthegrove
- Institute for Mental Health and Centre for Brain Health, University of Birmingham, Birmingham, UK
- Early Intervention Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | | | - Tyler M Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Barnaby Nelson
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Orygen, Melbourne, VIC, Australia
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Robin M Murray
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Marta Di Forti
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Simone Ciufolini
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Marcus V Zanetti
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo, Brazil
| | - Daniel H Wolf
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Benedicto Crespo-Facorro
- Mental Health Service, Hospital Universitario Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM), Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
- Department of Psychiatry, Universidad de Sevilla, Seville, Spain
| | - Geraldo F Busatto
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany.
- Max-Planck Institute of Psychiatry, Munich, Germany.
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
| | - Paola Dazzan
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
| |
Collapse
|
11
|
Chen J, Patil KR, Yeo BTT, Eickhoff SB. Leveraging Machine Learning for Gaining Neurobiological and Nosological Insights in Psychiatric Research. Biol Psychiatry 2023; 93:18-28. [PMID: 36307328 DOI: 10.1016/j.biopsych.2022.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
Much attention is currently devoted to developing diagnostic classifiers for mental disorders. Complementing these efforts, we highlight the potential of machine learning to gain biological insights into the psychopathology and nosology of mental disorders. Studies to this end have mainly used brain imaging data, which can be obtained noninvasively from large cohorts and have repeatedly been argued to reveal potentially intermediate phenotypes. This may become particularly relevant in light of recent efforts to identify magnetic resonance imaging-derived biomarkers that yield insight into pathophysiological processes as well as to refine the taxonomy of mental illness. In particular, the accuracy of machine learning models may be used as dependent variables to identify features relevant to pathophysiology. Moreover, such approaches may help disentangle the dimensional (within diagnosis) and often overlapping (across diagnoses) symptomatology of psychiatric illness. We also point out a multiview perspective that combines data from different sources, bridging molecular and system-level information. Finally, we summarize recent efforts toward a data-driven definition of subtypes or disease entities through unsupervised and semisupervised approaches. The latter, blending unsupervised and supervised concepts, may represent a particularly promising avenue toward dissecting heterogeneous categories. Finally, we raise several technical and conceptual aspects related to the reviewed approaches. In particular, we discuss common pitfalls pertaining to flawed input data or analytic procedures that would likely lead to unreliable outputs.
Collapse
Affiliation(s)
- Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China; Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-universität Düsseldorf, Düsseldorf, Germany
| | - B T Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Integrative Sciences & Engineering Programme, National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Wu X, Yu G, Zhang K, Feng J, Zhang J, Sahakian BJ, Robbins TW. Symptom-Based Profiling and Multimodal Neuroimaging of a Large Preteenage Population Identifies Distinct Obsessive-Compulsive Disorder-like Subtypes With Neurocognitive Differences. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1078-1089. [PMID: 34224907 DOI: 10.1016/j.bpsc.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is characterized by both internalizing (anxiety) and externalizing (compulsivity) symptoms. Currently, little is known about their interrelationships and their relative contributions to disease heterogeneity. Our goal is to resolve affective and cognitive symptom heterogeneity related to internalized and externalized symptom dimensions by determining subtypes of children with OCD symptoms, and to identify any corresponding neural differences. METHODS A total of 1269 children with OCD symptoms screened using the Child Behavior Checklist Obsessive-Compulsive Symptom scale and 3987 matched control subjects were obtained from the Adolescent Brain Cognitive Development (ABCD) Study. Consensus hierarchical clustering was used to cluster children with OCD symptoms into distinct subtypes. Ten neurocognitive task scores and 20 Child Behavior Checklist syndrome scales were used to characterize cognitive/behavioral differences. Gray matter volume, fractional anisotropy of major white matter fiber tracts, and functional connectivity among networks were used in case-control studies. RESULTS We identified two subgroups with contrasting patterns in internalized and externalized dimensions. Group 1 showed compulsive thoughts and repeated acts but relatively low anxiety symptoms, whereas group 2 exhibited higher anxiety and perfectionism and relatively low repetitive behavior. Only group 1 had significant cognitive impairments and gray matter volume reductions in the bilateral inferior parietal lobe, precentral gyrus, and precuneus gyrus, and had white matter tract fractional anisotropy reductions in the corticostriatal fasciculus. CONCLUSIONS Children with OCD symptoms are heterogeneous at the level of symptom clustering and its underlying neural basis. Two subgroups represent distinct patterns of externalizing and internalizing symptoms, suggesting that anxiety is not its major predisposing factor. These results may have implications for the nosology and treatment of preteenage OCD.
Collapse
Affiliation(s)
- Xinran Wu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Gechang Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Kai Zhang
- School of Computer Science and Technology, East China Normal University, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Shanghai Center for Mathematical Sciences, Shanghai, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - Barbara J Sahakian
- Departments of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Seok D, Beer J, Jaskir M, Smyk N, Jaganjac A, Makhoul W, Cook P, Elliott M, Shinohara R, Sheline YI. Differential Impact of Anxious Misery Psychopathology on Multiple Representations of the Functional Connectome. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:489-499. [PMID: 36324648 PMCID: PMC9616351 DOI: 10.1016/j.bpsgos.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/27/2022] Open
Abstract
Background One aim of characterizing dimensional psychopathology is associating different domains of affective dysfunction with brain circuitry. The functional connectome, as measured by functional magnetic resonance imaging, can be modeled and associated with psychopathology through multiple methods; some methods assess univariate relationships while others summarize broad patterns of activity. It remains unclear whether different dimensions of psychopathology require different representations of the connectome to generate reproducible associations. Methods Patients experiencing anxious misery symptomology (depression, anxiety, and trauma; n = 192) received resting-state functional magnetic resonance imaging scans. Three modeling approaches (seed-based correlation analysis, edgewise regression, and brain basis set modeling), each relying on increasingly broader representations of the functional connectome, were used to associate connectivity patterns with six data-driven dimensions of psychopathology: anxiety sensitivity, anxious arousal, rumination, anhedonia, insomnia, and negative affect. To protect against overfitting, 50 participants were held out in a testing dataset, leaving 142 participants as training data. Results Different modeling approaches varied in the extent to which they could model different symptom dimensions: seed-based correlation analysis failed to reproducibly model any symptoms, subsets of the connectome (edgewise regression) were sufficient to model insomnia and anxious arousal, and broad representations of the entire connectome (brain basis set modeling) were necessary to model negative affect and ruminative thought. Conclusions These results indicate that different methods of representing the functional connectome differ in the degree that they can model different symptom dimensions, highlighting the potential sufficiency of subsets of connections for some dimensions and the necessity of connectome-wide approaches in others.
Collapse
Affiliation(s)
- Darsol Seok
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joanne Beer
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marc Jaskir
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nathan Smyk
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adna Jaganjac
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Walid Makhoul
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Philip Cook
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark Elliott
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Russell Shinohara
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yvette I. Sheline
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Damme KSF, Norton ES, Briggs-Gowan MJ, Wakschlag LS, Mittal VA. Developmental patterning of irritability enhances prediction of psychopathology in preadolescence: Improving RDoC with developmental science. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2022; 131:556-566. [PMID: 35901387 PMCID: PMC9439570 DOI: 10.1037/abn0000655] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The transdiagnostic importance of irritability in psychopathology has been demonstrated. However, the contribution of developmentally unfolding irritability patterns to specific clinical and neural outcomes remains an important and unanswered question. To address this gap in the literature, irritability patterns of 110 youth from a large, diverse cohort were assessed at preschool age and again at early school age (∼2.5 years later) with a dimensional irritability scale designed to capture the normal:abnormal spectrum. At preadolescence (∼6 years later), clinical outcomes (internalizing/externalizing symptoms) derived from a semistructured clinical interview and neural outcomes (characterized as gray-matter-volume abnormalities) were assessed. For clinical outcomes, preschool-age irritability alone was a transdiagnostic predictor of internalizing and externalizing symptoms at preadolescence. However, in a model including both preschool and early school age, irritability provided greater specificity, suggesting that higher irritability at early school age related to elevated preadolescent externalizing but not internalizing symptoms. In terms of neural outcomes, elevated preschool irritability did not predict preadolescent gray-matter-volume abnormality; however, irritability at early school age demonstrated an interactive effect among regions, with reduced volume in preadolescence emotional regions (e.g., amygdala, medial orbitofrontal cortex) and increased volume in other regions (e.g., cerebellum). These complex patterns highlight the contribution of a developmentally informed approach, the National Institute of Mental Health's Research Domain Criteria (RDoC) approach, to yield transdiagnostic phenotypes and multiple units of analysis. Capturing these individual differences and developmental heterogeneity can provide critical insight into the unfolding of mechanisms underlying emerging psychopathology. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Elizabeth S Norton
- Department of Communication Sciences and Disorders, Northwestern University
| | | | - Lauren S Wakschlag
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University
| | | |
Collapse
|
15
|
Tejavibulya L, Rolison M, Gao S, Liang Q, Peterson H, Dadashkarimi J, Farruggia MC, Hahn CA, Noble S, Lichenstein SD, Pollatou A, Dufford AJ, Scheinost D. Predicting the future of neuroimaging predictive models in mental health. Mol Psychiatry 2022; 27:3129-3137. [PMID: 35697759 PMCID: PMC9708554 DOI: 10.1038/s41380-022-01635-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022]
Abstract
Predictive modeling using neuroimaging data has the potential to improve our understanding of the neurobiology underlying psychiatric disorders and putatively information interventions. Accordingly, there is a plethora of literature reviewing published studies, the mathematics underlying machine learning, and the best practices for using these approaches. As our knowledge of mental health and machine learning continue to evolve, we instead aim to look forward and "predict" topics that we believe will be important in current and future studies. Some of the most discussed topics in machine learning, such as bias and fairness, the handling of dirty data, and interpretable models, may be less familiar to the broader community using neuroimaging-based predictive modeling in psychiatry. In a similar vein, transdiagnostic research and targeting brain-based features for psychiatric intervention are modern topics in psychiatry that predictive models are well-suited to tackle. In this work, we target an audience who is a researcher familiar with the fundamental procedures of machine learning and who wishes to increase their knowledge of ongoing topics in the field. We aim to accelerate the utility and applications of neuroimaging-based predictive models for psychiatric research by highlighting and considering these topics. Furthermore, though not a focus, these ideas generalize to neuroimaging-based predictive modeling in other clinical neurosciences and predictive modeling with different data types (e.g., digital health data).
Collapse
Affiliation(s)
- Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.
| | - Max Rolison
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Siyuan Gao
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Qinghao Liang
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Hannah Peterson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Javid Dadashkarimi
- Department of Computer Science, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Michael C Farruggia
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - C Alice Hahn
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | | | - Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Dwyer DB, Buciuman MO, Ruef A, Kambeitz J, Sen Dong M, Stinson C, Kambeitz-Ilankovic L, Degenhardt F, Sanfelici R, Antonucci LA, Lalousis PA, Wenzel J, Urquijo-Castro MF, Popovic D, Oeztuerk OF, Haas SS, Weiske J, Hauke D, Neufang S, Schmidt-Kraepelin C, Ruhrmann S, Penzel N, Lichtenstein T, Rosen M, Chisholm K, Riecher-Rössler A, Egloff L, Schmidt A, Andreou C, Hietala J, Schirmer T, Romer G, Michel C, Rössler W, Maj C, Borisov O, Krawitz PM, Falkai P, Pantelis C, Lencer R, Bertolino A, Borgwardt S, Noethen M, Brambilla P, Schultze-Lutter F, Meisenzahl E, Wood SJ, Davatzikos C, Upthegrove R, Salokangas RKR, Koutsouleris N. Clinical, Brain, and Multilevel Clustering in Early Psychosis and Affective Stages. JAMA Psychiatry 2022; 79:677-689. [PMID: 35583903 PMCID: PMC9118078 DOI: 10.1001/jamapsychiatry.2022.1163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
Abstract
Importance Approaches are needed to stratify individuals in early psychosis stages beyond positive symptom severity to investigate specificity related to affective and normative variation and to validate solutions with premorbid, longitudinal, and genetic risk measures. Objective To use machine learning techniques to cluster, compare, and combine subgroup solutions using clinical and brain structural imaging data from early psychosis and depression stages. Design, Setting, and Participants A multisite, naturalistic, longitudinal cohort study (10 sites in 5 European countries; including major follow-up intervals at 9 and 18 months) with a referred patient sample of those with clinical high risk for psychosis (CHR-P), recent-onset psychosis (ROP), recent-onset depression (ROD), and healthy controls were recruited between February 1, 2014, to July 1, 2019. Data were analyzed between January 2020 and January 2022. Main Outcomes and Measures A nonnegative matrix factorization technique separately decomposed clinical (287 variables) and parcellated brain structural volume (204 gray, white, and cerebrospinal fluid regions) data across CHR-P, ROP, ROD, and healthy controls study groups. Stability criteria determined cluster number using nested cross-validation. Validation targets were compared across subgroup solutions (premorbid, longitudinal, and schizophrenia polygenic risk scores). Multiclass supervised machine learning produced a transferable solution to the validation sample. Results There were a total of 749 individuals in the discovery group and 610 individuals in the validation group. Individuals included those with CHR-P (n = 287), ROP (n = 323), ROD (n = 285), and healthy controls (n = 464), The mean (SD) age was 25.1 (5.9) years, and 702 (51.7%) were female. A clinical 4-dimensional solution separated individuals based on positive symptoms, negative symptoms, depression, and functioning, demonstrating associations with all validation targets. Brain clustering revealed a subgroup with distributed brain volume reductions associated with negative symptoms, reduced performance IQ, and increased schizophrenia polygenic risk scores. Multilevel results distinguished between normative and illness-related brain differences. Subgroup results were largely validated in the external sample. Conclusions and Relevance The results of this longitudinal cohort study provide stratifications beyond the expression of positive symptoms that cut across illness stages and diagnoses. Clinical results suggest the importance of negative symptoms, depression, and functioning. Brain results suggest substantial overlap across illness stages and normative variation, which may highlight a vulnerability signature independent from specific presentations. Premorbid, longitudinal, and genetic risk validation suggested clinical importance of the subgroups to preventive treatments.
Collapse
Affiliation(s)
- Dominic B. Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Madalina-Octavia Buciuman
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
- International Max-Planck Research School for Translational Psychiatry, Munich, Germany
| | - Anne Ruef
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Mark Sen Dong
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Caedyn Stinson
- Max-Planck School of Cognition, Leipzig, Germany
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
| | - Lana Kambeitz-Ilankovic
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rachele Sanfelici
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
- Max-Planck Institute of Psychiatry, Munich, Germany
| | - Linda A. Antonucci
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - Paris Alexandros Lalousis
- Institute for Mental Health and Centre for Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Julian Wenzel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | | | - David Popovic
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
- International Max-Planck Research School for Translational Psychiatry, Munich, Germany
| | - Oemer Faruk Oeztuerk
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
- International Max-Planck Research School for Translational Psychiatry, Munich, Germany
| | - Shalaila S. Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Johanna Weiske
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Daniel Hauke
- Department of Psychiatry (Psychiatric University Hospital, UPK), University of Basel, Basel, Switzerland
- Early Intervention Service, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
- Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland
| | - Susanne Neufang
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Nora Penzel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Theresa Lichtenstein
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Marlene Rosen
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Katharine Chisholm
- Institute for Mental Health and Centre for Brain Health, University of Birmingham, Birmingham, United Kingdom
- Department of Psychology, Aston University, Birmingham, United Kingdom
| | | | - Laura Egloff
- Department of Psychiatry (Psychiatric University Hospital, UPK), University of Basel, Basel, Switzerland
| | - André Schmidt
- Department of Psychiatry (Psychiatric University Hospital, UPK), University of Basel, Basel, Switzerland
| | - Christina Andreou
- Department of Psychiatry (Psychiatric University Hospital, UPK), University of Basel, Basel, Switzerland
| | - Jarmo Hietala
- Department of Psychiatry, University of Turku, Turku, Finland
| | - Timo Schirmer
- GE Healthcare GmbH (previously GE Global Research GmbH), Munich, Germany
| | - Georg Romer
- Department of Child and Adolescent Psychiatry, University of Münster, Münster, Germany
| | - Chantal Michel
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Wulf Rössler
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Carlo Maj
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Oleg Borisov
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Peter M. Krawitz
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
- Max-Planck Institute of Psychiatry, Munich, Germany
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Stefan Borgwardt
- Department of Psychiatry (Psychiatric University Hospital, UPK), University of Basel, Basel, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Markus Noethen
- Institute of Human Genetics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Psychology, Faculty of Psychology, Airlangga University, Surabaya, Indonesia
| | | | - Stephen J. Wood
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
- Orygen, the National Centre of Excellence for Youth Mental Health, Melbourne, Victoria, Australia
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Rachel Upthegrove
- Institute for Mental Health and Centre for Brain Health, University of Birmingham, Birmingham, United Kingdom
- Early Intervention Service, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | | | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
- Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
17
|
Modabbernia A, Michelini G, Reichenberg A, Kotov R, Barch D, Frangou S. Neural Signatures of Data-Driven Psychopathology Dimensions at the Transition to Adolescence. Eur Psychiatry 2022; 65:e12. [PMID: 35067249 PMCID: PMC8853849 DOI: 10.1192/j.eurpsy.2021.2262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background One of the challenges in human neuroscience is to uncover associations between brain organization and psychopathology in order to better understand the biological underpinnings of mental disorders. Here, we aimed to characterize the neural correlates of psychopathology dimensions obtained using two conceptually different data-driven approaches. Methods Dimensions of psychopathology that were either maximally dissociable or correlated were respectively extracted by independent component analysis (ICA) and exploratory factor analysis (EFA) applied to the Childhood Behavior Checklist items from 9- to 10-year-olds (n = 9983; 47.8% female, 50.8% white) participating in the Adolescent Brain Cognitive Development study. The patterns of brain morphometry, white matter integrity and resting-state connectivity associated with each dimension were identified using kernel-based regularized least squares and compared between dimensions using Spearman’s correlation coefficient. Results ICA identified three psychopathology dimensions, representing opposition–disinhibition, cognitive dyscontrol, and negative affect, with distinct brain correlates. Opposition–disinhibition was negatively associated with cortical surface area, cognitive dyscontrol was negatively associated with anatomical and functional dysconnectivity while negative affect did not show discernable associations with any neuroimaging measure. EFA identified three dimensions representing broad externalizing, neurodevelopmental, and broad Internalizing problems with partially overlapping brain correlates. All EFA-derived dimensions were negatively associated with cortical surface area, whereas measures of functional and structural connectivity were associated only with the neurodevelopmental dimension. Conclusions This study highlights the importance of cortical surface area and global connectivity for psychopathology in preadolescents and provides evidence for dissociable psychopathology dimensions with distinct brain correlates.
Collapse
|
18
|
Wang X, Qin J, Zhu R, Zhang S, Tian S, Sun Y, Wang Q, Zhao P, Tang H, Wang L, Si T, Yao Z, Lu Q. Predicting treatment selections for individuals with major depressive disorder according to functional connectivity subgroups. Brain Connect 2021; 12:699-710. [PMID: 34913731 DOI: 10.1089/brain.2021.0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a highly prevalent and disabling disease. Currently, patients' treatment choices depend on their clinical symptoms observed by clinicians, which are subjective. Rich evidence suggests that different functional networks' dysfunctions correspond to different intervention preferences. Here, we aimed to develop a prediction model based on data-driven subgroups to provide treatment recommendations. METHODS All 630 participants enrolled from four sites underwent functional magnetic resonances imaging at baseline. In the discovery dataset (n=228), we firstly identified MDD subgroups by the hierarchical clustering method using the canonical variates of resting-state functional connectivity (FC) through canonical correlation analyses. The demographic, symptom improvement and FC were compared among subgroups. The preference intervention for each subgroup was also determined. Next, we predicted the individual treatment strategy. Specifically, a patient was assigned into predefined subgroups based on FC similarities and then his/her treatment strategy was determined by the subgroups' preferred interventions. RESULTS Three subgroups with specific treatment recommendations were emerged including: (1) a selective serotonin reuptake inhibitors-oriented subgroup with early improvements in working and activities. (2) a stimulation-oriented subgroup with more alleviation in suicide. (3) a selective serotonin noradrenaline reuptake inhibitors-oriented subgroup with more alleviation in hypochondriasis. Through cross-dataset testing respectively conducted on three testing datasets, results showed an overall accuracy of 72.83%. CONCLUSIONS Our works revealed the correspondences between subgroups and their treatment preferences and predicted individual treatment strategy based on such correspondences. Our model has the potential to support psychiatrists in early clinical decision making for better treatment outcomes.
Collapse
Affiliation(s)
- Xinyi Wang
- Southeast University, 12579, School of Biological Sciences & Medical Engineering, Nanjing, Jiangsu, China.,Southeast University, 12579, Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, Jiangsu, China;
| | - Jiaolong Qin
- Nanjing University of Science and Technology, 12436, The Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing, Jiangsu, China;
| | - Rongxin Zhu
- Nanjing Medical University Affiliated Brain Hospital, 56647, Department of Psychiatry, Nanjing, Jiangsu, China;
| | - Siqi Zhang
- Southeast University, 12579, School of Biological Sciences & Medical Engineering, Nanjing, China.,Southeast University, 12579, Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, Jiangsu, China;
| | - Shui Tian
- Southeast University, 12579, School of Biological Sciences & Medical Engineering, Nanjing, Jiangsu, China.,Southeast University, 12579, Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, Jiangsu, China;
| | - Yurong Sun
- Southeast University, 12579, School of Biological Sciences & Medical Engineering, Nanjing, Jiangsu, China.,Southeast University, 12579, Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, Jiangsu, China;
| | - Qiang Wang
- Nanjing Drum Tower Hospital, 66506, Nanjing, Jiangsu, China;
| | - Peng Zhao
- Nanjing Drum Tower Hospital, 66506, Nanjing, Jiangsu, China;
| | - Hao Tang
- Nanjing Medical University Affiliated Brain Hospital, 56647, Department of Psychiatry, Nanjing, Jiangsu, China;
| | - Li Wang
- Peking University Institute of Mental Health, 74577, Beijing, Beijing, China;
| | - Tianmei Si
- Peking University Institute of Mental Health, 74577, Beijing, Beijing, China;
| | - Zhijian Yao
- Nanjing Medical University Affiliated Brain Hospital, 56647, Department of psychiatry, Nanjing, Jiangsu, China.,Nanjing Brain Hospital, 56647, Medical School of Nanjing University, Nanjing, Nanjing, China;
| | - Qing Lu
- Southeast University, 12579, School of Biological Sciences & Medical Engineering, Nanjing, China.,Southeast University, 12579, Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, Jiangsu, China;
| |
Collapse
|
19
|
Tseng WL, Abend R, Gold AL, Brotman MA. Neural correlates of extinguished threat recall underlying the commonality between pediatric anxiety and irritability. J Affect Disord 2021; 295:920-929. [PMID: 34706463 PMCID: PMC8554134 DOI: 10.1016/j.jad.2021.08.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/28/2021] [Accepted: 08/28/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Anxiety and irritability frequently co-occur in youth and are mediated by aberrant threat responses. However, empirical evidence on neural mechanisms underlying this co-occurrence is limited. To address this, we apply data-driven latent phenotyping to data from a prior report of a well-validated threat extinction recall fMRI paradigm. METHODS Participants included 59 youth (28 anxiety disorder, 31 healthy volunteers; Mage=13.15 yrs) drawn from a transdiagnostic sample of 331 youth, in which bifactor analysis was conducted to derive latent factors representing shared vs. unique variance of dimensionally-assessed anxiety and irritability. Participants underwent threat conditioning and extinction. Approximately three weeks later, during extinction recall fMRI, participants made threat-safety discriminations under two task conditions: current threat appraisal and explicit recall of threat contingencies. Linear mixed-effects analyses examined associations of a "negative affectivity" factor reflecting shared anxiety and irritability variance with whole-brain activation and task-dependent amygdala connectivity. RESULTS During recall of threat-safety contingencies, higher negative affectivity was associated with greater prefrontal (ventrolateral/ventromedial, dorsolateral, orbitofrontal), motor, temporal, parietal, and occipital activation. During threat appraisal, higher negative affectivity was associated with greater amygdala-inferior parietal lobule connectivity to threat/safety ambiguity. LIMITATIONS Sample included only healthy youth and youth with anxiety disorders. Results may not generalize to other diagnoses for which anxiety and irritability are also common, and our negative affectivity factor should be interpreted as anxiety disorders with elevated irritability. Reliability of some subfactors was poor. CONCLUSIONS Aberrant amygdala-prefrontal-parietal circuitry during extinction recall of threat-safety stimuli may be a mechanism underlying the co-occurrence of pediatric anxiety and irritability.
Collapse
Affiliation(s)
- Wan-Ling Tseng
- Yale Child Study Center, Yale School of Medicine, Yale University, 230 S. Frontage Road, New Haven, CT 06519, USA.
| | - Rany Abend
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD 20854, USA
| | - Andrea L Gold
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - Melissa A Brotman
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD 20854, USA
| |
Collapse
|
20
|
Association of gray matter volumes with general and specific dimensions of psychopathology in children. Neuropsychopharmacology 2021; 46:1333-1339. [PMID: 33479512 PMCID: PMC8134562 DOI: 10.1038/s41386-020-00952-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/03/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023]
Abstract
Childhood is an important time for the manifestation of psychopathology. Psychopathology is characterized by considerable comorbidity which is mirrored in the underlying neural correlates of psychopathology. Both common and dissociable variations in brain volume have been found across multiple mental disorders in adult and youth samples. However, the majority of these studies used samples with broad age ranges which may obscure developmental differences. The current study examines associations between regional gray matter volumes (GMV) and psychopathology in a large sample of children with a narrowly defined age range. We used data from 9607 children 9-10 years of age collected as part of the Adolescent Brain Cognitive DevelopmentSM Study (ABCD Study®). A bifactor model identified a general psychopathology factor that reflects common variance across disorders and specific factors representing internalizing symptoms, ADHD symptoms, and conduct problems. Brain volume was acquired using 3T MRI. After correction for multiple testing, structural equation modeling revealed nearly global inverse associations between regional GMVs and general psychopathology and conduct problems, with associations also found for ADHD symptoms (pfdr-values ≤ 0.048). Age, sex, and race were included as covariates. Sensitivity analyses including total GMV or intracranial volume (ICV) as covariates support this global association, as a large majority of region-specific results became nonsignificant. Sensitivity analyses including income, parental education, and medication use as additional covariates demonstrate largely convergent results. These findings suggest that globally smaller GMVs are a nonspecific risk factor for general psychopathology, and possibly for conduct problems and ADHD as well.
Collapse
|
21
|
Lahey BB, Moore TM, Kaczkurkin AN, Zald DH. Hierarchical models of psychopathology: empirical support, implications, and remaining issues. World Psychiatry 2021; 20:57-63. [PMID: 33432749 PMCID: PMC7801849 DOI: 10.1002/wps.20824] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There is an ongoing revolution in psychology and psychiatry that will likely change how we conceptualize, study and treat psychological problems.- Many theorists now support viewing psychopathology as consisting of continuous dimensions rather than discrete diagnostic categories. Indeed, recent papers have proposed comprehensive taxonomies of psychopathology dimensions to replace the DSM and ICD taxonomies of categories. The proposed dimensional taxonomies, which portray psychopathology as hierarchically organized correlated dimensions, are now well supported at phenotypic levels. Multiple studies show that both a general factor of psychopathology at the top of the hierarchy and specific factors at lower levels predict different functional outcomes. Our analyses of data on a large representative sample of child and adolescent twins suggested the causal hypothesis that phenotypic correlations among dimensions of psychopathology are the result of many familial influences being pleiotropic. That is, most genetic variants and shared environmental factors are hypothesized to non-specifically influence risk for multiple rather than individual dimensions of psychopathology. In contrast, person-specific experiences tend to be related to individual dimensions. This hierarchical causal hypothesis has been supported by both large-scale family and molecular genetic studies. Current research focuses on three issues. First, the field has not settled on a preferred statistical model for studying the hierarchy of causes and phenotypes. Second, in spite of encouraging progress, the neurobiological correlates of the hierarchy of dimensions of psychopathology are only partially described. Third, although there are potentially important clinical implications of the hierarchical model, insufficient research has been conducted to date to rec-ommend evidence-based clinical practices.
Collapse
Affiliation(s)
- Benjamin B. Lahey
- Department of Public Health SciencesUniversity of ChicagoChicagoILUSA
| | - Tyler M. Moore
- Neuropsychiatry Section, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | | | - David H. Zald
- Departments of Psychology and PsychiatryVanderbilt UniversityNashvilleTNUSA
| |
Collapse
|
22
|
Parkes L, Satterthwaite TD, Bassett DS. Towards precise resting-state fMRI biomarkers in psychiatry: synthesizing developments in transdiagnostic research, dimensional models of psychopathology, and normative neurodevelopment. Curr Opin Neurobiol 2020; 65:120-128. [PMID: 33242721 PMCID: PMC7770086 DOI: 10.1016/j.conb.2020.10.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 02/01/2023]
Abstract
Searching for biomarkers has been a chief pursuit of the field of psychiatry. Toward this end, studies have catalogued candidate resting-state biomarkers in nearly all forms of mental disorder. However, it is becoming increasingly clear that these biomarkers lack specificity, limiting their capacity to yield clinical impact. We discuss three avenues of research that are overcoming this limitation: (i) the adoption of transdiagnostic research designs, which involve studying and explicitly comparing multiple disorders from distinct diagnostic axes of psychiatry; (ii) dimensional models of psychopathology that map the full spectrum of symptomatology and that cut across traditional disorder boundaries; and (iii) modeling individuals' unique functional connectomes throughout development. We provide a framework for tying these subfields together that draws on tools from machine learning and network science.
Collapse
Affiliation(s)
- Linden Parkes
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Santa Fe Institute, Santa Fe, NM 87501, USA.
| |
Collapse
|
23
|
Cardenas-Iniguez C, Moore TM, Kaczkurkin AN, Meyer FAC, Satterthwaite TD, Fair DA, White T, Blok E, Applegate B, Thompson LM, Rosenberg MD, Hedeker D, Berman MG, Lahey BB. Direct and Indirect Associations of Widespread Individual Differences in Brain White Matter Microstructure With Executive Functioning and General and Specific Dimensions of Psychopathology in Children. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 7:362-375. [PMID: 33518499 DOI: 10.1016/j.bpsc.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Executive functions (EFs) are important partly because they are associated with risk for psychopathology and substance use problems. Because EFs have been linked to white matter microstructure, we tested the prediction that fractional anisotropy (FA) and mean diffusivity (MD) in white matter tracts are associated with EFs and dimensions of psychopathology in children younger than the age of widespread psychoactive substance use. METHODS Parent symptom ratings, EF test scores, and diffusion tensor parameters from 8588 9- to 10-year-olds in the ABCD Study (Adolescent Brain Cognitive Development Study) were used. RESULTS A latent factor derived from EF test scores was significantly associated with specific conduct problems and attention-deficit/hyperactivity disorder problems, with dimensions defined in a bifactor model. Furthermore, EFs were associated with FA and MD in 16 of 17 bilateral white matter tracts (range: β = .05; SE = .17; through β = -.31; SE = .06). Neither FA nor MD was directly associated with psychopathology, but there were significant indirect associations via EFs of both FA (range: β = .01; SE = .01; through β = -.09; SE = .02) and MD (range: β = .01; SE = .01; through β = .09; SE = .02) with both specific conduct problems and attention-deficit/hyperactivity disorder in all tracts except the forceps minor. CONCLUSIONS EFs in children are inversely associated with diffusion tensor imaging measures in nearly all tracts throughout the brain. Furthermore, variance in diffusion tensor measures that is shared with EFs is indirectly shared with attention-deficit/hyperactivity disorder and conduct problems.
Collapse
Affiliation(s)
- Carlos Cardenas-Iniguez
- Department of Psychology, Division of the Social Sciences, University of Chicago, Chicago, Illinois
| | - Tyler M Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Antonia N Kaczkurkin
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Francisco A C Meyer
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Damien A Fair
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Tonya White
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elisabet Blok
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Brooks Applegate
- Department of Educational Leadership, Research and Technology, College of Education and Human Development, Western Michigan University, Kalamazoo, Michigan
| | - Lauren M Thompson
- Department of Public Health Sciences, Division of the Biological Sciences, University of Chicago, Chicago, Illinois
| | - Monica D Rosenberg
- Department of Psychology, Division of the Social Sciences, University of Chicago, Chicago, Illinois
| | - Donald Hedeker
- Department of Public Health Sciences, Division of the Biological Sciences, University of Chicago, Chicago, Illinois
| | - Marc G Berman
- Department of Psychology, Division of the Social Sciences, University of Chicago, Chicago, Illinois
| | - Benjamin B Lahey
- Department of Public Health Sciences, Division of the Biological Sciences, University of Chicago, Chicago, Illinois.
| |
Collapse
|
24
|
Chen R, Cui Z, Capitão L, Wang G, Satterthwaite TD, Harmer C. Precision biomarkers for mood disorders based on brain imaging. BMJ 2020; 371:m3618. [PMID: 33036998 PMCID: PMC8009089 DOI: 10.1136/bmj.m3618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Identification of biomarkers could facilitate earlier diagnosis and better treatment, say Runsen Chen and colleagues
Collapse
Affiliation(s)
- Runsen Chen
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, and Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Zaixu Cui
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liliana Capitão
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Gang Wang
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, and Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | | | - Catherine Harmer
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| |
Collapse
|
25
|
Satterthwaite TD, Feczko E, Kaczkurkin AN, Fair DA. Parsing Psychiatric Heterogeneity Through Common and Unique Circuit-Level Deficits. Biol Psychiatry 2020; 88:4-5. [PMID: 32553194 PMCID: PMC8220658 DOI: 10.1016/j.biopsych.2020.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Theodore D. Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric Feczko
- Departments of Behavioral Neuroscience, Psychiatry, and Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon
| | | | - Damien A. Fair
- Departments of Behavioral Neuroscience, Psychiatry, and Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|