1
|
Alberry B, Silveira PP. Early environmental influences on brain development and executive function. Brain Cogn 2024:106241. [PMID: 39542747 DOI: 10.1016/j.bandc.2024.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Affiliation(s)
- Bonnie Alberry
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Patrícia Pelufo Silveira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Harnett NG, Merrill LC, Fani N. Racial and ethnic socioenvironmental inequity and neuroimaging in psychiatry: a brief review of the past and recommendations for the future. Neuropsychopharmacology 2024; 50:3-15. [PMID: 38902354 PMCID: PMC11526029 DOI: 10.1038/s41386-024-01901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Neuroimaging is a major tool that holds immense translational potential for understanding psychiatric disorder phenomenology and treatment. However, although epidemiological and social research highlights the many ways inequity and representativeness influences mental health, there is a lack of consideration of how such issues may impact neuroimaging features in psychiatric research. More specifically, the potential extent to which racialized inequities may affect underlying neurobiology and impact the generalizability of neural models of disorders is unclear. The present review synthesizes research focused on understanding the potential consequences of racial/ethnic inequities relevant to neuroimaging in psychiatry. We first discuss historical and contemporary drivers of inequities that persist today. We then discuss the neurobiological consequences of these inequities as revealed through current research, and note emergent research demonstrating the impact such inequities have on our ability to use neuroimaging to understand psychiatric disease. We end with a set of recommendations and practices to move the field towards more equitable approaches that will advance our abilities to develop truly generalizable neurobiological models of psychiatric disorders.
Collapse
Affiliation(s)
- Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Livia C Merrill
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Salontaji K, Haftorn KL, Sanders F, Page CM, Walton E, Felix JF, Bekkhus M, Bohlin J, Tiemeier H, Cecil CAM. Gestational epigenetic age and ADHD symptoms in childhood: a prospective, multi-cohort study. Mol Psychiatry 2024; 29:2911-2918. [PMID: 38561466 PMCID: PMC7616513 DOI: 10.1038/s41380-024-02544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Epigenetic age acceleration (EAA), defined as the difference between chronological age and epigenetically predicted age, was calculated from multiple gestational epigenetic clocks (Bohlin, EPIC overlap, and Knight) using DNA methylation levels from cord blood in three large population-based birth cohorts: the Generation R Study (The Netherlands), the Avon Longitudinal Study of Parents and Children (United Kingdom), and the Norwegian Mother, Father and Child Cohort Study (Norway). We hypothesized that a lower EAA associates prospectively with increased ADHD symptoms. We tested our hypotheses in these three cohorts and meta-analyzed the results (n = 3383). We replicated previous research on the association between gestational age (GA) and ADHD. Both clinically measured gestational age as well as epigenetic age measures at birth were negatively associated with ADHD symptoms at ages 5-7 years (clinical GA: β = -0.04, p < 0.001, Bohlin: β = -0.05, p = 0.01; EPIC overlap: β = -0.05, p = 0.01; Knight: β = -0.01, p = 0.26). Raw EAA (difference between clinical and epigenetically estimated gestational age) was positively associated with ADHD in our main model, whereas residual EAA (raw EAA corrected for clinical gestational age) was not associated with ADHD symptoms across cohorts. Overall, findings support a link between lower gestational age (either measured clinically or using epigenetic-derived estimates) and ADHD symptoms. Epigenetic age acceleration does not, however, add unique information about ADHD risk independent of clinically estimated gestational age at birth.
Collapse
Affiliation(s)
- Kristina Salontaji
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, University Medical Center Rotterdam, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kristine L Haftorn
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Faye Sanders
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Physical Health and Ageing, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mona Bekkhus
- Promenta research centre, Department of Psychology, University of Oslo, Oslo, Norway
| | - Jon Bohlin
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department for methods development and analysis, section for modeling and bioinformatics, Division for infectious diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Medicine, Boston, MA, USA
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
4
|
Jankovic-Rankovic J, Panter-Brick C. Physiological and genomic signatures of war and displacement: A comprehensive literature review and future directions. Psychoneuroendocrinology 2024; 166:107084. [PMID: 38788460 DOI: 10.1016/j.psyneuen.2024.107084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
There are now 108.4 million forcibly displaced people worldwide, many of whom endure adversities that result in trauma, toxic stress, and potentially, altered epigenetic development. This paper provides a comprehensive review of current literature on the biological signatures of war and forced migration among refugee populations. To consolidate evidence and identify key concerns and avenues for future research, we reviewed 36 publications and one article under review, published since 2000, most of which focused on refugees relocated in Europe and the Middle East. This body of work - including cross-sectional, observational, and experimental studies - reveals heterogenous findings regarding human biological responses to war-related adversities and their associations with health outcomes. We conclude with four main observations, regarding why genomic and physiological biomarkers are valuable, what study designs advance understanding of causality and health-promoting interventions, how to prepare for ethical challenges, and why theoretical frameworks and research procedures need more detailed consideration in scientific publications.
Collapse
Affiliation(s)
| | - Catherine Panter-Brick
- Department of Anthropology, Yale University, New Haven, CT 06520, USA; Jackson School of Global Affairs, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Murgatroyd C, Salontaji K, Smajlagic D, Page C, Sanders F, Jugessur A, Lyle R, Tsotsi S, Haftorn K, Felix J, Walton E, Tiemeier H, Cecil C, Bekkhus M. Prenatal stress and gestational epigenetic age: No evidence of associations based on a large prospective multi-cohort study. RESEARCH SQUARE 2024:rs.3.rs-4257223. [PMID: 39011115 PMCID: PMC11247928 DOI: 10.21203/rs.3.rs-4257223/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Psychological stress during pregnancy is known to have a range of long-lasting negative consequences on the development and health of offspring. Here, we tested whether a measure of prenatal early-life stress was associated with a biomarker of physiological development at birth, namely epigenetic gestational age, using foetal cord-blood DNA-methylation data. Longitudinal cohorts from the Netherlands (Generation R Study [Generation R], n = 1,396), the UK (British Avon Longitudinal Study of Parents and Children [ALSPAC], n = 642), and Norway (Mother, Father and Child Cohort Study [MoBa], n1 = 1,212 and n2 = 678) provided data on prenatal maternal stress and genome-wide DNA methylation from cord blood and were meta-analysed (pooled n = 3,928). Measures of epigenetic age acceleration were calculated using three different gestational epigenetic clocks: "Bohlin", "EPIC overlap" and "Knight". Prenatal stress exposure, examined as an overall cumulative score, was not significantly associated with epigenetically-estimated gestational age acceleration or deceleration in any of the clocks, based on the results of the pooled meta-analysis or those of the individual cohorts. No significant associations were identified with specific domains of prenatal stress exposure, including negative life events, contextual (socio-economic) stressors, parental risks (e.g., maternal psychopathology) and interpersonal risks (e.g., family conflict). Further, no significant associations were identified when analyses were stratified by sex. Overall, we find little support that prenatal psychosocial stress is associated with variation in epigenetic age at birth within the general paediatric population.
Collapse
|
6
|
Chan SY, Fitzgerald E, Ngoh ZM, Lee J, Chuah J, Chia JSM, Fortier MV, Tham EH, Zhou JH, Silveira PP, Meaney MJ, Tan AP. Examining the associations between microglia genetic capacity, early life exposures and white matter development at the level of the individual. Brain Behav Immun 2024; 119:781-791. [PMID: 38677627 DOI: 10.1016/j.bbi.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
There are inter-individual differences in susceptibility to the influence of early life experiences for which the underlying neurobiological mechanisms are poorly understood. Microglia play a role in environmental surveillance and may influence individual susceptibility to environmental factors. As an index of neurodevelopment, we estimated individual slopes of mean white matter fractional anisotropy (WM-FA) across three time-points (age 4.5, 6.0, and 7.5 years) for 351 participants. Individual variation in microglia reactivity was derived from an expression-based polygenic score(ePGS) comprised of Single Nucleotide Polymorphisms (SNPs) functionally related to the expression of microglia-enriched genes.A higher ePGS denotes an increased genetic capacity for the expression of microglia-related genes, and thus may confer a greater capacity to respond to the early environment and to influence brain development. We hypothesized that this ePGS would associate with the WM-FA index of neurodevelopment and moderate the influence of early environmental factors.Our findings show sex dependency, where a significant association between WM-FA and microglia ePGS was only obtained for females.We then examined associations with perinatal factors known to decrease (optimal birth outcomes and familial conditions) or increase (systemic inflammation) the risk for later mental health problems.In females, individuals with high microglia ePGS showed a negative association between systemic inflammation and WM-FA and a positive association between more advantageous environmental conditions and WM-FA. The microglia ePGS in females thus accounted for variations in the influence of the quality of the early environment on WM-FA.Finally, WM-FA slopes mediated the association of microglia ePGS with interpersonal problems and social hostility in females. Our findings suggest the genetic capacity for microglia function as a potential factor underlying differential susceptibility to early life exposuresthrough influences on neurodevelopment.
Collapse
Affiliation(s)
- Shi Yu Chan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Eamon Fitzgerald
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, 1010 Rue Sherbrooke O, QC H3A 2R7, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 Bd LaSalle, QC H4H 1R3, Canada
| | - Zhen Ming Ngoh
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Janice Lee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Jasmine Chuah
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Joanne S M Chia
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Marielle V Fortier
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore; Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, 100 Bukit Timah Rd, Singapore 229899, Singapore; Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Elizabeth H Tham
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System (NUHS), 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Juan H Zhou
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Patricia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, 1010 Rue Sherbrooke O, QC H3A 2R7, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 Bd LaSalle, QC H4H 1R3, Canada; Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 Bd LaSalle, QC H4H 1R3, Canada; Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Brain - Body Initiative Program, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis North Tower, Singapore 138632, Singapore
| | - Ai Peng Tan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Dr, Singapore 117609, Singapore; Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Brain - Body Initiative Program, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis North Tower, Singapore 138632, Singapore; Department of Diagnostic Imaging, National University Health System, 1E Kent Ridge Rd, Singapore 119228, Singapore.
| |
Collapse
|
7
|
Daredia S, Bozack AK, Riddell CA, Gunier R, Harley KG, Bradman A, Eskenazi B, Holland N, Deardorff J, Cardenas A. Prenatal Maternal Occupation and Child Epigenetic Age Acceleration in an Agricultural Region: NIMHD Social Epigenomics Program. JAMA Netw Open 2024; 7:e2421824. [PMID: 39073821 PMCID: PMC11287394 DOI: 10.1001/jamanetworkopen.2024.21824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/05/2024] [Indexed: 07/30/2024] Open
Abstract
Importance Research on fetal epigenetic programming suggests that the intrauterine environment can have long-term effects on offspring disease susceptibility. Objective To examine the association between prenatal maternal occupation and child epigenetic age acceleration (EAA) among a farmworker community. Design, Setting, and Participants This cohort study included participants in the Center for the Health Assessment of Mothers and Children of Salinas, a prospective, Latino, prebirth cohort. Pregnant women were recruited from October 1, 1999, to October 1, 2000, from 6 community clinics in California's Salinas Valley agricultural region. Participants were 18 years or older, English or Spanish speaking, Medicaid eligible, and at 20 weeks' gestation or earlier at enrollment. Mother-child pairs who had blood DNA methylation measured at the ages of 7, 9, and 14 years were included. Data were analyzed from July 2021 to November 2023. Exposures Prenatal maternal occupation was ascertained through study interviews conducted during prenatal visits and shortly after delivery. Main Outcomes and Measures Child EAA at 7, 9, and 14 years of age was estimated using DNA methylation-based epigenetic age biomarkers. Three EAA measures were calculated: the Horvath EAA, skin and blood EAA, and intrinsic EAA. Linear mixed-effects models were used to estimate longitudinal associations of prenatal maternal occupation and child EAA, adjusting for confounders and prenatal organophosphate pesticide exposure. Results Analyses included 290 mother-child pairs (mean [SD] maternal age at delivery, 26.5 [5.2] years; 152 [52.4%] female infants); 254 mothers (87.6%) were born in Mexico, 33 (11.4%) in the US, and 3 (1.0%) in other countries; and 179 families (61.7%) were below the federal poverty line during pregnancy. Mothers reported engaging in several types of work during pregnancy, including agricultural fieldwork (90 [31.0%]), other agricultural work (40 [13.8%]), nonagricultural work (53 [18.3%]), or no work (107 [36.9%]). Children whose mothers worked in agricultural fields during pregnancy had a mean of 0.66 (95% CI, 0.17-1.15) years of greater Horvath EAA, 0.62 (95% CI, 0.31-0.94) years of greater skin and blood EAA, and 0.45 (95% CI, 0.07-0.83) years of greater intrinsic EAA compared with children whose mothers did not work during pregnancy. Conclusions and Relevance In this cohort study, prenatal maternal agricultural fieldwork was associated with accelerated childhood epigenetic aging independent of organophosphate pesticide exposure. Future research on which factors related to agricultural fieldwork accelerate aging in the next generation can inform targeted prevention programs and policies that protect children's health.
Collapse
Affiliation(s)
- Saher Daredia
- Division of Epidemiology, School of Public Health, University of California, Berkeley
| | - Anne K. Bozack
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, California
| | - Corinne A. Riddell
- Division of Epidemiology, School of Public Health, University of California, Berkeley
- Division of Biostatistics, School of Public Health, University of California, Berkeley
| | - Robert Gunier
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley
| | - Kim G. Harley
- Division of Epidemiology, School of Public Health, University of California, Berkeley
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley
| | - Asa Bradman
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley
- Department of Public Health, University of California, Merced
| | - Brenda Eskenazi
- Division of Epidemiology, School of Public Health, University of California, Berkeley
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley
| | - Nina Holland
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley
| | - Julianna Deardorff
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley
| | - Andres Cardenas
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, California
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, California
| |
Collapse
|
8
|
Creasey N, Leijten P, Overbeek G, Tollenaar MS. Incredible years parenting program buffers prospective association between parent-reported harsh parenting and epigenetic age deceleration in children with externalizing behavior. Psychoneuroendocrinology 2024; 165:107043. [PMID: 38593711 DOI: 10.1016/j.psyneuen.2024.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Harsh parenting has been shown to increase the risk of physical and mental health problems in later life. To improve our understanding of these risks and how they can be mitigated, we investigated associations of harsh parenting with a clinically relevant biomarker, epigenetic age deviation (EAD), using data from a randomized-control trial of the Incredible Years (IY) parenting program. This study included 281 children aged 4-8 years who were screened for heightened externalizing behavior and whose parents were randomly allocated to either IY or care-as-usual (CAU). Parents reported on their own parenting practices and their child's externalizing behavior at baseline and at a follow-up assessment approximately three years later. Epigenetic age, based on the Pediatric Buccal Epigenetic (PedBE) clock, was estimated from child DNA methylation derived from saliva collected at the follow-up assessment. PedBE clock estimates were regressed on chronological age as a measure of EAD. Moderation analyses using multiple regression revealed that harsher parenting at baseline predicted epigenetic age deceleration in children that received CAU (b = -.21, 95% CI[-0.37, -0.05]), but no association was found in children whose parents were allocated to IY (b = -.02, 95% CI [-0.13, 0.19]). These results highlight a prospective association between harsh parenting and children's EAD and indicate a potential ameliorating effect of preventive intervention. Future work is needed to replicate these findings and understand individual differences in children's responses to harsh parenting in relation to epigenetic aging.
Collapse
Affiliation(s)
- Nicole Creasey
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Clinical, Educational & Health Psychology, Division of Psychology & Language Sciences, Faculty of Brain Sciences, University College London, London, UK.
| | - Patty Leijten
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, the Netherlands
| | - Geertjan Overbeek
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, the Netherlands
| | - Marieke S Tollenaar
- Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, the Netherlands
| |
Collapse
|
9
|
Großbach A, Suderman MJ, Hüls A, Lussier AA, Smith AD, Walton E, Dunn EC, Simpkin AJ. Maximizing Insights from Longitudinal Epigenetic Age Data: Simulations, Applications, and Practical Guidance. RESEARCH SQUARE 2024:rs.3.rs-4482915. [PMID: 38947070 PMCID: PMC11213208 DOI: 10.21203/rs.3.rs-4482915/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Epigenetic Age (EA) is an age estimate, developed using DNA methylation (DNAm) states of selected CpG sites across the genome. Although EA and chronological age are highly correlated, EA may not increase uniformly with time. Departures, known as epigenetic age acceleration (EAA), are common and have been linked to various traits and future disease risk. Limited by available data, most studies investigating these relationships have been cross-sectional - using a single EA measurement. However, the recent growth in longitudinal DNAm studies has led to analyses of associations with EA over time. These studies differ in (i) their choice of model; (ii) the primary outcome (EA vs. EAA); and (iii) in their use of chronological age or age-independent time variables to account for the temporal dynamic. We evaluated the robustness of each approach using simulations and tested our results in two real-world examples, using biological sex and birthweight as predictors of longitudinal EA. Results Our simulations showed most accurate effect sizes in a linear mixed model or generalized estimating equation, using chronological age as the time variable. The use of EA versus EAA as an outcome did not strongly impact estimates. Applying the optimal model in real-world data uncovered an accelerated EA rate in males and an advanced EA that decelerates over time in children with higher birthweight. Conclusion Our results can serve as a guide for forthcoming longitudinal EA studies, aiding in methodological decisions that may determine whether an association is accurately estimated, overestimated, or potentially overlooked.
Collapse
Affiliation(s)
- Anna Großbach
- School of Mathematical and Statistical Sciences, University of Galway, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Ireland
| | - Matthew J. Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Alexandre A. Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Andrew D.A.C. Smith
- Mathematics and Statistics Research Group, University of the West of England, Bristol, UK
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Erin C. Dunn
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Andrew J. Simpkin
- School of Mathematical and Statistical Sciences, University of Galway, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Ireland
| |
Collapse
|
10
|
Qiao X, Straight B, Ngo D, Hilton CE, Owuor Olungah C, Naugle A, Lalancette C, Needham BL. Severe drought exposure in utero associates to children's epigenetic age acceleration in a global climate change hot spot. Nat Commun 2024; 15:4140. [PMID: 38755138 PMCID: PMC11099019 DOI: 10.1038/s41467-024-48426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
The goal of this study is to examine the association between in utero drought exposure and epigenetic age acceleration (EAA) in a global climate change hot spot. Calculations of EAA in adults using DNA methylation have been found to accurately predict chronic disease and longevity. However, fewer studies have examined EAA in children, and drought exposure in utero has not been investigated. Additionally, studies of EAA in low-income countries with diverse populations are rare. We assess EAA using epigenetic clocks and two DNAm-based pace-of-aging measurements from whole saliva samples in 104 drought-exposed children and 109 same-sex sibling controls in northern Kenya. We find a positive association between in utero drought exposure and EAA in two epigenetic clocks (Hannum's and GrimAge) and a negative association in the DNAm based telomere length (DNAmTL) clock. The combined impact of drought's multiple deleterious stressors may reduce overall life expectancy through accelerated epigenetic aging.
Collapse
Affiliation(s)
- Xi Qiao
- Department of Statistics, Western Michigan University, Kalamazoo, MI, USA
| | - Bilinda Straight
- School of Environment, Geography, & Sustainability, Western Michigan University, Kalamazoo, MI, USA.
| | - Duy Ngo
- Department of Statistics, Western Michigan University, Kalamazoo, MI, USA
| | - Charles E Hilton
- Department of Anthropology, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Charles Owuor Olungah
- Department of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya
| | - Amy Naugle
- Department of Psychology, Western Michigan University, Kalamazoo, MI, USA
| | | | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Khan Y, Davis CN, Jinwala Z, Feuer KL, Toikumo S, Hartwell EE, Sanchez-Roige S, Peterson RE, Hatoum AS, Kranzler HR, Kember RL. Combining Transdiagnostic and Disorder-Level GWAS Enhances Precision of Psychiatric Genetic Risk Profiles in a Multi-Ancestry Sample. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.09.24307111. [PMID: 38766259 PMCID: PMC11100926 DOI: 10.1101/2024.05.09.24307111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The etiology of substance use disorders (SUDs) and psychiatric disorders reflects a combination of both transdiagnostic (i.e., common) and disorder-level (i.e., independent) genetic risk factors. We applied genomic structural equation modeling to examine these genetic factors across SUDs, psychotic, mood, and anxiety disorders using genome-wide association studies (GWAS) of European- (EUR) and African-ancestry (AFR) individuals. In EUR individuals, transdiagnostic genetic factors represented SUDs (143 lead single nucleotide polymorphisms [SNPs]), psychotic (162 lead SNPs), and mood/anxiety disorders (112 lead SNPs). We identified two novel SNPs for mood/anxiety disorders that have probable regulatory roles on FOXP1, NECTIN3, and BTLA genes. In AFR individuals, genetic factors represented SUDs (1 lead SNP) and psychiatric disorders (no significant SNPs). The SUD factor lead SNP, although previously significant in EUR- and cross-ancestry GWAS, is a novel finding in AFR individuals. Shared genetic variance accounted for overlap between SUDs and their psychiatric comorbidities, with second-order GWAS identifying up to 12 SNPs not significantly associated with either first-order factor in EUR individuals. Finally, common and independent genetic effects showed different associations with psychiatric, sociodemographic, and medical phenotypes. For example, the independent components of schizophrenia and bipolar disorder had distinct associations with affective and risk-taking behaviors, and phenome-wide association studies identified medical conditions associated with tobacco use disorder independent of the broader SUDs factor. Thus, combining transdiagnostic and disorder-level genetic approaches can improve our understanding of co-occurring conditions and increase the specificity of genetic discovery, which is critical for psychiatric disorders that demonstrate considerable symptom and etiological overlap.
Collapse
Affiliation(s)
- Yousef Khan
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Christal N. Davis
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Zeal Jinwala
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Kyra L. Feuer
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Sylvanus Toikumo
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Emily E. Hartwell
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, United States
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37235, United States
- Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Roseann E. Peterson
- Institute for Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Alexander S. Hatoum
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| | - Rachel L. Kember
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104
| |
Collapse
|
12
|
Folger AT, Ding L, Yolton K, Ammerman RT, Ji H, Frey JR, Bowers KA. Association between maternal prenatal depressive symptoms and offspring epigenetic aging at 3-5 weeks. Ann Epidemiol 2024; 93:1-6. [PMID: 38479709 PMCID: PMC11031304 DOI: 10.1016/j.annepidem.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 04/21/2024]
Abstract
Epigenetic clocks are emerging as tools for assessing acceleration and deceleration of biological age during childhood. Maternal depression during pregnancy may affect the biological aging of offspring and related development. In a low-income cohort of mother-child dyads, we investigated the relationship between prenatal maternal depressive symptoms and infant epigenetic age residuals, which represent the deviation (acceleration or deceleration) that exists between predicted biological age and chronological age. The epigenetic age residuals were derived from a pediatric-specific buccal epithelial clock. We hypothesized that maternal depressive symptoms, both sub-clinical and elevated (clinical level), would be associated with estimated biological age deceleration in offspring during early infancy. We analyzed data from 94 mother-child dyads using the Edinburgh Postnatal Depression Scale (EPDS) and DNA methylation derived from offspring buccal cells collected at 3-5 weeks of age. There was a significant non-linear association between the EPDS score and epigenetic age residual (β = -0.017, 95% confidence interval: -0.03,-0.01, P = <0.01). The results indicated that infants of mothers with sub-clinical depressive symptoms had the lowest infant epigenetic age residuals while infants of mothers with no-to-low depressive symptoms had the highest and experienced biological age acceleration. Maternal depressive symptoms may influence the biological aging of offspring living in poverty.
Collapse
Affiliation(s)
- Alonzo T Folger
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Lili Ding
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kimberly Yolton
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Robert T Ammerman
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hong Ji
- Department of Anatomy Physiology and Cell biology, School of Veterinary Medicine, California National Primate Research Center, University of California Davis, Davis, CA, United States
| | - Jennifer R Frey
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Katherine A Bowers
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
13
|
Pantell MS, Silveira PP, de Mendonça Filho EJ, Wing H, Brown EM, Keeton VF, Pokhvisneva I, O'Donnell KJ, Neuhaus J, Hessler D, Meaney MJ, Adler NE, Gottlieb LM. Associations between Social Adversity and Biomarkers of Inflammation, Stress, and Aging in Children. Pediatr Res 2024; 95:1553-1563. [PMID: 38233512 PMCID: PMC11126389 DOI: 10.1038/s41390-023-02992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/17/2023] [Accepted: 11/11/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Prior work has found relationships between childhood social adversity and biomarkers of stress, but knowledge gaps remain. To help address these gaps, we explored associations between social adversity and biomarkers of inflammation (interleukin-1β [IL-1β], IL-6, IL-8, tumor necrosis factor-alpha [TNF-α], and salivary cytokine hierarchical "clusters" based on the three interleukins), neuroendocrine function (cortisol, cortisone, dehydroepiandrosterone, testosterone, and progesterone), neuromodulation (N-arachidonoylethanolamine, stearoylethanolamine, oleoylethanolamide, and palmitoylethanolamide), and epigenetic aging (Pediatric-Buccal-Epigenetic clock). METHODS We collected biomarker samples of children ages 0-17 recruited from an acute care pediatrics clinic and examined their associations with caregiver-endorsed education, income, social risk factors, and cumulative adversity. We calculated regression-adjusted means for each biomarker and compared associations with social factors using Wald tests. We used logistic regression to predict being in the highest cytokine cluster based on social predictors. RESULTS Our final sample included 537 children but varied based on each biomarker. Cumulative social adversity was significantly associated with having higher levels of all inflammatory markers and with cortisol, displaying a U-shaped distribution. There were no significant relationships between cumulative social adversity and cortisone, neuromodulation biomarkers or epigenetic aging. CONCLUSION Our findings support prior work suggesting that social stress exposures contribute to increased inflammation in children. IMPACT Our study is one of the largest studies examining associations between childhood social adversity and biomarkers of inflammation, neuroendocrine function, neuromodulation, and epigenetic aging. It is one of the largest studies to link childhood social adversity to biomarkers of inflammation, and the first of which we are aware to link cumulative social adversity to cytokine clusters. It is also one of the largest studies to examine associations between steroids and epigenetic aging among children, and one of the only studies of which we are aware to examine associations between social adversity and endocannabinoids among children. CLINICAL TRIAL REGISTRATION NCT02746393.
Collapse
Affiliation(s)
- Matthew S Pantell
- Division of Pediatric Hospital Medicine, Department of Pediatrics, University of California, San Francisco, CA, USA.
- Center for Health and Community, University of California, San Francisco, San Francisco, CA, USA.
- Social Interventions Research and Evaluation Network, University of California, San Francisco, CA, USA.
| | - Patricia P Silveira
- Douglas Mental Health University Institute, Douglas Research Center, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health and Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Euclides José de Mendonça Filho
- Douglas Mental Health University Institute, Douglas Research Center, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health and Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Holly Wing
- Center for Health and Community, University of California, San Francisco, San Francisco, CA, USA
- Social Interventions Research and Evaluation Network, University of California, San Francisco, CA, USA
| | | | - Victoria F Keeton
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, 490 Illinois St, Box 2930, 94143, San Francisco, CA, USA
| | - Irina Pokhvisneva
- Douglas Mental Health University Institute, Douglas Research Center, McGill University, Montreal, QC, Canada
| | - Kieran J O'Donnell
- Douglas Mental Health University Institute, Douglas Research Center, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health and Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Yale Child Study Center & Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - John Neuhaus
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Danielle Hessler
- Social Interventions Research and Evaluation Network, University of California, San Francisco, CA, USA
- Department of Family and Community Medicine, University of California, San Francisco, CA, USA
| | - Michael J Meaney
- Douglas Mental Health University Institute, Douglas Research Center, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health and Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Nancy E Adler
- Center for Health and Community, University of California, San Francisco, San Francisco, CA, USA
| | - Laura M Gottlieb
- Center for Health and Community, University of California, San Francisco, San Francisco, CA, USA
- Social Interventions Research and Evaluation Network, University of California, San Francisco, CA, USA
- Department of Family and Community Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Dieckmann L, Czamara D. Epigenetics of prenatal stress in humans: the current research landscape. Clin Epigenetics 2024; 16:20. [PMID: 38308342 PMCID: PMC10837967 DOI: 10.1186/s13148-024-01635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
Fetal exposure to prenatal stress can have significant consequences on short- and long-term health. Epigenetic mechanisms, especially DNA methylation (DNAm), are a possible process how these adverse environmental events could be biologically embedded. We evaluated candidate gene as well as epigenome-wide association studies associating prenatal stress and DNAm changes in peripheral tissues; however, most of these findings lack robust replication. Prenatal stress-associated epigenetic changes have also been linked to child health including internalizing problems, neurobehavioral outcomes and stress reactivity. Future studies should focus on refined measurement and definition of prenatal stress and its timing, ideally also incorporating genomic as well as longitudinal information. This will provide further opportunities to enhance our understanding of the biological embedding of prenatal stress exposure.
Collapse
Affiliation(s)
- Linda Dieckmann
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Darina Czamara
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
15
|
Laubach ZM, Bozack A, Aris IM, Slopen N, Tiemeier H, Hivert MF, Cardenas A, Perng W. Maternal prenatal social experiences and offspring epigenetic age acceleration from birth to mid-childhood. Ann Epidemiol 2024; 90:28-34. [PMID: 37839726 PMCID: PMC10842218 DOI: 10.1016/j.annepidem.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE Investigate associations of maternal social experiences with offspring epigenetic age acceleration (EAA) from birth through mid-childhood among 205 mother-offspring dyads of minoritized racial and ethnic groups. METHODS We used linear regression to examine associations of maternal experiences of racial bias or discrimination (0 = none, 1-2 = intermediate, or 3+ = high), social support (tertile 1 = low, 2 = intermediate, 3 = high), and socioeconomic status index (tertile 1 = low, 2 = intermediate, 3 = high) during the prenatal period with offspring EAA according to Horvath's Pan-Tissue, Horvath's Skin and Blood, and Intrinsic EAA clocks at birth, 3 years, and 7 years. RESULTS In comparison to children of women who did not experience any racial bias or discrimination, those whose mothers reported highest levels of racial bias or discrimination had lower Pan-Tissue clock EAA in early (-0.50 years; 90% CI: -0.91, -0.09) and mid-childhood (-0.75 years; -1.41, -0.08). We observed similar associations for the Skin and Blood clock and Intrinsic EAA. Maternal experiences of discrimination were not associated with Pan-Tissue EAA at birth. Neither maternal social support nor socioeconomic status predicted offspring EAA. CONCLUSIONS Children whose mothers experienced higher racial bias or discrimination exhibited slower EAA. Future studies are warranted to confirm these findings and establish associations of early-life EAA with long-term health outcomes.
Collapse
Affiliation(s)
- Zachary M Laubach
- Department of Ecology and Evolutionary Biology (EBIO), University of Colorado Boulder
| | - Anne Bozack
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA
| | - Izzuddin M Aris
- Division of Chronic Disease Research Across the Lifecourse (CORAL), Department of Population Medicine, Harvard Medical School, Boston, MA
| | - Natalie Slopen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CORAL), Department of Population Medicine, Harvard Medical School, Boston, MA; Diabetes Unit, Massachusetts General Hospital, Boston, MA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD Center), Department of Epidemiology, Colorado School of Public Health, Aurora, CO.
| |
Collapse
|
16
|
Dutta S, Goodrich JM, Dolinoy DC, Ruden DM. Biological Aging Acceleration Due to Environmental Exposures: An Exciting New Direction in Toxicogenomics Research. Genes (Basel) 2023; 15:16. [PMID: 38275598 PMCID: PMC10815440 DOI: 10.3390/genes15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Biological clock technologies are designed to assess the acceleration of biological age (B-age) in diverse cell types, offering a distinctive opportunity in toxicogenomic research to explore the impact of environmental stressors, social challenges, and unhealthy lifestyles on health impairment. These clocks also play a role in identifying factors that can hinder aging and promote a healthy lifestyle. Over the past decade, researchers in epigenetics have developed testing methods that predict the chronological and biological age of organisms. These methods rely on assessing DNA methylation (DNAm) levels at specific CpG sites, RNA levels, and various biomolecules across multiple cell types, tissues, and entire organisms. Commonly known as 'biological clocks' (B-clocks), these estimators hold promise for gaining deeper insights into the pathways contributing to the development of age-related disorders. They also provide a foundation for devising biomedical or social interventions to prevent, reverse, or mitigate these disorders. This review article provides a concise overview of various epigenetic clocks and explores their susceptibility to environmental stressors.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.G.); (D.C.D.)
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.G.); (D.C.D.)
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Douglas M. Ruden
- C. S. Mott Center for Human Health and Development, Department of Obstetrics and Gynecology, Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
17
|
Paniagua U, Lester BM, Marsit CJ, Camerota M, Carter BS, Check JF, Helderman J, Hofheimer JA, McGowan EC, Neal CR, Pastyrnak SL, Smith LM, DellaGrotta SA, Dansereau LM, O’Shea TM, Everson TM. Epigenetic age acceleration, neonatal morbidities, and neurobehavioral profiles in infants born very preterm. Epigenetics 2023; 18:2280738. [PMID: 37983304 PMCID: PMC10732637 DOI: 10.1080/15592294.2023.2280738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Epigenetic age acceleration is a risk factor for chronic diseases of ageing and may reflect aspects of biological ageing. However, few studies have examined epigenetic ageing during the early neonatal period in preterm infants, who are at heightened risk of developmental problems. We examined relationships between neonatal age acceleration, neonatal morbidities, and neurobehavioral domains among very preterm (<30 weeks gestation) infants to characterize whether infants with early morbidities or different neurobehavioral characteristics had accelerated or decelerated epigenetic ageing. This study uses data from the Neonatal Neurobehavior and Outcomes in Very Preterm Infants (NOVI) study, restricted to infants with data on variables assessed (n = 519). We used generalized estimating equations to test for differences in age acceleration associated with severe neonatal medical morbidities and neurobehavioral characteristics. We found that infants with neonatal morbidities, in particular, bronchopulmonary dysplasia (BPD), had accelerated epigenetic age - and some evidence that infants with hypertonicity and asymmetric reflexes had increased and decreased age acceleration, respectively. Adjustment for gestational age attenuated some associations, suggesting that the relationships observed may be driven by the duration of gestation. Our most robust finding shows that very preterm infants with neonatal morbidities (BPD in particular) exhibit age acceleration, but most neonatal neurobehavioral characteristics and morbidities are not associated with early life age acceleration. Lower gestational age at birth may be an upstream factor driving these associations.
Collapse
Affiliation(s)
- Uriel Paniagua
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Barry M. Lester
- Department of Pediatrics, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, USA
- Brown Center for the Study of Children at Risk, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Brown Alpert Medical School, Providence, RI, USA
| | - Carmen J. Marsit
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Marie Camerota
- Brown Center for the Study of Children at Risk, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Brown Alpert Medical School, Providence, RI, USA
| | - Brian S. Carter
- Department of Pediatrics-Neonatology, Children’s Mercy Hospital, Kansas City, MO, USA
| | - Jennifer F. Check
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jennifer Helderman
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Julie A. Hofheimer
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Elisabeth C. McGowan
- Department of Pediatrics, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, USA
| | - Charles R. Neal
- Department of Pediatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Steven L. Pastyrnak
- Department of Pediatrics, Corewell Health, Helen DeVos Children’s Hospital, Grand Rapids, MI, USA
| | - Lynne M. Smith
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sheri A. DellaGrotta
- Brown Center for the Study of Children at Risk, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, USA
| | - Lynne M. Dansereau
- Brown Center for the Study of Children at Risk, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, USA
| | - T. Michael O’Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Todd M. Everson
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| |
Collapse
|
18
|
Quinn EB, Hsiao CJ, Maisha FM, Mulligan CJ. Prenatal maternal stress is associated with site-specific and age acceleration changes in maternal and newborn DNA methylation. Epigenetics 2023; 18:2222473. [PMID: 37300821 PMCID: PMC10259347 DOI: 10.1080/15592294.2023.2222473] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Prenatal maternal stress has a negative impact on child health but the mechanisms through which maternal stress affects child health are unclear. Epigenetic variation, such as DNA methylation, is a likely mechanistic candidate as DNA methylation is sensitive to environmental insults and can regulate long-term changes in gene expression. We recruited 155 mother-newborn dyads in the Democratic Republic of Congo to investigate the effects of maternal stress on DNA methylation in mothers and newborns. We used four measures of maternal stress to capture a range of stressful experiences: general trauma, sexual trauma, war trauma, and chronic stress. We identified differentially methylated positions (DMPs) associated with general trauma, sexual trauma, and war trauma in both mothers and newborns. No DMPs were associated with chronic stress. Sexual trauma was positively associated with epigenetic age acceleration across several epigenetic clocks in mothers. General trauma and war trauma were positively associated with newborn epigenetic age acceleration using the extrinsic epigenetic age clock. We tested the top DMPs for enrichment of DNase I hypersensitive sites (DHS) and found no enrichment in mothers. In newborns, top DMPs associated with war trauma were enriched for DHS in embryonic and foetal cell types. Finally, one of the top DMPs associated with war trauma in newborns also predicted birthweight, completing the cycle from maternal stress to DNA methylation to newborn health outcome. Our results indicate that maternal stress is associated with site-specific changes in DNAm and epigenetic age acceleration in both mothers and newborns.
Collapse
Affiliation(s)
- Edward B. Quinn
- Department of Anthropology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Chu J. Hsiao
- Department of Anthropology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- College of Medicine, University of Florida, Gainesville, FL, USA
| | - Felicien M. Maisha
- Department of Anthropology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Democratic Republic of Congo, HEAL Africa Hospital, Goma, USA
- Democratic Republic of Congo, Maisha Institute, Goma, USA
| | - Connie J. Mulligan
- Department of Anthropology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Musci RJ, Raghunathan RS, Johnson SB, Klein L, Ladd-Acosta C, Ansah R, Hassoun R, Voegtline KM. Using Epigenetic Clocks to Characterize Biological Aging in Studies of Children and Childhood Exposures: a Systematic Review. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2023; 24:1398-1423. [PMID: 37477807 PMCID: PMC10964791 DOI: 10.1007/s11121-023-01576-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Biological age, measured via epigenetic clocks, offers a unique and useful tool for prevention scientists to explore the short- and long-term implications of age deviations for health, development, and behavior. The use of epigenetic clocks in pediatric research is rapidly increasing, and there is a need to review the landscape of this work to understand the utility of these clocks for prevention scientists. We summarize the current state of the literature on the use of specific epigenetic clocks in childhood. Using systematic review methods, we identified studies published through February 2023 that used one of three epigenetic clocks as a measure of biological aging. These epigenetic clocks could either be used as a predictor of health outcomes or as a health outcome of interest. The database search identified 982 records, 908 of which were included in a title and abstract review. After full-text screening, 68 studies were eligible for inclusion. While findings were somewhat mixed, a majority of included studies found significant associations between the epigenetic clock used and the health outcome of interest or between an exposure and the epigenetic clock used. From these results, we propose the use of epigenetic clocks as a tool to understand how exposures impact biologic aging pathways and development in early life, as well as to monitor the effectiveness of preventive interventions that aim to reduce exposure and associated adverse health outcomes.
Collapse
Affiliation(s)
- Rashelle J Musci
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA.
| | | | - Sara B Johnson
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, USA
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Lauren Klein
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Rosemary Ansah
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, USA
| | - Ronda Hassoun
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
| | - Kristin M Voegtline
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, USA
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| |
Collapse
|
20
|
Fransquet PD, Macdonald JA, Ryan J, Greenwood CJ, Olsson CA. Exploring perinatal biopsychosocial factors and epigenetic age in 1-year-old offspring. Epigenomics 2023; 15:927-939. [PMID: 37905426 DOI: 10.2217/epi-2023-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Background: Little is known about the determinants of epigenetic aging in pediatric populations. Methods: Epigenetic age was estimated from 258 1-year-olds, using pediatric buccal epigenetic and Horvath clocks. We explored associations between epigenetic age and maternal indicators of mental and relational health, substance use and general physical health assessed during trimester three. Results: Higher anxiety and stress, BMI and higher parent-parent relationship quality were associated with pediatric buccal epigenetic clock differences. High blood pressure during pregnancy was associated with Horvath age acceleration. Third-trimester smoking and pre-pregnancy weight were associated with acceleration and deceleration respectively, and concordant across clocks. Conclusion: A broad range of maternal factors may shape epigenetic age in infancy; further research is needed to explore the possible effects on health and development.
Collapse
Affiliation(s)
- Peter D Fransquet
- Deakin University, Centre for Social & Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Victoria, Australia
| | - Jacqui A Macdonald
- Deakin University, Centre for Social & Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Victoria, Australia
- Murdoch Children's Research Institute, Population Studies of Adolescents, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- The University of Melbourne, Department of Paediatrics, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Joanne Ryan
- School of Public Health & Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Christopher J Greenwood
- Deakin University, Centre for Social & Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Victoria, Australia
- Murdoch Children's Research Institute, Population Studies of Adolescents, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- The University of Melbourne, Department of Paediatrics, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Craig A Olsson
- Deakin University, Centre for Social & Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Victoria, Australia
- Murdoch Children's Research Institute, Population Studies of Adolescents, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- The University of Melbourne, Department of Paediatrics, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Khodasevich D, Holland N, Hubbard A, Harley K, Deardorff J, Eskenazi B, Cardenas A. Associations between prenatal phthalate exposure and childhood epigenetic age acceleration. ENVIRONMENTAL RESEARCH 2023; 231:116067. [PMID: 37149020 PMCID: PMC10330458 DOI: 10.1016/j.envres.2023.116067] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/06/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Phthalates, a group of pervasive endocrine-disrupting chemicals found in plastics and personal care products, have been associated with a wide range of developmental and health outcomes. However, their impact on biomarkers of aging has not been characterized. We tested associations between prenatal exposure to 11 phthalate metabolites on epigenetic aging in children at birth, 7, 9, and 14 years of age. We hypothesized that prenatal phthalate exposure will be associated with epigenetic age acceleration measures at birth and in early childhood, with patterns dependent on sex and timing of DNAm measurement. METHODS Among 385 mother-child pairs from the CHAMACOS cohort, we measured DNAm at birth, 7, 9, and 14 years of age, and utilized adjusted linear regression to assess the association between prenatal phthalate exposure and Bohlin's Gestational Age Acceleration (GAA) at birth and Intrinsic Epigenetic Age Acceleration (IEAA) throughout childhood. Additionally, quantile g-computation was utilized to assess the effect of the phthalate mixture on GAA at birth and IEAA throughout childhood. RESULTS We found a negative association between prenatal di (2-ethylhexyl) phthalate (DEHP) exposure and IEAA among males at age 7 (-0.62 years; 95% CI:-1.06 to -0.18), and a marginal negative association between the whole phthalate mixture and GAA among males at birth (-1.54 days, 95% CI: -2.79 to -0.28), while most other associations were nonsignificant. CONCLUSIONS Our results suggest that prenatal exposure to certain phthalates is associated with epigenetic aging in children. Additionally, our findings suggest that the influence of prenatal exposures on epigenetic age may only manifest during specific periods of child development, and studies relying on DNAm measurements solely from cord blood or single time points may overlook potential relationships.
Collapse
Affiliation(s)
- Dennis Khodasevich
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Alan Hubbard
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | - Kim Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Julianna Deardorff
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Quinn EB, Hsiao CJ, Maisha FM, Mulligan CJ. Low birthweight is associated with epigenetic age acceleration in the first 3 years of life. Evol Med Public Health 2023; 11:251-261. [PMID: 37485054 PMCID: PMC10360162 DOI: 10.1093/emph/eoad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Indexed: 07/25/2023] Open
Abstract
Background and objectives The Developmental Origins of Health and Disease hypothesis posits that early life adversity is associated with poor adult health outcomes. Epidemiological evidence has supported this framework by linking low birthweight with adult health and mortality, but the mechanisms remain unclear. Accelerated epigenetic aging may be a pathway to connect early life experiences with adult health outcomes, based on associations of accelerated epigenetic aging with increased morbidity and mortality. Methodology Sixty-seven mother-infant dyads were recruited in the eastern Democratic Republic of Congo. Birthweight data were collected at birth, and blood samples were collected at birth and follow-up visits up to age 3. DNA methylation data were generated with the Illumina MethylationEPIC array and used to estimate epigenetic age. A multilevel model was used to test for associations between birthweight and epigenetic age acceleration. Results Chronological age was highly correlated with epigenetic age from birth to age 3 (r = 0.95, p < 2.2 × 10-16). Variation in epigenetic age acceleration increased over time. Birthweight, dichotomized around 2500 g, predicted epigenetic age acceleration over the first 3 years of life (b = -0.39, p = 0.005). Conclusions and implications Our longitudinal analysis provides the first evidence for accelerated epigenetic aging that emerges between birth and age 3 and associates with low birthweight. These results suggest that early life experiences, such as low birthweight, may shape the trajectory of epigenetic aging in early childhood. Furthermore, accelerated epigenetic aging may be a pathway that links low birthweight and poor adult health outcomes.
Collapse
Affiliation(s)
- Edward B Quinn
- Department of Anthropology, University of Florida, Gainesville, FL 32608, USA
- Genetics Institute, University of Florida, Gainesville, FL 32608, USA
| | - Chu J Hsiao
- Department of Anthropology, University of Florida, Gainesville, FL 32608, USA
- Genetics Institute, University of Florida, Gainesville, FL 32608, USA
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Felicien M Maisha
- Department of Anthropology, University of Florida, Gainesville, FL 32608, USA
- Genetics Institute, University of Florida, Gainesville, FL 32608, USA
- HEAL Africa Hospital, Goma, Democratic Republic of Congo
- Maisha Institute, Goma, Democratic Republic of Congo
| | - Connie J Mulligan
- Department of Anthropology, University of Florida, Gainesville, FL 32608, USA
- Genetics Institute, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
23
|
Gaylord A, Cohen A, Kupsco A. Biomarkers of aging through the life course: A Recent Literature Update. CURRENT OPINION IN EPIDEMIOLOGY AND PUBLIC HEALTH 2023; 2:7-17. [PMID: 38130910 PMCID: PMC10732539 DOI: 10.1097/pxh.0000000000000018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Purpose of review The development of biomarkers of aging has greatly advanced epidemiological studies of aging processes. However, much debate remains on the timing of aging onset and the causal relevance of these biomarkers. In this review, we discuss the most recent biomarkers of aging that have been applied across the life course. Recent findings The most recently developed aging biomarkers that have been applied across the life course can be designated into three categories: epigenetic clocks, epigenetic markers of chronic inflammation, and mitochondrial DNA copy number. While these have been applied at different life stages, the development, validation, and application of these markers has been largely centered on populations of older adults. Few studies have examined trajectories of aging biomarkers across the life course. As the wealth of molecular and biochemical data increases, emerging biomarkers may be able to capture complex and system-specific aging processes. Recently developed biomarkers include novel epigenetic clocks; clocks based on ribosomal DNA, transcriptomic profiles, proteomics, metabolomics, and inflammatory markers; clonal hematopoiesis of indeterminate potential gene mutations; and multi-omics approaches. Summary Attention should be placed on aging at early and middle life stages to better understand trajectories of aging biomarkers across the life course. Additionally, novel biomarkers will provide greater insight into aging processes. The specific mechanisms of aging reflected by these biomarkers should be considered when interpreting results.
Collapse
Affiliation(s)
- Abigail Gaylord
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Alan Cohen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
- Research Center on Aging and Research Center of Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
24
|
Segura AG, de la Serna E, Sugranyes G, Baeza I, Valli I, Díaz-Caneja C, Martín N, Moreno DM, Gassó P, Rodriguez N, Mas S, Castro-Fornieles J. Epigenetic age deacceleration in youth at familial risk for schizophrenia and bipolar disorder. Transl Psychiatry 2023; 13:155. [PMID: 37156786 PMCID: PMC10167217 DOI: 10.1038/s41398-023-02463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
Epigenetic modifications occur sequentially during the lifespan, but their pace can be altered by external stimuli. The onset of schizophrenia and bipolar disorder is critically modulated by stressors that may alter the epigenetic pattern, a putative signature marker of exposure to environmental risk factors. In this study, we estimated the age-related epigenetic modifications to assess the differences between young individuals at familial high risk (FHR) and controls and their association with environmental stressors. The sample included 117 individuals (6-17 years) at FHR (45%) and a control group (55%). Blood and saliva samples were used estimate the epigenetic age with six epigenetic clocks through methylation data. Environmental risk was measured with obstetric complications, socioeconomic statuses and recent stressful life events data. Epigenetic age was correlated with chronological age. FHR individuals showed epigenetic age deacceleration of Horvath and Hannum epigenetic clocks compared to controls. No effect of the environmental risk factors on the epigenetic age acceleration could be detected. Epigenetic age acceleration adjusted by cell counts showed that the FHR group was deaccelerated also with the PedBE epigenetic clock. Epigenetic age asynchronicities were found in the young at high risk, suggesting that offspring of affected parents follow a slower pace of biological aging than the control group. It still remains unclear which environmental stressors orchestrate the changes in the methylation pattern. Further studies are needed to better characterize the molecular impact of environmental stressors before illness onset, which could be critical in the development of tools for personalized psychiatry.
Collapse
Affiliation(s)
- Alex G Segura
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Elena de la Serna
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gisela Sugranyes
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Inmaculada Baeza
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabel Valli
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Covadonga Díaz-Caneja
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Nuria Martín
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Dolores M Moreno
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Adolescent Inpatient Unit, Department of Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Psychiatry Department, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia Gassó
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Natalia Rodriguez
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Sergi Mas
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Josefina Castro-Fornieles
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
25
|
Beijers R, Ten Thije I, Bolhuis E, O'Donnell KJ, Tollenaar MS, Shalev I, Hastings WJ, MacIsaac JL, Lin DTS, Meaney M, Kobor MS, Belsky J, de Weerth C. Cumulative risk exposure and child cellular aging in a Dutch low-risk community sample. Psychophysiology 2023; 60:e14205. [PMID: 36323627 DOI: 10.1111/psyp.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
One of the proposed mechanisms linking childhood stressor exposure to negative mental and physical health outcomes in later life is cellular aging. In this prospective, longitudinal, and pre-registered study, we examined the association between a cumulative pattern of childhood risk exposure from age 6 to age 10 (i.e., poor maternal mental health, parental relationship problems, family/friend death, bullying victimization, poor quality friendships) and change in two biomarkers of cellular aging (i.e., telomere length, epigenetic age) from age 6 to age 10 in a Dutch low-risk community sample (n = 193). We further examined the moderating effect of cortisol reactivity at age 6. Ordinary Least Squares regression analyses revealed no significant main effects of childhood risk exposure on change in cellular aging, nor a moderation effect of child cortisol reactivity. Secondary findings showed a positive correlation between telomere length and cortisol reactivity at age 6, warranting further investigation. More research in similar communities is needed before drawing strong conclusions based on the null results.
Collapse
Affiliation(s)
- Roseriet Beijers
- Department of Social Development, Behavioral Science Institute, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilse Ten Thije
- Department of Social Development, Behavioral Science Institute, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emma Bolhuis
- Department of Social Development, Behavioral Science Institute, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kieran J O'Donnell
- Yale Child Study Center & Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, Connecticut, USA
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, Canada
| | - Marieke S Tollenaar
- Leiden Institute for Brain and Cognition and Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Idan Shalev
- Department of Biobehavioral Health, Penn State University, State College, Pennsylvania, USA
| | - Waylon J Hastings
- Department of Biobehavioral Health, Penn State University, State College, Pennsylvania, USA
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, Canada
| | - David T S Lin
- Department of Medical Genetics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Michael Meaney
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jay Belsky
- Department of Human Ecology, University of California, California, Davis, USA
| | - Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Li Piani L, Vigano' P, Somigliana E. Epigenetic clocks and female fertility timeline: A new approach to an old issue? Front Cell Dev Biol 2023; 11:1121231. [PMID: 37025178 PMCID: PMC10070683 DOI: 10.3389/fcell.2023.1121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Worldwide increase in life expectancy has boosted research on aging. Overcoming the concept of chronological age, higher attention has been addressed to biological age, which reflects a person's real health state, and which may be the resulting combination of both intrinsic and environmental factors. As epigenetics may exert a pivotal role in the biological aging, epigenetic clocks were developed. They are based on mathematical models aimed at identifying DNA methylation patterns that can define the biological age and that can be adopted for different clinical scopes (i.e., estimation of the risks of developing age-related disorders or predicting lifespan). Recently, epigenetic clocks have gained a peculiar attention in the fertility research field, in particular in the female counterpart. The insight into the possible relations between epigenetic aging and women's infertility might glean additional information about certain conditions that are still not completely understood. Moreover, they could disclose significant implications for health promotion programs in infertile women. Of relevance here is that the impact of biological age and epigenetics may not be limited to fertility status but could translate into pregnancy issues. Indeed, epigenetic alterations of the mother may transfer into the offspring, and pregnancy itself as well as related complications could contribute to epigenetic modifications in both the mother and newborn. However, even if the growing interest has culminated in the conspicuous production of studies on these topics, a global overview and the availability of validated instruments for diagnosis is still missing. The present narrative review aims to explore the possible bonds between epigenetic aging and fertility timeline. In the "infertility" section, we will discuss the advances on epigenetic clocks focusing on the different tissues examined (endometrium, peripheral blood, ovaries). In the "pregnancy" section, we will discuss the results obtained from placenta, umbilical cord and peripheral blood. The possible role of epigenetic aging on infertility mechanisms and pregnancy outcomes represents a question that may configure epigenetic clock as a bond between two apparently opposite worlds: infertility and pregnancy.
Collapse
Affiliation(s)
- Letizia Li Piani
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Paola Vigano'
- Infertility Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Edgardo Somigliana
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
- Infertility Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
27
|
Dye CK, Wu H, Monk C, Belsky DW, Alschuler D, Lee S, O’Donnell K, Scorza P. Mother's childhood adversity is associated with accelerated epigenetic aging in pregnancy and in male newborns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530806. [PMID: 36945654 PMCID: PMC10028804 DOI: 10.1101/2023.03.02.530806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Background Adverse childhood experiences (ACEs) are correlated with accelerated epigenetic aging, but it is not clear whether altered epigenetic aging from childhood adversities persists into adulthood and can be transmitted to the next generation. Thus, we tested whether mothers' childhood adversity is associated with accelerated epigenetic aging during pregnancy and in their newborn offspring. Methods Data were from the Avon Longitudinal Study of Parents and Children (ALSPAC) sub-study, Accessible Resource for Integrated Epigenomic Studies (ARIES). Women provided retrospective self-reports during pregnancy of ACE exposure. DNA methylation was measured in mothers during pregnancy and cord blood at birth. Estimates of epigenetic age acceleration were calculated using Principal Components of Horvath, Hannum skin & blood, GrimAge, PhenoAge, and DunedinPACE epigenetic clocks for mothers; and the Knight and Bohlin cord blood clocks for newborns. Associations between a cumulative maternal ACE score and epigenetic age acceleration were estimated using linear regression models, adjusting for maternal age at pregnancy, smoking during pregnancy, education, and pre-pregnancy BMI. Models for offspring were stratified by sex and additionally adjusted for gestation age. Results Mothers' total ACE score was positively associated with accelerated maternal PhenoAge and GrimAge. In newborn offspring, mothers' total ACE score was positively associated with accelerated epigenetic aging in males using the Bohlin clock, but not in females using either epigenetic clock. We found male offsprings' epigenetic age was accelerated in those born to mothers exposed to neglect using the Knight clock; and parental substance abuse using the Bohlin clock. Conclusion Our results show that mothers' ACE exposure is associated with DNAm age acceleration in male offspring, supporting the notion that DNAm age could be a marker of intergenerational biological embedding of mothers' childhood adversity. This is consistent with findings on vulnerability of male fetuses to environmental insults.
Collapse
Affiliation(s)
- Christian K. Dye
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Catherine Monk
- Department of Psychiatry, Columbia University, Columbia University, New York, New York, USA
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York, New York, USA
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| | - Daniel W. Belsky
- Department of Epidemiology & Butler Columbia Aging Center, Columbia University, New York, New York, USA
| | - Daniel Alschuler
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York, New York, USA
| | - Seonjoo Lee
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York, New York, USA
- Department of Biostatistics, Columbia University, New York, New York, USA
| | - Kieran O’Donnell
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Pamela Scorza
- Department of Psychiatry, Columbia University, Columbia University, New York, New York, USA
- Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| |
Collapse
|
28
|
Silveira PP, Meaney MJ. Examining the biological mechanisms of human mental disorders resulting from gene-environment interdependence using novel functional genomic approaches. Neurobiol Dis 2023; 178:106008. [PMID: 36690304 DOI: 10.1016/j.nbd.2023.106008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
We explore how functional genomics approaches that integrate datasets from human and non-human model systems can improve our understanding of the effect of gene-environment interplay on the risk for mental disorders. We start by briefly defining the G-E paradigm and its challenges and then discuss the different levels of regulation of gene expression and the corresponding data existing in humans (genome wide genotyping, transcriptomics, DNA methylation, chromatin modifications, chromosome conformational changes, non-coding RNAs, proteomics and metabolomics), discussing novel approaches to the application of these data in the study of the origins of mental health. Finally, we discuss the multilevel integration of diverse types of data. Advance in the use of functional genomics in the context of a G-E perspective improves the detection of vulnerabilities, informing the development of preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Patrícia Pelufo Silveira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| | - Michael J Meaney
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore; Brain - Body Initiative, Agency for Science, Technology and Research (ASTAR), Singapore.
| |
Collapse
|
29
|
Perret LC, Geoffroy MC, Barr E, Parnet F, Provencal N, Boivin M, O’Donnell KJ, Suderman M, Power C, Turecki G, Ouellet-Morin I. Associations between epigenetic aging and childhood peer victimization, depression, and suicidal ideation in adolescence and adulthood: A study of two population-based samples. Front Cell Dev Biol 2023; 10:1051556. [PMID: 36712964 PMCID: PMC9879289 DOI: 10.3389/fcell.2022.1051556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Prior studies indicate that peer victimization (including bullying) is associated with higher risk for depression and suicidal ideation across the life course. However, molecular mechanisms underlying these associations remain unclear. This two-cohort study proposes to test whether epigenetic aging and pace of aging, as well as a DNA methylation marker of responsive to glucocorticoids, are associated to childhood peer victimization and later depressive symptoms, or suicidal ideation. Methods: Cohort 1: Epigenome-wide DNA methylation (EPIC array) was measured in saliva collected when participants were 10.47 years (standard deviation = 0.35) in a subsample of the Quebec Longitudinal Study of Child Development (QLSCD, n = 149 participants), with self-reported peer victimization at 6-8 years, depressive symptoms (mean symptoms, and dichotomized top 30% symptoms) and suicidal ideation at 15-17 years. Cohort 2: Epigenome-wide DNA methylation (EPIC array) was measured in blood collected from participants aged 45.13 years (standard deviation = 0.37) in a subsample of the 1958 British Birth cohort (1958BBC, n = 238 participants) with information on mother-reported peer victimization at 7-11 years, self-reported depressive symptoms at 50 years, and suicidal ideation at 45 years. Five epigenetic indices were derived: three indicators of epigenetic aging [Horvath's pan-tissue (Horvath1), Horvath's Skin-and-Blood (Horvath2), Pediatric-Buccal-Epigenetic age (PedBE)], pace of aging (DunedinPACE), and stress response reactivity (Epistress). Results: Peer victimization was not associated with the epigenetic indices in either cohort. In the QLSCD, higher PedBE epigenetic aging and a slower pace of aging as measured by DunedinPACE predicted higher depressive symptoms scores. In contrast, neither the Horvath1, or Horvath2 epigenetic age estimates, nor the Epistress score were associated with depressive symptoms in either cohort, and none of the epigenetic indices predicted suicidal ideation. Conclusion: The findings are consistent with epigenome-wide and candidate gene studies suggesting that these epigenetic indices did not relate to peer victimization, challenging the hypothesis that cumulative epigenetic aging indices could translate vulnerability to depressive symptoms and suicidal ideation following peer victimization. Since some indices of epigenetic aging and pace of aging signaled higher risk for depressive symptoms, future studies should pursue this investigation to further evaluate the robustness and generalization of these preliminary findings.
Collapse
Affiliation(s)
- L. C. Perret
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - M-C. Geoffroy
- Department of Psychiatry, McGill University, Montreal, QC, Canada,Department of Educational and Counselling Psychology, McGill University, Montreal, QC, Canada
| | - E. Barr
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - F. Parnet
- School of Criminology, Research Center of the Montreal Mental Health University Institute, Université de Montréal, Montreal, QC, Canada
| | - N. Provencal
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - M. Boivin
- School of Psychology, Université Laval, Québec City, QC, Canada
| | - K. J. O’Donnell
- Department of Psychiatry, McGill University, Montreal, QC, Canada,Yale Child Study Center, Yale School of Medicine, New Haven, CT, United States,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States,Child and Brain Development Program, CIFAR, Toronto, ON, Canada
| | - M. Suderman
- MRC Integrative Epidemiology Unit, Bristol Medical School, Bristol Population Health Science Institute, Bristol, United Kingdom
| | - C. Power
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - G. Turecki
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - I. Ouellet-Morin
- School of Criminology, Research Center of the Montreal Mental Health University Institute, Université de Montréal, Montreal, QC, Canada,*Correspondence: I. Ouellet-Morin,
| |
Collapse
|
30
|
Euclydes V, Gomes C, Gouveia G, Gastaldi VD, Feltrin AS, Camilo C, Vieira RP, Felipe-Silva A, Grisi S, Fink G, Brentani A, Brentani H. Gestational age acceleration is associated with epigenetic biomarkers of prenatal physiologic stress exposure. Clin Epigenetics 2022; 14:152. [PMID: 36443840 PMCID: PMC9703828 DOI: 10.1186/s13148-022-01374-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Physiological maternal stress response, such as imbalance in the glucocorticoid pathway and immune system seems to be mediated by DNA methylation (DNAm) and might translate intrauterine stress exposures into phenotypic changes in a sex-specific manner. DNAm in specific sites can also predict newborn gestational age and gestational age acceleration (GAA). GAA occurs when the predicted biological age is higher than the chronological age. In adults, poor health outcomes related to this deviance are well documented and raise questions for the interpretation and prediction in early stages of life. Boys seem to be more vulnerable to intrauterine stress exposure than girls; however, the mechanisms of adaptive sex-specific responses are still unclear. We hypothesize that intrauterine stress exposure is associated with GAA and could be different in boys and girls if inflammatory or glucocorticoid pathways exposure is considered. RESULTS Using the Western Region Birth Cohort (ROC-São Paulo, Brazil) (n = 83), we calculated DNAm age and GAA from cord blood samples. Two epigenetic risk scores were calculated as an indirect proxy for low-grade inflammation (i-ePGS) and for glucocorticoid exposure (GES). Multivariate linear regression models were applied to investigate associations of GAA with prenatal exposures. The i-ePGS and GES were included in different models with the same co-variates considering sex interactions. The first multivariate model investigating inflammatory exposure (adj. R2 = 0.31, p = < 0.001) showed that GAA was positively associated with i-ePGS (CI, 0.26-113.87, p = 0.049) and negative pregnancy-related feelings (CI, 0.04-0.48 p = 0.019). No sex interaction was observed. The second model investigating glucocorticoid exposure (adj. R2 = 0.32, p = < 0.001) showed that the higher was the GAA was associated with a lower the lower was the GES in girls (CI, 0.04-2.55, p = 0.044). In both models, maternal self-reported mental disorder was negatively associated with GAA. CONCLUSION Prenatal epigenetic score of exposure to low-grade inflammatory was a predictor of GAA for both sexes. Glucocorticoid epigenetic score seems to be more important to GAA in girls. This study supports the evidence of sex-specificity in stress response, suggesting the glucocorticoid as a possible pathway adopted by girls to accelerate the maturation in an adverse condition.
Collapse
Affiliation(s)
- Verônica Euclydes
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Catarina Gomes
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Gisele Gouveia
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Vinicius Daguano Gastaldi
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Arthur Sant’Anna Feltrin
- grid.412368.a0000 0004 0643 8839Center of Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Caroline Camilo
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Rossana Pulcineli Vieira
- grid.11899.380000 0004 1937 0722Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Aloísio Felipe-Silva
- grid.11899.380000 0004 1937 0722Departamento de Patologia, Hospital Universitário, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Sandra Grisi
- grid.11899.380000 0004 1937 0722Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Günther Fink
- grid.416786.a0000 0004 0587 0574Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Alexandra Brentani
- grid.11899.380000 0004 1937 0722Departamento de Pediatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Helena Brentani
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
31
|
Bolhuis E, Belsky J, Frankenhuis WE, Shalev I, Hastings WJ, Tollenaar MS, O’Donnell KJ, McGill MG, Pokhvisneva I, Lin DT, MacIsaac JL, Kobor MS, de Weerth C, Beijers R. Attachment insecurity and the biological embedding of reproductive strategies: Investigating the role of cellular aging. Biol Psychol 2022; 175:108446. [DOI: 10.1016/j.biopsycho.2022.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/02/2022]
|
32
|
Lahiri DK, Maloney B, Song W, Sokol DK. Crossing the "Birth Border" for Epigenetic Effects. Biol Psychiatry 2022; 92:e21-e23. [PMID: 35248366 PMCID: PMC9514510 DOI: 10.1016/j.biopsych.2021.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/17/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Debomoy K Lahiri
- Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Bryan Maloney
- Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Weihong Song
- Institute of Aging, Wenzhou Medical University, Wenzhou, China; Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Deborah K Sokol
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
33
|
McGill MG, Pokhvisneva I, Clappison AS, McEwen LM, Beijers R, Tollenaar M, Pham H, Kee MZL, Garg E, de Mendonça Filho EJ, Karnani N, Silveira PP, Kobor MS, de Weerth C, Meaney MJ, O'Donnell KJ. Reply to: Crossing the "Birth Border" for Epigenetic Effects. Biol Psychiatry 2022; 92:e25-e26. [PMID: 35249723 DOI: 10.1016/j.biopsych.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/02/2022]
Affiliation(s)
- Megan G McGill
- Department of Psychiatry, Douglas Research Centre, McGill University, Montreal, Quebec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
| | - Irina Pokhvisneva
- Department of Psychiatry, Douglas Research Centre, McGill University, Montreal, Quebec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
| | - Andrew S Clappison
- Department of Psychiatry, Douglas Research Centre, McGill University, Montreal, Quebec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
| | - Lisa M McEwen
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roseriet Beijers
- Department of Developmental Psychology, Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, the Netherlands
| | - Marieke Tollenaar
- Clinical Psychology Unit, Institute of Psychology, Leiden University, Leiden, the Netherlands
| | - Hung Pham
- Yale Child Study Center and Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Michelle Z L Kee
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
| | - Elika Garg
- Department of Psychiatry, Douglas Research Centre, McGill University, Montreal, Quebec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
| | | | - Neerja Karnani
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore; Bioinformatics Institute, Agency for Science Technology and Research, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Patricia P Silveira
- Department of Psychiatry, Douglas Research Centre, McGill University, Montreal, Quebec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada; Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Carolina de Weerth
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, the Netherlands
| | - Michael J Meaney
- Department of Psychiatry, Douglas Research Centre, McGill University, Montreal, Quebec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada; Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada; Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kieran J O'Donnell
- Department of Psychiatry, Douglas Research Centre, McGill University, Montreal, Quebec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada; Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada; Yale Child Study Center and Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
34
|
Novel functional genomics approaches bridging neuroscience and psychiatry. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519472 PMCID: PMC10382709 DOI: 10.1016/j.bpsgos.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The possibility of establishing a metric of individual genetic risk for a particular disease or trait has sparked the interest of the clinical and research communities, with many groups developing and validating genomic profiling methodologies for their potential application in clinical care. Current approaches for calculating genetic risk to specific psychiatric conditions consist of aggregating genome-wide association studies-derived estimates into polygenic risk scores, which broadly represent the number of inherited risk alleles for an individual. While the traditional approach for polygenic risk score calculation aggregates estimates of gene-disease associations, novel alternative approaches have started to consider functional molecular phenotypes that are closer to genetic variation and are less penalized by the multiple testing required in genome-wide association studies. Moving the focus from genotype-disease to genotype-gene regulation frameworks, these novel approaches incorporate prior knowledge regarding biological processes involved in disease and aggregate estimates for the association of genotypes and phenotypes using multi-omics data modalities. In this review, we discuss and list different functional genomics tools that can be used and integrated to inform researchers and clinicians for a better understanding and diagnosis of psychopathology. We suggest that these novel approaches can help generate biologically driven hypotheses for polygenic signals that can ultimately serve the clinical community as potential biomarkers of psychiatric disease susceptibility.
Collapse
|
35
|
Han Y, Yuan M, Guo YS, Shen XY, Gao ZK, Bi X. The role of enriched environment in neural development and repair. Front Cell Neurosci 2022; 16:890666. [PMID: 35936498 PMCID: PMC9350910 DOI: 10.3389/fncel.2022.890666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
In addition to genetic information, environmental factors play an important role in the structure and function of nervous system and the occurrence and development of some nervous system diseases. Enriched environment (EE) can not only promote normal neural development through enhancing neuroplasticity but also play a nerve repair role in restoring functional activities during CNS injury by morphological and cellular and molecular adaptations in the brain. Different stages of development after birth respond to the environment to varying degrees. Therefore, we systematically review the pro-developmental and anti-stress value of EE during pregnancy, pre-weaning, and “adolescence” and analyze the difference in the effects of EE and its sub-components, especially with physical exercise. In our exploration of potential mechanisms that promote neurodevelopment, we have found that not all sub-components exert maximum value throughout the developmental phase, such as animals that do not respond to physical activity before weaning, and that EE is not superior to its sub-components in all respects. EE affects the developing and adult brain, resulting in some neuroplastic changes in the microscopic and macroscopic anatomy, finally contributing to enhanced learning and memory capacity. These positive promoting influences are particularly prominent regarding neural repair after neurobiological disorders. Taking cerebral ischemia as an example, we analyzed the molecular mediators of EE promoting repair from various dimensions. We found that EE does not always lead to positive effects on nerve repair, such as infarct size. In view of the classic issues such as standardization and relativity of EE have been thoroughly discussed, we finally focus on analyzing the essentiality of the time window of EE action and clinical translation in order to devote to the future research direction of EE and rapid and reasonable clinical application.
Collapse
Affiliation(s)
- Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Xia Bi
| |
Collapse
|
36
|
McDonald CR, Weckman AM, Wright JK, Conroy AL, Kain KC. Developmental origins of disease highlight the immediate need for expanded access to comprehensive prenatal care. Front Public Health 2022; 10:1021901. [PMID: 36504964 PMCID: PMC9730730 DOI: 10.3389/fpubh.2022.1021901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
The prenatal environment plays a critical role in shaping fetal development and ultimately the long-term health of the child. Here, we present data linking prenatal health, via maternal nutrition, comorbidities in pregnancy (e.g., diabetes, hypertension), and infectious and inflammatory exposures, to lifelong health through the developmental origins of disease framework. It is well-established that poor maternal health puts a child at risk for adverse outcomes in the first 1,000 days of life, yet the full health impact of the in utero environment is not confined to this narrow window. The developmental origins of disease framework identifies cognitive, neuropsychiatric, metabolic and cardiovascular disorders, and chronic diseases in childhood and adulthood that have their genesis in prenatal life. This perspective highlights the enormous public health implications for millions of pregnancies where maternal care, and therefore maternal health and fetal health, is lacking. Despite near universal agreement that access to antenatal care is a priority to protect the health of women and children in the first 1,000 days of life, insufficient progress has been achieved. Instead, in some regions there has been a political shift toward deprioritizing maternal health, which will further negatively impact the health and safety of pregnant people and their children across the lifespan. In this article we argue that the lifelong health impact attributed to the perinatal environment justifies policies aimed at improving access to comprehensive antenatal care globally.
Collapse
Affiliation(s)
- Chloe R McDonald
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Andrea M Weckman
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Julie K Wright
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrea L Conroy
- Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Kevin C Kain
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|